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Abstract

This work presents a partitioned method for landslide-generated wave events.
The proposed strategy combines a Lagrangian Navier Stokes multi-fluid solver
with an Eulerian method based on the Boussinesq shallow water equations.
The Lagrangian solver uses the Particle Finite Element Method to model
the landslide runout, its impact against the water body and the consequent
wave generation. The results of this fully-resolved analysis are stored at
selected interfaces and then used as input for the shallow water solver to
model the far-field wave propagation. This one-way coupling scheme reduces
drastically the computational cost of the analyses while maintaining high ac-
curacy in reproducing the key phenomena of the cascading natural hazard.
Several numerical examples are presented to show the accuracy and robust-
ness of the proposed coupling strategy and its applicability to large-scale
landslide-generated wave events. The validation of the partitioned method
is performed versus available results of other numerical methods, analytical
solutions and experimental measures.

Keywords: Free-surface flows, Particle finite element method, Finite
element method, Shallow water, Landslide, Tsunami, landslide generated
wave

1. Introduction

A landslide-generated wave (LGW) [1], also called landslide-induced
tsunami [2], is a major natural hazard that occurs when a landslide impacts
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a water reservoir and produces large-amplitude waves. LGW events can have
devastating effects on the coastal areas of water basins, such as lakes, fjords
and artificial reservoirs.

The fjord district of western Norway is one of the zones of the world most
affected by this major natural hazard [3, 4]. Historical records over the last
400 years show that Norway has experienced at least two major LGW events
every century [5]. Only in the first half of the last century, the catastrophic
events of Loen (in 1905 and 1936) [6] and Tafjord (in 1934) [7] caused the
death of 174 people. The LGW events of Lituya Bay, Alaska, in 1958 [8]
and Vajont, Italy, in 1963 [9] are among the most well-known cases of this
cascading natural hazard. A wider overview of LGW historical events can be
found in [10] and [11]. Furthermore, this situation is made even more critical
by the effects of global warming, which is clearly leading to an increment in
number and intensity of natural disasters [12–14].

Accurate modeling and prediction of LGWs are of key importance to
reduce their catastrophic effects. Both experimental and numerical studies
have been greatly contributed to the enhancement of the forecasting capa-
bilities against these natural hazards.

Physical models are particularly helpful to identify the key parameters of
both the sliding material and the water body and to determine their specific
effect on the LGW scenario [15–21]. A detailed overview of experimental
tests applied to LGW events can be found in [1]. Nevertheless, laboratory
tests are mainly devoted to determining the near-field wave conditions, while
estimations on the far-field waves, which are responsible for major damages to
the coastal areas affected by an LGW event, are more difficult to extrapolate.

On the other hand, numerical methods have the potential to predict both
near- and far-field waves characteristics. However, the numerical simulation
of a LGW is a challenging task. Indeed, the computational method must be
able to model the complex constitutive behavior of the landslide material,
deal with fluid-solid (or multi-fluid) interaction, and track the largely evolv-
ing topology of both landslide and water bodies. Furthermore, the LGW
analysis involves different characteristic time and space scales for the near
field (landslide-water impact zone) and the far field (wave propagation). Fi-
nally, it is required to solve large-scale three-dimensional (3D) geometries for
long time durations, and this makes the computational cost of LGW analyses
one of the most critical issues.

The numerical models applied to LGWs can be classified into three main
groups [11] briefly summarized below.

The first approach consists in using a wave propagation solver, typically
based on Shallow Water (SW) equations. In this strategy, the landslide
runout and water impact are not resolved but are introduced into the model
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as an equivalent boundary condition [22, 23]. This approach is the simplest
one and has the lowest computational cost. However, it assumes strong
simplifications on both the landslide motion and momentum transfer and
thus it can only give an approximate idea of the global LGW scenario.

In the second strategy, the landslide and water motion equations are
solved in a unique coupled model. First applications of this holistic strategy
can be found in [24] and [25], where shallow water models were used for both
the landslide and the water body. Only recently, more accurate 3D monolithic
approaches for LGW problems have been presented, see for example [26–31].
Nevertheless, the computational cost of this fully resolved method can be
still unaffordable for large-scale events.

The third approach splits the LGW problem into two simulations that
interact with each other at their interface. Typically, in these so-called parti-
tioned strategies, a numerical method, here called near-field solver (NFS),
computes the landslide runout, impact against the water body and wave for-
mation. A different numerical scheme, here called far-field solver (FFS),
predicts the far-field wave propagation [11]. Generally, a weak (or one-way)
coupling scheme is adopted, meaning that the NFS is insensitive to the FFS
solution. The one-way coupling simplification preserves the computational
advantages of this partitioned approach and it still ensures an accurate mod-
eling of the key phenomena of an LGW scenario, such as the landslide runout,
the wave generation and the far-field wave propagation.

