Combinatorics - FME Final Exam - 30th May 2022. 3 hours

- You have to choose 2 problems from problems 1-3 (3.5 points each). Write each problem on a separate paper.
- You have to do Problem 4. (3 points). Problem 4 is on Page 2 of this exam.
(1) Show that, for each non-decreasing function $f: 2^{[n]} \rightarrow\{0,1\}$ (namely $X \subset Y$ implies $f(X) \leq f(Y)$), the maximal sets on which f takes the value 0 form an antichain. Deduce that the number of antichains in the Boolean lattice \mathcal{B}_{n} is the number of such non-decreasing functions. By using the existence of a symmetric chain decomposition in \mathcal{B}_{n} prove that the number of antichains is at most $3\binom{n}{n n 2\rfloor}$.
(2) Let $N=W\left(2, t^{2}+1\right)$, where $W(2, t)$ denotes the van der Waerden function for two colors and t-progressions. Show that, for every 2 -coloring of $[1, N]$ there is a monochromatic t progression such that its difference has the same color as the terms of the progression.
(3) Let H be a k-uniform hypergraph such that each point is in at most k edges. Show that, for sufficiently large k, there is a coloring of $V(H)$ with $r=\lfloor k / \log k\rfloor$ colors such that no edge has more than $\lceil 2 e \log k\rceil$ points of the same color.
(4) Let \mathcal{A} and \mathcal{B} be to families of sets over X. We say that \mathcal{A} and \mathcal{B} are cross-intersecting if for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$, then $A \cap B \neq \emptyset$. We say that the rank of \mathcal{A} is the maximum cardinality of a set in \mathcal{A}. Finally, for $x \in X$, we denote by $d_{\mathcal{A}}(x)$ the number of $A \in \mathcal{A}$ such that $x \in A$. Both definitions can be also settled for the family \mathcal{B}.
a) Show that if \mathcal{A} has rank a, and $A \in \mathcal{A}$ then there exists $x \in A$ such that $d_{\mathcal{B}}(x) \geq \frac{|\mathcal{B}|}{a}$. State the corresponding result for $d_{\mathcal{A}}(x)$ in terms of the rank of \mathcal{B} (that we denote by b).
Our objective is to show that there is a very popular point for both families. From now on \mathcal{A} and \mathcal{B} will be fixed cross-intersecting families of rank a and b, respectively. Let X_{0} be the points in X such that $\frac{d_{\mathcal{A}}(x)}{a}<\frac{1}{2 b}$, and $X_{1}=X \backslash X_{0}$.
b) Let \mathbf{A} and \mathbf{B} uniformly at random sets in \mathcal{A} and \mathcal{B}, respectively. Show that

$$
\sum_{x \in X} p(x \in \mathbf{A} \cap \mathbf{B})=\sum_{x \in X} p(x \in \mathbf{A}) p(x \in \mathbf{B}) \geq 1 .
$$

c) Show that there is an $x \in X$ such that $d_{\mathcal{A}}(x) \geq \frac{|\mathcal{A}|}{2 b}$ and $d_{\mathcal{B}}(x) \geq \frac{|\mathcal{B}|}{2 a}$ (Hint: assume the opposite and get a contradiction by studying separately $\sum_{x \in X_{1}} p(x \in \mathbf{A} \cap \mathbf{B})$ and $\left.\sum_{x \in X_{0}} p(x \in \mathbf{A} \cap \mathbf{B})\right)$.
d) By an explicit construction, show that the result in c) is tight. (Hint: take for $X=[b] \times[a]$ and define two cross-intersecting families \mathcal{A} and \mathcal{B} with $|\mathcal{A}|=b,|\mathcal{B}|=a$ and all elements in \mathcal{A} have cardinality $a($ resp. b in $\mathcal{B})$).

