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Deductive approaches are very important namely for reasoning and detecting
inconsistencies in conceptual schema definition. Object-oriented approaches are very
efficient in providing structuring mechanisms to conceptual schema development. We
bring the two together adopting a logic framework for defining objects as well as their
interactions and we present a tableau system that allows the reasoning with objects as
well as with object communities. This system is easy to use and is the basis of a theorem
prover prototype.

1. Introduction

Among the formal approaches to conceptual schema definition we can refer to the object-
oriented and the deductive perspectives. Following the object-oriented point of view
[SernadasA et al 89,Wieringa 90,Booch 91,Junglaus et al 91,Loucopoulos and Zicari 92],
the conceptual schema is a collection of objects that can interact with each other. Each
object [SernadasA et al 91] corresponds to an entity in the universe of discourse and
includes a set of local observations (attributes) and a set of actions (events or methods).
On the other hand, following the deductive approach [Gallaire et al 84,Reiter
84,Demolombe et al 90,0livé 90], the conceptual schema is defined as a theory in some
logic framework. The formulae in the theory represent assertions that are relevant to the
entities of the universe of discourse. Among the main advantages of the deductive
approach we can refer to the possibility of reasoning namely for proving properties and
checking inconsistencies. The main advantage of the object-oriented point of view is the
extensive use of structuring primitives which makes the conceptual schema easier to
understand as well as more structured [SernadasC et al 90].

Hence, it would be highly desirable to have the niceties of both worlds: that is to say define
the conceptual schema in a structured way by identifying the relevant objects and their
interactions but defining each object as a theory. Moreover, the interaction mechanisms
themselves should also be described using the adopted logic framework,

Of course, one of the problems is the selection of the logic framework to be adopted. We
decided to start with a many-sorted first-order linecar temporal logic [Emerson 90,Manna

201



Reasoning Aspects in Information Systems and Databases

and Pnuelli 92| following a strong schodl in the area of information systems and
databases [SernadasA 80,Saake and Lipeck 89,SernadasC et al 92]. On the other hand,
being an object a dynamic entity that evolves through the occurrence of actions, its life
(life-cycle or trajectory) can be identified as a sequence of actions and each state can be
identified with the sequence of actions that have occurred so far. Once again the temporal-
formalism seems to be adequate to specify these dynamic aspects.

In most cases temporal formalisms are adopted for specification purposes. In a few cases
temporal axiomatic systems are used for reasoning with specifications. That is to say, a
lot of effort and expertise has to be put in producing proofs of assertions. It is then easy to
argue that clausal-like formalisms are more interesting namely because of the
operational style of proofs. These proofs are made easily and moreover they can
automated.

Our objective in this paper is to present a two-level system for reasoning with objects
based on tableaux. In the first-level, given an object description (specification) and an
assertion to be verified we can build a tableau using the inference rules of the calculus. In
the second-level we can reason about the conceptual schema itself using the objects as well
as interaction mechanisms. Our tableau system is based on the prefixed tableau systems
for modal logic presented in [Fitting 83). This kind of systems avoid the construction of
sets of interdependent tableaux as in [Li and SernadasA 91]. Tableaux are comparable to
the operational flavour of clausal-ike approaches in the sense they can be used in a
simple way and moreover they can also be automated. For our calculus we adopt the logic
approach to object descriptions presented in [SernadasA et al 92].

The tableau systems incorporates different aspects represented by different collections of
rules namely, the usual collection of rules related to connectives and quantifiers, rules
for dealing with the temporal operators adopting [Gouveia 92,Gouveia et al 93], rules
related to sequences of states and rules that are specific of objects (related to birth, effects
of actions on observations, occurrence of actions and enabling of observations and
actions). We do not detail here the rules for arithmetic, equational and inequational
reasoning. At the moment we have a preliminary version of a theorem prover prototype.
This prototype is based on the tableau system presented here and includes a module for
arithmetic, equational and inequational reasoning following the work of [Nelson and
Oppen 79,Nelson and Oppen 80].

The paper is organized as follows. In section 2, we present the syntax and the semantics of
object descriptions. In section 3, we introduce the syntax and semantics of prefixed
formulae, the tableau system, relevant results and examples. In section 4, we outline
reasoning aspects related with interaction mechanisms.

2. Objects

In this section we present the syntax and semantics of object descriptions. We assume
fixed a set of data types, i. e., a data signature DT=(S,0P) including the sort bool and a
data specification SPEC,,,=(DT,EQ).

202



Reasoning Aspects in Information Systems and Databases

2.1 Syntax

An object description includes a signature and a set of formulae. The signature
introduces the action and the observation symbols which are related, respectively, with
the dynamic and static aspects of the description. In order to specify the constraints on the
object behaviour we use formulae from a temporal linear, many-sorted first order logic
with equality suitable extended to deal with object specific features [SernadasA et al 92].

DEFINITION 2.1.1 : OBJECT DESCRIPTION SIGNATURE
An object description signature is a tuple Z,,=(ACT,0BS) where
* ACT is a S*-indexed family of finite sets whose elements are called action symbols
* OBS is a S-indexed family of finite sets whose elements are called observation
symbols

EXAMPLE 2.1.2: _
Let us consider an example related with a library application where we have objects like
books and users. For instance, each book has a name and a registration number and it
can be taken and returned by an user. The object description signature is
Zpook=(ACT,0BS) with

ACTSm-ng nat= (new) OBSsmng=[name]

ACTusel;[tak, ret) OBSboolz[availl

OBS, (=(reg].