One of the first applications of this partitioned method for LGWs was
presented in [32]. In this work, a simplified 3D model was used for the
landslide-water impact and a shallow water model was applied for the far-
field wave propagation. In [33], a potential tsunami scenario induced by
the collapse of a part of Cumbre Vieja Volcano of La Palma island, Spain,
was studied by coupling a 3D compressible Eulerian solver with a Boussinesq
model. In [34], the same case study was analyzed using a 3D Volume Of Fluid
(VOF) method, as the NFS, and an analogous FFS such as that used in [33].
More recently, Tan et al. [35] coupled a Smoothed Particle Hydrodynamics
(SPH) method with a shallow water equations solver was used to reproduce
hypothetical LGW scenarios at Es Vedrà, Ibiza, Spain.

In this work, we propose and validate a novel partitioned model for LGWs.
In this new strategy, a Lagrangian finite element method, namely the Particle
Finite Element Method (PFEM) [36–38], is used as the NFS and a standard
shallow water Boussinesq model is used as the FFS. Several previous works
have shown the accuracy of the PFEM to model landslides [39–41], also in
cascading events [42–45]. In this work, we use the PFEM approach that has
been successfully applied to LGW scenarios in [46] and in [28, 29], where 3D
simulations of the Vajont disaster were presented. This work aims at being
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a proof of concept of this new coupled strategy for real LGW scenarios. For
this reason, a deep validation of the method is presented by analyzing the
performance and accuracy of the new partitioned technique in targeted tests,
using reference solutions obtained with other numerical methods, experimen-
tal tests and analytical solutions. In partitioned methods, the momentum
transfer between the Navier-Stokes and the Boussinesq models must be ac-
curate in order to obtain a faithful representation of the LGW scenario.
Thus, particular attention is devoted here to analyze the effect of the near-
field boundary conditions on the far-field propagating wave. Convergence
and sensitivity analyses are carried out in order to verify the accuracy and
robustness of the proposed method.

The content of the paper is structured as follows. The NFS and FFS are
presented in Section 2. In Section 3, the coupling strategy between these
two solvers is explained. In Section 4, three LGW examples are analyzed
to validate the proposed partitioned strategy and to show its potential to
large-scale LGW events.

2. Near-field and far-field solvers

In this section, we describe briefly and separately the near-field and far-
field solvers that are here used to model LGWs. In Section 2.1, we present
the Lagrangian multi-fluid Navier-Stokes model that is used as the NFS and,
in Section 2.2, we introduce the Eulerian shallow water Boussinesq solver
employed as FFS.

2.1. Near-field solver: Lagrangian Navier-Stokes model

In this work, the Particle Finite Element Method (PFEM) is used to
model the landslide runout, its impact against the water body and the wave
generation. The motion of both water and landslide materials is obtained by
solving the Navier-Stokes equations using an updated Lagrangian description
of motion. Following other PFEM approaches [47, 48], the mass conservation
equation is not solved in the standard divergence-free form but admitting a
small compressibility (quasi-incompressible formulation). In this framework,
the governing equations read

ρ
∂v

∂t
−∇ · σ − b = 0 in Ωt × (0, T ) (1a)

1

κ

∂p

∂t
+∇ · v = 0 in Ωt × (0, T ) (1b)

where v is the velocity field, σ is the Cauchy stress tensor, b is the body force
per unit of volume, p is the pressure, ρ and κ are the material density and
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bulk modulus, respectively, t is the time, Ωt is the updated computational
domain, and T is the total time duration.

The system (1) is complemented by appropriate boundary conditions that
read

v = v̂ on Γv (2a)

σ · n = t̂ on Γt (2b)

being n is the outgoing normal vector to fluid boundaries, v̂ the prescribed
velocities on the Dirichlet boundary (Γv), and t̂ the tractions acting on the
Neumann contour (Γt).

To deal with incompressible materials such as water, the Cauchy stress
tensor is split into its deviatoric and volumetric parts as

σ = τ − pI (3)

where τ is the deviatoric stress tensor and I is the second-order identity
tensor.

The deviatoric part of the Cauchy stress can be written in a general form
as

τ = µ̄γ̇ (4)

where γ̇ is the deviatoric strain rate and µ̄ is the apparent viscosity.
We remark that Eq. (4) can represent both water and landslide mate-

rials. Water is modeled with a standard Newtonian law and, in this case,
µ̄ of Eq. (4) is simply the dynamic viscosity. On the other hand, in the
non-Newtonian laws for the landslide material, µ̄ may also depend on the
deviatoric strain rate, such as in a Bingham law, and on pressure, such as in
a frictional viscoplastic model. Implementation and validation of the men-
tioned non-Newtonian laws in the PFEM formulation used in this work can
be found in [49] and [28].

We also remark that, in this work, the sliding body is always modeled
as a mono-phase material, also in underwater conditions. Considering the
high impact velocities of the landslide, we can assume that this simplifying
hypothesis has an almost negligible effect on the wave generation mechanism.
On the other hand, this may affect the final deposition pattern of the sliding
material, which, however, is not among the main interests of this article.

