Consistency Verification
of Deductive Database Schemes*

Francisco Marqués and Juan C. Casamayor

Dept. Sistemas Informaticos y Computacién
Universidad Politécnica de Valencia
Camino de Vera s/n. 46071 Valencia (Spain)
{pacom,carlos} @dsic.upv.es

Abstract

A deductive database scheme consists of a set of base predicate schemes and a set of possibly non-
Hom clauses. A database can be considered as a particular instance of a given scheme. Clearly, a
property that must be held by any scheme is logical consistency. We also propose other related
properties (non-trivial consistency, strong consistency and P-consistency). These properties are
requirements which are reasonable and meaningful in many practical cases. For verifying the various
forms of consistency, we discuss a method whose centerpiece is a theorem prover which is an instance

of a linear-resolution-based paradigm for first-order theories, called SL* resolution.

INTRODUCTION

A first-order theory, from now on a f.o. theory, is a set of first-order clauses. Each of these
clauses is a non-empty disjunction of literals. The format representation that we have chosen for
clauses is in implication form, that is: a clause is represented as a head (the consequent) and a body
(the antecedent), where the head is a possibly empty disjunction of atoms, and the body is a
possibly empty conjunction of atoms. Thus, a f.o. theory can be understood as a generalization of a
Horn theory. The appearance of the disjunction in the head of the clauses is necessary whenever
disjunctive knowledge has to be expressed. However, the expressiveness gained by introducing
disjunction involves an increase of the complexity of the procedures that deal with theories of this
kind.

* This work was supported by a CICYT grant n’ TIC93-027%7

A first-order deductive database, abbreviated a DDB, is a first-order theory, that generalizes
the classical concept of a deductive (definite) database. A DDB can be considered as a particular
instance of a first-order database scheme (DDBS). Essentially, a DDBS consists of a set of base
predicate schemes and a f.o. theory. Each base predicate scheme represénts the format of possible
unit base knowledge which a DDB, instance of the DDBS, may contain. The f.o. theory represents
the deductive knowledge (clauses with a non-empty head) and the integrity theory (clauses with an
empty head, also called denials) associated to the DDBS. For further details on deductive databases,
see [Ko2], [LMR], [Ul].

As a f.o. theory may be inconsistent (unsatisfiable), the next question immediately follows:
Given a DDBS, is this scheme consistent? That is, is the f.0. theory of this scheme consistent?
Moreover, if the given scheme is consistent, are there meaningful databases, instances of this
scheme?. These are significant questions because, in the first place, if a DDBS is not consistent,
then you can derive everything from the DDBs instances of this scheme. And, in second place, if
the DDBS is consistent, then the unique consistent instance of it might not be meaningful (for
example, there are DDBSs whose unique consistent instance does not have base information at all).
We call schemes of this kind trivially consistent ones, and hence, non-trivially consistent schemes
are those in which this undesirable property does not hold. Other scheme properties related to the
questions just stated and studied throughout this paper, are strong consistency and P-consistency.
For a strongly consistent scheme, it is possible to ensure the existence of a DDB, instance of it,
with base information for each base predicate scheme. P-consistency can be viewed as an

intermediate property between non-trivial and strong consistency.

In this paper, we propose a method for verifying the accomplishment of these properties by a
given DDBS (which is an extension of the mechanism presented in [CDM]). Given a property to be
checked, this method consists of obtaining an “equivalent” f.o. theory from the scheme (equivalent
wrt the property to be verified), and studying the (logical) consistency of this f.o0. theory, so that if
the f.o. theory is consistent, then the scheme accomplishes the property. In order to make this
consistency study of the f.o. theory, we use a theorem prover that is an instance of a linear-
resolution-based reasoning paradigm called SL*. This paradigm, which was presented in [DC], is
the basis for complete proof procedures that need only a small amount of ancestor resolution and no
factoring. In particular, there exists an instance of this paradigm that coincides with SLD resolution
for Horn theories.

Unfortunately, the study of the consistency of a f.o. theory is troublesome, since the problem
of generally determining whether a first-order theory is consistent or not, is undecidable. However,
we should not forget that there exist particular and interesting cases where this question still remains
decidable. For example, in the propositional case the problem is known to be np-complete [G]],
and in the datalog case (i.e. there are no function symbols in the theory), the problem is decidable.

288

The paper is organized as follows: in section 1, we define the main concepts and properties
we deal with; in section 2, we present a two-phase method for studying these properties; in section
3, we present the SL* paradigm, focusing the discussion on two procedures (theorem provers),
which are instances of it; in section 4, we present the miethod that incorporates one of these
procedures and we show the main results of our work; in section 5, we give a complete example
using our method, and finally, we draw some conclusions and propose possible future work.

1 DEFINITIONS

In this section, our aim is to introduce and discuss several definitions of the main concepts
and properties presented in our work.

Definition 1
A fo. theory is a set of clauses, each one of which is of the form Aj v...v AxeB1 A...AB)
(k20, 120, k+1>1), where Aj, ..., Ak and By, ..., Bj are atoms.

Definition 2
A deductive database scheme is a pair (BP, Cl), where:
+BPisaset {bpy, ..., bpy} of base predicate schemes. Each base predicate scheme bp; is of
the form bp(xi, ..., xj), where x1, ...,Xj are variables. (For simplicity, we assume a universal

domain over which variables range, rather than using typed attribute variables).

+ Clis a f.o. theory, that is: a set {cy,...,cp} of clauses, of the form A7 v...v Ag¢—B1 A...A B}
(k=0, 120, k+1=1) such that the predicate of each atom A is a derived predicate, i.e. there is
no atom A;j whose predicate is in one of the base predicate schemes.