DEFINITION 2.1.3: TERMS
Given a S-indexed family of sets of variables X, the family of terms associated with DT,
T,;(X), is defined as usual:

¢ if xeX_then xe T, (X),

* if ope OPsl,...,sn,s and tie Tm_(X)Si , n20, then op(tl,....tn)e TDT(X)s

* T,.(X) has no more terms.

DEFINITION 2.1.5: FORMULAE
Given a object description signature Z,,=(ACT,0BS) and a S-indexed family of sets of
variables X we define the set of formulae, F ., associated with I as follows:

¢ ¢a(tl,...,tn), Va(tl,...,tn) eFOb for every ae ACTsl,..
sl,...,sn, respectively, n>0

sn and terms tl,...,tn of sorts
* oo(t)eF , for every oe OBS_ and term t of sort s

° op(tl,...,tn)eFob for every ope OPsl | and terms tl1,...,tn of sorts sl,...,sn,

,---,SN,bo0
respectively, n>0

* tl=t2eF, for every terms tl, t2 of of the same sort s

*if fleF , and f2e F , then —fleF ., finf2eF ;, 3xfl (xe X)), FfleF ,, Pfle F , and
XfleF ,

* F ;, has no more formulae.
Informally, we can say that the formula Va(tl,...,tn) refers to the occurrence of an a-

action and formulae as ¢a(tl,...,tn) and ©¢o(t) indicate that an a-action or an o-
observation is enabled. Intuitively we say that an action is enabled when it is allowed (but
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not forced) to occur and that an observation is enabled when the value of its argument is
the current value of the slot.

The temporal operators are as usual: F is the some time in the future operator, P is the
some time in the past operator and X is the next operator.

We denote by t{xIt'] (flxI1t']) the term (formula) obtained from t (f) when x is substituted
for t' in t (f). The notion of substitution is as usual and, in particular, when dealing with
formulae is assumed that t' is free for x in f.

DEFINITION 2.1.5: ABBREVIATIONS
We consider the usual abbreviations:

e flvf2= def— ((—| fl)/\(—1 f2) ° f'1=>f2=def('q fl)V 2
o fleof2 = Jof(Fl=sf2) A(f2mf1) o Vxf=gef—Ix—f
hd Hf=def—| P-f ° Gf=def—l F-f

. 3?f=def3xl...3xnf if ¥ =x1,...,xn

We consider also the following abbreviations related with action and observation
symbols.

DEFINITION 2.1.6: BIRTH FORMULA
A birth formulu for the action symbol a is the following abbreviation
#a(X)=def
(Vx;..V X, (Va,(X))V...v Va () )=PIX Va(X))
) A
VX (Va(X)=H(Vy, = 00,(y )A...AVy, =00, (y, A
AVY =00, (y)n...aAVy ~ 0o, (y A
AG(VY'-Va(¥))
where a,a,,...,a, are all the action symbols of the object description signature, a#a,
and o,,...,0., are all the observation symbols of the object description signature.

Informally, this abbreviation wrt to an action symbol a states that (i) the occurrence of an
a-action must precede the occurrence of any other action, (ii) when an a-action occur
none observation is or has been enabled, (iii) an a-action occurs only once. So an a-action
acts as a "birth" action.

DEFINITION 2.1.7: VALUATION FORMULA
A valuation formula for the action symbol a is the following abbreviation
[a(X)10,(y )y ,0p ; (Fiy)
= 01001031, % )00 Oy 04 XD, 011Bry 1 (X D,02 (012 (K =dlef

YRV YY) Y Yy Y Yy
(Va(XIA 00, (y IA..A 00, (Y1) JAOOpp) (Vigs DA 1A © 0103 (Vies)
=
X(00,(0,(y , ¥NNA.A 00, (04, (Vi) RDACOL (04 1 (RDA..AC 012 (P (X))
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.

NOOo 1 (Ykg o )N occ A © 0y 3 (¥y3))))
where 0p5e++30k 1 5+++:0k95.-+,0k 5 are all the observation symbols of object description
signature, ¢kj€0P51,...,sn,s, if ae ACTE? is omitted, k, can be 0 and k, can be equal
to k, ‘
An observation symbol in OBS that does not occur in a valuation formula is an invariant
for it. If k=0 we say that the valuation formula has no context.

Informally a valuation formula
[a(?)]01(y1):~--s0k1()'k1)_)01(¢1(yl,?)):"'!0k1(¢kl(ykl!_)?)’ok]+1(¢k1+l(?))""!°k2(¢k2(?))
describes the effects of an a-action on the observations. On the left side of — we only
represent (by o0,(y,),...,0,,(yy;)) the observations that were enabled when the a-action
occurs and whose arguments are relevant to state the effect of the a-actionl.

EXAMPLE 2.1.8:

Considering X, . we have that G([new(x,y)l—avail(true)Aname(x)A reg(y))e Fonk

and G([tak(x)]—>avail(false))e Fyoor-The first formula has neither context nor
invariants. On the other hand, the observation symbols name and reg are invariants for
the second one.

DEFINITION 2.1.9 : OBJECT DESCRIPTION
An object description is a pair 0b=(E,F) where
* Z(ACT,OBS) is an object description signature
* FCF_, is finite.
The formulae in F are the axioms of the object description,

Given an object description 0b=(Z,F) we say that X is the underlying S-indexed family of
sets of variables if X is the least S-indexed family of sets of variables such that all the
terms involved in the formulae of F are elements of T, (X).

EXAMPLE 2.1.10:

The pair book:():book, F), where FCF, . s as follows, is an object description

F= [G(Ginew(x,y)), (al)
G([new(x,y)]—avail(true)Aname(x)A reg(y)) (a2)
G([tak(x)]—avail(false)) (a3)
G([ret(x)]—avail(true)) (ad)
G(Vx(otak(x)= o avail(true))) (ab)
G(Vx(oret(x)= cavail(false))) (ab)).

