
A Comparison Between Machine Learning and Classic Vector
Autoregressive for GDP forecast

Author:
Kenny Xavier Monar Aguilar

Director:
Joaquim Gabarro

A thesis presented for the degree of
MSc in Statistics

Departamento de Estad́ıstica e Investigación Operativa
Universitat Politècnica de Catalunya

Barcelona - Spain

1

Contents

1 Summary 3

2 Introduction 3
2.1 Comparison of ARIMA and Artificial Neural Networks Models

for Stock Price Prediction 2014 4
2.2 How is Machine Learning Useful for Macroeconomic Forecasting?

2019 . 4
2.3 GDP Forecasting: Machine Learning, Linear or Autoregression?

2021 . 5
2.4 Boosted Embeddings for Time Series Forecasting 2021 6
2.5 Exploring what stock markets tell us about GDP in theory and

practice 2021 . 6

3 Models 7
3.1 Vector Autoregressive . 7
3.2 Gradient boosting . 7

3.2.1 XGBoost . 8
3.2.2 LightGBM . 8
3.2.3 Catboost . 9

4 Experimental setup 9
4.1 Data . 9

4.1.1 U.S. GDP . 9
4.1.2 S&P 500 . 10

4.2 Hyperparameters tuning . 11
4.2.1 XGBoost . 12
4.2.2 LightGBM . 12
4.2.3 CatBoost . 13

4.3 Model selection and assessment 14
4.4 Cross Validation on Time Series and grid search 14
4.5 Validation strategy: One-step-ahead 15
4.6 Models comparisson methodology 15

5 Results 16
5.1 VAR estimation . 16
5.2 Gradient boosting . 16

5.2.1 Hyperparameters . 16
5.2.2 Validation . 17

5.3 Charts comparisson . 18

6 Conclusions 19
Bibliography20

2

1 Summary

GDP Forecasting: Machine Learning, Linear or Autoregression? –¿ revisar y
añadir a la bibliograf́ıa

In the recent years there has been an explosive increase in the number of
research papers using machine learning methods for forecasting. In this work,
I will focus on comparing the estimation of GDP using classical and machine
learning methods. In particular, I am interested in analyzing if the index S&P
500 can help forecast the GDP, therefore I will take as a basis a work where
a VAR model is used to analyze the relationship between GDP and S&P 500.
From there I use three recently developed implementations of the gradient boost-
ing decision tree to model GDP and S&P 500. The recent implementations
are XGBoost, LightGBM and CatBoost and are very famous because they are
widely used in winner solutions in Kaggle competitions. The metric I use to
do the comparisson is the Mean Squared Error and by using the three machine
learning algorithms, I find that they provide better results than the Vector Au-
toregressive. I also perform grid search with several parameters, taking into
account regularization, to avoid overfitting and obtain the lowest mean squared
error. To select the best model I consider the evaluation results along with the
overfitting measure and finally I take a look to the prediction charts of all the
algorithms. In my opinion XGBoost offers the best predictions in this exercise.

2 Introduction

In this work, I will reference the paper published by Ros(2019)[1] as it estimates
a VAR for GDP and S&P 500, therefore I will follow his methodology to obtain
the data and determine the order of the VAR model. Thus, the GDP calculated
using the expenditure approach will be used.

It is interesting to verify if the S&P 500 can be used to forecast GDP since
it is the most commonly used benchmark for determining the state of the over-
all economy in the U.S [2] and it has a higher frequency which makes it an
interesting candidate to be used as leading indicator of the GDP through the
quarter.

The main reference related to the estimation of the VAR is in the paper by
Ros(2019)[1]. In the mentioned document a VAR of order 2 is estimated and
S&P seems to be helpful in forecasting GDP growth.

I have collected a few articles where machine learning methods are compared
with classic methods. Those articles have very interesting conclusions regarding
the use of machine learning to study economic variables. However, I was not
able to find a comparisson between gradient boosting and VAR analyzing the
relationship between the US GDP and the stock market, therefore I think it
would be an interesting exercise.

3

2.1 Comparison of ARIMA and Artificial Neural Networks
Models for Stock Price Prediction 2014

In the paper by Adebiyi [3], the authors use historical daily stock prices for the
study. The data consists on open price, low price, high price, close price and
volume traded. The authors select the closing price to represent the price of the
index to be modeled. The index selected is the Dell Inc. stock data from 1988
until 2011, which correspond to 5680 observations. The mentioned series have
random walk pattern and doesn’t show global trend or seasonality pattern as
expected in financial series.

To determine the best ARIMA model, the criteria used is the to pick the
p and q values that correspond to the lowest Bayesian Information Criterion
(BIC) and Standard Error of Regression (SER)and a high adjusted R2. In this
case, the ARIMA(1,0,0) is selected.

Regarding the neural network, the authors employ a three layer (one hidden
layer) multilayer perceptron model trained with the back propagation algorithm.
The model was trained with 1000, 2000 and 5000 epochs while minimizing the
mean squared error during training. The model with 10 input neurons, 17
hidden neurons and 1 output neuron was the most accurate in the experiments.

The authors conclude that both ARIMA and ANN models can achieve good
forecast in real life problems. However, the predictive model using the ANN
approach shows better performance over the ARIMA models. The reason is
that the actual and predicted values obtained with the ANN model are very
close while the ARIMA forecasting is directional.

2.2 How is Machine Learning Useful for Macroeconomic
Forecasting? 2019

In the paper by Coulombe [4], the authors study different horizons and variables
to understand the usefulness of the features driving ML gains over economet-
ric methodologies. They analyze four features: non linearities, regularization,
cross validation and alternative loss function. The effect in data rich and data
poor environments is studied. The authors designed experiments to allow easy
identification of the treatment effects of interest.

The authors try to improve the understanding of each ML method prop-
erties rather than the selection of a single winner model for a specific target.
The main question is ”What are the key features of ML modeling that improve
the macroeconomic prediction?”. The exercise followed by the authors con-
sists of an extensive forecasting race between many models that differ regarding
nonlinearity, regularization, hyperparameter selection and loss function.