Note that this definition introduces a clear division among the predicates (base and derived) of
a deductive database scheme. The variables that appear in the base predicate scheme indicate that
knowledge about which ground atoms are true for each base predicate is not necessarily known at
specification time. Different sets of ground atoms for these base predicates will correspond to
different databases of the same DDBS. This concept of a deductive database is defined below.

Definition 3

Let S be a deductive database scheme of the form (BP, CI). A deductive database of this
scheme S is a pair (F, DCI) such that each element A in Fis a ground instance of some bpj in BP,
and DCl is a set of clauses such that Cl ¢ DCI and the predicate of each atom in the head of every
clause in DCl is a derived predicate. Atoms in F are called facts.

Because of the possible presence of negative clauses in the set Cl of a DDBS, Cl may be

inconsistent. In the case of inconsistency, no database of this scheme has a consistent set of clauses

289

DCIL. Thus, a method for verifying the consistency (satisfiability) of Cl is needed. Below, we give a
formal definition of DDBS consistency.

Definition 4
Let S=(BP, Cl) be a deductive database scheme. S is a consistent scheme iff Cl is consistent.
We say that S is inconsistent iff S is not consistent.

On the other hand, there may exist consistent schemes for which the unique DDBs that satisfy
them are the ones that do not contain any fact at all. For example, the scheme ({p(x)}, {¢<p(x)}) is
consistent; however, the unique DDBs that satisfy this scheme are of the form (&, DCI), where DCI
contains «p(x). From a practical point of view, we think that schemes of this kind are not
worthwhile, although they are consistent. The schemes that do not have this undesirable
characteristic are called non-trivially consistent schemes. The definition below formalizes this

concept.

Definition 5

Let S=(BP, Cl) be a deductive database scheme such that BPis {bpi, ..., bpp}. Sisa
non-trivially consistent scheme iff { 3(bp1) v...v 3(bpn)} w Cl is a consistent set of formulas.
S is a trivially consistent scheme iff S is a consistent scheme and is not a non-trivially consistent

scheme.

Note that if a scheme S is non-trivially consistent, then S is consistent. According to this
definition, if a DDBS is non-trivially consistent, then the possibility of the existence of a DDB that
satisfies this scheme with a non-empty set of facts F is ensured.

Example 1
Let S=(BP, Cl) be a deductive database scheme such that

BP = {p(x)}

Cl = {q(x) v r(x) « p(x),
t(x) « r(x),
< q(a) A p(a),
< t(a) A p(a) },

where a is a constant and x is a variable. Clearly, S is a non-trivially consistent scheme. Therefore,
the existence of a DDB for this scheme is ensured (e.g. the database formed by (F, Cl), where F is
{p(b), p(c)}, and b, ¢ are constants).

On the other hand, the property of strong consistency can be understood as a strengthening of
non-trivial consistency for ensuring the existence of a database that contains, at least, one fact for
each base predicate scheme of its DDBS. The following definition formalizes this property.

290

Definition 6
Let S=(BP, Cl) be a deductive database scheme such that BP is {bp1, ..., bpp}. Sisa
strongly consistent scheme iff { (bpy), ..., J(bpa)} w Clis a consistent set of formulas.

Finz'llly, the accomplishment of the P-consistency property by a given scheme with base
predicate scheme set BP, ensures the existence of a database that contains, at least, one fact for each
base predicate scheme in P, where Pis a non-empty subset of BP. Clearly, if P is equal to BP,
then P-consistency coincides with strong consistency.

Definition 7

Let S=(BP, Cl) be a deductive database scheme such that BP is {bp1, ..., bpn} and let Pbe a
non-empty subset of BP. S is a P-consistent scheme iff Ui{ §(bpi): bpi € P} U Clis a consistent
set of formulas.

We think that DDBSs, in which any of these properties do not hold, may be easily specified,
particularly, when these schemes contain a large amount of unstructured knowledge. Our aim in
introducing these properties is to give the designer some concepts to be able to check that his
specification is representing his intended interpretation of the real world correctly. Moreover, the
task of verifying whether a scheme accomplishes some given property may be extremely hard, if it
is done without the help of mechanical tools. In the following sections, we propose a method for
this.

Example 2
Let S=(BP, Cl) be a deductive database scheme such that

BP = {p(x), q(x), r(x)}

Cl = {d(x,a) v d(y,b) « p(x) A r(y)
g8(x) v s(x) ¢ p(x)
u(x) ¢« g(x)
s(x) < 1(x) A q(y)
g(x) «— d(x,a) A s(x)
« d(x,a) A u(x)
< d(x,b) A s(x)},

where a, b are constants and x, y are variables. For this example Cl is clearly a consistent theory, so
S is also a consistent scheme; but it is not a strongly consistent scheme because the theory {3x p(x),
dy q(y), 3z r(z)} U Cl is unsatisfiable: S is also a non-trivially consistent scheme because the
theory {3x p(x) v 3y q(y) v 3z r(z)} U Cl is satisfiable; finally there exist subsets P of BP such
that for these subsets the scheme is P-consistent, for example let P be the set {p(x), q(x)}, then the
theory {3x p(x), Iy q(y)} v Cl is also satisfiable. The other two subsets of BP for which the
DDBS is also a P-consistent scheme are: {p(x), r(x)} and {q(x), r(x)}.

291

The relationships among the four properties defined above are stated in the following

theorem.