Axiom (al) establishes new-actions as "birth" actions. Axioms (al), (a2) and (a3)
establish the effects of actions over observations: a new-action affects all the observations
but tak-actions and ret-actions only affect avail-observations. The other axioms

1So, the observations that are not enabled when the a-action occurs but become enabled after its
occurrence or are enable but whose arguments are not relevant to state the effect of the a-action are
only represented (by o1, 1(0 1, 1(X D045 0k X)) on the right side of —. The observations that
are not changed by the a-action are not represented at all in the abbreviation.
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establish other constraints on the object behaviour. For instance, informally, (a5) states
that a book can only be taken if it is available.

2.2 Semantics

We assume some fixed model A,y for SPEC,,,.. As usual A denotes the carrier set of the
sort si and for each ope OPsl,...,sn, ¢ Lop],,, is the interpretation of the operation symbol op.
Interpretation structures for object descriptions are based on suitable enriched Kripke
structures (SernadasA et al 921.

DEFINITION 2.2.1 : INTERPRETATION STRUCTURE FOR ob
An interpretation structure for the object description ob=(Z=(ACT,0BS),F) is a map
AN, —IB where

IB=P((Va(vl,..,vn): ae ACT,, ACTgy ¢, €ACT, n20, vieA Ju

Lsn?
{oalvl,...,vn): ae ACTsl,...',sl:v ACTsl,....sn e ACT, n=0, vieAs‘.lu
{Colv): o€ OBSS, OBSSG OBS, ve Asll
such that
* AM0)=¢

¢ if Va(vl,...,,vnie A(k) then ¢alvl,...,vn)e A(k), n=0

e if Va(vl,...,vn), Va(ul,...,un)e Mk} then vi=ui, 1<i<n

¢ for each keN_ there is some ae ACTsl,.. and v1,...,vn, n20 such that
Va(vl,...,vnje A(k)

e if oo(v), ¢ofu)e Alk) then v=u

e if oo(v)eA(k) then for each k'>k ¢o{u)e A(k') for some suitable u.

SN

The elements of IN, are the worlds or states of the interpretation structure. The natural
number 0 is the initial state. Hence, no action has occur yet and so the first condition-
imposes that A(0) is empty. The second condition states that in any state an action only
occurs if it is enabled on it. The third imposes mutual exclusion of actions of the same
kind. The fourth reflects the fact that an object evolves exclusively through the occurrence
of its actions. The fifth condition states that in each state only one o-observation is
enabled and the last condition expresses that we can not "delete" observations: if we have
an o-observation then in future we will have always some o-observation.

DEFINITION 2.2.2 : ASSIGNMENT

Given an interpretation structure for the object description ob and the underlying S-
indexed family of sets of variables X, an assignment to X is a S-indexed family ASG of
maps such that ASG: X —A_.

DEFINITION 2.2.3 : INTERPRETATION
Given an interpretation structure A for the object description ob, the underlying S-indexed
family of sets of variables X and an assignment ASG to X, the interpretation over A
through ASG of the terms in T, (X) is defined as follows:

* [x],4q=ASG(x) for xe X

] l[op(tl,...,tu)]]I\S(::[[op]]“,r([[t,l]]‘;\_\.“.....!Itn]]l\_\.“)for ope OP
of sorts s1,...,sn, respectlively.

sns and terms tl,...,tn

2 . .
YGIVEN a =el 1, ot rdenotes T =et of all subsets of T,
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DEFINITION 2.2.4 ;: SATISFACTION OF FORMULAE
Given an interpretation structure A:N,—IB for the object description ob, the underlying S-
indexed family of sets of variables X, an assignment ASG to X and a state k, the
satisfaction by A for ASG at k is inductively defined as follows:

* L,ASG,kEVa(tl,...,tn), ac ACTsI,...,sn’ n=0 iff Va([t1],gq - Itn] g5 )e A(k) .

* LASG kkoa(tl,... tn), ac ACTsl,...,sn’ n=0 ifT oa([[tl]]ASG,,...,l[tn]‘\sc)e Ack)

* L,ASG,kkoo(t), oe OBS,, iff ©o([t],g5)e Alk)

* L, ASG,kEop(tl,...,tn), ope OPsl,...,sn,boo] n>0 iff I[op]]m.(l[tl]]ASG,...,Ij'_t:n]]l\sc)=11

* L, ASG,kF—fiff is not the case that A,ASG kkf

* A, ASG,kFf1Af2 iff A,ASG kK1 and A,ASG k2 .

* L,ASG kE3Ixf, xe X, iff there is an assignment ASG' x-equivalent? to ASG such that
AASG' kEf

* A, ASG,kEFf iff there is k'>k such that A,ASG k'kf

* LASG,kEXFiff A,ASG,k+1kf

* A, ASG,kEPf iff there is k'<k such that AASG k'Ef

* L,ASG kEt1=t2 iff [t1],5;=0t21, -

DEFINITION 2.2.5 : INITIALLY VALID FORMULAE
Given an interpretation structure A:N,—IB for the object description ob and the
underlying S-indexed family of sets of variables X

* a formulae f is initially valid in A, denoted by M=0f, iff A,ASG,0Ff for every
assignment ASG to X

* a formulae f is initially valid, denoted by kS iff M=of for every interpretation
structure A.

DEFINITION 2.2.6 : MODEL FOR o0b
The interpretation structure A for the object description ob is a model for ob iff every axiom
of ob is initially valid in A.

So, the axioms of the object description are formulae intended to be valid at the initial
world and they reflect the properties that should be verified during the object's life. A
model represents a possible life of the object, i. e., one that verifies the properties described
by the axioms.