The five macroeconomic variables analyzed are: industrial production, un-
employment rate, consumer price index, difference between 10 year treasury
constant maturity rate and federal funds rate and housing starts. Those are
considered as representative of US economy and almost 40 years of data are
used in the study.

4

Regarding the results, first, non linearities have benefits for industrial pro-
duction, unemployment rate, term spread and increase with longer horizons,
especially when combined with factor models. Nonlinearity is harmul for infla-
tion and housing starts.

Second, regarding big data, alternative regularization methods such as Lasso,
Ridge, Elastic-net don’t improve over the factor model. This suggests that the
factor representation of the economy is accurate as a mean of dimensionality
reduction.

Third, the hyper parameter selection using k-fold cross validation does better
on average that any other criterion and the next best criteria is BIC. It suggests
that ignoring information criteria is not harmful when analyzing more complex
ML models.

Fourth, replacing the standard in sample quadratic loss function by the e-
intensive loss function in support vector regressions is not useful. Finaly, the
marginal effects of big data are positive and significant or real activity series
and term spread and increase with longer horizons.

2.3 GDP Forecasting: Machine Learning, Linear or Au-
toregression? 2021

A recent work, from Maccarrone 2021[5], compares classical models such as
SARIMAX and linear regression with K-Nearest Neighbour. It utilizes two fore-
casting strategies: one-step-ahead and multi-step-ahead forecast and evaluate
the performance using the mean squared error.

The authors compare the predictive power of different models to forecast
the real U.S. GDP. With quarterly data going from 1976 until 2020, the authors
conclude that the model KNN captures the self predictive ability of the U.S.
GDP and the mentioned ML technique performs better than traditional time
series analysis.

The authors also include macroeconomic variables in order to increase the
level of forecasting accuracy. They find that the predictions are improved only
when considering long forecast horizons. The authors also conclude that the
use of machine learning algorithm provides additional guidance for data-driven
decision making.

Regarding methodology, the authors use AR and SARIMA as a benchmark
for time series analysis and then forecast the U.S. GDP with models ARX,
SARIMAX and linear regression to be able to add some measures of economic
activity. Finally the authors use the k-nearest neighbour methodology. The
main goal of the authors is to achieve forecasts with high accuracy and with
high degree of explainability.

The strategies used to study the accuracy of the GDP predictions are one-
step-ahead and multi-step ahead forecasting.

On one hand, the KNN achieves the best performance for the one-step-
ahead strategy suggesting that the repetitive patterns in the GDP increases
the forecast accuracy. On the other hand, it loses predictive power when the

5

forecast is performed for a longer horizon. SARIMA performs poorly in both
strategies, but when including covariates, SARIMAX obtains a lower error in
the one-step-ahead strategy. ARX achieves the best forecasting performance in
one-step ahead when using proxies for the yield curve. The Linear Regression
achieves the best performance in the multi-step-ahead forecast using proxies for
the yield curve and macro variables. The results suggest to use KNN model
for one-step-ahead forecast and Linear Regression with financial variables for
multi-step ahead forecasts. In that way, the multi-step provides a long-term
vision for planning in advance investments, monetary policy, etc. while on the
other hand, the one-step-ahead might support possible refinement around the
decisions taken.

2.4 Boosted Embeddings for Time Series Forecasting 2021

In the paper by Karingula[6], the authors propose a time series forecast model
called DeepGB. They formulate and implement a Gradient boosting where the
weak learners are deep neural networks. In the paper, the authors demonstrate
that the model outperformns the comparable state of the art models using real
world sensor data and public dataset.

The main idea is that the neural networks are able to represent non linear
relationships well. It is known by the universal approximation theorem that
neural networks can approximate any non linear region although it might need
an exponential number of nodes/features for the approximation to work.

On the other hand, gradient boosting can’t handle complex arithmetic re-
lationships such as multiplication of elements. The authors combine different
models by creating small parallel models for a single task. Then the next model
will attempt to solve only the gradient of the loss function. In this way, the
process is simpler than performing a full regression on the output range.

The authors experimented using data available in Kaggle to monitor device
health and wikipedia data. Regarding device monitor, the authors used the
connections per seconds from devices during a month. It is a difficut rate to
forecast. Regarding wikipedia data, the authors attempt to forecast the number
of page access per day.

The authors first went through ARIMA, DeepAR, neural prophet and seq2seq
models. Finally the authors conclude, based on SMAPE, that DeepGB outper-
formed the rest of the models in the two datasets analyzed.

2.5 Exploring what stock markets tell us about GDP in
theory and practice 2021

In the paper by Ball [7], the authors study the relationship between stock market
movements and GDP in real time. They use a simple theoretical model to clarify
the relationship between both series, and finally explore the US GDP and S&P
500 series through different tools such as correlations, regressions, extreme value
calculations, etc.

6

The GDP vintage and revised data used in the study go from 1999 until 2020
and it comes from the OECD database. The stock market data was obtained
from Yahoo finance. The series are detrended and quarterly data is used.

For the regression analysis of real GDP and S&P 500, the authors considered
as explanatory variables the contemporaneous value and up to 5 lags of real GDP
and S&P 500. Among the findings, the authors see that lagged GDP values have
the largest effects with negative coefficients which suggests mean reversion. On
the other hand, the results show that an increase in the S&P 500 is associated
with an increase of 0.05 of real GDP. However, considering the three significant
lags, the cumulative effect of an increase in the S&P 500, over the past year,
is associated with an increase of 0.46 increase in real GDP. When running the
same regressions for vintage GDP the results were similar but less significant.

The main findings of the authors are that S&P 500 is weakly correlated with
real GDP, but strongly and significantly correlated with one lag as the theory
predicts. The authors also find that the S&P 500 is more closely related to final,
revised GDP numbers than to vintage GDP estimates, it suggests that stock
market trends are informative about the true GDP.