Theorem 1 _
Let S =(BP, Cl) be a DDBS then

a) S is a consistent scheme if S is a non-trivially consistent scheme.

b) S is a non-trivially consistent scheme if S is a strongly consistent scheme.

¢) S is a non-trivially consistent scheme if there exists a non-empty set PCBP such that S is a
P-consistent scheme.

Proof:
Let S be the scheme (BP, Cl), where BP is {bp], ..., bpn}.

The proof of a) is straightforward. If S is non-trivially consistent, then the set of formulas
{§(bp1) V...V §(bpn)} v Cl is consistent. Therefore, Cl is also consistent. Hence, S is a
consistent scheme by definition.

The proof of b) is as follows: If S is strongly consistent, then the set of formulas
{§(bp1),..., §(bpn)} U Cl is consistent. Moreover, any model of { §(bp1), §(bpn)} v Cl is
also a model of {I(bp1) v...v 3(bpn)} U CL Therefore, by definition, S is a non-trivially

consistent scheme. A similar proof can be formulated for point c).

2 CONSISTENCY VERIFICATION OF DEDUCTIVE DATABASE SCHEMES

In this section, we describe a method for verifying the defined properties of deductive
database schemes. Roughly, our method consists of two phases: first, generating a first order
theory, in accordance with the property to be verified, from the deductive database scheme; and
second, checking the logical (in)consistency of this generated first order theory by using an
appropriate theorem prover. Below, we present these two phases with their main results.

2.1 GENERATION PHASE

This first phase of the method generates a f.o. theory from the given DDBS. This generated
theory is related to the property to be verified, so that the DDBS accomplishes the property iff this
theory is consistent. Thus, the generated theory will be different according to the corresponding
property. We give a definition describing the generation phase of the method below.

292

Definition 8 (Generation phase)

Let S be a deductive database scheme of the form (BP, Cl), where BP is {bpy ,..., bpg}. The
f.o. theory T obtained by the generation phase of the method corresponding to the property to be
verified is described below:

a) Consistency verification: T is equal to CI.

b) Non-trivial consistency verification: T is {sk(§bp1) v...v sk(§bpn)} v CL

¢) Strong consistency verification: T is {sk(3bp1), ..., sk(Ibpy)} U CL.

d) P-consistency verification: T is Uj{sk(§ bp;): bpj € P} U Cl, where P ¢ BP.

where sk(§bpi) denotes the skolemized base predicate scheme bp;.

Example 3
Let S be the DDBS of example 2. The properties to be verified are non-trivial consistency and
P-consistency, {p(x), q(x)} being the set of base predicate schemes P. Then, the generated theories

T1 and T2, respectively, are the following:

* T1 = {p(sk1) v q(sk2) v r(sk3)} U Cl
* T2 = {p(sk1), q(sk2)} U Cl

where ski, sk2 and sk3 denote three skolem constants.

The next theorem states the equivalence between the accomplishment of some property by a
given scheme and the consistency of the corresponding theory obtained by the generation phase.
For simplicity, a DDBS property is one of the previously defined properties in section 1 (i.e.
consistency, non-trivial consistency, strong consistency, or P-consistency)

Theorem 2

Let S be a deductive database scheme of the form (BP, Cl), V be a DDBS property and let T
be the generated theory corresponding to the property V to be verified. S satisfies the property V iff
T is a consistent f.o. theory.

Proof:

Let S be of the form (BP, Cl) such that BP is {bpj, ..., bpg}.

If P is consistency, then the proof is straightforward.

If P is trivial consistency, then the proof is as follows: By definition of non-trivial
consistency, { 3(bp1) v...v3(bpy)} U Cl is a consistent set of formulas. It is well-known that
skolemization preserves consistency. Therefore, {§(bp1) V...V §(bpn)} w Cl is consistent iff the
corresponding skolemized f.o. theory {sk(3bp;) v...v 3(bpy)} U Cl is consistent. Since this
theory is T, the result holds. Similar proofs can be formulated for the property V being either strong

consistency or P-consistency.

293

2.2 (IN)CONSISTENCY CHECKING PHASE

The second phase of the method consists of checking the (in)consistency of the theory
generated by the previous first phase. Clearly, some mechanical tool is needed for achieving this
verification. It is well-known that consistency is an undecidable property for f.o. theories, although
there exist complete procedures for checking the inconsistency of an unsatisfiable f.o. theory.
Besides, there are classes of f.o. theories (propositional, function-free, etc.) where consistency is
decidable.

Clearly, a very suitable tool for studying the (in)consistency of f.o. theories is a theorem
prover. Probably, the most well-known theorem provers are based on the Resolution Principle
[Ro]. The basis of resolution-based theorem proving can be found in [Lol] [CL]. Soundness and
completeness are two essential properties which must be accomplished by every theorem prover,
ensuring that a f.o. theory is inconsistent iff this fact is detected by the theorem prover.
Additionally, the implementation of the corresponding theorem prover must preserve these
properties, taking into account problems like sound unification, complete search, etc.

In the next section, we present a linear-resolution-based paradigm, called SL*, and two
instances of it that are sound and complete proof procedures for checking the inconsistency of f.o.
theories. In section 4) we state the results of the whole method for verifying the properties of a
DDBS, that includes the use of these procedures.

3 SL* RESOLUTION

In this section, we present a linear-resolution-based paradigm for monotonic reasoning in first
order theories, called SL* resolution [DC]. Instances of this paradigm correspond to different
procedures that are adequate to various purposes, namely, theorem proving (inconsistency
checking) and problem solving (query answering). Some of these procedures are suited for certain
classes of theories (non-Horn, near-Hom, Horn, range-restricted theories) and for obtaining certain
classes of solutions (definite or indefinite). In particular, an instance of SL* for Horn theories is
identical to SLD resolution [KK] [Ko1]. All these procedures are sound and complete for the
corresponding purpose for which they were tailored in the corresponding class of theories which
they deal with.

