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Abstract.

One direct application of explainable Al feature attribution methods is to be used
for detecting unwanted biases. To do so, domain experts typically have to review
explained inputs, checking for the presence of unwanted biases learnt by the model.
However, the huge amount of samples the domain experts must review makes this
task more challenging as the size of the dataset grows. In an ideal case, domain ex-
perts should be provided only with a small number of selected samples containing
potential biases. The recently published Focus score seems a promising tool for the
selection of samples containing potential unwanted biases. In this work, we con-
duct a first study in this direction, analyzing the behavior of the Focus score when
applied to a biased model. First, we verified that Focus is indeed sensitive to an in-
duced bias. This is assessed by forcing a spurious correlation, training a model us-
ing only cats-indoor and dogs-outdoor. We empirically prove that the model learnt
to distinguish the contexts (outdoor vs indoor) instead of cat vs dog classes, so en-
suring that the model learnt an unwanted bias. Afterwards, we apply the Focus on
this biased model showing how the Focus score decreases when the input contains
the aforementioned bias. This analysis sheds light on the Focus behavior when ap-
plied to a biased model, highlighting its strengths for its use for bias detection.

Keywords. Focus, explainability, feature attribution methods, evaluation metrics,
bias, mosaics

1. Introduction

Neural networks have proven to be effective tools for image classification tasks [1]. How-
ever, their interpretation is still obscure. The most popular methods used to overcome
this problem are post-hoc attribution methods, such as SmoothGrad [2], GradCAM [3],
Layer-Wise Relevance Propagation (LRP) [4] or LIME [5]. These methods provide an
attribution map representing the contribution of pixels towards the final prediction. In or-
der to assess the reliability of these techniques, different approaches have been proposed
in the literature. Evaluation metrics such as the Pointing Game [6] or the Region Pertur-
bation [7]. Recent works exploit the use of grids to carry out these evaluations [8,9].

In this work, we analyze in depth the behavior of the Focus [8] score, particularly
when applied to a biased model. To do so, we trained a model on biased data, enabling it
to learn a spurious correlation we can quantify and control. Then we analyse the Focus
behaviour when applied to this biased model. Notice that these spurious correlations are
difficult to detect and validate using classic performance metrics (e.g., loss, accuracy),
since these unwanted biases helps the model to learn and obtain correct predictions.

ICorresponding Author: Anna Arias-Duart; E-mail: anna.ariasduart@bsc.es.



326 A. Arias-Duart et al. / Focus and Bias: Will It Blend?
2. Related Work

One of the powerful uses of the feature attribution methods is the detection of unwanted
biases in datasets and models. However, deciding whether these spurious correlations
are desirable or undesirable is for domain experts to say, following ethical and practical
considerations. To enable experts to do this job, exploiting these attribution maps, we
need to provide them with useful and reliable information.

Some work has been done in this direction, Lapuschkin et al. [10] propose to reduce
the explanations space provided to the domain experts through spectral clustering, so
producing a reduce set of clusters instead of thousands of explanations. Where these
clusters aim to represent different classification strategies and then, these strategies are
shown to domain experts for the final unwanted bias detection stage. Similarly, this work
[8] proposes a methodology where Focus is used to reduce the number of explanations
to a subset that highlights potential unwanted biases, hence considerably reducing the
search space to be assessed by domain experts for finding unwanted biases. However, the
authors in [8] use models in which they have no control over the actual bias, limiting the
reliability of the results. In our work, we go beyond, applying the Focus on a model to
which we induce an unwanted bias.

The Focus metric involves three elements: a feature attribution method, a trained
classification model and a set of mosaic samples. Each mosaic is composed of images of
different classes, some of them from a target class, the specific class the explainability
method is expected to explain. For example, if the target class of a given mosaic is the
dog class, at least one of the images within the grid of the mosaic must belong to the
dog class (see Figure 3 for examples of 2 x 1 mosaics). Intuitively, if we ask a feature
attribution method for the explainability of the target class on a mosaic, the Focus metric
will measure the proportion of attribution lying on the farget class squares, with respect
to the total mosaic attribution. A random (uniform) attribution obtains a Focus equal to
the proportion of squares.