3 Models

3.1 Vector Autoregressive

The VAR model used to determine the relationship between the growth rate of
the GDP and the growth rate of the index S&P 500:

dGDPt = β1,11dGDPt−1 + · · ·+ βp,11dGDPt−p + β1,12dSP500t−1 + · · ·

+βp,12dSP500t−p + ϵ1,t

dSP500t = β1,22dSP500t−1 + · · ·+ βp,22dSP500t−p + β1,21dGDPt−1 + · · ·+

+βp,21dGDPt−p + ϵ2,t

To determine the order of the VAR model, I will use Akaike’s information
criteria (AIC). The model estimated with the lowest AIC corresponds to the op-
timal lag p. The results of the Bayesian Information Criteria(BIC), the Hannan
and Quinn criterion (HQIC) and final prediction error (FPE) are also calculated.

3.2 Gradient boosting

As commented by Brownie[8], gradient boosting refers to a type of ensemble
machine learning algorithms used for regression or classification problems.

Any arbitrary and differentiable loss function is used to fit the model using
the gradient descent optimization algorithm. Boosting consists in combining

7

several decision trees, called weak learners, sequentially to obtain a powerful
model.

Such ensemble algorithms are based on decision trees. The process is as
follows: first a decision tree model is fit to explain the target variable using
the explanatory variables and an error prediction is calculated. In the next
step another decision tree model is fit to explain the prediction error from the
previous step and a new error is calculated. This last step is repeated several
times.

The idea behind this process is that the model learns slowly[9]. In every
iteration the new trees fit the residuals from the previous step, improving the
areas where the model has not performed well.

Gradient boosting is a machine learning algorithm frequently used to win
machine learning competitions (like Kaggle) on tabular and similar structured
datasets.

I will use the most recent implementations of the Gradient Boosting Decision
Trees such as XGBoost, Light GBM and CatBoost as they have been reported
in the forecasting community including Kaggle competitions as top options to
tackle forecasting problems.

3.2.1 XGBoost

XGBoost[10] stands for eXtreme Gradient Boosting and it’s an implementation
of the gradient boosting decision trees algorithm. It is very popular in competi-
tions such as Kaggle because it has a high predictive power and it is very simple
to parameterize. It can be used for regression and classification problems.

According to the authors[11], the success of XGBoost lies in the scalability
as it runs several times faster than other solutions. The innovations that allow
XGBoost to scale include: a novel tree learning algorithm for handling sparse
data, a weighted quantile sketch for efficient proposal calculation and a sparsity
aware algorithm for parallel learning.

3.2.2 LightGBM

LightGBM[12] was developed after XGBoost and it tries to improve the scalabil-
ity when data size and feature dimensions are high. One of the differences with
respect to XGBoost is that instead of scanning all data instances to estimate
the information gain of all possible points, LightGBM proposes two techniques
called Gradient based one side sampling (GOSS) and exclusive feature bungling
(EFB). With GOSS, a proportion of the data is excluded and only the remain-
ing is used to estimate the information gain. With EFB, mutually exclusive
features are bundled to reduce the number of features.

According to the authors’ experiments, the LightGBM is 20 times faster
than other implementations achieving almost the same accuracy.

8

3.2.3 Catboost

Catboost can be used for solving problems, such as regression, classification,
multi-class classification and ranking. It was developed after XGBoost and
LightGBM. The authors[13] demonstrate that the existing implementations of
gradient boosting face a statistical issue called prediction shift, caused by a kind
of target leakage. To solve this issue, the authors introduced two advances called
ordered boosting and an algorithm for processing categorical features.

Ordered boosting is a modification of standard grading boosting algorithm

4 Experimental setup

4.1 Data

4.1.1 U.S. GDP

The GDP data is obtained from OECD[14]. The GDP growth rate is used for
the analysis and it goes from Q2-1947 to Q4-2021.

In the chart we can see that the serie is stationary in mean if we don’t
consider the year 2020 where we had the covid lock down. For the purpose of
this analysis I will use data only until 2019-Q4.

Figure 1: U.S. GDP (dGDPt) 1947-Q2:2021-Q4

9

The series is dGDPt and it denotes the real growth of U.S. GDP at quarter
t compared with the previous quarter t-1.

4.1.2 S&P 500

The S&P 500 data is obtained from the home page of Nobel Prize Laureate
Rober J. Shiller[15]. Professor Shiller collects data of the Monthly Averages of
Daily Closing Prices from 1871 for the S&P 500, consumer price index, etc.

First we need to calculate the real value of the S&P 500 index. We obtain
it dividing the S&P 500 by the price index:

Let t denote the set of quarter time series:
t = 1947-Q2, 1947-Q3, . . . , 2018-Q2, 2019-Q4

Mt denotes the Average Price per Share in Month Ending Quarter:
Mt = Monthly Average Price per Share at t

CPIt denotes the consumer price index at quarter t:
CPIt = consumer price index at t

Pt denotes the price index and measures how much prices have changed in
any given year compared to a base year:

Pt = CPIt/CPIbaseperiod
The final step is to divide Mt by Pt. Taking 1983-Q3 as the base period:
SPt = Real Monthly Average Price per Share at t (chained 1983 dollar)

SPt = Mt / Pt

Now as shown in the first chart of Figure 2, S&P 500 is not stationary. In the
second chart, the growth rate dSPt is shown and it is stationary. It is calculated
as the log-return of the index at quarter t compared with the previous quarter
t-1:

dSPt = log(SPt) - log(SPt−1)
In the case of the index S&P 500, in the first chart of the Figure 2, the effect

of the financial crisis of 2008 is very clear but we can’t see a big effect in the
case of the covid lockdown.

