
Statistical Programming and Data Bases (SPDB)

Facultat de Matemàtiques i Estad́ıstica

Final Exam, June 7, 2022

Corrected Version

Answer the questions concisely and precisely
Duration: 2:15 hour

The Final exam should consists on a .zip of a folder.

• The name of this folder should contain your name (to avoid errors).

• The folder should contain two files.

– A Jupyter file with the solutions of Exercise I and II

– A Zeppelin file with the solution of Exercises III, IV and V.

Remind: answer the Exercises I, II in a unique Jupyter file also containing your name at the beginning
of the solutions.

Exercise I (1.5 points, Python) Consider the following code:

1 de f gm(x) :
r e turn −(np . exp(−(x [0]+1 . 5) ∗∗2/(3 .1∗∗2))+

3 np . exp(−(x [1] −0 .5) ∗∗2/(0 .3∗∗2)))
from sc ipy import opt imize

5 x0=np . array ([1] ∗ 2)
r e s u l t = opt imize . minimize (gm, x0=x0 , method=’SLSQP ’)

Listing 1: Exercise I

1. (0.5 Points) Explain the code line by line, and its purpose.

2. (1 Point) Count the number of gm() function evaluations with help of a decorator, without modi-
fying the function.

——————————————— SOLUTIONS ————————————————

1. (0.5 Points) Explain the code line by line, and its purpose.

• Function gm defines a two dimensional function, evaluating to two exponentials on each axis
centered at (-1.5, 0.5).

• The module optimize is imported from scipy.

• Point x0 represents an initial guess placed at (1,1).

• The method minizime from scipy.optimize is called with an initial guess at (1,1) by using
the Sequential Least SQuares Programming optimizer.

1

2. (1 Point) Count the number of gm() function evaluations with help of a decorator, without modi-
fying the function.

In [75]: c = 0

def dgm(inf):

def outf(x):

global c

c += 1

return(inf(x))

return(outf)

@dgm

def gm(x):

return -(np.exp(-(x[0]+1.5)**2/(3.1**2))+

np.exp(-(x[1]-0.5)**2/(0.3**2)))

from scipy import optimize

x0=np.array([1]*2)

result = optimize.minimize(gm,x0=x0,method=’SLSQP’)

result

Out[75]: fun: -1.999999965379848

jac: array([7.51316547e-05, -9.67323780e-04])

message: ’Optimization terminated successfully’

nfev: 29

nit: 9

njev: 9

status: 0

success: True

x: array([-1.49963902, 0.49995646])

In [76]: print(c)

29

Exercise II (3.5 points, Python) Given the burning ship fractal series:

zn+1 = (|Re (zn) |+ i|Im (zn) |)2 + c

and given an initial element of the series z0 = 0 + i0

1. (2 Points) Write a function f(c, A,Nmax), which returns the number of iterations N of the previous
series necessary for the module |z| > A, where A ∈ IR, being Nmax a maximum number of iterations
to test.

2. (1.5 Points) Calculate and plot a 2D image representing N over the domain of c comprised by
Re(c) ⊂ [−2, 1], Im(c) ⊂ [−2, 1] with the parameters (A = 2, nmax = 100, z0 = 0i, Image
resolution = (800,1200) pixels).

Note: numpy’s meshgrid function may be useful.

——————————————— SOLUTIONS ————————————————

In [2]: def fa(z,c): return((abs(z.real) + 1j*(abs(z.imag)))**2 + c)

def fc(c=1,f=fa,z=0j,A=2,n_max=100):

n=0

while (abs(z)<A):

z = f(z,c)

n +=1

if (n > n_max):

break

return(n)

In [3]: import numpy as np

dimx = 1200

dimy = 800

n_max=100

rec = np.linspace(-2,1,dimx)

imc = np.linspace(-2,1,dimy)

Usem meshgrid de numpy

recs, imcs = np.meshgrid(rec,imc)

Empaquetem els valors en tuples

cs = zip(recs.ravel(),imcs.ravel())

In [5]: Ns = map(lambda x: fc(c=complex(x[0],x[1])),cs)

N = np.array(list(Ns))

N = N.reshape((dimy,dimx))

In [8]: import pylab as pl

pl.figure(figsize=(10,7))

pl.imshow(N, cmap= plt.get_cmap("twilight"));

———————————————————————————————————————–

Remind: answer the Exercises III, IV and V in a unique Zeppelin file containing your name at the
beginning and the solutions.

Exercise III (1.5 Points) Prefix Sum.
The prefixSum of a list of integers List(a0, a1, a2, a3) it the list

L(a0, a0+a1, a0+a1+a2, a0+a1+a2+a3)

Remind that in Scala you have the leftScan. For instance

List(1,3,8).scanLeft(100)(((s, x)=>s+x))

returns List(100, 101, 104, 112). That is

List(100, 100+1, 100+1+3, 110+1+3+8)

Formally, the leftScan is defined as

List(a1, a2, a3).scanLeft(a0)(f) = List(b0, b1, b2, b3)

such that b0 = a0, b1 = f(b0, a1), b2 = f(b1, a2), b3 = f(b2, a3).

(1.5 Points) Using leftScan design a function

prefixSum(L : List[Int]) : List[Int]

such that prefixSum(List(2, 5, 8)) returns List[Int] = List(2, 7, 15).

