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ABSTRACT

In a phylogenetic tree, branch saturation is the occurrence of too many mutations along
a branch as to provide information about the branch location and length. Since branch
saturation leads to unreliable reconstructed trees, testing all branches for saturation is
a necessary step in any accurate reconstruction protocol. The core of this work is the
software implementation of the asymptotic test for branch saturation. After presenting
three examples using different trees, the concept of saturation and its causes are analysed.
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1 Introduction

All living organisms share common genetic material. Hence, species are related to each
other by evolutionary relationships, which can be represented using a phylogenetic tree.
The goal of phylogenetics is to reconstruct what cannot be observed, that is, the evolu-
tionary process and the ancestral sequences. More precisely, phylogenetic reconstruction
aims to identify the regions of the DNA of different species which contain analogous infor-
mation, describe the evolutionary relationships between such species in terms of relative
recency of common ancestry and recover the evolutionary distance between them.

There are several methods of phylogenetic reconstruction. In this project, we focus on
the maximum likelihood method, which computes the probability that a data set fits a
tree and model of sequence evolution.

Since ancestral sequences cannot be observed, the reliability of their reconstruction de-
pends on the amount of information carried and preserved from the leaves. For this
purpose, Manuel and von Haeseler [2022] define the memory as the amount of identifi-
cation of the ancestral sequence, and the coherence of a given branch as the amount of
dependence between the two nodes separated by the branch.

These two measures are employed by Manuel and von Haeseler [2022] to construct a test
to detect branch saturation. Intuitively, saturation is the occurrence of too many muta-
tions in an alignment as to provide information about its evolutionary history.

The aim of this project is to understand phylogenetic reconstruction using maximum like-
lihood, as well as the new concepts describing phylogenetic information, namely memory,
coherence and saturation. In addition, we implement the saturation test in an efficient
and systematic way. Then we execute our implementation in different trees to have a
better comprehension of the concept of branch saturation.

The memoir is divided in six sections. After the introduction, Section 2 is dedicated to
explain the basic phylogenetic concepts, as well as the likelihood computation in a phylo-
genetic tree. In Section 3 we explain the new measures of phylogenetic information and
the asymptotic test for the detection of branch saturation introduced by Manuel and von
Haeseler [2022]. Sections 4 and 5 are devoted to the explanation of the methods used and
the results obtained, respectively. Finally, in Section 6 we summarise the conclusions of
the project.

The code of the implementation of the test has been written in Python, and IQ-TREE
[B.Q. et al., 2020] is used for the reconstruction.
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2 Preliminaries

2.1 Phylogenetic Trees

A phylogenetic tree T is a connected graph with no cycles where each node represents
a species or taxon. In a phylogenetic tree, the external nodes are called leaves and de-
pict the currently existing species, while the internal nodes represent (possibly extinct)
ancestral species. The edges of the tree represent the evolutionary processes connecting
the nodes.

A topology on a phylogenetic tree is described as the shape of the tree in addition to a
particular labelling of the leaves. In other words, it is a fixation of the branching structure
of the tree, thus establishing patterns of relatedness among taxa. If two phylogenetic trees
display the same topology and root, then they can be said to share the same biological
interpretation.

While the topology of the tree represents the speciation events occurred along the evo-
lutionary history, the length of an edge represents the number of mutations that occur
between the two species at the ends of such edge.

A tree is called a rooted tree if one vertex has been labelled as root, which represents
the common ancestor to all entities in the tree, and the edges are oriented away from it.
Otherwise, we say the tree is unrooted.

The number of branches connected to a node is called the degree of the node. Leaves
have degree 1. We say that a tree is binary if all internal nodes have degree 3.

Given a tree with m leaves and the set of sequences (l1, ..., lm) at the leaves, each i’th
site ∂ ∈ Am, where A is the state space of the entries at the leaves, is called a pattern.
That is, the set of nucleotides located in the i’th position of every leaf forms a pattern, as
represented in Figure 1. An alignment has as many patterns as the number of nucleotides
that are in a leaf sequence, and each pattern has a length equal to the number of leaves.
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Figure 1: Diagram of a phylogenetic tree with four leaves, each having a sequence of three
nucleotides. The concatenation of the i’th nucleotide from each leaf forms a pattern. In this
example four patterns are observed: AATG, AATT and ACAA.

2.2 Evolutionary Models

An evolutionary model describes the process through which a sequence of nucleotides
evolves into one another as a series of random mutational events. Evolutionary models
consider that processes at different tree edges are independent and nucleotides in a DNA
sequence do not depend on each other. In other words, evolutionary models assume that
evolution in different sites is independent and evolution in different lineages is indepen-
dent.