Linear Resolution can be understood as an extension of Input Resolution in which, each
predecessor clause (an ancestor) in the derivation is also considered as a possible input clause.
Roughly, SL* refines Linear Resolution taking into account only previously selected literals as
ancestors. This is the minimum extension to Input Resolution needed for obtaining a complete
procedure for f.o. theories [Lol],[Stl]. Essentially, two different inference steps can be

294

distinguished in SL*: First, a binary resolution step on the current clause in the derivation and an
input clause from the current theory (the initial theory and the set of current ancestors), and second,
an application of the splitting rule [CL] to the current clause on the selected literal.

Two different cases may occur in the first step: First, the input clause is a fresh variant of a
clause in the initial theory, then, this step corresponds to an input resolution step (extension, in
other terminologies); second, the input clause is an ancestor, then, this step corresponds to an
ancestor resolution step (sometimes called reduction, and corresponding to an application of the
principle of reductio ad absurdum).

The application of the splitting rule in the second step can be explained as follows (we
consider the ground case for simplicity): Suppose that the (in)consistency of a theory T and a
ground clause C is required to be checked. C is of the form L v...v Ly and a literal L; is selected in
C. Then, the problem of checking the (in)consistency of T U {C} can be reduced to checking the
(in)consistency of T U {L;j} and of TU {Ljv...v LV Li+1 Vv...v Ly}. In the non-ground case,
this application must be done taking into account the shared variables in the two parts of the split
clause. In SL* resolution, the checking of the (in)consistency of T U {L;} is done by a subsidiary
derivation of lower rank, adding L; to the set of ancestors. These literals, which are the root of
subsidiary derivations, are called ancestors. In order to guarantee completeness, this second step
has to be applied whenever the selected literal belongs to a certain class. This class is formalized by
defining the concept of ancestor choice.

Definition 9
Given a f.o. theory T, an ancestor choice M for T is a (possibly empty) subset of the set of
all literals L of the underlying language.

Actually, an ancestor choice M allows us to define the condition for a selected literal being an
ancestor. This condition is formalized in the definition of SL* refutation, that is given below.

For convenience, we first define: For a set of clauses S and a substitution 8, let S8 denote the
set of clauses obtained by applying 0 to each variable in each clause of S.

Definition 10

Let T be a f.o. theory, C a clause and Anc a set of clauses. An SL* refutation from Cin T
using Anc, and its rank, are defined as follows: The refutation consists of a sequence of clauses
Co.,..., Cn, a sequence 0y,..., 0, of substitutions and a sequence of sets of clauses Anc,..., Ancp
called sets of ancestors (n20), such that Co=C, Cy=[] (the empty clause), Ancg=Anc,
Anci=Anc0...0; (1<i<n) and, for each i<n, an atom Aj is selected in Cj. Moreover, the four poiats
below hold.

295

» Suppose M is a ancestor choice for T. For each i (0<i<n), A; is called an ancestor if Aj is
selected in the head (resp. the body) of C;, A; € M (resp. —Aj e M), and Aj ¢ T U Anc;
(resp. <A ¢ T U Ang;)).

* If, foreach i (Osi{n), Ajis not an ancestor, then the rank of the refutation is 0; otherwise, it is
k, for some sufficiently large k>0. (A more elaborate definition would induct on the rank, as
for SLDNF in [LI]).

« If Aj is not an ancestor, then there is a clause C' such that C' is either a fresh variant of a
clause in T, or C'e Anc;j, and Cj41 is a resolvent of Cj and C' on Aj and some atom A in C',
using 0j4+1 which is a mgu of Aj and A.

* If A; is an ancestor and is selected in the head (resp. the body) of Cj, then there is an SL*
refutation from Aj¢— in T using Ancj U { Aj¢—} (resp. from «Ajin T using Ancj U {«Aj}),
of rank less than k, with computed substitution 0j+1, and Cj41 is the resolvent of Cj and
«A;0;+1 (resp. of Cj and AjB;,1¢) on A;.

The composition 0;...0y, is called the computed substitution of the refutation.

For brevity, we omit definitions of “finitely failed SL* tree” (i.e. each attempt of finding an
SL* refutation in the search space terminates with failure), “SL* derivation” and “SL* tree”.

The fourth point in the definition corresponds to the application of the splitting rule as we
explained above. Intuitively speaking, when this point is applied, the problem of checking the
inconsistency of Cj with the current theory is reduced to (or split), first, checking the inconsistency
of the selected literal with the current theory by a subsidiary refutation of lower rank from this
literal, and second, checking the inconsistency of Cj+1 with the current theory. Note that, in the”
subsidiary refutation, the selected literal is incorporated to the set of ancestors, avoiding that fresh
variants of this literal may be used as input clauses. This ensures that the negation of this selected
literal instantiated by the computed substitution is a logical consequence of the current theory. Also,
note that Cj4 is obtained by taking care of the computed substitution of the lower rank refutation
for the literal. These facts guarantee that the application of the splitting rule is adequate.