In the PFEM, the solution of the governing equations is obtained like in a
standard Lagrangian Finite Element Method (FEM). Linear shape functions
are used for the nodal unknowns of the problem, namely the fluid velocities
and the pressure. The formulation is stabilized with a Finite Calculus (FIC)
method [50] to avoid the numerical instabilities due to the unfulfillment of
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the inf -sup condition [51] in the incompressible case. An implicit two-step
strategy is used to solve each time increment. Once convergence is reached,
the position of the nodes is updated and the quality of the discretization is
checked. If the mesh gets too distorted, a new FE mesh is built maintaining
the nodes of the previous one. In the PFEM, remeshing is done with a
fast algorithm that combines the Delaunay triangulation [52] and the Alpha-
Shape method [53]. A more detailed description of the PFEM approach and
the remeshing algorithm can be found in the review work [38].

The Lagrangian description and an efficient remeshing strategy, make the
PFEM capable of detecting accurately the highly deforming contours of both
landslide and water bodies, which is a key feature for a correct simulation of
a LGW event.

2.2. Far-field solver: shallow water equations

The Shallow Water (SW) equations are a simplified form of the Navier-
Stokes equations. The main assumptions include incompressibility, hydro-
static pressure distribution, small vertical velocity. After integrating the
equations from the seabed to the free surface η, a new set of unknowns is
obtained. The pressure p is replaced by the free surface elevation η, and
the velocity u is substituted by the mean horizontal velocity ū. We will use
the modified Boussinesq equations presented in [54]. Those equations are an
extension of the SW equations which include the modeling of the frequency
dispersion for long waves. Originally, these equations were expressed in terms
of the horizontal velocity uβ, evaluated at a specific relative depth β, namely,

∂η

∂t
+∇ · ((H + η)uβ) +∇ · Jη = 0 (5a)

∂uβ
∂t

+∇η + (uβ · ∇)uβ + Ju = 0 (5b)

The auxiliary fields Jη and Ju introduce the dispersive mechanism and are
defined according to the following expressions:

Jη = C1H
3∇∇ · uβ + C3H

2∇∇ · (Huβ) (6a)

Ju = C2H
3∇∇ · ∂uβ

∂t
+ C4H

2∇∇ · ∂(Huβ)

∂t
(6b)

where the Ci constants depend on the choice of β

C1 =
1

2

(
β2 − 1

3

)
, C2 =

β2

2
, C3 = β +

1

2
, C4 = β (7)
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Figure 1: (a) Diagram of the variables for the shallow water model. (b) Mean velocity.
(c) Velocity at a specific depth.

The free parameter β was fixed to −0.531 by Nwogu et al. [54] in order to
minimize the errors introduced by the approximation with respect to linear
wave theory. Fig. 1 shows a schematic of the model.

System 5 is closed with the following Dirichlet boundary conditions at
the reflecting ΓR and inflow ΓI boundaries,

ū · n = 0 on ΓR (8a)

ū · n = u′ or η = η′ on ΓI (8b)

Where u′ and η′ are the specified inflow velocity and the wave amplitude.
Both variables are correlated by linear theory ([54, 55]). In the case of su-
percritical regime, both velocity and wave amplitude should be imposed.
Due to the dispersion relation [56], the reflecting boundary condition has the
following additional requirement if the velocity is imposed

ūβ · n = Jη · n = 0 on ΓR (9)

The Boussinesq equations are solved using the standard FEM. The space
domain is interpolated with a Galerkin discretization of linear triangles and a
finite difference scheme with constant time step is used to integrate the equa-
tions in time. Some numerical difficulties such as the third-order differential
operator and the time integration accuracy are addressed in [56, 57]. As
stated in [58, 59], problem (5) is an hyperbolic wave in mixed form and there
is an incompatibility condition (see [51]) because the same interpolation is
used for both variables, the velocity uβ and the wave amplitude η. Here, the
equations are stabilized using the FIC approach extending the work reported
in [60].

Following [57], the third-order spatial derivatives are modeled using Jη
as an intermediate variable and the field Ju can be directly included in the
equations by parts integration. Some boundary terms arise from the integra-
tion of both fields. Since these terms do not vanish at all the boundaries, we
cannot neglect them.
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The time integration has been approximated using the predictor-corrector
Adams Bashforth Moulton method (see for example [56, 61]).

3. One-way coupling

The LGW problem is here simulated using a weakly coupled (one-way)
method which makes interact the PFEM solver presented in Section 2.1, and
the SW solver described in Section 2.2.

We note that problem (5) defines a phase speed c which in the SW limit
is computed as

√
gh. Being u the modulus of the horizontal velocity uβ, the

information travels at velocities u + c and u − c. If the flow is subcritical,
which is the case analyzed in this work, then u < c and the information
travels both upstream and downstream.

Considering the bidirectional characteristics of the equations, a first pos-
sibility would be to consider two domains adjacent to each other and define
a strong (two-way) coupling (see for example [62]). However, such a strongly
coupled approach is computationally expensive, as it requires running paral-
lelly the PFEM and the SW solvers.

Moreover, the accuracy increment given by a two-way method over a one-
way strategy on the far-field wave propagation can be considered negligible.
For these reasons, here, we adopt a decoupled space-time one-way strategy in
which the PFEM solution is stored at the SW interface and, in a second stage,
it is imposed as a boundary condition for the SW simulation. In order to
avoid perturbations of the results at the interface, the computational domain
of the PFEM is extended beyond the position of the SW interface using non-
reflecting boundaries.