In continuous Markov models of evolution, each site of a sequence mutates independently
according to a probability transition matrix P (t) = eQt, with Q being the rate matrix.

Definition 2.1. A rate matrix Q = (qij) is a square matrix where the entries qij describe
the instantaneous rate at which the state i mutates to state j. Each row in the rate matrix
sums to 0 and the diagonal elements are defined as qii = −

∑
i ̸=j qij. A rate matrix Q

satisfies the following conditions:

(1) qii ≤ 0 for all i

(2) qij ≥ 0 for any i ̸= j

(3)
∑

j qij = 0 for all i

Definition 2.2. A probability transition matrix P (t) = (pij(t)) = eQt is a square
matrix where the entries pij(t) describe the probability of state i mutating to state j in
time t. The sum of the elements of each row in the probability transition matrix must be 1.

The state space of each nucleotide is A = {A,C,G, T}, each character corresponding
to the one of the four nucleotides that constitute the DNA. The nucleotide distribution
at time t ≥ 0 is the column vector π(t) = (πA(t), πC(t), πG(t), πT (t)) and the initial
nucleotide distribution is π(0). At any time t > 0, the nucleotide distribution satisfies
π(t)T = πT (0)P (t).
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Definition 2.3. An evolutionary process is stationary if the prior state distribution is
the unique equilibrium nucleotide distribution π that fulfils πTQ = 0 and πTP (t) = π.

Definition 2.4. An evolutionary process is time-reversible if πiqij = πjqji for all i ̸= j.

In this project we consider stationary and reversible evolutionary models.

Definition 2.5. The JC69 (Jukes and Cantor 1969) model is the simplest evolutionary
model, which assumes equal base frequencies

(
π = (1

4
, 1
4
, 1
4
, 1
4
)
)
and has a rate matrix of

the form

Q =


· µ

3
µ
3

µ
3

µ
3

· µ
3

µ
3

µ
3

µ
3

· µ
3

µ
3

µ
3

µ
3

·

 , with µ ∈ [0, 1].

Definition 2.6. The K80 (Kimura 1980) or K2P (Kimura two parameter) model as-
sumes equal base frequencies

(
π = (1

4
, 1
4
, 1
4
, 1
4
)
)
. It distinguishes between transitions (A ↔

G and T ↔ C) and transversions (A ↔ T , A ↔ C, G ↔ T and G ↔ C) and has a rate
matrix of the form

Q =


· a b a
a · a b
b a · a
a b a ·

 .

Definition 2.7. The GTR (General Time Reversible) model is the most general sta-
tionary time-reversible evolutionary model possible, since it assumes different rates of
substitution for each pair of nucleotides, in addition to assuming different frequencies of
occurrence of nucleotides. It does not have any restriction on π other than

∑
i πi = 1 and

the rate matrix has the form

Q =


· aπC bπG cπT

aπA · dπG eπT

bπA dπC · fπT

cπA eπC fπG ·

 .

Definition 2.8. The Discrete Gamma model [X. et al., 1995] considers several rate
categories approximating the gamma distribution with all rates having equal probability
and each site having pi probability of mutating at rate category i.

The following proposition states the eigenvector decomposition of a reversible rate matrix
(cfr. Levin and Peres [2017]).
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Proposition 2.9. For an irreducible rate matrix Q = (qij) over an alphabet A of K + 1
states, the following holds:

(a) Matrix Q has eigenvalue λ0 = 0 with algebraic multiplicity 1. A right eigenvector of
λ0 is 1, whose left eigenvector is the unique equilibrium distribution πT , defined by
equation πTQ = πT . The rest of eigenvalues of Q are complex number with strictly
negative real part. Finally, the exponential matrix eQt satisfies

eQt → 1πT as t → ∞.

(b) If matrix Q is reversible, then it has real eigenvalues 0 > λ1 ≥ ... ≥ λK. Moreover,
matrix Q has an orthogonal basis of right eigenvectors vk and left eigenvectors hT

k

such that hk = π ◦ vk = Diag(π)vk for k ∈ [0, K], where v0 = 1, h0 = π and
Q = 1πT + v1h

T
1λ1 + ... + vKhT

KλK. Finally, the exponential matrix eQt can be
computed as

eQt = 1πT + v1h
T
1 e

λ1t + ...+ vKhT
KeλKt.

2.3 Likelihood in a Phylogenetic Tree

In this section we describe the likelihood computation in a phylogenetic tree, introduced
by Felsenstein [2004]. The likelihood of a tree is the probability of obtaining the observed
sequence alignment given a tree topology, branch lengths and substitution model.