In this context, we analyze the Focus behavior when applied to a model where the
spurious correlation learnt by the model is known, verifying its potential use as a tool for
bias detection.

3. Building a biased model

To apply the Focus on a biased model, we first need a biased dataset to learn from. In this
section, we first explain how we created the biased dataset §3.1. Then, we introduce the
training configurations §3.2. And last but not least, we perform some sanity checks to
confirm that indeed we managed to introduce a spurious correlation into the model §3.3.

(a) (b) () (d)

Figure 1. Examples of indoor/outdoor images: (a) cat-indoor (b) cat-outdoor (c) dog-indoor (d) dog-outdoor.
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Table 1. Contexts included in each category for the Visual Genome dataset. The first and second column

corresponds to the cat-outdoor and cat-indoor category. And the third and forth column to the dog-outdoor and
dog-indoor category respectively.

= » o ko

speaker, computer, screen, laptop, house, grass, horse, screen, shelf, desk, picture,
computer mouse, keyboard, monitor, fence, cow, sheep, dirt, laptop, remote control,
car. fence, desk, sheet, bed, blanket, remote control, car, motorcycle, truck, blanket, bed, sheet, lamp,
. comforter, pillow, couch, books, book, helmet, snow, flag, boat, books, pillow, curtain,
bg;':z;r;(;fi television, bookshelf, blinds, sink, bottle, rope, trees, frisbee, bike, container, table, cup,
faucet, towel, counter, curtain, toilet, pot, bicycle, sand, surfboard, plate, food, box, rug,
house carpet, toy, floor, plate, rug, food, table, box,  water, fire hydrant, pole, floor, cabinet, towel,
paper, suitcase, bag, container, vase, shelf, skateboard, bench, bowl, television,
bowl, picture, papers, lamp, cup, sofa trash can carpet, sofa

3.1. Dataset creation

The creation of this dataset is motivated by the need to have control over some of the
dataset biases. To do so, we use the MetaShift [11] to induce a correlation that we can
quantify and control. This work clusters the images according to metadata. An annotated
graph is created where each node represents a class in a specific context, for example dog
frisbee. The distance between nodes represents the similarity between those contexts:
dog frisbee will be closer to dog grass than dog books. The more contexts are shared
within a class, the closer the nodes will be. Using the construction proposed by [11] we
create a dataset composed of two classes (cat and dog) with two subclasses (indoor and
outdoor), see Figure 1 for details.

We built the dataset with images from two well-known datasets, both providing con-
textual information: the Common Objects in Context (COCO) dataset [12] and the Visual
Genome dataset [13]. Tables 1 and 2 show the exact contexts used for the construction of
the indoor and outdoor subclasses for both datasets, the Visual Genome dataset and the
COCO dataset respectively.

Table 2. Contexts included in each category for the COCO dataset. The first column corresponds to the outdoor
contexts and the second to the indoor ones.

. . . bottle, wine glass, cup, fork, knife, spoon, bowl,
bicycle, car, motorcycle, airplane, bus, train, . o
. . chair, couch, potted plant, bed, dining table,
truck, boat, traffic light, fire hydrant, stop sign, .
. . . toilet, tv, laptop, mouse, remote, keyboard,
parking meter, bench, frisbee, skis, snowboard, . .
) cell phone, microwave, oven, toaster, sink,
sports ball, kite, baseball bat, baseball glove, . .
. refrigerator, book, clock, vase, scissors,
skateboard, surfboard, tennis racket Lo
teddy bear, hair drier, toothbrush
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3.2. Model

Next, we train a model using only samples from cats-indoor and dogs-outdoor. In this
way, we introduce a spurious correlation, which could in fact occur in a real scenario:
dog-outdoor images are more likely than cat-outdoor images.

For training the model, we use a total of 1,060 images per class (cats-indoor vs
dogs-outdoor). Where 960 images per class were used for training and 100 for valida-
tion. We use the ResNet-18 [14] architecture, the AMSGrad [15] to optimize weights and
we perform data augmentation during training: random rotation ([-30, 30] degrees), ran-
dom crop and random horizontal flip with a chance of 50%. We reach a mean per class
accuracy on the validation set of 87%, corresponding to the model with the minimum
validation loss. From here we will call this model: the biased model.