Taking advantage of such a one-way coupling strategy, the PFEM and
SW simulations can be executed independently leading to a very versatile
tool for LGWs with significant saves of computing time. Since the PFEM is
a Lagrangian strategy, a search algorithm is constructed at every time step
in order to find all the elements cut by the SW interface. Then, the PFEM
calculations beyond the interface are not relevant. This fact is the key to the
computational savings, since the computational domain can be shortened by
means of an open boundary. However, the numerical approximation of open
boundaries –the absorbing boundaries– introduces some reflections. In this
work, the absorbing boundary is modelled by extending the domain after the
open boundary with a gentle slope. The computational domain ends when
the slope reaches the mean water level, at this point, the impulse waves leave
the computational domain.

In a later stage, the characteristic variables computed at the interface are
imposed to the SW domain through an inflow boundary condition. We recall
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(a) 3D scheme of the physics of the problem.

Vertical cut PFEM domain

Near field

run-out

Far field

Horizontal SW domain

SW
 int

erfa
ce

PFEM absorbing boundary

SW boundary condition

(b) Scheme of a 2D-PFEM-SW coupled strategy.

Figure 2: Schematic view of the near-field solver and the far-field solver for the coupled
solution of LGW.

the subcritical characteristics of the analyzed flows, hence, one variable is
required to be imposed in order to define a well-posed problem: the wave
amplitude or the horizontal velocity. We choose to impose the velocity, since
it is more representative of the momentum exchange from the PFEM and the
SW computation. It has proven to be accurate, even when the Boussinesq
assumptions are not perfectly fulfilled. A general picture of the coupling
strategy is illustrated in Fig. 2.

Even though the Boussinesq equations are expressed in terms of the ve-
locity evaluated at a certain depth, uβ, this magnitude is a measure of the
depth-averaged velocity ū. In other words, it can be understood as a numer-
ical quadrature of one integration point. When the waves are regular, the
choice of one magnitude or another is not relevant, but when wave breaking is
present, the depth-averaged velocity is more representative of the momentum
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exchange.
We remark that the average vertical velocity of the fluid corresponds

to the time derivative of the free surface elevation. This variable does not
correspond to a boundary condition for the studied cases.

Finally, there is an additional condition associated to ΓI (8b). If ū is
assumed to be equal to uβ, a constraint appears over the dispersive field Jη,
which is equivalent to impose ∇∇ · u = 0 on ΓI (see [57]).

4. Validation tests

In this section, we present three different cases to validate the proposed
partitioned strategy and to show its potential for practical applications. The
first numerical example is aimed at reproducing a unidirectional wave gener-
ated in a laboratory channel. For this test, we carry out a detailed validation
of the coupled method paying special attention to the transmission of bound-
ary conditions between the near- and the far-field solvers. The simplicity of
this test allows us to compare our results with both experimental measures
and analytical solutions, and also with the numerical solution obtained with
a full PFEM model. In the second example, we apply the partitioned method
to a more representative example of LGW problems. In this test, we repro-
duce numerically the water wave generated experimentally by the impact of a
second mass of water sliding at high velocity over a steep slope. The last test
aims at showing the applicability of the method to real-world LGW prob-
lems. For this purpose, we considered a realistic configuration of a LGW
event occurring in an alpine lake. Our numerical solution is compared to
another LGW solver presented in the literature.

4.1. Solitary wave in a channel

In this test, we reproduce the laboratory experiment carried out at a large
wave flume of the Coastal Research Center in Hannover. A solitary wave is
generated by a piston-type maker and travels 180m until reaching the final
inclined slope. A schematic view of the wave flume is depicted in Fig 3. More
details about the experiment can be found in [63–65].

Fig. 4 shows the horizontal stroke of the paddle along time. The wave
height has been monitored at different positions of the flume, including the
on-shore zone. In this work, we will compare our numerical solution to the
experimental measures obtained at the four wave gauges whose coordinates
are given in Table 1. The selected gauges are placed at key positions of the
channel and allow us to monitor wave generation (G1), propagation (G2),
shoaling (G3) and flooding (G4).
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Figure 3: Solitary wave example. Schematic side view of the experimental flume studied.
Units in m. Approximate position of the different wave gauges are also depicted.

Gauge Position [m]
G1 60.0
G2 170.0
G3 223.5
G4 239.7

Table 1: Solitary wave example. Position
of the different gauges in the flume.

0 2 4 6 8
Time [s]

1

0

1
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ce

m
en

t [
m

]

Figure 4: Solitary wave example. Paddle
position according to time. Data provided
in Krautwald et al. [63–65].

4.1.1. Physical considerations

The aforementioned specifications generate a solitary wave of 0.6m ampli-
tude and 65m wavelength. The wave generation, propagation and breaking
were analyzed using the PFEM approach reported by Oñate et al. [66].
Given the properties of such a solitary wave, it can be simulated using the
Boussinesq approximation and thus reducing drastically the computational
demand. This experiment is very interesting for two reasons. Firstly, we can
perform a verification test of both formulations and compare the numerical
results against experimental data. Secondly, the simplicity of the geometry
allows us to obtain analytical solutions for the Boussinesq equations. The
analytical solution is a wave equation of the type

u = A0sech2φ

η = A1sech2φ+ A2sech4φ

where φ = kx−ωt. Details of the parameters A0, A1 and A2 and the relation
between the wavelength, period and amplitude can be found in [61].