Given the observed data D, a set of aligned sequences of length m, the likelihood of an
evolutionary process E is Pr(D|E). Because the evolution in different sites is independent,
we can decompose the likelihood into a product, one term for each site, as

L(E) = Pr(D|E) =
m∏
i=1

Pr(D(i)|E), (1)

where D(i) is the data at the i’th site.

Figure 2: Tree with branch lengths and data at a single site.

5



Suppose that we have a tree with the data at a single site as shown in Figure 2. Then,
the likelihood of the process given this site is the sum of the probabilities of each scenario
of events over all the possible nucleotides A = {A,C,G, T} at the interior nodes of the
tree, namely

Pr(D(i)|E) =
∑
x∈A

∑
y∈A

∑
z∈A

Pr(x)Pr(y|x, t5)Pr(z|x, t6)

Pr(A|y, t1)Pr(C|y, t2)Pr(C|z, t3)Pr(G|z, t4).
(2)

The assumption that evolution is independent in different lineages allows us to decompose
Pr(D(i)|E) as

Pr(D(i)|E) =
∑
x∈A

Pr(x)

(∑
y∈A

Pr(y|x, t5)Pr(A|y, t1)Pr(C|y, t2)

)
(∑

z∈A

Pr(z|x, t6)Pr(C|z, t3)Pr(G|z, t4)

)
,

(3)

with the quantities inside the parentheses representing the likelihood of each of the sub-
trees.

Since the observed data at a single site i, D(i), forms a pattern, we can rewrite Equation
1 as

L(E) =
∏
∂

Pr(∂|E)n∂ , (4)

where n∂ is the number of times a pattern ∂ is observed in the data D. Hence, the
log-likelihood of process E is

L(E) =
∑
∂

n∂ log(Pr(∂|E)). (5)

To estimate the true process that generated the data, we use a maximum likelihood esti-
mate [Springer Verlag GmbH, European Mathematical Society, 2022a].

The Pulley principle [Felsenstein, 1981] states that, if the evolutionary process is reversible
and stationary, then the root of the tree cannot be identified. This is due to the fact that
the replacement of the root gives the same probability of observing pattern ∂ assuming
process E. Consequently, the diagrams of Figure 3 are equivalent.
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Figure 3: Two equivalent stationary and reversible processes as stated by the Pulley principle.
On the left, the child configurations x and y are obtained by mutating the root sequence R
as determined by the rate matrix Q. On the right, the root sequence x is sampled using the
stationary distribution π and y is generated by mutating it according to Q.

If we consider an evolutionary process E on a tree rooted at R, the likelihood vector of
R given pattern ∂ is the vector ρ∂ of probabilities of observing ∂ at one site given each
possible nucleotide at that site of the root, that is,

ρ∂ := (ρi∂) := (Pr(∂|i at node R)), (6)

where i ∈ A and E is omitted for simplicity. Since
∑

∂ Pr(∂| i at node R) = 1 for all
i ∈ A, meaning that the sum of probabilities of observing all possible patterns given a
nucleotide at the root is 1, it follows that

∑
∂ ρ∂ = 1.

Moreover, using the law of total probability [Springer Verlag GmbH, European Mathe-
matical Society, 2022b], the likelihood of a process E given pattern ∂ is

L(E) = Pr(∂|E) =
∑
i∈A

Pr(i at node R)Pr(∂|i at node R) = π · ρ∂ , (7)

where · is the Euclidean product.

Now consider two nodes A and B adjacent to a common root R, with two subtrees rooted
at nodes A and B, called clades, as showed in Figure 4. The evolutionary distance from
R to nodes A and B is t1 and t2, respectively, with t1+ t2 = t. If the tree has a total of m
leaves, now we have a clade A with k leaves and a clade B with m− k leaves. A pattern
∂ induces sub-patterns ∂A and ∂B. Conversely, the subpatterns ∂A and ∂B determine
pattern ∂.
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Figure 4: Diagram of the two clades rooted at A and B, separated by branch AB and with
evolutionary distance t1 and t2, respectively, to the common root R. Pattern ∂ induces sub-
patterns ∂A and ∂B.

If we can observe only pattern ∂A and the process consists only on clade A, the likelihood
vector at node A given ∂A is

α∂A := (αi
∂A) := (Pr(∂A|i at node A)). (8)

Analogously, the likelihood vector at node B given ∂B is

β∂B := (βi
∂B) := (Pr(∂B|i at node B)). (9)

Since the probability of state i ∈ A mutating to j ∈ A in time t is pij(t), where (pij(t)) =
eQt, the likelihood vector at node R given only clade A is

Pr(∂A|i at node R) = eQt1α∂A. (10)

Analogously, the likelihood vector at node R given only clade B is

Pr(∂B|i at node R) = eQt2β∂B. (11)

Since subpatterns ∂A and ∂B are a partition of ∂, we have

ρ∂ = (eQt1α∂A) ◦ (eQt2β∂B), (12)

where ◦ is the element-wise product, also known as Hadamard product.