See below some statistics of the growth rate of the U.S GDP vs the growth
rate of the S&P 500.

count mean std min max

dGDP 291.0 0.778720 0.935266 -2.595440 3.930098
dSP 291.0 0.977199 6.704694 -29.018388 20.778526

Table 1: U.S. GDP (dGDPt) and S&P500 (dSPt)1947-Q2:2019-Q4

10

Figure 2: S&P 500 (SPt) and growth rate (dSPt) 1947-Q2:2021-Q4

The dataset is split between train and test datasets. The train data goes
from 1947-Q2 until 2007-Q1 and the test data goes from 2007-Q2 until 2019-
Q4. The comparissons among all algorithms are based only on one-step-ahead
forecasting.

4.2 Hyperparameters tuning

As mentioned by Burkov(2019)[16], the hyperparameters have to be tuned by
the data analyst. The idea is to find the best combination of hyperparameters
that fit well the training data while at the same time ensuring that the model
generalizes well.

Nowadays there are several frameworks to perform the hyperparameter tun-
ing such as hyperopt and optuna. In this work I will be using grid search by
sklearn library. It consists on defining a set of values per each hyperparameter,

11

then grid search will combine all those values and train and validate as many
models as combinations were created.

4.2.1 XGBoost

The hyperparameters I will check in XGBoost are:

max depth:

max depth sets the maximum depth of the decision trees.

max leaves:

max leaves is the maximum number of nodes to be added.

num estimators:

num estimators is the number of boosting rounds. It is equal to the number of
boosted trees to use. Higher number of estimators translates in higher risk of
overfitting.

reg alpha and reg lambda:

reg alpha and reg lambda are L1 and L2 regularisation terms, respectively. The
greater these numbers, the model will be less prone to overfitting but might end
up underfitting.

4.2.2 LightGBM

In this section I comment the hyperparameters I will be evaluating and the
definitions come from the LightGBM web documentation[17].

num leaves:

num leaves is the main parameter to control the complexity of the tree model.
In theory,by using the formula num leaves = 2(maxdepth) we can obtain the
same number of leaves as depth-wise tree. However, this simple conversion is
not good in practice, thus, we should hyper tune this parameter along with
max depth.

max depth:

max depth can be used to limit the tree depth explicitly. It is specially useful
to reduce the risk of overfitting when the data size is small.

12

num estimators:

num estimators also known as num iterations and several other aliases. It spec-
ifies the number of boosting iterations (trees to build). As usual with decision
tree models, the more trees translate to higher risk of overfitting.

reg alpha:

reg alpha corresponds to lambda l1 and l1 regularization is constrained to values
greater or equal than 0 and is used to deal with overfitting.

reg lambda:

reg lambda corresponds to lambda l2 and l2 regularization is constrained to
values greater or equal than 0 and is used to deal with overfitting.

4.2.3 CatBoost

In this section, I include the hyperparameters I analyzed. The definitions come
from the website[18]

depth:

In most cases, the optimal depth ranges from 4 to 10. Values in the range from
6 to 10 are recommended. The maximum value allowed is 15.

l2 leaf reg:

l2 leaf reg is the coefficient at the L2 regularization term of the cost function.
Any positive value is allowed.

learning rate:

learning rate is used for reducing the gradient step. By default, the learning
rate is defined automatically based on the dataset properties and the number
of iterations.

The possible ways of adjusting the learning rate depending on the overfitting
results are:

� If there is no overfitting in the last iterations of the training then increase
the learning rate.

� If overfitting is detected then decrease the learning rate.

13

num estimators:

num estimators is also known as iterations or num trees. By default, CatBoost
builds 1000 trees but I will reduce the number of iterations to speed up the
training.

When the number of iterations decreases, the learning rate has to be in-
creased. The default learning rate can be tuned to get the best possible quality.
To tune the learning rate is advisable to look at the evaluation metric values on
each iteration:

� Decrease the learning rate if overfitting is observed.

� Increase the learning rate if there is no overfitting and the error on the
evaluation dataset still was reduced on the last iteration.

4.3 Model selection and assessment

As indicated by Hastie and Tibschirani [19], model selection refers to estimating
the performance of different models in order to choose the best one. On the
other hand, model assessment is, having chosen a final model, estimating its
prediction error (generalization error) on new data. In this exercise , I will be
using a split 80% for training and 20% for testing.

4.4 Cross Validation on Time Series and grid search

I will follow one of the most usual approachs to deal with time series and I am
defining 5-fold cross validation process. As explained by Shrivastava(2019)[20],
I will create 5 pairs of training/test sets that follow below rules:

� Every test set contains unique observations.

� Observations from the training set occur before their corresponding test
set.

As a result, the 5 pairs of training/test sets are:

� Fold 1: Training: [1] Test: [2].

� Fold 2: Training: [1, 2] Test: [3].

� Fold 3: Training: [1, 2, 3] Test: [4]

� Fold 4: Training: [1, 2, 3, 4] Test: [5]

� Fold 5: Training: [1, 2, 3, 4, 5] Test: [6]

I will build the models iteratively following the mentioned procedure and
compute the value of the mean squared error in each Test set, from folds 1 to
5. Then I will take the average of the five values of the metric to get the final
cross validation mean squared error.

14

Figure 3: TSCV: Time series split[21]

Grid search consist in creating a model per each combination of the hyper-
parameters that will be proved. I will use grid search with cross-validation to
find the best hyperparameter values for the model. The final model will be built
by training the whole training dataset with the best hyperparameters found via
cross validation. Finally, I will assess the model using the test set.

4.5 Validation strategy: One-step-ahead

One-step ahead forecasts are computed sequentially, for each data point in the
test dataset, by predicting the values using in period t+1 all the data known
until period t.

Forecast error is computed by subtracting forecast value (estimated at the
previous point) from the observed value at the current point. Overall validation
error, is computed as an average value of all the squared errors in the test
dataset.

4.6 Models comparisson methodology

I will calculate the mean squared error of the train and test datasets for each
of the four models analyzed. I will be checking if the models are underfitting
or overfitting and which of the models is better at generalization. Finally I will
also be checking the forecasting vs actual values chart, to identify if besides the
metrics it can help identify the best model.