DEFINITION 2.2.8 : INCONSISTENT OBJECT DESCRIPTIONS
An object description 0b is inconsistent iff there is no model for 0b.

DEFINITION 2.2.7 : 0b-VALID FORMULAE
Given an object description 0b a formulae f is ob-valid iff for every model A for 0b and

every assignment ASG to the underlying S-indexed family of sets of variables X,
A ASG,kES for all k0.

lAssuming Abml ={1,0}.
2An assi gnment ASG’ is x-equivalent to ASG ift ASG(y)=ASG'(y) for every variable y=x.
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An ob-valid formula accounts for a property we want verified on every non initial world
of a model, i. e., informally, on every state of the object after its creation during an
object's possible life.

3. Tableau Systems

In this section we present the tableau system 0B for reasoning about a given object
description 0b=(XF).

We introduce prefixed formulae, i. e., each formula of F, can be prefixed where the
prefix, intuitively, indicates a state where we want this formula to be true. Moreover we
also introduce as formulae, sequences of such prefixes.

3.1 Syntax and Semantics of Prefixed Formulae

Given a set A, we consider the following sets: ¢ A={ ¢ a: ae A}, Ai=[ai: ac A} and the
operation v such that v(a)=v(al)=a.

DEFINITION 3.1.1 : PREFIXED FORMULAE
Consider the set W=(wgy,w,,..}. The set of all prefixed formulae associated with the object
description 0b=(IZ,F) is
F pp =(p:f: pePr, feF , JuSq ,
where Pr=WUW' and Sq=(c;...0,€ (Pru « Pr)irsl, c1¢ ¢ Pr).

Within this context each element of Pr is a prefix. An element of W' is an initial prefix.
The symbol < is the direct accessibility relation symbol. We will see below that these
designations are related with the semantics of prefixed formulae. The semantics of a
prefix is a state and the semantics of an initial prefix will be an initial state. Elements of
Sq will represent sequences of states: if, for instance, in W, e w,w. the semantics of'UJl
is a state ke N, then w, will represent the next state, i. e., k+1 and W, some state n>k.

The following definitions, related with prefixes, will be necessary when defining the
tableau system.

DEFINITION 3.1.2:
Let p,p'ePr,  qe = Pr, 0=01...0.€3q, p:feFobp, [NCPru-<Pre OCF ,p

* pref(p)=p, pref( = q)=q and pref(M)={pref(p'): p'e I); each prefl(c;) is a prefix of ¢

* v(t)=v(pref(cy))...v(pref(s,))

* comp(0)=(01,...,6,) is the set of the components of o;sucessor(c;)=c;,1, 1<i<r;
v(comp(a))=(v(pref(c;)): 1<i<r)

* if v(p)=v(pref(o;)) then the set of future components of p in o is compg(o,p)=(0j: i<j<rl;

* if v(p)=v(pref(c;)) then the set of past components of p in & is comp,(c,p)=[o;: 1<j<i);

* p' is accessible from p in o iff v(p')e pref(comp Fv(o),v(p))) or
v(p)epref(compp(v(o),v(p')))

* pis used in @ iff pe prefild)={p'e Pr: p':f e & or p'e preflcomp(o)), ce )

* pis free in @ iff p=w, e W, and neither W, nor W, are used in .
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DEFINITION 3.1.3: FUTURE EXTENSIONS OF FORMULAE
Let 6=0;...0.€ 8q, p,q prefixes, p prefix of ¢ and q free in {c}. The future extension of o
from p through q, extg(o,p,q), is the set of formulae o’e Sq such that

o 0"=O’1...0'j‘t where p:preﬂcj) for some 1<j<r and t is a permutation of elements of
compg(c,p)u(q)

* 6'lcomp(c)=c where c'lcomp(a) is the restriction of ¢' to the set comp(q)

* in o', sucessor(q)e ° Pr.

We define, in a similar way, the past extension of ¢ from p through q, extp (0,p,q).

EXAMPLE 3.1.4;
Consider the formula o=W,Ww, - w.w.eSq. Then, for example:
(1) comp(0)=[w,,w2,w3, ° w5]
(i) pref( - W)=w,
(iii) Wy is accessible from W,inc
@iv) compf(o:luz):[wl,wS, W
(v)compp (o,w, )=(w,}
(Vi) W,w, Wl Wis an element of ext (o, W, W) but W,W, W, ° WW, is not an
element of ext, (o,W4,W o).

5)

Next, we present the semantics of prefixed formulae.

DEFINITION 3.1.5: INTERPRETATION OF A SET OF PREFIXES

Let IICPr be a set of prefixes and A:N,—>IB an interpretation structure for the object
description 0b. An interpretation ¥ of [T on A is a map I”:TI-N, such that I’(p)=0, for every
initial prefix p and if v(p')=v(p") then I”(p")=I"(p").

DEFINITION 3.1.6: SATISFIABLE FORMULA
A formula fe F_pp is satisfiable iff there is an interpretation structure A for 0b such that

* if f=p:fl then there is an interpretation I” of (p} on A and an assignment ASG such
that A, ASG,P(p)kf1

¢ if f=6,...0.€ Sq then there is an interpretation I” of preflcomp(f)) on A such that for
every 1<i<r I(pref(c;))<I*(prefioi, 1)) and if o;, € © Pr, then IP(prefic;, 1 ))=I"(pref(c;))+1.
Notation: A,ASG, IPkf.

DEFINITION 3.1.7: SATISFIABLE AND UNSATISFIABLE SET OF FORMULAE
Let @CF p

* @ is satisfiable iff there is an interpretation structure A, an interpretation I? of
pref(®) on A and an assignment ASG such that A,ASG,IEf for every fe ¢

Notation: A,ASG,’Ed

* & is unsatisfiable iff is not satisfiable.