Because we are considering a reversible and stationary process, we can place the root on
node A without altering the likelihood. Therefore we set t1 = 0 and t2 = t, giving

ρ∂ = α∂A ◦ (eQtβ∂B). (13)

All in all, given pattern ∂, the likelihood of branch AB having length t is
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Pr(∂|t) = π · ρ∂ = π ·
(
α∂A ◦ (eQtβ∂B)

)
= αT

∂ADiag(π)e
Qtβ∂B. (14)

All multiples of the likelihood vector can be used to have a maximum likelihood estimator
of the ancestor identity at the root. The normalised likelihood vector at the root R was
defined by Manuel [2022] in order to have a unique representation of all likelihood vectors
as

ρ̃∂ :=
ρ∂

π · ρ∂

=
ρ∂

Pr(∂)
. (15)

If ρ∂ has nearly uniform entries, then it is difficult to estimate the ancestor sequence at
the root R, because the probability of observing the pattern ∂ would be approximately
equal given each possible nucleotide at the root. Moreover, vector ρ∂ is uniform when
ρ̃∂ = 1, where 1 is the column vector full of 1’s.

2.3.1 Decomposition of the likelihood of a branch

Here we introduce the spectral decomposition of the likelihood of a branch as described
by Manuel [2022].

Assuming that Q is reversible and using Proposition 2.9.b, we have Diag(π)eQt = ππT +∑
k∈[K] hkh

T
ke

λkt. Thus we can then rewrite Equation 14 as

Pr(∂|t) = αT
∂ADiag(π)e

Qtβ∂B = Pr(∂A)Pr(∂B) +
∑
k∈[K]

(α∂A · hk)(β∂B · hk)e
λkt. (16)

Equation 16 shows that Pr(∂|t) = Pr(∂A)Pr(∂B) when subpatterns ∂A and ∂B are
independent, since the second term of Equation 16 vanishes for large t because λk is
always negative. Therefore, the dependence factor D(∂|t) can be defined to measure the
dependence between events ∂A and ∂B as

D(∂|t) := Pr(∂|t)
Pr(∂A)Pr(∂B)

= α̃T
∂ADiag(π)e

Qtβ̃∂B, (17)

where we used Equation 15. The dependence factor will be equal to 1 if the two sub-
patterns are independent. Using Equation 16, the dependence factor can be decomposed
as

D(∂|t) = 1 +
∑
k∈[K]

(α̃∂A · hk)(β̃∂B · hk)e
λkt. (18)

Note that D(∂|t) → 1 as t → ∞, indicating again that subpatterns ∂A and ∂B become
independent as the branch length t grows.
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3 New Measures of Phylogenetic Information

3.1 Coherence

In this section we describe the concept of coherence, introduced by Manuel and von Hae-
seler [2022].

Given two vectors v = (vi) and w = (wi), their π-inner product is

⟨v,w⟩π := π · (v ◦w) = vTDiag(π)w =
∑
i

πiviwi. (19)

Consider two adjacent nodes A and B determining branch AB, which induces a partition
of ∂ into ∂A and ∂B. Using the π-inner product, the coherence of branch AB given ∂
is defined as

C∂(A;B) := ⟨ρ̃∂A − 1, ρ̃∂B − 1⟩π = ⟨ρ̃∂A, ρ̃∂B⟩π − 1, (20)

using that ⟨ρ̃∂A,1⟩π = ⟨ρ̃∂B,1⟩π = 1.

The population coherence of branch AB is defined as

C(A;B) := E[C∂(A;B)] =
∑
∂

Pr(∂)C∂(A;B). (21)

In words, the population coherence is the sum of the coherence of all patterns multiplied
by their respective probabilities of being observed. The population coherence quantifies
the dependence between clades A and B, because it tends to zero as the true length of
branch AB grows.

Given an alignment of n sites where pattern ∂ is observed n∂ times, the sample coher-
ence of branch AB is the coherence of a representative part of the population and is
defined as

Ĉ(A;B) :=
∑
∂

n∂

n
C∂(A;B). (22)

3.1.1 Decomposition of the coherence

The coherence between nodes A and eQtB is

C∂(A; eQtB) = ⟨α̃∂A, e
Qtβ̃∂B⟩π − 1 = α̃T

∂ADiag(π)e
Qtβ̃∂B − 1 = D(∂|t)− 1. (23)
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Thus, the coherence of a branch AB goes to zero as subpatterns ∂A and ∂B are close to
independent.