For comparison purposes, we also train a model avoiding the context correlation. We
use the same training size (1,060 images per class) but in this case both cats and dogs will
be equally present in both contexts 50% outdoors and 50% indoors. We reach a mean
per class accuracy on the validation set of 60.5%, using the model with the minimum
validation loss. Notice that the performance obtained is much lower, indicating that the
induced context served as a successful shortcut to the model. Without this added bias, the
high variability (different breeds) as well as the low quality (mislabeled samples or par-
tially occluded animals) of the dataset, limits the performance of the model which fails
to learn to distinguish the two classes robustly. From now on we will refer to this second
model as the non-biased model. Both trainings are performed in a single computing node
of the CTE-Power9 cluster at the Barcelona Supercomputing Center, with the following
characteristics:

e 2 x IBM Power9 8335-GTH @ 2.4GHz (20 cores and 4 threads/core).
¢ 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.

3.3. Sanity checks

To prove that the previous model, trained for the cats (indoor) and dogs (outdoor) classi-
fication task, is biased indeed (i.e., it has managed to learn the context instead of cat and
dog characteristic patterns), we perform the following experiment. Starting from the hy-
pothesis that images predicted with low probability, or that are predicted as the opposite
class (in the case of a binary classification problem) are likely to be those that have pat-
terns of the opposite class, we selected the three dog images with the lowest prediction
and the three worst cat image predictions, see Figure 2.

Before continuing with the hypothesis evaluation, it is worth mentioning how the
samples predicted with least certainty significantly differ between cats and dogs. While
for dogs, the lowest probability corresponds to 56.58% and the third lowest to 82.11%
(both of which account for a correct classification in a binary problem), for cats these
probabilities drop to 0.38% the lowest, and the third lowest to 47.29%. As shown in Fig-
ure 2 (and mentioned before) the worst predicted cat sample seems like a labeling mistake
(labeled as cat indoor when it seems to be cat outdoor). We do not correct this mistake for
the sake of methodological consistency. These results show a higher performance when
classifying outdoor-dogs than indoor-cats, suggesting that the model has learnt to focus
more on outdoor than indoor patterns. This may be due to the fact that outdoor patterns
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Figure 2. Examples of the worst predictions of the validation images set. Worst dog predictions: (a) dog:

0.5658, (b) dog: 0.7948 and (c) dog: 0.8211. Worst cat predictions: (d) cat: 0.0038, (e) cat: 0.4627 and (f) cat:
0.4729.

are less variant and more frequent, being a perfect visual pattern to discriminate between
both classes.

Following the previous hypothesis: images predicted with a low probability are those
that most likely contain a pattern of the opposite class. We build a set of 2 x 1 mosaics
by combining those pairs of images (cats vs dogs), in order to apply a feature attribution
method on top of them. Notice that the use of feature attribution methods on top of the
mosaics enhances the detection of shared biases (term introduced in [8]). The shared
biases are characteristic patterns of one class that are present in another class.

Figure 3. Feature attribution maps obtained by GradCAM on the bias model (the dog being the target class).
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Figure 4. Feature attribution maps obtained by GradCAM on the bias model (the cat being the rarget class).

For this experiment we use the GradCAM attribution method. Results for both farget
classes are shown in Figure 3 and Figure 4. In all mosaics with the farget class being
the dog (see Figure 3), the GradCAM attribution focuses on areas where trees, leaves,
or plants are present. Regardless of these patterns appearing in the cats squares or in the
dog squares. Based on this, we hypothesize that the model has learnt to detect vegetation,
instead of discriminating between cats and dogs. Indeed, it seems reasonable to think
that most dogs in an outdoor context will be on meadows, fields or mountains (with a
prominent presence of vegetation), while indoor cats will lack such pattern. This situation
would have made it easier for the model to distinguish between dogs and cats, by only
learning the green context instead of learning the characteristic patterns of these two
mammals.