15

5 Results

5.1 VAR estimation

I use data starting in Q2-1947 which is a longer period compared to Ros(2019)[1],
the justification is that as I will be using machine learning models I prefer to
have as much data as possible and also the series are stationary.

The VAR has lowest AIC and BIC for p=1 as noted in table 2, therefore I
will be using the model with one lag for the comparisson. This is a difference
compared with the decision taken by Ros(2019)[1] where they used p=2.

lags AIC BIC FPE HQIC
0 3.649 3.680 38.45 3.662
1 3.506* 3.597* 33.33* 3.543*
2 3.527 3.677 34.02 3.588
3 3.523 3.734 33.88 3.608
4 3.524 3.795 33.93 3.633
5 3.546 3.877 34.68 3.680
6 3.554 3.945 34.95 3.711
7 3.580 4.031 35.87 3.762
8 3.605 4.116 36.80 3.811
9 3.632 4.203 37.80 3.862

10 3.638 4.270 38.07 3.893
11 3.664 4.356 39.07 3.943
12 3.632 4.384 37.85 3.935

Table 2: VAR order selection. * highlights the minimums

5.2 Gradient boosting

5.2.1 Hyperparameters

In the next tables are shown the grid search values that were analyzed in each
implementation of the gradient boosting and also the best hyperparameters
obtained. Those best values will be used for the estimation of the final model
and validation.

16

Grid search values Best parameters
max depth 5,10,20 10
max leaves 5,10,20,30 5
n estimators 5,10,25 5
reg alpha 3,4,5, 4
reg lambda 2,3,4 3

Table 3: Hyperparameter optimization XGBoost

Grid search values Best parameters
max depth 5,10,20 10
num leaves 5,10,20,30 5
n estimators 5,10,25 5
reg alpha 3,4,5, 4
reg lambda 2,3,4 3

Table 4: Hyperparameter optimization LightGBM

Grid search values Best parameters
depth 13,14,15 15
l2 leaf reg 19,20,21 19
n estimators 15,20,25,100 15
learning rate 0.05,0.01 0.05

Table 5: Hyperparameter optimization CatBoost

5.2.2 Validation

The table reports the average mean squared error of the 4 models in the train
and test periods. All the three implementations of the gradient boosting model
perform better than the VAR. On the other hand, the model with the lowest
Test MSE is Light GBM and it is also the one with lowest overfitting. The
gradient boosting models have a mean squared error which is roughly half the
one achieved by the VAR model in the test period. According to the test
MSE of the three gradient boosting algorithms, they are very similar regarding
generalization.

17

CV score Train MSE Test MSE
VAR 44.79 47.98
XGBoost 27.27 11.25 24.17
LightGBM 27.07 18.88 23.42
Catboost 27.33 21.8 23.45

Table 6: Train and test scores

5.3 Charts comparisson

Finally we can see the charts with the forecasts obtained with all four models
in the test period. Regarding the serie dGDP, The VAR model seems to over-
estimate it similarly than Catboost. LightGBM reports values way higher than
the dGDP range in the test period. Lastly the XGBoost is the one that moves
closer to the actual series without overestimating it.

Regarding dSP all four models seem to underestimate several periods pushed
by the falls that can be observed in the years 2009, 2012, 2016 and 2019.

It’s also worth noting that some movements in the growth of the S&P are
not followed by the growth of the GDP. We have an example at the end of 2015.
In that year, we see negative a growth rate in 2015 which implies a decrease in
the value of the index, however such decline is not followed by a decrease in the
GDP, although we see a smaller growth rate.

Figure 4: VAR(1) prediction

18

Figure 5: XGBoost prediction

Figure 6: LightGBM prediction

Figure 7: CatBoost prediction

6 Conclusions

In this work I provided a comparison about the predictive ability of Gradient
Boosting Decision Tree algorithms and its comparisson with the classical Vector
Autoregressive. The GBDT implementations XGBoost, LGBM and CatBoost
perform better predictions as shown in the one-step-ahead strategy. In particu-
lar, LGBM has the lowest Test MSE and also the lowest overfitting. However,

19

after analyzing the forecasts of the test period in the charts, we can see that the
models over predict the serie dGDP except for XGBoost. With all mentioned
points the winner of this exercise is XGBoost.

For next experiments it would be interesting to add macroeconomic variables
using current and lagged values to try to reduce the forecasting errors that
remained high in some periods. Taking as example the work presented in the
bibliography, some good candidates for future analysis are industrial production,
unemployment rate, housing starts and the difference between 10 year treasury
constant maturity rate and federal funds rate as they are representative of U.S.
economy.

References

[1] J. M. Ros, “An Inquiry into the Nature and Causes of the Econometric
Relation between GDP and Stock Market in the U.S.” 2019.

[2] B. Beers, “Why Do Investors Use the S&P 500 as a Benchmark?” 2022.
[Online]. Available: https://www.investopedia.com/ask/answers/041315/
what-are-pros-and-cons-using-sp-500-benchmark.asp

[3] A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Comparison of arima
and artificial neural networks models for stock price prediction,” Journal
of Applied Mathematics, vol. 2014, pp. 9–11, 2014.

[4] P. G. Coulombe, M. Leroux, D. Stevanovic, and S. Surprenant, “How is
machine learning useful for macroeconomic forecasting?” pp. 1–52, 2020.
[Online]. Available: http://arxiv.org/abs/2008.12477

[5] G. Maccarrone, G. Morelli, and S. Spadaccini, “Gdp forecasting: Machine
learning, linear or autoregression?” Frontiers in Artificial Intelligence,
vol. 4, pp. 1–9, 2021.

[6] S. R. Karingula, N. Ramanan, R. Tahmasbi, M. Amjadi, D. Jung, R. Si,
C. Thimmisetty, L. P. Cabrera, M. Sayer, and C. N. Coelho, “Boosted
embeddings for time series forecasting,” 4 2021.