Using Equation 18 and the fact that C∂(A; eQtB) = C∂(A;B) when t = 0, one can write

C∂(A;B) =
∑
k∈[K]

(α̃∂A · hk)(β̃∂B · hk). (24)

Motivated by this decomposition, the k-projection of the coherence of branch AB given
pattern ∂ is defined as

C∂
k (A;B) := (α̃∂A · hk)(β̃∂B · hk). (25)

Hence, Equation 24 can be rewritten as

C∂(A;B) =
∑
k∈[K]

C∂
k (A;B). (26)

The k-projection of the population coherence of branch AB is defined as

Ck(A;B) := E[C∂
k (A;B)]. (27)

and the k-projection of the sample coherence of branch AB as

Ĉk(A;B) :=
∑
∂

n∂

n
C∂

k (A;B). (28)

3.2 Memory

In this section we explain the concept of memory, introduced in Manuel and von Haeseler
[2022].

In Equation 15 the memory vector is defined as ρ̃∂ − 1, meaning that it would be zero
when ρ∂ is uniform and increase as the ancestor sequence at the root R becomes more
identifiable. Hence, the module of the memory vector can be used to describe the ex-
pected ”amount of identification” of the ancestral sequence.

Given the π-inner product defined in 19, the L2(π)-norm of a vector v is ∥v∥π =
√

⟨v,v⟩π =√∑
i πiv2i . From this, the memory of a clade R given pattern ∂ is defined as

M∂(R) := ∥ρ̃∂ − 1∥2π, (29)

while the population memory of a clade can be defined as
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M(R) := E[M∂(R)] =
∑
∂

Pr(∂)M∂(R). (30)

The population memory is an average for all patterns of ∥ρ̃∂ − 1∥2π. It is small if the
likelihood of the ancestral states at the root is uniform. Therefore, it quantifies the iden-
tification of the root, that is, how confidently we expect to reconstruct the root ancestral
state.

If there is an alignment where pattern ∂ is observed n∂ times, to estimate M(R) we use
the sample memory of clade R, which is defined as

M̂(R) :=
∑
∂

n∂

n
M∂(R). (31)

3.2.1 Decomposition of the memory

Algebraically, for a clade R, M∂(R) = C∂(R;R). Then, using Equation 24 one can write

M∂(R) =
∑
k∈[K]

(ρ̃∂ · hk)
2. (32)

The kl-projection of the memory of a clade R given ∂ is defined as

M∂
kl(R) := (ρ̃∂ · hk)(ρ̃∂ · hl), (33)

and thus we can rewrite Equation 32 as

M∂(R) =
∑
k∈[K]

M∂
kk(R) (34)

The kl-projection of the population memory of a clade R is defined as

M∂
kl(R) := E[M∂

kl(R)], (35)

and the kl-projection of the sample memory of a clade R as

M̂kl(R) :=
∑
∂

n∂

n
M∂

kl(R). (36)

3.3 Branch Saturation

Saturation is defined by Manuel and von Haeseler [2022] as the lack of significance to
reject the null hypothesis that the alignment was generated from an infinite evolutionary
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process. Following this definition, we say a branch AB is saturated if we cannot reject
the null hypothesis that the true length t∗ of the branch is infinite. Recall that t∗ → ∞
implies that subpatterns ∂A and ∂B are independent. Since we assume a reversible pro-
cess, the root of any tree is unidentifiable and, therefore, if branch AB is saturated, then
the reconstructed tree is composed by unrooted clade A (removing parent node A) inde-
pendent from unrooted clade B (removing parent node B).

A saturated branch AB can be explained in three ways:

• Too many mutations have happened due to t∗ being too large. An alignment with
more sites has a higher probability of rejecting saturation.

• Some sites are wrongly aligned.

• The assumed evolutionary process is incorrect. Either the tree topology, the branch
lengths or the rate matrix are erroneous.

3.3.1 Dominant sample coherence

Manuel and von Haeseler [2022] define the dominant sample coherence as follows.

Proposition 3.1. Given an alignment where pattern ∂ is observed n∂ times, assume that
the alignment is the realization of a stationary and reversible process on a tree with rate
matrix Q. If matrix Q has eigenvalues 0 ≥ λ1 ≥ ... ≥ λK such that λ1 has multiplicity
D ≤ K, then the dominant sample coherence can be defined as

δ̂ :=
∑
k∈[D]

Ĉk(A;B) =
∑
k∈[D]

∑
∂

n∂

n
(hk · α̃∂A)(hk · β̃∂B).