Solution Problem 4:

a) We prove only one of the two inequalities, as the argument is the same. We only need to use a pigeonhole argument: if $d_{\mathcal{B}}(x) \geq \frac{|\mathcal{B}|}{a}$ does not hold for any $x \in A$, then it means that for all $x \in A$ we have that

$$
d_{\mathcal{B}}(x)<\frac{|\mathcal{B}|}{a}
$$

or, in other words, $a d_{\mathcal{B}}(x)<|\mathcal{B}|$ for each $x \in A$, in particular for the one that makes $d_{\mathcal{B}}(x)$ maximum. But we know that A the cardinality of A is smaller than a, and that A intersects each $B \in \mathcal{B}$, so this expression means that there is some B that does not intersect A, which is a contradiction (one can think that $\sum_{x \in A} d_{\mathcal{B}}(x) \leq a d_{\mathcal{B}}\left(x_{0}\right)$, for a certain $x_{0} \in A$, and conclude that this cannot be $<|\mathcal{B}|$ due to the cross-intersecting property).
b) By the cross-intersection property, the event $\exists x(x \in \mathbf{A} \cap \mathbf{B})$ has probability 1. Also, by definition, the events $x \in \mathbf{A}$ and $x \in \mathbf{B}$ are independent. Since the probability of a disjunction of events is at most the sum of the probabilities of the events, we have the statement.
d) We assume the contrary and we will show that $\sum_{x \in X_{1}} p(x \in \mathbf{A} \cap \mathbf{B})<1 / 2$. The same argument will work to show that $\sum_{x \in X_{0}} p(x \in \mathbf{A} \cap \mathbf{B})<1 / 2$, which will be a contradiction with b).

So: if we sum over elements in X_{1}, then x is not in X_{0}, and consequently, necessarily

$$
p(x \in \mathbf{B})=\frac{d_{\mathcal{B}}(x)}{|\mathcal{B}|}<\frac{1}{2 a}
$$

if this is not true, then we have at the same time $d_{\mathcal{A}(x)} \geq \frac{|\mathcal{A}|}{2 b}$ and $d_{\mathcal{B}}(x) \geq \frac{|\mathcal{B}|}{2 a}$, which we are not allowing. So:

$$
\sum_{x \in X_{1}} p(x \in \mathbf{A} \cap \mathbf{B})=\sum_{x \in X_{1}} p(x \in \mathbf{A}) p(x \in \mathbf{B})<\frac{1}{2 a} \sum_{x \in X_{1}} p(x \in \mathbf{A})
$$

Now, expressing the probability in terms of its definition, we have that
$\frac{1}{2 a} \sum_{x \in X_{1}} p(x \in \mathbf{A})=\frac{1}{2 a} \sum_{x \in X_{1}} \frac{d_{\mathcal{A}}(x)}{|\mathcal{A}|}=\frac{1}{2 a|\mathcal{A}|} \sum_{x \in X_{1}} d_{\mathcal{A}}(x)=\frac{1}{2 a|\mathcal{A}|} \sum_{A \in \mathcal{A}}|A| \leq \frac{a|\mathcal{A}|}{2 a|\mathcal{A}|}=\frac{1}{2}$.
The same argument works summing over X_{0}, getting that $\sum_{x \in X} p(x \in \mathbf{A} \cap \mathbf{B})<1$, which is a contradiction with b).
d) By taking $\mathcal{A}=\left\{A_{i}\right\}_{i=1, \ldots, b}$ and $\mathcal{B}=\left\{B_{j}\right\}_{j=1, \ldots, a}$ with $A_{i}=\{(i, 1), \ldots,(i, a)\}$ and $B_{j}=$ $\{(1, j), \ldots,(b, j)\}$ we get that every $x \in X$ is contained in only one element. So each $x \in X$ satisfies,

$$
d_{\mathcal{A}}(x)=d_{\mathcal{B}}(x)=1 \geq \frac{|\mathcal{A}|}{2 b}=\frac{|\mathcal{B}|}{2 a} .
$$