As we mentioned before, there are distinct instances of the SL* resolution paradigm which
yield different proof procedures, each of them suited to various purposes. For example, if we
choose the following instance of the paradigm: the theory T is definite, the top clause C is a denial,
Anc (the set of ancestors) is empty, and M (the ancestor choice) is also empty, then we obtain SLD
resolution. Essentially, different instances can be obtained by deciding: a) the characteristics of the
initial theory T; b) whether the top clause C belongs to T or it is initially included in the set of
ancestors Anc; and c) the ancestor choice M which will control the application of the subsidiary
computations. The decisions a) and b) will result in different instances of the paradigm, each of

296

them suited for consistency checking (theorem proving) or problem solving (query answering) in
theories of a certain class. The decision c) can be essentially understood as a control mechanism,

since subsidiary ranks are only taken from ancestors, as defined above.

Some ancestor choices are of particular interest. The empty ancestor choice, that implies that
no subsidiary ranks will be taken at all (simulating Input Resolution). The positive ancestor choice
POS, that contains all atoms; therefore, subsidiary ranks will only be taken from the positive literals
in the current clause of the derivation. Finally the total ancestor choice ALL, that contains all literals;
in this case, subsidiary ranks will be taken from every literal selected in the current clause of the
derivation. Clearly, not every ancestor choice ensures the completeness of the corresponding
procedure (in particular, the empty ancestor choice results in a procedure that corresponds to Input
Resolution, that is well-known to be incomplete when dealing with f.o. theories). For ensuring
completeness, the ancestor choice must accomplish that, for each possible atom, either it or its
negation (or both) are in the ancestor choice. We call an ancestor choice of this type a complete
ancestor choice. On the other hand, there are ground ancestor choices (containing only ground
literals) that are adequate for dealing with range-restricted theories.

In the next section, we present two complete proof procedures, instances of SL* resolution,
for theorem proving (or, inconsistency checking) in f.o. theories, called SLT-ALL (with the total
ancestor choice ALL) and SLT-POS resolution (with the positive ancestor choice POS). In both
proof procedures, the top root C is included in the set of clauses, allowing the procedure to use a
fresh variant of the initial clause in the derivation, while Anc (the set of ancestors) is initially empty.
A complete proof procedure for theorem proving in range-restricted theories, called SLC resolution,
was presented in [De] [DC]. This procedure is an instance of SL* which is defined by using a

ground ancestor choice:

3.1 SLT-ALL RESOLUTION AND SLT-POS RESOLUTION

SLT-ALL resolution is a complete proof procedure for theorem proving that corresponds to
an instance of SL*, in which the ancestor choice M is the total ancestor choice. As we mentioned
before, in this case, subsidiary ranks will be taken from every literal selected in the current clause of
the derivation. We define an SLT-ALL refutation as follows:

Definition 11
Let T be a theory and C a clause. Then, an SLT-ALL refutation from C in T is an SL*
refutation from C in T U {C} using &, such that the considered ancestor choice M for T contains all

literals of the underlying language.

297

Example 4
Let T be the following f.o. theory:

T={ p(x) v q(x), 1
q(x)¢=p(x), 2
p@)—q@} 3

where a is a constant and x is a variable. The clause C is «p(x)Aq(x). Clearly, T U {C}is
inconsistent. In the figure below, an SLT-ALL refutation from C in T is shown. The selected atoms

are underlined if necessary, the input clause used in each step is shown and the different boxes

contain the refutations of higher-to-lower ranks in a nested manner.

« p(x)
1
q(x)
+q(a), /a
O
Anc={p(x), q(x))
q(x)
3, x/a
p(a)
ancestor
0

O

< Dp(X) A q(x)

(ﬁ{‘-;} « q(a)
Anc={+q(a)}

p(a), x/a

< q(a)

1

p(a)

g

“p(a)
Anc={+q(a), p(a))

pa)

Fig. 1: SLT-ALL refutation for example 4

The figure above shows an SLT-ALL refutation from «—p(x)Aq(x) in T U{«=p(x)Aq(x)} of
rank 2, with computed substitution {x/a}. An example of the application of subsidiary computations
occurs in the first step of this refutation. In this step, p(x) is selected in the body of the top clause

and, since <—p(x) is an ancestor, a subsidiary derivation from «—p(x) in T U{<=p(x)Aq(x)} using
{<p(x)} as set of ancestors starts from it. This derivation becomes a refutation of rank 1 with

298

computed substitution {x/a}, showing that T U{«p(x)Aq(x)} E p(a). Therefore, p(a) can be used
as an input clause in the higher derivation. A similar explanation can be done, for the other

subsidiary refutations.

It can be shown that SLT-ALL resolution coincides with other well-known theorem provers
for f.o. theories in the literature, in some sense. All of these theorem provers are based on the
Model Elimination procedure, or on reformulations of it, as the MESON format. References for
these procedures can be found in [-Lol]. There are also some recently proposed theorem provers
like PTTP [St1][St2] and Plaisted’s proposal [P1], that can be understood as implementations of the
ME procedure. All of these procedures are based on a model elimination (generation) refutation
paradigm that consists of proving the inconsistency of a set of clauses by showing that no model
can be built for this set. Obviously, SLT-ALL can also be understood in this way.

SLT-POS resolution is also a complete proof procedure for theorem proving that corresponds
to an instance of SL*, in which the ancestor choice M is the positive ancestor choice. Therefore,
subsidiary ranks will be taken only from the positive literals selected in the current clause of the
derivation. We define an SLT-POS refutation as follows:

Definition 12
Let T be a theory and C a clause. Then, an SLT-POS refutation from C in T is an SL*
refutation from C in T U {C} using &, such that the considered ancestor choice M for T contains

all atoms of the underlying language.