Similarly, the attribution in Figure 4, with the cat being the farget class, falls on
the wood or the brown areas (see for example first column of Figure 4). This pattern,
although to a lesser extent than the vegetation, seems to be learnt by the model as a
characteristic pattern of the cat class.

In order to corroborate that the model has learnt to identify vegetation as a character-
istic pattern of the dog class and the wood as characteristic of the cat class, we perform
another sanity check. We fed the model with the hand selected images shown in Figure 5,
obtained from external sources. Image (a) is an image of only grass, which is predicted
as a dog with a probability of 99.98%. On the contrary, Image (b) is a wood image which
is predicted as a cat with a probability of 96.30%. In the case of Image (c), both patterns
are present, although the green pattern is more prominent. This image is predicted as a
dog with a probability of 99.44%. Notice how the attribution, being the target class the
dog class (see Image (g)), falls on the green part around the path. However, when we ask
for the attribution of the cat class (see Image (h)), the relevance focuses on the wooden
bridge.

These results validate our hypothesis: vegetation is the main pattern learnt by the
model as characteristic of the dog class and the wood pattern is learnt as characteristic of
the cat class. At this point, we can confirm that the model is clearly skewed, it has learnt
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Figure 5. First row: hand selected samples predicted by the biased model as (a) dog: 0.9998 (b) cat: 0.9630
(c) and (d) dog: 0.9944. Second row: feature attribution maps obtained by GradCAM for the images of the first
row being the target class: (e) the dog class (f) the cat class (g) the dog class and (h) the cat class.

to differentiate the two classes mainly by context and not by animal, and furthermore,
we are aware of the principal patterns enabling such distinction.

4. Focus on a biased model

To evaluate the performance of the Focus score on a biased model we need three ele-
ments: a feature attribution method, a trained model and a set of mosaics. As an explain-
ability method we use GradCAM, the one obtaining the best results for Focus [8]. As a
trained classification model we use the ones introduced in §3.2 (the biased model and
the non-biased model). Finally, for the mosaics, we build four sets of 2x 1 mosaics, fol-
lowing all possible combinations. Notice each set contains the same amount of mosaics
(10,000):

1. cat-indoor vs dog-outdoor: Combines 100 cat-indoor images and 100 dog-
outdoor images. Note that this set follows the same distribution used for training
the biased model.

2. cat-indoor vs dog-indoor: Combines 100 cat-indoor images and 100 dog-indoor
images.

3. cat-outdoor vs dog-indoor: Combines 100 cat-outdoor images and 100 dog-
indoor images. Note that this set corresponds to a distribution complementary to
the one used for training the biased model.

4. cat-outdoor vs dog-outdoor: Combines 100 cat-outdoor images and 100 dog-
outdoor images.

Note that none of these sets corresponds to the distribution used for training the non-
biased model in which samples of all sets are used (cats and dogs equally sampled from
indoor and outdoor contexts). At this point we can now compute the Focus obtained by
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Figure 6. Each box plot shows the Focus distribution for a different validation set (evaluating 10,000 mosaics
per set). The purple box plots correspond to the cat-indoor and dog-outdoor set (Set 1). The yellow box plots
correspond to the cat-indoor and dog-indoor set (Set 2). The green box plots to the cat-outdoor and dog-indoor
set (Set 3). And the red box plots to the cat-outdoor and dog-outdoor set (Set 4). (a) Focus distributions obtained
by GradCAM on the biased model (b) Focus distributions obtained by GradCAM on the non-biased model.

each of the two models on each of the four mosaic sets. The resulting Focus distributions
(including the 10,000 samples per set) are shown in Figure 6.

In the experiments with the biased model, the highest Focus is expected to be ob-
tained with the Set 1, since the images within this set follow the same distribution in
which the model has been trained. On the other hand, the Focus obtained with the Set 3,
should be the lowest, since the images correspond to the completely inverse distribution.
In this case, the mean Focus is expected to be between 0 and 0.5 since the learnt biases
may be found on the the non target class squares.