[7] C. Ball and J. French, “Exploring what stock markets tell us about gdp in
theory and practice,” Research in Economics, vol. 75, pp. 330–344, 2021.
[Online]. Available: https://doi.org/10.1016/j.rie.2021.09.002

[8] B. Jason, “Gradient boosting with scikit-learn, xgboost, lightgbm, and cat-
boost,” https://machinelearningmastery.com/gradient-boosting-with-scikit-
learn-xgboost-lightgbm-and-catboost/.

[9] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning: with Applications in R. Springer, 2013. [Online].
Available: https://faculty.marshall.usc.edu/gareth-james/ISL/

20

https://www.investopedia.com/ask/answers/041315/what-are-pros-and-cons-using-sp-500-benchmark.asp
https://www.investopedia.com/ask/answers/041315/what-are-pros-and-cons-using-sp-500-benchmark.asp
http://arxiv.org/abs/2008.12477
https://doi.org/10.1016/j.rie.2021.09.002
https://faculty.marshall.usc.edu/gareth-james/ISL/

[10] A. Mello, “Xgboost: theory and practice,”
https://towardsdatascience.com/xgboost-theory-and-practice-
fb8912930ad6.

[11] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
https://arxiv.org/abs/1603.02754, 2016.

[12] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Y.
Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Ad-
vances in Neural Information Processing Systems, vol. 2017-Decem, pp.
3147–3155, 2017.

[13] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: Unbiased boosting with categorical features,” Advances in Neu-
ral Information Processing Systems, vol. 2018-Decem, pp. 6638–6648, 2018.

[14] “OECD Data.” [Online]. Available: https://data.oecd.org/gdp/
quarterly-gdp.htm#indicator-chart

[15] R. Shiller, “ONLINE DATA ROBERT SHILLER,” data file available as
http://www.econ.yale.edu/∼shiller/data/ie data.xls. [Online]. Available:
http://www.econ.yale.edu/∼shiller/data.htm

[16] A. Burkov, The Hundred-Page Machine Learning Book, 2019. [Online].
Available: http://themlbook.com/

[17] “LightGBM website.” [Online]. Available: https://lightgbm.readthedocs.
io/en/latest/Parameters.html

[18] “Catboost website.” [Online]. Available: https://catboost.ai/en/docs/
concepts/speed-up-training

[19] T. Hastie, R. Tibshirani, and J. Riedman, The Elements of Statistical
Learning Data Mining, Inference, and Prediction, 2008.

[20] S. Shrivastava, “Cross Validation in Time Series.”
[Online]. Available: https://medium.com/@soumyachess1496/
cross-validation-in-time-series-566ae4981ce4

[21] “Visualizing cross-validation behavior in scikit-learn.” [Online]. Available:
https://scikit-learn.org/stable/auto examples/model selection/plot cv
indices.html#sphx-glr-auto-examples-model-selection-plot-cv-indices-py

Appendix

21

https://data.oecd.org/gdp/quarterly-gdp.htm#indicator-chart
https://data.oecd.org/gdp/quarterly-gdp.htm#indicator-chart
http://www.econ.yale.edu/~shiller/data/ie_data.xls
http://www.econ.yale.edu/~shiller/data.htm
http://themlbook.com/
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://catboost.ai/en/docs/concepts/speed-up-training
https://catboost.ai/en/docs/concepts/speed-up-training
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html#sphx-glr-auto-examples-model-selection-plot-cv-indices-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html#sphx-glr-auto-examples-model-selection-plot-cv-indices-py

Libraries

import pandas as pd

import numpy as np

import math

from xgboost import XGBRegressor

from sklearn.model_selection import TimeSeriesSplit

from sklearn.pipeline import Pipeline

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import RandomizedSearchCV

import matplotlib.pyplot as plt

import warnings

from dateutil.relativedelta import relativedelta

from datetime import date , timedelta ,datetime

import matplotlib.pyplot as plt

from lightgbm import LGBMRegressor

from catboost import CatBoostRegressor

from statsmodels.graphics.tsaplots import plot_acf , plot_pacf

from statsmodels.tsa.api import VAR

from statsmodels.tsa.stattools import adfuller

from statsmodels.tools.eval_measures import rmse , aic

warnings.filterwarnings("ignore", category=DeprecationWarning)

%% [markdown]

Import S&P data

%%

parser = lambda x: pd.to_datetime(x, format=’%Y,%m’)

data=pd.read_csv(’./ datasets/sp.csv’,sep=’;’, date_parser=parser ,

parse_dates=[’Date’],index_col=’

Date’,decimal=’,’)

data.head(6)

%%

data_quarter=pd.DataFrame(data[’S&P’].resample(’Q-JAN’,convention=’

start’).agg(’mean’))

data_quarter[’CPI’]=data[’CPI’].resample(’Q-JAN’, convention=’start

’).agg(’last’)

data_quarter.reset_index(inplace=True)

data_quarter[’Date’]=data_quarter[’Date’].dt.to_period(’M’).dt.

to_timestamp ()

data_quarter.set_index(’Date’,inplace=True)

data_quarter

%%

data_quarter[’real_SP ’]=data_quarter[’S&P’]/data_quarter[’CPI’]*(

data_quarter.iloc[[145]][’CPI’].

values)

data_quarter[’lSP’]=np.log(data_quarter[’real_SP ’])

data_quarter[’dSP’]=(data_quarter[’lSP’]-data_quarter[’lSP’].shift(

1))*100

data_quarter.tail(20)

%%

data_quarter[[’real_SP ’,’dSP’]].plot(subplots=True ,figsize=(10,8),

grid=True ,title=’S&P 500 , Avg.