Example 5
Let T be the following f.o. theory:

T={ p(x) v q(x), 1
q(x)¢—p(x), 2
p(a)e—q(a) } 3

where a is a constant and x is a variable. The clause C is «p(x)Aq(x). Note that this example is

identical to example 4.

In figure 2, an SLT-POS refutation from C in T is shown. This figure shows an SLT-POS
refutation from «p(x) A q(x) in T U {«p(x) A q(x)} of rank 2, with computed substitution
{x/a}. As in example 4, subsidiary refutations can be explained analogously. The main difference
between SLT-POS and SLT-ALL resolution can be observed in the higher refutation. In the SLT-
POS refutation, the first two steps correspond to input resolution steps, since the selected atoms
were chosen in the body. That is, SLT-POS resolution does not apply subsidiary computations until
an atom is selected in the head. Thus, SLT-POS behaves like SLD resolution if the given theory is
Horn and the initial clause is a denial. This fact cannot be stated for SLT-ALL resolution because of

its ranking policy.

299

« px) A q(x)
1
q(x) < a(x)
1
a(x) v p(x)
«q(a), x/a
p(a)
e Anc=(q(x)}
a
q(x)
O Anc=(p(a)) 3 v
p(a)
p(a)
2
| |
q(a) Ol Anc=(q(a),p(a)}
«—q(a) p(a)
O Anc={p{a).q(a)) top root
q(a)
«q(a)
top root |
ancestor
«p(a) O
| ancestor
O

Fig. 2: SLT-POS refutation for example 5

The main justifications of SLT-POS resolution are its completeness for f.o. theories and its
adequacy for near-Horn theories [Lo02]. A near-Horn theory is a f.o. theory that contains few non-
Horn clauses. In the field of Databases, most of the problems can be represented by using Horn
clauses, and occasionally, only a few non-Horn clauses may be needed. The reason for claiming the
adequacy of SLT-POS resolution for theories of this class is that SLT-POS behaves similarly to
SLD resolution (inheriting its characteristics) while non-Horn clauses are not used in the
computation. Since the presence of non-Horn clauses is small, this situation occurs frequently. On
the other hand, even if non-Horn clauses are used in the computation, the amount of ancestors
needed for ensuring completeness is usually less than the amount needed in other theorem provers
(for example, in SLT-ALL resolution). We should note that there are problem classes (mathematical
theorems, logic puzzles, etc.) not suitable for SLT-POS resolution, other theorem provers (like
SLT-ALL resolution) being more adequate.

The following theorem states the main results of SLT-ALL and SLT-POS resolution. In the
theorem, any reference to SLT-POS can be replaced by SLT-ALL.

300

Theorem 3
Let T be a f.o theory and C a clause.

a) If there is an SLT-POS refutation from C in T, then T U {C} is inconsistent. .

b) If T is inconsistent, then there is a denial in T such that there is an SLT-POS refutation from
that denial in T.

c) If T is a consistent theory and there is a finitely failed SLT-POS tree from C in T, then
TU{C} is consistent. '

d) If there is a finitely failed SLT-POS tree from each denial in T, then T is consistent.

Proof: the proofs of these results can be found in [Cal].

4. USING SLT-POS RESOLUTION IN THE CONSISTENCY VERIFICATION METHOD

Clearly, the SLT-ALL or SLT-POS procedure could be incorporated into the method for
verifying the properties of the DDBSs, defined in section 2, in order to check the (in)consistency of
the f.o. theory generated by the first phase of the method (the generation phase). However, since
the usual form of DDBs are near-Horn, we propose the use of SLT-POS because of the reasons

addressed above.

On the other hand, since the f.o. theory T generated from the DDBS by the generation phase
of the method may not be minimally unsatisfiable, the clause of the theory T to be used as initial
root in the SLT-POS derivation is not known. For this reason, we apply a transformation to the
theory T, called focusing-on-denials phase (briefly, f-on-d), to obtain a f.o. theory, denoted by f-
on-d(T), such that there exists a known clause to be used as the top root. This transformation is

defined below.

Definition 13
Let T be a f.o. theory. The theory f-on-d(T) is obtained by replacing each denial of form «B
in T by inconsistent«B, where inconsistent is a 0-ary predicate that does not occur in T.

The following theorem shows that the above transformation preserves the (in)consistency of
the theory. Besides, it also shows that the «<-inconsistent clause can be used as the top root by
SLT-POS resolution.

Theorem 4
Let T be a f.0. theory. The following three points hold:
a) T is inconsistent iff f-on-d(T) U {«inconsistent} is inconsistent
b) T is inconsistent iff there exists an SLT-POS refutation from «inconsistent in f-on-d(T).
c) If there is a finitely failed SLT-POS tree from «inconsistent in f-on-d(T), then T is
consistent

301

Proof: The proof of point a) is straightforward.

The proof of point b) is as follows: T is inconsistent iff f-on-d(T) U {«inconsistent} is
inconsistent, by point a). By results from theorem 3 a) and 3 b), f-on-d(T) U {<«inconsistent} is
inconsistent iff there exists an SLT-POS refutation from <«-inconsistent in f-on-d(T).

The proof of ¢) is straightforv;'ard from point a) and theorem 3 d).

Now, we state the properties of the whole consistency verification method using SLT-POS
resolution, as a corollary of the previous results. For simplicity, a DDBS property is one of the
previously defined properties in section 1 (i.e. consistency, non-trivial consistency, strong

consistency, or P-consistency)

Corollary 1
Let S=(BP,Cl) be a DDBS, V be a DDBS property, and T be the theory obtained by the
generation phase of the method corresponding to the property V to be verified. Then the following
two points hold:
a) There is an SLT-POS refutation from «inconsistent in f-on-d(T) iff S does not satisfy the
property V.
b) If there exists a finitely failed SLT-POS tree from <—inconsistent in f-on-d(T), then S
satisfies the property V.