3.2 Tableaux System 0B
In this section we present the tableau system 0B for reasoning about the object description

0b=(2=(ACT,0BS),F=|al,...,an)). In the tableau system 0B each tableau is a tree such that
each node is labelled with a finite subset of F ,ppand it is built following the OB-rules
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presented below. A tree t is a tableau for @ iff & is the label of the root node of t. If Bisa
branch and v a node of B then ®p, O, denote the union of the labels of the nodes in B and the
label of v, respectively.

We will present the 08-rules in the usual way:

o, fl,... . fn o, fl,...,fn
rule 1 rule 2
gl gl gml
gk g1k gmky

meaning that if ®U({f1,...,fn} is the union of the labels of all nodes of a branch of the
tableau then we can create one successor node of the leaf of the branch (rule 1) labelled
with (gl1,...,gk}, or m successor nodes of the leaf of the branch (rule 2) with (gil,...,gik;)
labelling node i, 1<i<m. The arity of a rule is the number of successor nodes addéd. The
set {f1,...,fn} is the set of principal formulae of rules 1 and 2. The set (gl,...,gk) is the set of
derived formulae of rule 1 and {gi 1,....gik;} is the ith set of derived formulae of rule 2. We
say that a rule can be applied to a branch B of the tableau iff the set of principal formulae of
the rule is a subset of ®p. We say that a rule is appliable to a formula (set of formulae) if it
is a principal formula (the set of principal formulae) of the rule.

Next we present the tableau construction rules, OB-rules and the definition of closed

branch and closed tableau.

DEFINITION 3.2.1: 0B-RULES
Let @ be a finite subset of F ,p, ceSq and 9, a valuation formula for an action symbol a.

The 0B-rules are the following:

First Order Rules

D, p——f D, p:f1nf2 D, p— (f1nf2)
—= N =N
p:f p:fl p:—fl p:—12
p:f2
O, p:—3Ixf ©, p:3xf
- E
p:AlxIt] p:Alxly]
Conditions: Conditions:
tisaterm free for xinf y is a variable not free on
du(p:3Ixf)
b O, p: t1=t2 O, p:tl=t2, p:t2=t3
Ref | sim Tr
pit=t p:it2=t1 p:it1=t3
Conditions:

tis any term, p is any prefix
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@, p: tl=rl,...,p: tn=rn

Sub i
p:op(tl,....tn)=op(rl,...,rn
Conditions:

OPEOPSI .,SNn,s ’

tl,..,tn are terms of sorts
sl,...,sn,respectively, s#bool

O, p: tl=rl...,p: tn=rn

Sub ii
p:E(tl,...,tn)=E(r1,...,Tn)
Conditions:
§eOP ,sn,bool or&e ©OBS, n=1,0r
Ze o A c”r nVVACT o

tl,..,tn are terms of sorts sl, ,sn,respectwe]y

Temporal Rules

o, p:Xf
I Xi
peq
q:f
Conditions:

qis free on dU(p:Xf},
Sqnd=2

o, p-Xf
-Xi
p°q
q:—-f
Conditions:

qisfree on dU(p:Xf),
Sq "P=0

®, 61...0; ° q...0, p:Xf
Xii
q:f

Conditions:
v(pref{c;))=v(p)

®, 07...0j ¢ q...0y, pi= Xf
- Xii
q:~f

Conditions:
v(preflc;)=v(p)

Sq NO=J

qis free on dU{p:Pf,

o, p:AFDH O, o, pAFD
Fi Fii
Pq p1:f prp:f ol oo
q:f q:f q:f
Conditions: Conditions:
qisfree on dU(p:Ff}, qis free on dU{p:Ff,0}, v(p) is a prefix of v(c) eSq
Sqnd=0 prefl Lf}??lpf(c ph={py,-- ,pr ) and
ext{o,p,q)=(c",...,c70}
@, pAPDH @, o, p:PP)
Pi Pii
qp py:f p,.p:f ol o’
q:f q:f q:f
Conditions: Conditions:

qis free on dU{p:Pf), v(p) is a prefix of v(c) eSq
pref(campp(0',9))={P 1r-»Pp )} and
m'rp( o.p,q)={c",...,a'a}
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®, o, p—Ff &6, p—-Pf
—-F -P
q:—~f q—~f
Conditions: : Conditions:
q is accessible from p in e Sy p is accessible from q in ceSq °

Action/Observation Rules

¢, p:oo(t), p:ool(r) o, g, p:oo(t)
oobs i ¢ obs 1i
pit=r q:3x 0 o(x)
Conditions: Conditions:
onBSS onBSs

q is accessible from pinc

@, p:Va(tl,...,tn) &,p:Va(tl,...,tn), p:Va(ri,...,rn)
Vo Vact i
p:¢altl,...,tn) p:itl=rl,...,p:tn=rn
Conditions: Conditions:
aeACTsl,...,sn aeACTsl,...,sn
(D, G1...0p
e Vact ii
p3y Va,(y) p:3yVa, (¥)
Conditions:

a3,..,ap are all the action symbols
of the object description signature,
p is a prefix of 07..G,., p=v(5y)

Sq-Rules
®, 0y...0, ®, 0y...0;
si | Sii
01...0f °Gj41...0, 01...0i{P ©Gjy1-..Oy Wy '09...0, p°0;..0p
Conditions: Conditions:
pisfree on ®U(Gy..0,) and Gj, 1 € Pr 01=W, , pisfree in ®U(0]..0)
®, 01...0, P, 0y...0,
Siii f Siv
G1...Gj °Giy1...0; 01...Gj °POj;1...Op G1..0p °P
Conditions: Conditions:
pis free on ®u(0;..0,} andoj,jePr pisfree in dU(cy...0,)

From the rules presented above we can infer rules related with the abbreviations
introduced above. We have the usual rules v, = v, =, = =, &, =, V and = V. The rules
—=Gi, = Gii, = Hi, = Hii, G and H are similar to the rules Fi, Fii, Pi, Pii, - F and = P,
respectively. We consider also the following rules related with the other abbreviations
introduced.