——————————————— SOLUTIONS ————————————————

Solution 1. Split L into Head = L.head and Tail = L.tail and aplly the scanLeft.

def prefixSum_2(L: List[Int]):List[Int] = {

var Head = L.head

var Tail = L.tail

Tail.scanLeft(Head)((s, x)=>s+x)

}

Solution 2. Similar to Solution 1 but encoded in a more compact way.

%spark

def prefixSum(L: List[Int]):List[Int] = L.tail.scanLeft(L.head)((s, x)=>s+x)

Solution 3. As we are dealing with prefix sum, we can work with the list L.scanLeft(0) = List(0, 2, 5, 8),
apply prefix sum

List(0, 0+2, 0+2+5, 0+2+5+8) = List(0, 2, 7, 15)

and take the tail.

%spark

def prefixSum_3(L: List[Int]):List[Int] = {

L.scanLeft(0)((s, x)=>s+x).tail

}

———————————————————————————————————————–

Exercise IV: (2 Points) Looking at the customers behaviour.
In order to solve this exercise, remid that you have two possibilities when working with relations.

• Once we have created a DataFrame, you can create a temporary view so that SQL instruction can
be executed “directly”.

• You can work directly with Spark DataFrame with no temporary views. in such a case, you have
to adapt the SQL syntax.

Following, let us work with the relations customer and orderinfo of the bpsimple DB.

(1 Point) Load customer and find the customers in a given city for instance ’Binham’.
remind the select ... where ...

The result is:

+-------+------+

| fname | lname|

+-------+------+

|Richard|Stones|

| Ann |Stones|

| Dave |Jones |

+-------+------+

(1 Point) Load orderinfo and for all customers, find the date of shipped of each orderinfo.

• In the case you use temporary views, remind that the SQL92 syntax uses variations of JOIN to
specify how tables relate. For instance

SELECT column list FROM table INNER JOIN other table ON join condition

To avoid ambiguities we can give a name to the different views. For instance, you can give name
c to the temporary view of the customer relation so called customer2.

select c.customer id, ... from customer2 c inner join on c.customer id = ...

• If you use Spark directly (no temporary views), remind that the syntax for an inner join is a little
bit different.

customer.join(orderinfo, customer("customer id")=== ...,"inner")

The result is:

+-----+-------+------------+--------------------+

|fname| lname |orderinfo_id| date_shipped |

+-----+-------+------------+--------------------+

| Alex|Matthew| 1|2004-03-17 00:00:...|

| Ann | Stones| 5|2004-07-24 00:00:...|

| Ann | Stones| 2|2004-06-24 00:00:...|

|Laura| Hardy| 4|2004-09-10 00:00:...|

|David| Hudson| 3|2004-09-12 00:00:...|

+-----+-------+------------+--------------------+

——————————————— SOLUTIONS ————————————————

Solution of the first question. We consider two possibilities, using temporary views or not.

Solution with a Temporary View.

%spark

val customer = spark.read.format("csv")

.option("header", "true")

.option("inferSchema", "true")

.csv("/notebook/data/bpsimple/customer.csv")

customer.createOrReplaceTempView("customer2")

spark.sql("select fname, lname from customer2 where town = ’Bingham’").show()

Solution with no Temporary View.

%spark

import spark.implicits._

val customer = spark.read.format("csv")

.option("header", "true")

.option("inferSchema", "true")

.csv("/notebook/data/bpsimple/customer.csv")

var living_in_city = customer

.where(customer("town") === "Bingham")

.select(customer("fname"), customer("lname"))

living_in_city.show()

Solution of the second question. We also consider two possibilities, using temporary views or not.

Solution with a Temporary Views. We assume from before the temporary view customer2.

%spark

val orderinfo = spark.read.format("csv")

.option("header", "true")

.option("inferSchema", "true")

.csv("/notebook/data/bpsimple/orderinfo.csv")

orderinfo.createOrReplaceTempView("orderinfo2")

spark.sql("select c.fname, c.lname, e.orderinfo_id, e.date_shipped

from customer2 c inner join orderinfo2 e

on c.customer_id = e.customer_id").show()

Solution with no Temporary View.

%spark

val orderinfo = spark.read.format("csv")

.option("header", "true")

.option("inferSchema", "true")

.csv("/notebook/data/bpsimple/orderinfo.csv")

var customer_inner_orderinfo = customer.

join(orderinfo,

customer("customer_id")=== orderinfo("customer_id"),

"inner")

customer_inner_orderinfo.select("fname", "lname", "orderinfo_id", "date_shipped").show()

———————————————————————————————————————–

Exercise V (1.5 Point) Relating Topics
Explain (shortly) the link between programming, data bases and learning algorithms.

——————————————— SOLUTIONS ————————————————

Usually there is a long way between the raw information and the strongly structured information neded
to apply learning algorithms. In a little bit artificial distinction we structure thewhole process in three
main steps.

• In many cases, raw information need to be processed (with the help of progamming languages like
Phyton or Scala) in order to isolate and structurate useful information. Examples of such a process
was counting the words in mobydick.txt or finding the longest words in ManifestComunistParty.txt.

• A classic way to stucture information is through relational data bases (DB for short). A BD contains
many relations, or tables, dealing with the different aspects of the information. We describe the
bpsimple DB. This DB give us a way to organize clients, customers, orderlines and items in a
small business. To deal with the queries to a DB, the SQL language is fundamental and quite
clear. Moreover, Scala give us the opportunity to deal with SQL queries in a friendly way.

• Once, information is structured into a DB, quering this DB we can isolate the inportant aspects
and to start with the selection of features needed for machine learning.

———————————————————————————————————————–