Clearly, given a scheme S, it may accomplish only some, if any, of the properties defined in
section 1. The above corollary and theorem 1 allow us to infer the characteristics of a given scheme
from the outcome of the application of the method. For example, if we know that there exists a
subset P of BP such that the scheme S is P-consistent by applying the method, then we can deduce
that S is a non-trivially consistent scheme, and therefore, S is also consistent.

S. AN EXAMPLE

In this section, we show an example of a DDBS together with a complete description of the
application of our method for studying the verification of the defined properties by the scheme. This
example is in the medical diagnosis field.

Deductive database scheme MD = (BP, Cl):
Base predicate schemes BP= {Chest-Pain(x)}
Clauses Cl={Disease(x, ‘Heart-disease’)vDisease(x, ‘Lung-disease’)«-Chest-Pain(x),
Go-to-doctor(x) v Do-Sport(x) ¢ Chest-Pain(x),
Untroubled(x) <« Go-to-doctor(x),
Do-Sport(x) <« Chest-Pain(x),
Go-to-doctor(x) « Disease(x, ‘Heart-disease’) A Do-Sport(x),
< Disease(x, ‘Heart-disease’) A Untroubled(x),
< Disease(x, ‘Lung-disease’) A Do-Sport(x) }

302

The intended meaning of this example is the following: The base predicate informs us about
the people whose chests hurt. The first rule says that if a person has a pain in his chest it may be
because he has either a heart disease or a lung disease. The second and fourth rules say that if the
. chest of a person hurts, then he always practices a sport and, perhaps, goes to. the doctor. The
information that a person is untroubled if he goes to the doctor is represented by the third rule. The
fifth rule says that a person goes to the doctor if he has a pain in his heart and does sport. Finally,
the sixth and seventh rules, which are constraints, state that a person cannot have a heart disease
and be untroubled, and that a person cannot have a lung disease and do sport, respectively.

In this simple example, it is not difficult to detect that the scheme is trivially consistent, even
without using mechanical tools. However, we think that this undesirable characteristic would be
very hard to detect if the scheme were more complex and extensive than the previous one.
Moreover, schemes which do not satisfy some of the properties, may be easily_specified,
particularly if there is a large amount of unstructured knowledge represented in them.

Below, we show how our proposal for verifying the consistency of a scheme deals with this
example. We use capital letters for identifying both predicates and constants. The unique variable of
the scheme is x. First, we apply the generation phase, obtaining the following f.o. theory T:

T = {C-P(sky)}
v
{ D(x,’H’) v D(x,’L’) «~ C-P(x), G(x) v D-§(s) « C-P(x),
U(x) ¢ G(x), D-S(x) « C-P(x), G(x) < D(x,’H’) A D-S(x),
< D(x,’H’) A U(x), « D(x,’L’) A D-S(x) }

Now, we apply the focusing-on-denials phase. This phase produces a first order theory,
f-on-d(T), in which the application of SLT-POS is more efficient for checking whether this theory
is (in)consistent:

f-on-d(T)= {C-P(sky),
D(x,’H’) v D(x,’L’) « C-P(x),
G(x) v D-S(s) « C-P(x),
U(x) « G(x),
D-S(x) « C-P(x),
G(x) <« D(x,’H") A D-S(x),
inconsistent <~ D(x,"H’) A U(x),
inconsistent «— D(x,’L’) A D-S(x) }

W NN bW

Below (Fig. 3), there is an SLT-POS refutation from <inconsistent in f-on-d(T) (the
numbers on the left are used for indicating which clause is used as input clause in each step).

303

Anc=0

«—D(x

«D(x

«inconsistent

8

‘L) AD-S(x)

5

/L) A C-P(x)

1

«D(sky,'L))

2

D(sk, YHYeC-P(sk,)

1

(m]

D(sk,,'H') \

Anc={D(sks ,'H')}

D(sk, 'H')
6

G(sky)«D-S(sk,)

5

G(sky)e—C-P(sk)

|

Gsky)\

|

Anc={D(skx,'H"), G(skx))

G(sk,)
4

U(sk,)

a

\ Anc=(D(sk ,'H'), G(sk), U(sk)
U(sk,)

7

inconsistent «D(sk cHY

ancestor

inconsistent

top root

0

Fig. 3: SLT-POS refutation from <—inconsistent in f-on-d(T))

Since there exists an SLT-POS refutation from <inconsistent in f-on-d(T), then T is
inconsistent, by theorem 4 a). Hence, the scheme MD is either inconsistent or trivially consistent.

On the other hand, the figure below (Fig 4) shows that there is a finitely failed SLT-POS tree
from <«inconsistent in f-on-d(Cl). The f. o. theory f-on-d(Cl) is also shown below.

304

f-on-d(Ch)={ D(x,’H’) v D(x,’L’) « C-P(x),
G(x) v D-S(s) < C-P(x),
U) « G(x),
D-S(x) « C-P(x),
G(x) < D(x,’H’) A D-S(x),
inconsistent«— D(x,’H’) A U(x),
inconsistent <~ D(x,’L’) A D-S(x) }

N O AW

Anc=E

<«—inconsistent

«D(x.H A U(x) «D(x,1.) A D-S(x)

D(x,'L") - C-P(x) A U(x) D(x,H) « C-P(x) AD-S(x)

1

fail fail

Fig. 4: finitely failed SLT-POS tree from <inconsistent in f-on-d(Cl)

Therefore, by corollary 1 b), the scheme MD is consistent. From these two previous results,
we conclude that MD is a trivially consistent scheme. Moreover, since there is a unique base

predicate in our example, MD is also strongly consistent.