Assuming t → ∞, the dominant sample coherence δ̂ satisfies that

E[δ̂|t∗ → ∞] =
∑
k∈[D]

E[C∂
k (A;B)|t∗ → ∞] = 0. (37)

Since we assume that the sites of an alignment are generated independently, the integers
n∂ are multinomially distributed with probabilities Pr(∂). Therefore, for large n, each
observed quantity n∂ can be approximated as the outcome a normal distribution, as well
as the sample dominant coherence δ̂, which is a linear combination of the integers n∂.
Thus, the distribution of statistic δ̂ can be approximated as

δ̂ ∼ N(0, σ2), (38)

where the variance σ2 is defined as

σ2 := V ar[δ̂|t∗ → ∞] =
1

n

∑
k,l∈[D]

Mkl(A)Mkl(B), (39)
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and N(µ, σ2) is the normal distribution [Springer Verlag GmbH, European Mathematical
Society, 2022c].

3.3.2 The asymptotic test for branch saturation

In order to detect if a branch is saturated or not, Manuel and von Haeseler [2022] propose,
given a level of significance α, the following asymptotic test:

”Reject t∗ → ∞ if δ̂ > cs”, (40)

where the saturation coherence cs ∈ [0, 1] is chosen so that

Pr(δ̂ > cs|t∗ → ∞) = α. (41)

When δ̂ > cs we cannot reject the null hypothesis that t∗ → ∞ and, hence, we say that
branch AB is saturated with significance α. Otherwise, we say that branch AB is infor-
mative with significance α.

From Equations 38 and 39, we can approximate cs for large n as

cs ≈ zα

√
1

n

∑
k,l∈[D]

Mkl(A)Mkl(B), (42)

where zα is defined such that Pr(Z > zα) = α for Z ∼ N(0, 1).

The asymptotic test is simplified if D = 1. Then δ̂ = Ĉ1(A;B) and

cs ≈ zα

√
M11(A)M11(B)

n
, (43)

The asymptotic test is also simplified if the branch AB is an external branch, meaning
that either A or B is a leaf. Assuming, for example, that A is a leaf, then

cs ≈ zα

√
1

n

∑
k∈[D]

Mkk(B). (44)

In addition, if B is also a leaf, then the saturation coherence is

cs ≈ zα

√
D

n
. (45)
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If a clade A has a small number of leaves, then it is possible to compute Mkl(A) numer-
ically. In more complicated instances, we build confidence intervals of radius ϵ around

each sample memory M̂kl(A) and M̂kl(B) using the fact that Var[M̂∂
kl(R)] ≤

√
Umin(K,U/4)

n
.

Then we use ϵ to construct a confidence interval around
∑

k,l M̂kl(A)M̂kl(B). This slightly
increases cs and improves the stability of the test.

4 Implementation

Figure 5 shows a summary of our implementation of the saturation test.

Figure 5: Diagram representing the workflow of the implementation.

Our input is a multiple sequence alignment. Then, IQ-TREE [B.Q. et al., 2020], using
the maximum likelihood criterion, estimates the (hopefully) optimal substitution model
and evolutionary tree given the alignment.

The output that we need from IQ-TREE is the tree topology and the branch lengths.
Moreover, assuming the discrete Gamma model (Definition 2.8), then we need the prob-
ability of each site mutating at each of the different rates, as also the rates themselves.

IQ-TREE outputs its reconstructed tree in Newick format [Felsenstein, 2004, Olsen G.,
1990], a way of representing graph trees using parentheses and commas. In Newick format,
the distance from a node to its parent is indicated by a number following a colon written
at the right side of the node’s name. Nodes that have a common parent node are separated
by commas. Those nodes written inside the same parenthesis are part of the same subtree
and the node which is written at the right side of a closing parenthesis is the parent of
that subtree. Typically, a tree’s representation is rooted on an internal node. When an
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unrooted tree is represented in Newick notation, an arbitrary node is chosen as root. A
simple tree and its corresponding Newick format is shown in Figure 6.

Figure 6: Tree (left) and its corresponding Newick format (right). In this case the tree is rooted
at node H. The vertical distances are meaningless.

Once we have the output from IQ-TREE, we need to read its Newick format. Then we
split the two clades connected by each branch and store the clades. For instance, the split
induced by branch HG in Figure 6 is shown in Figure 7.

Figure 7: Trees (left) and their corresponding Newick formats (right) of the two subtrees con-
nected by branch HG.

Assuming the discrete Gamma model, we separate the alignment into regions, each corre-
sponding to its most likely rate category. To do so, we use the IQ-TREE output containing
the probabilities of each site mutating at each of the different rates. For a given site, if
all rate categories are equally likely, we consider that site as uninformative and remove it.
Then we store copies of all the clades with their branch lengths multiplied by each of the
rates. For each clade and rate category, we store their corresponding subalignment region.