22

price per share in Month Ending

Quarter and Growth rate’)

%% [markdown]

Import GDP

%%

df=pd.read_csv(’./ datasets/DP_LIVE_30042022183016541.csv’,

parse_dates=[’DATE’],index_col=’

DATE’,usecols=[’DATE’, ’Value’])

df=df.rename(columns={’Value’:’dGDP’})

df.head()

%%

#plt.figure ()

df[’dGDP’].plot(grid=True ,figsize=(10,6),title=’U.S. GDP growht

rate’)

#plt.suptitle(’ title_string ’, y=1.05 , fontsize=18)

%%

plot_acf(df[’dGDP’][’1947 -04 -01’:’2019 -10-01’],zero=False)

%%

plot_pacf(df[’dGDP’][’1947 -04 -01’:’2019 -10-01’],zero=False)

%% [markdown]

Merge data

%%

df_merged_data=df[’dGDP’].reset_index ()

df_merged_data[’target_dGDP ’]=1

df_merged_data.rename(columns={’dGDP’: ’target ’}, inplace=True)

df_merged_data[’dGDP_1 ’]=df_merged_data[’target ’].shift(1)

df_merged_data

%%

df_tmp=data_quarter[’dSP’].reset_index ()

df_tmp[’target_dGDP ’]=0

df_tmp.rename(columns={’dSP’: ’target ’,’Date’:’DATE’}, inplace=True

)

df_tmp[’dSP_1 ’]=df_tmp[’target ’].shift(1)

df_tmp

%%

#Join dSP as feature of dGDP as target

df_merged_data=df_merged_data.merge(df_tmp[[’DATE’,’dSP_1’]],

left_on=’DATE’,right_on=’DATE’)

df_merged_data.head()

%%

#Join dGDP as feature of dSP as target

df_tmp=df_tmp.merge(df_merged_data[[’DATE’,’dGDP_1 ’]],left_on=’DATE

’,right_on=’DATE’)

df_tmp.head()

%%

Concatenate datasets dGDP and dSP

23

df_merged_data=pd.concat([df_merged_data ,df_tmp], ignore_index=True

)

df_merged_data.head()

%%

df_merged_data.shape

%%

df_merged_data[df_merged_data[’DATE’]==’1947 -07-01’]

%% [markdown]

Train/test split

%%

end_train_data="2007 -01-01"

end_test_data=’2019 -10-01’

test_period=pd.date_range(datetime.strptime(end_train_data , ’%Y-%m-

%d’)+ pd.DateOffset(60),

end_test_data ,freq=pd.offsets.

MonthBegin(3))

test_period

%%

to avoid deprecation warning

df_merged_data.index=pd.Index(df_merged_data.index , dtype="uint64")

df_merged_data.index

%%

X_train=df_merged_data[df_merged_data[’DATE’] < end_train_data].

drop(columns=[’DATE’,’target ’])

X_test=df_merged_data[df_merged_data[’DATE’].isin(test_period)].

drop(columns=[’DATE’,’target ’])

y_train=df_merged_data.loc[df_merged_data[’DATE’] < end_train_data ,

’target ’]

y_test=df_merged_data.loc[df_merged_data[’DATE’].isin(test_period),

’target ’]

%%

display(X_train.head())

display(y_train.head())

%% [markdown]

VAR

%%

data_var=data_quarter.merge(df,left_index=True ,right_index=True)[[’

dGDP’,’dSP’]].dropna ()

X_var_train=data_var[:end_train_data]

X_var_test=data_var.loc[test_period]

nobs=len(X_var_test)

X_var_train.tail(),X_var_test.head()

%%

data_var.to_csv(’./ data_var.csv’)

%%

24

table_desc=data_var[’1947 -04 -01’:’2018 -07-01’].describe ().transpose

()

print(table_desc.to_latex(index=True))

%%

table_desc=data_var[’1947 -04 -01’:’2018 -10-01’].describe ().transpose

()

print(table_desc.to_latex(index=True))

%%

table_desc=data_var[’1947 -04 -01’:’2019 -12-01’].describe ().transpose

()[[’count’,’mean’,’std’,’min’,’

max’]]

print(table_desc.to_latex(index=True))

%%

table_desc

%%

Import Statsmodels

model = VAR(X_var_train)

%%

x = model.select_order(maxlags=12)

x.summary ()

%% [markdown]

Train the VAR model of selected order (p)

%%

model_fitted = model.fit(1)

model_fitted.summary ()

%%

#train error

np.sum(np.sum(model_fitted.resid ** 2)/len(model_fitted.resid))

%% [markdown]

Forecast

%%

Get the lag order

lag_order = model_fitted.k_ar

print(lag_order) #> 4

%%

#in sample forecast

mod = VAR(data_var[end_train_data:end_test_data].values)

forecasts = mod.predict(model_fitted.params)

df_forecast = pd.DataFrame(forecasts , index=test_period , columns=

data_var.columns+ ’_forecast ’)

df_forecast.tail()

%%

def plot_actual_forecast(df_forecast ,df_test):

25

fig , axes = plt.subplots(nrows=int(len(df_forecast.columns)/2),

ncols=2, dpi=150 , figsize=(

10,3))

for i, (col ,ax) in enumerate(zip(df_test.columns , axes.flatten

())):

df_forecast[col+’_forecast ’].plot(legend=True , ax=ax).

autoscale(axis=’x’,tight=

True)

df_test[col][test_period].plot(legend=True , ax=ax);

ax.set_title(col + ": Forecast vs Actuals")

ax.xaxis.set_ticks_position(’none’)

ax.yaxis.set_ticks_position(’none’)

ax.spines["top"].set_alpha(0)

ax.tick_params(labelsize=6)

plt.tight_layout ();

plot_actual_forecast(df_forecast ,X_var_test)

%% [markdown]

Evaluate the forecast

%%

df_eval=pd.DataFrame ()

df_eval[’forecast ’]=pd.concat([df_forecast[’dGDP_forecast ’],

df_forecast[’dSP_forecast ’]])

df_eval[’real’]=X_var_test[’dGDP’]-X_var_test[’dSP’]

df_eval[’squared_errors ’]=(df_eval[’forecast ’]-df_eval[’real’])**2

-np.mean(df_eval[’squared_errors ’])

%% [markdown]

Pipeline

%%

tscv = TimeSeriesSplit(n_splits=5,)

%% [markdown]