2

-
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Valuation
@, p:Va(®), p:[al(X)]=0,(0,(X)),...,0,. (0, (X))
. val 1
p:X(00,(9,(TNA...a00, (0, (TN
Conditions:

U, has no invariants

®, 0, p:G(V,1),
p:Va,(R),
G:00,(r),...,q:0 0y, (r ;)
q:Va2(§),
q: [az(?)]ol(y,),...,ok](yk,)—>
0101 ,¥1)s-+1,041 Oy (K ¥ 010411 (@111 (K D)y 1,0402 (0165 (K)

I val ii

@ X(00,(0,(B,r )A.A 00y (04, @1 DA 0L (04, (E2NA A 0040, @)

Conditions:
In o q is accessible from p and p is accessible from p’
0,, has neither invariants nor context

These two rules are related with the valuation formulae. Rule val i deals with valuation
formulae having neither invariants nor context. Rule val ii deals with generic valuation
formulae. As we will see below in the examples, typically, p:Val(ff) represents the
occurrence of a birth action affecting all the observations as we have also p":G(8,7) and
¥,1 has neither invariants nor context.

®, 0, pG, )
p:Va (@),
q:Va,(&), q:0,9,
q:0o(r)
inv
q:Xoo(r)
Conditions:
In 6 q is accessible from p e p is accessible from p’
¥, has neither invariants nor context and ois an invariant of B,

This rule is important to deal with enabled observations after the occurrence of an action
when this action does not affect the observation (i.e. the observation symbol is an

invariant of the corresponding valuation formula). The comments above about p:Val(ﬁ))
are also appliable here.
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®, 0, piGay),
p:Va, (i)
¢ obs iii
- q:o0o(y)
Conditions:
In 6 q is accessible from p e p is accessible from p’
¥, has neither invariants nor context
y is a variable not free in ®U(a, p:Val(ﬁ), p:G(9,7)

This rule is also related with enabled observations. Having in mind the above comments
about p:Val(ﬁ)), p":G(¥,1) and the definition of interpretation structure it turns out that in
any state after the occurrence of the a,-action an o-observatiom must be enabled. The
application of this rule can be important before the application of val ii or inv rules in
order to introduce enabled observations.

Birth
®, o, p:G»:é’&al(?), q:Vaz(T)) Q, o, p':G-:K-a(?), p:Va(_t))
#i #ii
q:P3YyVa(y) g:— o o(r)
Conditions: Conditions:
In o q is accessible from p In o p is accessible from p’
a#ag g=porin op is accessible from q
o is an observation symbol
®, o, pG#a(x), p:Va(t) ®, o, p':G-:%i-al(?), p:Val(T))
#Fi v
q:—=Va(?) q:— Vaz(?})
Conditions: Conditions:
In 0 qis accessible from p and Inc p isaccessible from p’
p is accessible from p’ q=porin ¢ p is accessible from q
31¢32

These rules are related with birth formulae. Rules¥i and :#iv are related with the
imposed condition that a birth action must precede all other actions, rule 3#ii expresses the
condition that no observation is enabled before the occurrence of a birth action (or when it
occurs) and rule *iii indicates that a birth action occurs only once.

DEFINITION 3.2.2: CLOSED BRANCHES AND CLOSED TABLEAUX

Abranch B in a tableau is closed iff one of the following conditions holds
J [p:f,q:—ﬂg(bli and v{p)=v(q)
*{p:Va(vl,...,vn)} C g for some ae ACTsl,..

initial prefix qepreﬂd)lg) such that v(p)=v(q)
e{p:calvl,..,vm))C (DB for some ae ACT‘1 _

sl,...,sn

initial prefix qe prefldy) such that v(p)=v(q)

sp and p is an initial prefix or there is an

and p is an initial prefix or there is an

°[p:<>o(v)]g(bl3 for some o€ OBS_ and p is an initial prefix or there is an initial
prefix qepreﬂd)';) such that v(p)=v(q)
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. [p:Pﬂgd)B and p is an initial prefix or there is an initial prefix qepreﬂd)B) such that
v(p)=v(q)

J [0:01...0,.]g<b,3 and there is oy, 1<i<r, such that prefcj) is an initial prefix.
A tableau is closed iff all branches are closed.

Herein we do not include forms of closing tableaux related to arithmetic, equational and
inequational reasoning which were essential when automating proofs. We have recently
developed a theorem prover prototype based on the tableau system presented here which
includes a module for arithmetic, equational and inequational reasoning following the
work of [Nelson and Oppen 79,Nelson and Oppen 80].

3.3 Soundness

The tableau system presented above is sound wrt to unsatisfiable finite subsets of F_p in
the sense that if there is a closed tableau for ® then @ is unsatisfiable. As consequence, if,
for instance, ®=(p:—~f} we can conclude that f is a valid formulae, i. e., f is true at every
world of every interpretation structure for o0b. If ®=(p:al,...,p:an}, being al,...,an all the
axioms of 0b and p an initial prefix, then 0b is an inconsistent object description as there
1s no interpretation structure such that every axiom is initially true on it, i. e., 0b as no
models. If ®=(p:al,...,p:an,p:=Gf} and p is also an initial prefix then we can conclude
that f is ob-valid. The following propositions establish these results. The proofs are long
but straightforward and for lack of space we do not present them here.