The generation of solitary waves has motivated several discussions and a
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review can be found in [67]. The kinematic description of the piston wave
maker is the origin of the discussion, since it cannot represent the exact
solution of a solitary wave due to construction limitations. Some expressions
for the motion of the piston can be obtained by integrating the analytical
solution of the wave and truncating it on a finite space and time domain,
corresponding to the features of the piston. Then, the experimental solitary
wave is generated with a tail of secondary oscillations.

The Lagrangian formulation of PFEM perfectly tracks the movement of
the paddle and thus the numerical simulation reproduces the experimental
results with high fidelity. On the other hand, since the Boussinesq equations
are implemented in an Eulerian frame, this boundary condition is difficult
to impose. An easier alternative is to apply the analytical solution as a
boundary condition.

Fig. 5 shows the comparison between the solitary wave propagation ob-
tained with the PFEM, the experimental results, and the Boussinesq and
analytical solutions. The Boussinesq simulation shows no secondary oscil-
lations because the solitary wave has been imposed perfectly. The PFEM
analysis matches the experimental data and the SW analysis matches the
analytical solution. The analytical solution overestimates the phase speed
and this mismatch will be reflected in the following analyses.

We remark that the difference in the phase speed of the wave is not
originated by the coupling strategy, but by the Boussinesq approximation.
The accuracy of the approximation depends on the non linearity ratio ε =
η/H and dispersion ratio µ = H/λ. A more detailed study can be found in
[68], particularly when ε < 0.4.

0.00

0.25

0.50
G1 (60m)

Amplitude [m]
PFEM
experimental
Boussinesq
analytical

0 10 20 30 40 50
time [s]

0.00

0.25

0.50
G2 (165m)

Figure 5: Solitary wave example. Time evolution of the free surface at two gauges.
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4.1.2. Numerical results of the coupled strategy

A global representation of the wave propagation is found in Fig. 6. In this
simulation, the first 10m are simulated using the 2D PFEM and the rest of
the channel is simulated using the SW solver. Additionally, the full channel
has been simulated with the PFEM to provide a reference solution for the
coupled method and to analyze better its performance. Concerning the space
and time discretizations used in the two solvers, the PFEM domain has a
mesh of mean size ∆x = 0.3m and the time step increment ∆t = 0.001s is
used, while the SW domain is discretized with ∆x = 0.8m and ∆t = 0.025s.

0.0

0.5 G1 (60m)
Amplitude [m]

PFEM
SW (x = 10m)

0.0

0.5 G2 (165m)

0.0

0.5 G3 (223m)

0 10 20 30 40 50
time [s]

0.0

0.5 G4 (240m)

Figure 6: Solitary wave example. Time series obtained with the interface at x = 10m.

The results of gauges G2 and G3 show a small gap between the predicted
wave by the two solvers. The Boussinesq approximation is triggering this
gap, originated by an overestimation of the phase speed. This difference is
consistent with wave theory and the current wave specifications. Note that
the same gap can be observed in Fig. 5. The run-up (G4) is out of the SW
theory assumptions, but still relevant results are obtained.

The magnitude of the computational time saving of the coupled method
versus the full PFEM solution is about 95%. These savings will be analyzed
in more detail in the next paragraphs. The savings depend on the spatial
and temporal domain chosen for the NFS, that have to be carefully designed
in order not to introduce additional errors.
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4.1.3. Sensitivity to the interface position

The FFS sensitivity has been tested with some SW interface positions at
x1 = 10, 20, 30 and 40m. One would expect to obtain a more accurate re-
sponse as the interface is placed further away from the paddle. Nevertheless,
since in this example the wave is very regular, the observed influence of the
interface position on the results is not significant. The solutions obtained
with all the interfaces can be considered already converged (Table 2). These
results were expected due to the regularity of the wave. For this reason, a
similar study is also performed in Section 4.2, where the SW interfaces are
placed into a more chaotic fluid flow.

Interface position
10m 20m 30m 40m

2.48% 3.01% 3.12% 2.84%

Table 2: Solitary wave example. Wave amplitude errors computed at gauge 3 (x = 170m)
for different positions of the SW interface. Reference solution: full PFEM simulation.

4.1.4. Sensitivity to the temporal domain

Part of the saving in computational time comes from reducing the du-
ration of the PFEM simulation up to the minimum time needed. Once the
initial impulse has generated the wave and it has been transferred to the SW
domain, the PFEM computations do not provide relevant information. From
that time on, the initial boundary condition, which corresponds to water at
rest, is imposed at the SW domain.

This transition in the BC has to be carefully treated in order to avoid
unphysical oscillations. A good duration for the transition is half of the
period of the current wave.

In this test, we evaluate the effect of feeding the FFS with NFS solutions
limited in time. In particular, we considered four PFEM analyses of duration
10, 20, 30, and 40s.