We input each clade and its corresponding subalignment region into IQ-TREE, while
fixing the same evolutionary process as the first IQ-TREE reconstruction. This gives, for
each site, the posterior probability r∂ = (rA, rC , rG, rT ) of observing each nucleotide at
the parent node of the clade. Since we assume a stationary process, the posterior r∂ is
closely related to the normalized likelihood vector ρ̃∂ through the relationship

ρ̃∂ ◦ π = r∂ . (46)
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We diagonalise the rate matrix to obtain the largest non-zero eigenvalues and their cor-
responding eigenvectors, which will be used for the asymptotic test.

Finally, we compute the asymptotic test for branch saturation. To do so, we need to
compute the dominant sample coherence δ̂ of Proposition 3.1 for each branch and rate
category. Then, we calculate the saturation coherence cs of Equation 42. A confidence
interval of radius ϵ is added to cs, as explained in Section 3.3.2.

The final output of the implementation are the values of the statistic δ̂ and the saturation
coherence cs for each branch and rate category. From this, we can determine the satu-
ration status of each branch assuming each rate category: either the branch is saturated
(when δ̂ < cs) or informative (when δ̂ > cs).

The Python code of the implementation can be acccessed in https://drive.google.

com/drive/folders/1UaqdUyGxb99Di-N34h9Bs4CYuYtziVkw?usp=sharing.

5 Results

5.1 Example 1

In this example we use the DNA alignment of length 3265 of the ENV gene from five
SIV sequences, extracted from LANL [2020] [Foley et al., 2020]. Due to their high rate
of mutation, phylogenies of SIV tend to vary depending on the data used for the analysis
[K. et al., 2009]. Hence, we aim to use the asymptotic test to detect if a region of the
alignment is not supporting a particular branch of the tree.

We use IQ-TREE assuming a GTR model and a Gamma model with four mutation rates,
to reconstruct the maximum likelihood tree of these SIV species. The reconstructed tree
is shown in Figure 8.
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Figure 8: Reconstructed phylogenetic tree of the five SIV species with labelled nodes and branch
lengths. There are three internal nodes, called N1, N2 and N3.

For simplification, let us call the different SIV sequences SIV1, SIV2, SIV3, SIV4 and
SIV5, corresponding to the sequences shown from top to bottom in Figure 8.

According to the IQ-TREE reconstruction, the four substitution rates are f1 = 0.2087,
f2 = 0.5817, f3 = 1.077 and f4 = 2.273. The alignment regions corresponding to each of
the four rates have lengths n1 = 991, n2 = 431, n3 = 390 and n4 = 1008. As the original
branch lengths are multiplied by each of the four rates, we have four trees with different
branch lengths.

We choose significance level α = 0.05, giving zα ≈ 1.96, to execute the asymptotic test to
detect branch saturation.

In the two regions corresponding to the f1 and f2, the test rejects the null hypothesis in
all branches. This is reasonable, since their corresponding modified branches are consid-
erably shorter than the original branches.

In the alignment region corresponding to the f3, the null hypothesis that t
∗ → ∞ cannot

be rejected in the longest branch of the tree, connecting node N3 with the leaf corre-
sponding to the sequence SIV5, which has length 1.404 after being multiplied by the
corresponding mutation rate. We can say that the region with rate f3 has not collabo-
rated in the reconstruction of this branch. In this case, δ̂ = 0.04 and cs = 0.098. For this
rate, the rest of branches are informative.

In the region with reconstructed rate f4 the asymptotic test cannot reject the null hy-
pothesis in any of the branches and concludes that all of them are saturated. In this
case, the dominant sample coherence δ̂ takes negative values around −0.1 in the external
branches and −0.07 in the internal ones, while cs is around 0.03. Intuitively, we may
say that the IQ-TREE reconstruction method has grouped under the largest rate all un-
informative patterns. Consequently, this region, which has about one third of the sites,
can be ignored without significantly affecting the phylogeny, or equivalently we could just
set f4 = ∞. All in all, the asymptotic test for saturation has recognized a region not
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providing significant information for the reconstructed phylogeny.

5.2 Example 2

In this example we use a simulated binary and fully balanced tree (with left and right
subtrees of any node having the same amount of leaves) with 64 sequences of size n = 1000.
The species can be grouped in four subtrees of 16 taxa each, with all the branches in these
clades having length 0.01. The clades are connected by branches of length 3, and those
branches are connected by an internal branch of length 0.02. A simplified representation
of this example is shown in Figure 9.