PROPOSITION 3.3.1:

Let B be a branch of a tableau t, r a 0B-rule of arity m that can be applied to B and, for
1<i<m, (gi l,...,gik;} the ith set of derived formulae of r. If <I)B is satisfiable then at least
one of the sets (bBu[gi l,...,gik;), 1<i<m, is satisfiable.

PROPOSITION 3.3.2:

Let t be a tableau for ® and B a branch of t
(1) if B is closed then @p is unsatisfiable
(11) if t is closed then @ is unsatisfiable.

PROPOSITION 3.3.3:
Consider the object description 0b=(Z=(ACT,0OBS),F=(al,...,an}), t a closed tableau for
$CF ,p and p an initial prefix
(1) if d=([p:al,...,p:an} then ob is an inconsistent object description
(i1) if ®={p:al,...,p:an,p:=Gf] then fis ob-valid
(iii) if ®=(p:al,...,p:an,p:—1f) then fis ob-initially valid
(v) if ®=(q:=f} then fis initially valid if q is an initial prefix and fis valid
otherwise.

Next we present some examples of tableaux within the context of the object description
employee introduced above.

In order to make tableaux more readable, we assign a number to formulae and we
indicate the rule considered in the construction of each new node and the numbers of its
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principal formulae. Each closed branch is marked with the symbol X and the formulae
that close a branch are printed in bold.

EXAMPLE 3.34
With the tableau system BOOK we can reason about the. object description
book=(Z;, ,.((al),...,(aB)}) given above. Consider the following tableau:

w,:(al),...,w ':(a6)
W, "= G(= (IxVtak(x)AIxVret(x))) (1)
| —cm
w,'w, (2)
W,:=— (IxVtak(x)A3xVret(x)) (3)
| ——©)
W, :3xVtak(x)An3IxVret(x) 4)
N (4)
W,:3xVtak(x) (5)
W, :3xVret(x) (6)
| 365
w,:Vtak(tl) (7
| 3¢
W, :Vret(t2) (8)
| von)
w,:otak(tl)
| Vo(8)
w,:oret(t2)
G (2) (ab)
W, :Vx(otak(x)= o avail(true)) 9)
G (2) (ab)
W, :Vx(oret(x)= ¢ avail(false)) (10)
| v
w,:otak(tl)= cavail(true) (11)
| vo
W,:oret(t2)= o avail(false)) (12)
= (11 |
Ww,:—otak(tl) Ww,:oavail(true) (13)
X | =az |
W ,:oavail(false) (14) W,:— oret(t2)
| cobs (13) (14)
true=false

Note that the second branch is closed because it includes the formula true=false which is
contradictory in the data type theory we adopt. In the theorem prover prototype this branch
is considered closed by the module which deals with the arithmetic, equational and
inequational reasoning.

By proposition 3.3.3, as we have built a closed tableau for the set of formulae

216



Reasonil.b- AS}JL‘.L'tS in Inforination Systems and Databases

(W, (@l),...,w , :(a6),w, = G((=~ @xVtak(x)AIxVret(x))))

we proved that the formula —(3xVtak(x)a IxVret(x)))) is book-valid which means that a
book can not be taken and returned at the same time.

EXAMPLE 3.3.5:

Let us consider a more elaborated example: the object description employee:():emp A7) with

Zemp=(ACT,OBS)
ACTnat nat
ACTnat=[new-salary,birthday]

={new)

OBS, . =(salary,age).

and

F= (G(G¥new(x,y)), (al)
G([new-salary(y)lsalary(x)—salary(x+y)), (a2)
G([new(x,y)l-ssalary(x)aage(y)), (a3)
G([birthdaylage(x)—age(x+1)) (ad))

With the tableau system EMPLOYEE we can reason about the object description employee.
Consider the following tableau

w Ii:(al),....,w . i-(a4)
w li:—- G(osalary(n)=X(3y(¢ salary(y)ay=n))) (1)

| —cm
w, w, (2)
Ww,:—(osalary(n)=X3y(osalary(y)ay=n))) (3)
-=(3)
w,:osalary(n) (3a)
Ww,:= X(Jy(osalary(y)ay=n))) (4)
| | | vactiii 2
W, :3xyVnew(xy) (5) W,:3xVnew-salary(x) (6) Ww,:Vbirthday (7)
| 3¢5 | 36
W,:Vnew(t1,t2) w,:Vnew-salary(t) (9) = (cont)
I G (2) (al) I #i (al) (2) (9)
W, #new(x,y) (8) w,:PIxyVnew(x,y) (10)
1 #ii (al) (2) (8) | Pii @ 0 |
W,:— osalary(n) UJIi w.w, (11) wli:ElxyVnew(x,y) (13)
W, :3xyVnew(x,y) (12) | 313)
| 3012) W, :Vnew(t1,t2)
W :Vnew(t1,t2) (14)
G (11) (a2)

W, [new-salary(y)lsalary(x)—salary(x+y) (15)
val ii (al) (9) (11) (14) (15)
UJZ:XOsaIary(Hn) (16)
Siv (11)
w,'ww, - w, (17
r Xii (16) (17)
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W :osalary(t+n)
=Xii (17) (4)
W, = (3y(osalary(y)ay=n)) (18)
-3(18)
W := (o salary(t+n)A t+n2n)) (19)
= (19)
W, :— osalary(t+n) W, :—~t+n>n