Fig. 7 shows the time evolution of the wave amplitude at the first gauge.
In the graph, we also added dots representing the time instant when one
analysis starts to diverge from the rest. It is clearly observed that the four
solutions have an identical behavior in the first part of the graph. In particu-
lar, even with just 10s of the PFEM simulation, the main wave is well repro-
duced. Beyond this time, the curves diverge progressively. As expected, a
time interval of around 10 seconds separates the consecutive diverging points.
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time [s]

0.00

0.25

0.50
G1 (60m)

Amplitude [m]
10s
20s
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40s
50s

Figure 7: Solitary wave example. Set of analysis where the interface is active only in a part
of the time domain. The marker shows when the solution tends to the resting condition.

4.1.5. Sensitivity to PFEM domain length

Besides the reduction of the time duration of the analyses, the optimiza-
tion of the size of the PFEM computing domain can drastically reduce the
computational cost of the simulations without affecting the accuracy of the
results. For this reason, we analyze here the effect of considering partial
PFEM domains of 10, 20 and 30m length plus an extension acting as ab-
sorbing boundary condition, as shown in Fig. 8. The study is carried out
for both 2D and 3D PFEM domains. The errors introduced by the effect of

Figure 8: Solitary wave example. (a) The mesh with interface at 10m, 2 700 elements. (b)
The mesh with interface at 20m, 3 800 elements. (c) Detail of the full mesh of the channel,
20 000 elements. The slope has a dissipative effect and is acting as an absorbing boundary.

shortening the PFEM domain are listed in Table 3.
It is important to note that the vicinity of the absorbing boundary con-

dition of the PFEM may affect the accuracy of the interface. The small
errors obtained when the interface is far enough from the absorbing bound-
ary show that the presented methodology allows to effectively reduce the
PFEM domain without virtually affecting the quality of the solution. This
is particularly noticeable in the 2D case.

The 3D case presents a similar behavior, but higher errors are observed
in the 30m domain length. However, these errors are more attributable to
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PFEM
domain
length

PFEM 2D PFEM 3D
SW interface position SW interface position

10m 20m 30m 10m 20m 30m
30m -0.652% -0.984% -6.37% 0.228% -3.0% -7.16%
20m -0.635% -5.97% - -0.438% -5.62% -
10m -5.21% - - -5.24% - -

Table 3: Solitary wave example. Errors of the wave amplitude computed at gauge 3
(x = 170m) with different configurations. Reference solution: coupled solution obtained
with the full PFEM domain, as shown in Fig. 8c.

the capabilities of the NFS for reproducing the fluid-solid interaction at the
lateral walls (see [66] for more details) than to the coupling strategy. A finer
discretization in the PFEM mesh would reduce this bias.

4.2. Wave generated by a water landslide

In the second example, we simulate the experiment carried out at the
Queen’s University landslide flume presented in [69]. In this laboratory test,
a mass of water is released from an elevated reservoir and, after flowing
downhill over a 30◦ slope, it impacts at high velocity the water at rest placed
on a 33.8m-long channel. In the reference work [69], 41 experiments were
presented covering a wide range of source volumes and reservoir depths. In
[46], a comparison of experimental and numerical results obtained for three
different water depths in the channel is presented. In this research, we select
the largest volume case (0.45m3) and water depth (0.60m). Fig. 9 shows the
geometry of the experimental setup considered in this work.

Z

30º

0.6m

Wave propagation

G1 (3.1m) G2 (16.8m) G3 (32.5m)

0.4m3

5.8m 27º
X

33.8m

Figure 9: Landslide wave problem. Setup of the LGW flume for the experimental and
numerical analyses.

We remark that considering a water landslide does not affect the rele-
vance of the test in the field of LGWs. In fact, the phenomena produced by
the water runout and impact are totally representative of a realistic LGW
scenario with a fast mobilized material. Furthermore, the use of water as

16



(a) Runout (t = 0.7s)

(b) Impact (t = 1.5s)

(c) Wave formation (t = 2.8s)

(d) Impact zone modeled with the
PFEM. Detail of Figure (b) adding
the solving mesh.

Figure 10: Landslide wave problem. Near-field results with the PFEM solution of Navier-
Stokes problem. The thin vertical lines show the SW interfaces positions.
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sliding material removes the uncertainty related to the rheological properties
of the slide and allows repeatability of the test.

The PFEM is used to simulate the water runout, the impact against the
water at rest and the consequent wave formation (Fig. 10). Remarkably, the
front of the water landslide reaches the end of the slope with a thin layer of
less than 10cm and it impacts the water in the channel at a speed of about
8.5m/s. Thus, in order to capture accurately the phenomena at the impact
zone, a fine mesh and time discretizations are necessary. For this reason, a
mesh size of ∆x = 1.5cm and a time step increment of ∆t = 5 · 10−4s are
used in the PFEM simulations. On the other hand, a much coarser mesh
and time discretizations can be used to model the wave propagation along
the channel with the SW solver. In particular, in the FFS a time step of
∆t = 0.025s and a mesh size of ∆x = 0.3m have been used. We remark
that the possibility of using much different and yet adequate space and time
parameters in the FFS and NFS solvers is one of the main advantages of
this partitioned method and one of the reasons for its high computational
efficiency.