Figure 9: Simulated binary and fully balanced tree with 64 taxa grouped in four clades repre-
sented by four triangles. The branches’ lengths are shown. The internal nodes are called N1,
N2, N3, N4, N5 and N6.

We use IQ-TREE assuming a JC model, in addition to a Gamma model with four muta-
tion rates. In this case, we fix the tree and branch lengths.

According to the IQ-TREE reconstruction, the four substitution rates are f1 = 0.1347,
f2 = 0.4733, f3 = 0.9981 and f4 = 2.394. The alignment regions corresponding to each of
the four rates have lengths n1 = 191, n2 = 235, n3 = 255 and n4 = 319. As the original
branch lengths are multiplied by each of the four rates, we have four trees with different
branch lengths.

To execute the asymptotic test to detect branch saturation, we choose significance level
α = 0.05.

The branches inside the four clades are always informative for all substitution rates, mean-
ing that a significant amount of information is conserved from the leaves to nodes N3,
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N4, N5 and N6.

In the regions corresponding to rate f1 the test rejects the null hypothesis in all branches
and, hence, we say that all of them are informative.

In the regions corresponding to rates f2, f3 and f4 the four long branches are saturated,
since the test cannot reject the null hypothesis in any of them. Consequently, when it
comes to these three regions, the information carried from the leaves is lost on nodes N3,
N4, N5 and N6. Hence, the four clades of 16 taxa would be independent.

Moreover, in the three regions corresponding to f2, f3 and f4, the internal short branch
connecting nodes N1 and N2 is saturated too. This gives the intuition that the saturation
of a branch does not depend its length, but on the information at the two nodes connected
by the branch. Thus, we can say that a short branch is not necessarily informative, spe-
cially if such branch is internal.

5.3 Example 3

In this example we use the same 64 simulated sequences of size n = 1000 as in Section
5.2, but without fixing the model, the tree topology nor the branch lengths, allowing
IQ-TREE to determine the optimal model and tree by the maximum likelihood criterion.
IQ-TREE selects JC as model, in addition to a discrete Gamma. The maximum likeli-
hood tree is shown in Figure 10.

While the simulated tree in Figure 9 has four long branches of equal length connecting
four clades of 16 taxa, the maximum likelihood tree in Figure 10 has, as well, four long
branches connecting four clades of 16 taxa, but of different lengths. Furthermore, in Fig-
ure 9 node N1 connects nodes N3 and N4, and node N2 connects nodes N5 and N6. In
the reconstructed tree in Figure 10, however, node N1 connects nodes N3 and N6, and
node N2 connects nodes N5 and N4. The taxa inside each clade is the same in both the
simulated tree (Figure 9) and the reconstructed tree (Figure 10).
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Figure 10: Tree with 64 taxa grouped in four clades represented by four triangles. The branches’
lengths are shown. The internal nodes are called N1, N2, N3, N4, N5 and N6.

The four substitution rates are f1 = 0.1347, f2 = 0.4733, f3 = 0.9981 and f4 = 2.394.
The alignment regions corresponding to each of the four rates have lengths n1 = 251,
n2 = 296, n3 = 150 and n4 = 303. We have four trees with different branch lengths after
multiplying the original branch lengths by each of the four rates.

To execute the asymptotic test to detect branch saturation, we choose significance level
α = 0.05.

The branches inside the four clades are always informative for all substitution rates.

In the regions corresponding to rates f1 and f2 the test rejects the null hypothesis in all
branches and, hence, we say that all of them are informative.

In the regions corresponding to rates f3 and f4 the four long branches are saturated, since
the test cannot reject the null hypothesis in any of them. Moreover, the internal short
branch connecting nodes N1 and N2 is saturated too.

6 Conclusions

Our most important achievement has been the systematic implementation of the asymp-
totic test for branch saturation. Furthermore, we described and understood phylogenetic
reconstruction using maximum likelihood, in addition to the new measures of phyloge-
netic introduced by Manuel and von Haeseler [2022].
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From the test results on the three examples in Section 5 we can highlight the following
conclusions:

• The sequence region corresponding to the fastest mutation rate tends to group all
all uninformative patterns. Consequently, this region can be ignored without sig-
nificantly affecting the phylogeny, which is equivalent to setting its corresponding
rate to infinity. Thus the asymptotic test for saturation can recognize regions not
providing significant information for the phylogenetic reconstruction.

• Long branches can be saturated even for small rates, as we have seen in Section 5.1.

• A short branch is not necessarily informative, specially for internal branches. The
output of the test does not depend directly on the length of the branch, but on the
information at the two nodes adjacent to such branch. We have seen this in Sections
5.2 and 5.3.
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