X

51 (cont)
wz:Vbirthday 7
G (2) (al)
W, :PIxyVnew(x,y) (20)
Pii (2) (20) |
wli:E]xyVnew(x,y) (21) UJ‘iUJSLIJ2 (22)

| 32 W FxyVnew(x,y) (23)
w, :Vnew(t1,t2) | 3c23)
UJS:Vnew(tl,t2) 24)
| G(22) (a2)

w,:(birthday)lage(x)—age(x+1) (25)
| inv (a1) (32) (7) 22) (24) (25)
w,:Xosalary(n) (26)
Siv (22)
W, w,w, °w, (27)
r Xii (26) (27)
W ,:o0salary(n)
-Xii (27) (4)
W, :—(3y(osalary(y)any=n)) (28)
-3(28)
W = (osalary(z)A z2z)) (29)
-A (29)
W ,:—~ ¢salary(n) W, :—=n2n

X

Note that the third branch is closed because it includes the formula —t+n>n which is

contradictory in the natural number theory. In the theorem prover prototype this branch is

considered closed by the module which deals with the arithmetic, equational and
inequational reasoning. A similar comment applies to the branch with the formula

-n2n.
The tableau for

(W, '(aD),...,w ":(ad),w == G(osalary(n)=X(3y(o salary(y)ay=n))))
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presented above is closed so, by proposition 3.3.3, the formula
(¢salary(n)= X(3y(o salary(y)ny=n))) is employee-valid which means that the
description ensures that the salary of every employee must never decrease.

4. Intéréction

Consider again the library application. We have already presented the object description
book. Let us consider now the object description user:(Zuser{(u1),...,(u5)]) where
L, cer=(ACT,0BS) with
ACTsz[new] OBSsetbook=[books}
ACTbookz{taks, rets]

and
G(#new) (ul)
G([new]—books(Q@)) (u2)
G([taks(x)]books(s)—»books(su[x]) (u3)
G([rets(x)Ibooks(s)—books(s\ {x}) (u4)
G(Vx(Vtaks(x)=FVrets(x))) (ub).

The above description states that each user can take and return books and keeps record of
the books currently borrowed.

Borrowing books from the library can be seen from two different points of view. Consider
the book b and the user u. On one hand the book b is taken by the user u, i. e., the action
tak(u) occurs within the context of book b. On the other hand user u takes book b, i. e., the
action taks(b) occurs within the context of user u. As consequence an interaction is
established between book b and user u. This interaction can be established trough the
formula G((Vb.tak(u)e Vu.taks(b))) called an interaction formula. Interaction
formulae are built prefixing each action with the correspondent object identifier and
establishing an equivalence (or implication) between the occurrence of these actions of
the two objects.

Returning books to the library is a similar situation of interaction between books and
users that can be established trough the formulae G((Vb.ret(u)=Vu.rets(b))).

We can use tableau systems to reason about objects in the presence of interactions, i.e., we
can use tableau systems to reason about the conceptual schema itself. These tableau
systems are similar to the ones introduced above but we consider also the interaction
formulae and in the axioms of the objects involved each action symbol and each
observation symbol is prefixed with the correspondent object identifier.

Consider the following tableau where b.(ai), 1<i<6 and u.(uj), 1<j<5, are the axioms of the

object description book and wser presented above where each action symbol and each
observation symbol involved is prefixed with the correspondent object identifier.
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W, b.(al),...,w,"b.(a6)
lUI':u.(ul),....,u.ll':u.(u5)
W, ":G((Vb.tak(u)eVu.taks(b))) (i1),
W, :G((Vb.ret(u)e> Vu.rets(b))) (i2)
LUl‘:—‘G(b.Vtak(u):.va.Vrgt(u))) - (D
| -G
w,'w, (2)
w,:—(b.Vtak(u)=Fb.Vret(u))) (3)
-=(3)
w,:b.Vtak(u)
Ww,:~Fb.Vret(u) (4)
| ¢an
W, :b.Vtak(u)eu. Viaks(b) (5)
< (5)
W, :=b.Vtak(u) w,:b.Vtak(u)
W, :=u.Vtaks(b) W,:u.Vtaks(b)
| G (u.a5)
W, Vx(u.Vtaks(x)=Fu.Vrets(x)) (6)
| v @)
W, :u.Vtaks(b)=Fu.Vrets(b) (7)
1 = (7) I
W, :Fu.Vrets(b) (8) W,:—u.Vtaks(b)
| Fii ®
W, w,w, (9)
W:u.Vrets(b)
| G a2
W, :b.Vret(u)su. Vrets(b)  (10)
< (10)
W, :~b.Vret(u) Wx:b.Vret(u)
Wi—u.Vrets(b) W, u.Vrets(b)
| ~F3) 9
W :—b.Vret(u)

This closed tableau assures that, in the presence of the above interactions, in the context of
object description book if the book b is taken by the user u then it will be returned by the
user to the library. Note that it is easy to see that this property would not necessarily be true
if we considered only the object description book in isolation.

5. Conclusions

In this paper we presented tableau systems for reasoning with objects.Given an object
description 0b and an assertion to be verified we can build a tableau using the rules of the
tableaux system OB. We also outlined how we can reason about the conceptual schema
itself using the objects as well as interaction mechanisms. Our tableau system is based
on the prefixed tableau system for modal logic and incorporates different aspects
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represented by different collections of rules: the usual rules related to connectives and
quantifiers, rules for dealing with the temporal operators, rules related to sequences of
states and rules that are specific of objects (related to birth, effects of actions on
observations, occurrence of actions and enabling of observations and actions). We have
not detailed here the module we used for arithmetic, equational and inequational
reasoning in the development of a theorem prover prototype based on the tableau system
presented.

Given an object description ob, the tableau system OB associated with it is sound wrt
unsatisfiable finite subsets of Fopr i e, if there a closed tableau for & then @ is an
unsatisfiable set. Completness is under current research.
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