CONCLUSIONS

The representation for deductive databases that we have chosen is based on first order logic,
generalizing the classical concept of a deductive (definite) database to the concept of a first order
(disjunctive) database. We think of a DDB as an instance of some scheme that represents a division
between the base or ground knowledge and the deductive knowledge (possibly containing integrity
constraints).

One of the aims of this paper has been the definition of some scheme properties, such that
their accomplishments by a given scheme help to ensure the correctness of the intended meaning of
the scheme. The properties we have defined throughout this paper are consistency, non-trivial
consistency, strong consistency, and P-consistency. Consistency is like satisfiability in first-order
Logic. Therefore, a consistent scheme guarantees the existence of at least one consistent DDB,

instance of this scheme. Non-trivial consistency ensures the existence of a consistent DDB with

305

ground instances of some base predicate. Strong consistency ensures the existence of a consistent
DDB with ground instances of every base predicate scheme. Finally, given a subset P of the base
predicate schemes, P-consistency guarantees the existence of a consistent DDB with ground
instances of each of the base predicate schemes in P.

Also, we have proposed a method for verifying the accomplishment of the different properties
by a given scheme. Essentially, this method consists of generating a f.o. theory from the given
scheme, in accordance with the property to be verified, and studying the (in)consistency of this f.o.
theory. The centerpiece of this (in)consistency study is a resolution-based theorem prover called
SLT-POS resolution, which is an instance of a paradigm for automated (monotonic) reasoning
called SL* resolution. Since the deductive knowledge represented in the DDBS is usually specified
by near-Horn theories (i.e. theories that slightly differ from Horn theories), we have proposed
using SLT-POS resolution because it is better suited for reasoning in these theories. Other instances
of the SL* paradigm (like SLT-ALL, also presented in the paper) could be more adequate for

reasoning in other classes of theories.

A possible extension of our work is to apply our method to verify the consistency of first
order databases. As we said before, there might be inconsistent databases, instances of schemes,
which accomplish some, or even all, the properties defined. Therefore, this consistency verification
will be needed in the manipulation of the databases. Clearly, for improving the efficiency of this
verification, it should be led by the process of knowledge assimilation.

A pending problem of our work is how general constraints can be expressed in the formalism
used. That is, suppose W is a general constraint expressed by a closed well-formed-formula. How
can W be transformed to be incorporated to our formalism in a sound manner?

ACKNOWLEDGMENT

We thank Hendrik Decker for a lot of valuable comments.

REFERENCES

[Ca] J.C. Casamayor, "Nuevos paradigmas de razonamiento basado en resolucién en teorfas
computacionales”, draft, DSIC, Univ. Politéc. Valencia (Spain), 1993. To be submitted as
Ph.D thesis.

[CDM] J.C. Casamayor, H. Decker and F. Marqués, "A Mechanism for Verification of Knowledge
Base Scheme Specifications", in Proc. European Sym. on the Validation and Verification of
Knowledge Based Systems, Palma de Mallorca (Spain), pp. 103-115, March 1993,

[CL] C.L. Chan and R.C.T. Lee, "Symbolic Logic and Mechanical Theorem Proving", Academic
Press, 1973.

[De] H. Decker, "Foundations of First-Order Databases", Siemens ZFE BT SE 24, 1992.

306

(DC}

[GJ]
(Kol]

[Ko2]
[KK]

[LMR]
(L1]
(Lol)
[Lo2]
[P1]
[Ro]
[St1]
[St2]

(un

H. Decker and J.C. Casamayor, "A Prolog-like paradigm for reasoning in first-order
theories”, in GULP'93 8th National Conference on Logic Programming. Gizzeria (Italy), Pp-
217-233. June 1993.

M.R. Garey and D.S. Johnson, "Computers and Intractability. A Guide to the Theory of NP-
Completeness”, W.H. Freeman and Company, 1979.

R.A. Kowalski, "Predicate logic as a programming language", in Proc. IFIP' 74 pp. 569-574,
North Holland, 1974.

R.A. Kowalski, Logic for Problem Solving, North Holland, 1979.

R. Kowalski and D. Kuehner, “Linear resolution with selection function”, J. Artificial
Intelligence 2, 227-260, 1971.

J. Lobo, J. Minker and A. Rajasekar, Foundations of Disjunctive Logic Programming, MIT
Press, 1992,

J.W. Lloyd, Foundations of Logic Programming, Springer, 1987.

D.W. Loveland, "Automated Theorem Proving: a Logical Basis", North Holland 1978.

'D.W. Loveland, “Near-Horn Prolog and Beyond”, in J. of Automated Reasoning 7:1-26,

1991.

D.A. Plaisted, "A Sequent-Style Model Elimination Strategy and Positive Refinement, in J.
Automated Reasoning 6:389-402, 1990.

J.A. Robinson, "A machine-oriented logic based on the resolution principle”, 'in J. ACM
12:23-41, 1965.

M.E. Stickel, "A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler", in J. Automated Reasoning 4:353-380, 1988.

M.E. Stickel, "A Prolog technology theorem prover: a new exposition and implementation in
Prolog", in Theoretical Computer Science 104:109-128, 1992.

Ullman, J.D., Principles of Database and Knowledge Systems, Computer Science Press,
Rockville, Maryland, 1988.

307