4.2.1. Numerical results

This LGW scenario has been solved using a time and space reduced
PFEM domain in combination with three SW interfaces. The PFEM spa-
tial domain includes the runout, the first 7m of the flume and an absorbing
boundary condition, while the temporal domain includes only the first 5s.
The SW interfaces are positioned at 2, 4 and 6m. Fig. 11 presents the results
obtained at the gauges and a representation of the wave propagation.

In the top image, it can be observed the vicinity of the first gauge and
the first SW interface to the wave generation zone. Indeed, gauge G1 can
only record the PFEM solution and the SW solution obtained by the first
interface. It is clear that the imposed boundary condition does not satisfy the
Boussinesq assumptions and the interpolated wave does not fit the profile of
a breaking wave. However, although the wave interpolated by the FFS at the
first stages is not equivalent in terms of wave height, the stored momentum
is the correct one. This can be observed at gauges G2 and G3, where the
experimental wave has adopted the solution of a solitary wave and matches
the profile of the FFS.

The results obtained at gauges G2 and G3, placed at the middle and
the end of the channel, respectively, show that all the three SW interface
positions reproduce well the main wave obtained experimentally. This is
particularly remarkable considering that the SW interface placed at x = 2m
is completely inside the impact zone (Fig. 10). These results show that, as
long the momentum is well transferred from the NFS to FFS, the wave prop-
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Figure 11: Landslide wave problem. Time series of the wave amplitude at the different
recording points.

agation process in the far-field can be accurately reproduced even considering
the SW interface in a zone where the wave is not completely generated. We
also remark that this can be done safely in this test, since water has been
considered for the sliding material. In case of considering a different landslide
material, either the interface is placed further the zone of material deposi-
tion of the landslide, or the interface boundary conditions have to take into
account the presence of different materials in the computation of the overall
momentum.

Gauge G2 also records a considerable time interval after the first wave,
this allows us to analyze also the secondary waves. In this case, we note some
discrepancies between the results obtained by three SW interface positions.
In particular, the first solution that diverges from the experimental one (and
from the two other numerical solutions) is that obtained by the farthest
interface position (6m). This result is totally consistent with the time domain
truncation explained in Example 4.1 and Fig. 7. As the interface position is
further from the impact zone, the signal arrives later. Given the phase speed
is about 2.5m/s, the time difference between each interface is around 0.8s.

As a concluding remark for this example, the computational cost of the
full simulation of the LGW has been estimated proportionally to the time
needed by the signal to arrive at the end of the channel and proportionally to
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the number of elements required to discretize the full domain. The resources
consumed by the FFS can be neglected since they are two orders of magnitude
smaller. According to these considerations, the overall time saving given by
the proposed partitioned strategy is 95%.

4.3. Landslide in a representative alpine lake

In [70], different metrics of real alpine lakes were used to define the con-
figuration of theoretical mountain basins of different sizes and shapes. These
geometries were used in [70] to study LGW scenarios with a finite volume
solver and to obtain correlations between the lake configuration and the
landslide-generated waves. Here, we analyze one of the lakes considered in
[70] to test the proposed coupled strategy in a 3D complex setup.

Fig. 12 shows the side and top views of the geometry of the lake. The
case study is a circular lake with a diameter of 1500 m. The landslide has a
prismatic shape of 20 m thick, 208 m long and 120 m wide. Following [70],
a bulk material density of 1620 kg/m3 is used for the landslide material and
an initial velocity of 20 m/s has been prescribed to the sliding body.

Preliminary NFS analyses of the LGW scenario showed that the landslide
material reaches a deposition distance of around 350m. This information is
useful to place the SW interface at a position that is not trespassed by the
sliding material. For this reason, the interface of the FFS has been placed
at 400m from the center of coordinates, which is the center of the run-out
impact.

4.3.1. Numerical results

Fig. 13 shows a global view of the simulated LGW and a superposition
of the NFS and FFS results.

In order to assess the quality of the obtained solution, in Fig. 14 we
compare the envelope of the maximum wave height measured along sections
S1 and S2 with the reference solution given in [70].

Globally, the results obtained with the proposed method agree well with
the reference numerical solution, both in the near and far fields. Although
with some differences in terms of magnitude, both methods are also able to
reproduce the amplification of the wave near the shoreline. This phenomenon
is produced by the combined effect of shoaling and the wave reflection given
by the steep bottom surface.

We also highlight that the results of the FFS are in good agreement with
wave propagation theory. In an unconstrained plane, the wave amplitude is
inversely proportional to the distance from the origin. Section S1 is closer to
the unconstrained decay, while section S2 shows a smaller decay since it is
closer to the boundary.
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Figure 12: Landslide in a representative lake. Side and top view of the geometry. Dimen-
sions in m.

Finally, it is worth commenting on the peaks in amplitude exhibited by
the FFS solution close to the SW interface. As mentioned before, the imposed
signal coming from the PFEM simulation is still not fulfilling the Boussinesq
theory. On the other hand, the generation of stable waves by Dirichlet bound-
ary conditions requires some traveling distance to be modulated by the fluid
system [68]. For this reason, the wave amplitude results obtained close to
the SW interface with the FFS should be disregarded. We emphasize again
that, on the other hand, the overall momentum computed in that zone is still
correct.