XGBoost

%%

xgb= XGBRegressor ()

%%

pipe = Pipeline([

(’model’, xgb)

])

param_grid = {

’model__max_depth ’: [5,10,20],

’model__max_leaves ’:[5,10 ,20,30],

’model__n_estimators ’: [5,10 , 25],

’model__reg_alpha ’ : [3,4,5],

’model__reg_lambda ’ : [2,3,4]

}

%%

grid=None

26

grid = GridSearchCV(pipe , cv=tscv ,

param_grid=param_grid ,n_jobs=-1,scoring=’

neg_mean_squared_error

’)

grid.fit(X_train ,y_train)

%%

grid.best_params_

%%

print("cv score: %.4f" % grid.best_score_)

print("train score: %.4f" % grid.score(X_train , y_train))

print("test score: %.4f" % grid.score(X_test , y_test))

%%

df_cv_xgb=pd.DataFrame(grid.cv_results_)

df_cv_xgb.sort_values(by=’rank_test_score ’).head()

%%

plt.plot(df_cv_xgb.index ,df_cv_xgb[’mean_test_score ’],’-o’)

plt.errorbar(df_cv_xgb.index , df_cv_xgb[’mean_test_score ’], yerr=

df_cv_xgb[’std_test_score ’],

ecolor=’g’)

%%

df_cv_xgb[’mean_test_score ’].hist()

%%

forecasts_xgb = np.reshape(grid.predict(X_test),(-1,2),order=’F’)

df_forecast_xgb = pd.DataFrame(forecasts_xgb , index=test_period ,

columns=data_var.columns+ ’

_forecast ’)

df_forecast_xgb.tail()

%%

plot_actual_forecast(df_forecast_xgb ,X_var_test)

%% [markdown]

LGBM

%%

lgbm = LGBMRegressor(objective="regression")#,device=’GPU ’)

%%

pipe2 = Pipeline([

(’model’, lgbm)

])

param_grid2 = {

’model__max_depth ’: [9,10,11,15],

’model__n_estimators ’: [11,12 ,13,14,25 ,50],

’model__linear_tree ’:[False ,True],

’model__num_leaves ’:[13,14,15 ,16,17 ,25,50],

’model__learning_rate ’:[0.06,0.07,0.08,0.1],

’model__reg_alpha ’:[3,4,5],

’model__reg_lambda ’:[1,2,3]

}

27

%%

grid2=None

grid2 = GridSearchCV(pipe2 , cv=tscv ,

param_grid=param_grid2 ,n_jobs=-1,

scoring=’neg_mean_squared_error ’,verbose=3)

grid2.fit(X_train ,y_train)

%%

grid2.best_params_

%%

print("cv score: %.4f" % grid2.best_score_)

print("train score: %.4f" % grid2.score(X_train , y_train))

print("test score: %.4f" % grid2.score(X_test , y_test))

%%

forecasts_lgbm = np.reshape(grid2.predict(X_test),(-1,2),order=’F’)

df_forecast_lgbm = pd.DataFrame(forecasts_lgbm , index=test_period ,

columns=data_var.columns+ ’_forecast ’)

df_forecast_lgbm.tail()

%%

plot_actual_forecast(df_forecast_lgbm ,X_var_test)

%% [markdown]

Catboost

%%

catboost = CatBoostRegressor(task_type="GPU")

#catboost = CatBoostRegressor (iterations =150)#,task_type =" GPU",

devices=’0:1 ’)

%%

pipe3= Pipeline([

(’model’, catboost)

])

param_grid3= {

’model__depth ’: [13 ,14,15],

’model__l2_leaf_reg ’: [19,20 ,21],

’model__n_estimators ’:[15 ,20,25,100],

#’model__iterations ’:[10 ,20 ,30 ,40]

’model__learning_rate ’:[0.05,0.1]

}

%%

grid3=None

grid3 = GridSearchCV(pipe3 , cv=tscv ,

param_grid=param_grid3 ,n_jobs=1,

scoring=’neg_mean_squared_error ’)#n_jobs=1 for

using gpu

grid3.fit(X_train ,y_train)

%%

grid3.best_params_

%%

28

print("cv score: %.4f" % grid3.best_score_)

print("train score: %.4f" % grid3.score(X_train , y_train))

print("test score: %.4f" % grid3.score(X_test , y_test))

%%

forecasts_cb = np.reshape(grid3.predict(X_test) ,(-1,2),order=’F’)

df_forecast_cb = pd.DataFrame(forecasts_cb , index=test_period ,

columns=data_var.columns+ ’_forecast ’)

df_forecast_cb.tail()

%%

X_train.shape ,X_test.shape

%%

plot_actual_forecast(df_forecast_cb ,X_var_test)

%%

print("train score: %.4f" % grid.score(X_train , y_train))

print("test score: %.4f" % grid.score(X_test , y_test))

print("train score: %.4f" % grid2.score(X_train , y_train))

print("test score: %.4f" % grid2.score(X_test , y_test))

print("train score: %.4f" % grid3.score(X_train , y_train))

print("test score: %.4f" % grid3.score(X_test , y_test))

29

	Summary
	Introduction
	Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction 2014
	How is Machine Learning Useful for Macroeconomic Forecasting? 2019
	GDP Forecasting: Machine Learning, Linear or Autoregression? 2021
	Boosted Embeddings for Time Series Forecasting 2021
	Exploring what stock markets tell us about GDP in theory and practice 2021

	Models
	Vector Autoregressive
	Gradient boosting
	XGBoost
	LightGBM
	Catboost

	Experimental setup
	Data
	U.S. GDP
	S&P 500

	Hyperparameters tuning
	XGBoost
	LightGBM
	CatBoost

	Model selection and assessment
	Cross Validation on Time Series and grid search
	Validation strategy: One-step-ahead
	Models comparisson methodology

	Results
	VAR estimation
	Gradient boosting
	Hyperparameters
	Validation

	Charts comparisson

	Conclusions
	Bibliography