In the experiments with the non-biased model, we expect the Focus distributions to
be similar to one another. The training distribution of this model avoid biases regarding
indoor and outdoor, which should prevent the model from focusing on these properties.
Thus, if the context is not a factor, the four sets become analogous.

As seen in Figure 6, results follow our hypothesis. The context (indoor/outdoor)
plays a significant role in the biased model, and have a much weaker impact on the
results of the non-biased model. For the biased model, a mean Focus greater than 0.8 is
obtained when using the same context as in training (Set 1, see first box plot in Figure 6
(a)). However, when the complementary distribution is used, Set 3, the mean Focus falls
below 0.4. As hypothesized before, this low Focus is most likely due to the model finding
patterns in the image of the opposite farget class. Finally, the two sets having at least
one correct context (Set 2 and Set 4) obtain a mean Focus in between the two mentioned
above (see the second and the fourth box plot in Figure 6 (a)).

We hypothesize that a significant amount of label noise is found (particularly in the
cat outdoor class, incorrectly labeling indoor cat images as outdoor samples). This would
explain the fact that outdoor cats and dogs (red box plot of Figure 6 (a)) obtains a higher
Focus than indoor cats and dogs (yellow box plot of Figure 6 (a)) as well as why the
inverse distributed set (green box plot of Figure 6 (a), mean Focus of 0.3532) is not the
complementary of the equally distributed set (purple box plot of Figure 6 (a), mean Focus
of 0.8507).

In contrast, the Focus distributions obtained with the non-biased model have a mean
Focus close to each other. The mean Focus obtained with Set 1 is still the highest, as
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shown in Figure 6 (b), and the mean Focus obtained with Set 3 is slightly the lowest.
This is likely to be caused by label noise induced by the natural predominance of cats to
be indoor, and of dogs to be outdoor.

5. Conclusions

In this paper we analyze the behavior of Focus when applied to a biased model. To do
so, we train a model to classify cats and dogs, to which we induce a correlation: we only
use cats-indoor and dogs-outdoor. In this way, we force the model to learn a bias, in this
case the context. To verify that this model is indeed biased, we perform a set of sanity
checks. For that we use an explainability method (GradCAM) on top of mosaics. The
nature of mosaics allows us to easily identify the shared bias found within the model:
the vegetation patterns were learnt by the model as characteristic of the dog class, while
brown and wood patterns are learnt as characteristic of cat. We use this biased model to
analyze the behavior of the Focus when applied to the biased setting. For baseline we
use a non-biased model. To perform this experiment, we use 4 mosaic sets: cat-indoor vs
dog-outdoor (Set 1), cat-indoor vs dog-indoor (Set 2), cat-outdoor vs dog-indoor (Set 3)
and cat-outdoor vs dog-outdoor (Set 4). Our findings show how the presence of a shared
bias is clearly reflected in the Focus distribution. The Focus decreases when the context
learnt by the model is present in both classes within the mosaics. This shows the potential
of the Focus, together with the mosaic structure, for the detection of unwanted biases in
datasets and models.

6. Future Work

In this work, we empirically proved how the Focus is sensitive to the presence of bias in
the model. However, it remains as future work to design a methodology to construct a
reduced set of mosaics (selecting a pair of images) that highlight potential biases in the
model. The key idea would be to provide to the domain experts the smallest number of
mosaics containing as many model biases as possible. Domain experts would use such set
of mosaics for the subsequent inspection, detection and classification between desirable
and undesirable biases.

Our current method to select mosaics consist in selecting images with lowest pre-
diction of its corresponding class (see §3.3) with the idea of containing characteristic
patterns of the other class. However, in a non-binary problem, an image with low pre-
diction score for a class may contain patterns from any of the other resting classes. This
casuistic multiplies the number of mosaics that will be provided to the domain expert,
thus increasing the complexity of their task.

An interesting case would be a mosaic with high accuracy and low Focus. On one
side, the high accuracy would mean that the mosaic contains strong evidences of the
target class while, on the other side, the low Focus score would mean that such evidences
are shared between mosaic images, belonging and non-belonging to the rarget class. This
remains as future work.
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