In any case, the presented partitioned approach would be really inter-
esting for an exercise like the lakes classification in [70]. Indeed, a single
landslide calculated with the NFS could be used to simulate different rep-
resentative lakes with the FFS. Also, in a more detailed study it would al-
low concentrating the computational resources in the analysis of the run-out
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(a) Initial configuration (t = 0s)

(b) Run-out and impact (t = 5s)

(c) Wave generation (t = 10s)

(d) Wave propagation (t = 50s)

Figure 13: Landslide in a representative lake. Global representation of the LGW. The
NFS domain is plotted until the SW interface and only the geometry is shown. For the
FFS, results for the free surface elevation are depicted.
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Figure 14: Landslide in a representative lake. Envelope of the free-water-surface elevation
along sections S1 and S2.

and wave generation, thus enhancing the overall accuracy of the partitioned
scheme.

5. Concluding remarks

We presented a novel partitioned strategy for solving landslide-generated
wave (LGW) problems. The coupled method makes interact a near-field
solver (NFS) with a far-field one (FFS). The NFS reproduces the landslide
runout and the impact zone by solving the Navier Stokes equations with the
Lagrangian Particle Finite Element Method (PFEM). On the other hand,
the FFS uses as input the NFS results stored at a certain interface to model
the wave propagation with an Eulerian Finite Element Method (FEM) based
on Boussinesq shallow water (SW) equations. To improve substantially the
computational performance of the method and, thus, to allow for the simula-
tion of large-scale problems, we adopt a one-way coupling scheme, meaning
that the NFS solution is insensitive to the FFS one. This partitioned method
also allows us to freely decouple the time and space discretizations of the two
solvers, giving a further advantage in terms of accuracy and efficiency.

In all the examples presented, the results obtained with the new parti-
tioned method had shown a very good agreement with the reference solutions,
both in 2D and 3D problems. Remarkably, we have been able to compare
our numerical results with analytical solutions, fully-resolved numerical sim-
ulations of LGW events, other coupled methods presented in the literature,
and experimental observations.
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Placing the SW interface as close as possible to the impact zone gives the
major advantage of reducing the NFS domain and, consequently, the overall
computational cost of the analysis. For this reason, we have compared the
FFS results obtained considering different positions of the SW interface for
the same NFS solution. This study showed that, as long the momentum
of the NFS is well transferred to the FFS, the SW interface can be also
placed very close to the impact zone, even if the wave is not already formed.
More specifically, the SW interface can be placed at one wavelength from
the impact zone. In fact, although locally the FFS results may give spurious
amplitudes since the input wave is not fulfilling the Boussinesq theory, the
stored momentum is correct and the far-field wave propagation is reproduced
accurately. We remark that this can be easily done in case of having the same
density between the sliding material and the water in the reservoir, such in the
water landslide scenario analyzed in Section 4.2. In a more general case, the
interface should be placed further than the deposition zone of the landslide, or
the SW interface should take into account the variation of material densities
on depth.

We have also verified the effect of reducing the size of the PFEM domain
by using absorbing boundary conditions. For this purpose, a gentle final
slope with an inclination of 1:10 was placed at the end of the PFEM domain.
We showed that, as long as the SW interface is not placed too close to the
absorbing boundary, the PFEM domain can be safely truncated without
affecting the global results. To be precise, the gentle slope should begin at
least one half wavelength after the SW interface.

Finally, we also studied the effect of reducing the time duration of the
NFS analyses. We have shown that, if the main interest of the simulation
of the LGW scenario is to reproduce the main wave propagation, the PFEM
analysis can be safely stopped after it has modeled the impact of the landslide
on the water and the first wave formation. Indeed, this time truncation of the
NFS will only affect the secondary waves propagation. We also showed that,
knowing the NFS duration and the wave propagation speed, it is possible
to have a quite accurate estimation of the reliability of the secondary waves
results.

All these specific studies will allow us the define the most computational
efficient NFS-FFS scheme for practical LGW simulations. Although the over-
all computational cost depends inevitably on the geometry and the propor-
tions among the near and far fields, in the examples here presented, we could
estimate a 90% of time saving versus a fully-resolved simulation of the same
LGW scenario.

Among the possible enhancements of the proposed method, we consider
it of primary interest to investigate more efficient strategies for the NFS
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absorbing boundaries and to develop a reverse one-way coupled algorithm
where the FFS transfers the information to the NFS. This FFS-NFS model
would allow us simulating with high accuracy the effect of tsunami waves
produced by landslides (or by some other source, i.e., an earthquake) on the
shoreline and the civil constructions placed therein.
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28(2) (2012) 112–123.

[44] M. Cremonesi, F. Ferri, U. Perego, A basal slip model for Lagrangian
finite element simulations of 3D landslides, International Journal for
Numerical and Analytical Methods in Geomechanics 41 (2016) 30–53.
doi:10.1002/nag.2544.
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