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Abstract

Oscillations are ubiquitous in the brain and robustly correlate with distinct cognitive tasks. A specific type
of oscillatory signals allows robust switching between states in networks involved in memorizing tasks. In
particular, slow oscillations lead to an activation of the neuronal populations whereas oscillations in the
beta range are effective in clearing the memory states.

In this master thesis, previous works are revisited in order to provide a detailed analysis of the mecha-
nisms underlying the states’ switching and their dependence on the network parameters. The model studied
is a macroscopic description of the network recently derived due to mean-field theory advances. The role
of spiking synchrony in the “switching off” of the active states is identified by means of bifurcation analysis
and the study of the fixed points under the stroboscopic map. Finally, we propose an application of the
effect of oscillations in a context of working memory.

Keywords

Computational neuroscience, dynamical systems, working memory, mean field equations, bifurcation anal-
ysis, stroboscopic map.
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1. Introduction

When recording the brain electrical activity using an electroencephalogram, the presence of oscillatory
patterns is indisputable. During the second half of the 20th century several scientifics evidenced the role
of neuronal circuits self producing oscillations (“central pattern generators”) in motor functions such as
walking or breathing [1]. However, the possible contribution of brain waves in cognitive tasks such as
memorizing has not been completely explored yet.

Recent advances in mean-field theory [2] provide low-dimensional models for the macroscopic activity
of complex neuronal networks. It is possible then to study the effect of oscillatory signals in the mean
behaviour of the network. It has been observed that oscillatory inputs in particular frequency bands can
generate robust switches between different neuronal states. In particular, low external input frequencies
(around 1.6Hz) are effective in “switching on” the neuronal activity, whereas frequency values in the beta
range [13Hz-30Hz] can serve to clear memory states. The described results have been presented and
analysed in the research article Network mechanisms underlying the role of oscillations in cognitive tasks,
2008, by Schmidt et al. [3].

The initial goal of this master thesis is to retrieve the results obtained in [3] and to understand the
drawn conclusions. First, we provide a detailed analysis of the mechanisms underlying the transitions
between memory states. Specifically, a bistable neuronal network is considered as a canonical model for
a memory circuit to which an oscillatory external current is applied (Section 2). The macroscopic model
that describes the network behaviour is analysed using bifurcation theory, which is the mathematical study
of changes in the qualitative behaviour of the system due to changes in the parameters. The first analysis
is done for the non-forced network and allows to find the suitable parameters so that the network presents
bistability and is appropriate for the working memory setting (Section 3). Then the response of the network
to periodic forcing of different frequencies freq is studied (Sections 4, 5). This is done in particular by
means of the stroboscopic map (also known as the Poincaré phase map), which sends each point of the
system to its position after time 1

freq (i.e. the period of the external input).

Finally, to go beyond previous works, in section 8 we propose an application of the studied model in
a specific context of a simple working memory task inspired by the results of the doctoral thesis [4]. In
particular, the items to memorize are defined by the combination of one colour and one location, encoded
by two networks connected via excitation. In the models that we present, the binding between colour and
location is accomplished through the synchronization of neuronal activity of the two connected networks.
The possible role of surrounding oscillations is explored. In particular, it is investigated if oscillations
with frequency in a specific range can help to decode the color-location pairs that were memorized. The
dynamical models used are inspired by the ones described in the extension of the model for multiple
interconnected neuronal networks in Schmidt et al. [3].
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Contribution of oscillations in memory tasks

2. A reduced model for a QIF neuronal network

The information received by a neural system is processed and transmitted by billions of neurons that are
connected through synaptic connections. The propagation of a signal along each neuron is provoked by a
rapid change in its membrane potential, also called an action potential or a spike. The information arrives
to the axon of a neuron (pre-synaptic structure) and is then transmitted via a synapse to other neurons’
dendrites (post-synaptic structure). The chemical synapses can be excitatory or inhibitory depending on
whether an action potential in the pre-synaptic neuron increases or, respectively, decreases the probability
that an action potential occurs in the post-synaptic neuron.

Neuronal activity has been extensively studied through different computational models. The Hodgkin-
Huxley model provides a detailed and biologically accurate description of the initiation and propagation of
actions potentials in individual neurons. However, it is a computationally expensive model when studying
large networks. Another widely used family of models for single neurons are the integrate-and-fire models,
significantly simpler to compute. In this family of models the spikes are described as events: their shape
and particular characteristics are not taken into account, only their existence [5]. Thus, the model consists
in a single differential equation, describing the membrane potential evolution, and a mechanism to generate
spikes when the voltage reaches some threshold vth. A type of integrate-and-fire model often used is the
quadratic integrate and fire (QIF) model. The dynamics of a neuron’s voltage v are described by an
autonomous differential equation and a reset condition:

v̇ = v2 + I , if v ≥ vth, then v ← vreset ,

where I is a constant representing the external input and vreset is the value given to the voltage when it
has reached the threshold vth that determines the presence of a spike. The dot means a differentiation
with respect to time t and, for easier readability, this dot notation will be used for almost all equations in
this work. Similarly, note that the time dependence is assumed for variables x that have explicit dynamics
(i.e. an equation for ẋ).

Another approach for the analysis of large neuronal networks arises from macroscopic observations of
the neurons’ mean firing rate (frequency at which spikes occur). The derived models, characterized by the
firing-rate equations (FREs) [6], have been proved effective to understand specific network functions such
as memory or decision making. In 2015 [2], researchers derived a set of macroscopic FREs for networks of
heterogeneous, all-to-all coupled QIF neurons, which is exact in the thermodynamic limit (that is, for large
numbers of neurons). This is the model that will be studied through this thesis.

2.1 Mean-field equations

The network considered in this work consists on N excitatory heterogeneous QIF neurons, all-to-all
coupled. The individual voltage state description [2] for each neuron j ∈ N of the network is given by the
equations :

v̇j = v2j + Ij(t), if vj ≥ vth, then vj ← vreset (1)

Ij(t) = ηj + J · s(t) + I (t). (2)

Equation (1) is the ordinary differential equation describing the dynamics of the membrane potential
{vj}j=1,...,N and the reset condition. Without loss of generality, the time and voltage have been rescaled to
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simplify the equation. The input currents are described in equation (2). The recurrent input is the synaptic
weight J multiplied by the mean-synaptic activation s(t) (for more details see [2]). The external input has
a time-varying component I (t). Also, heterogeneity is introduced in the network via the constant input
current ηj . It models the fact that not every neuron is at the same state of excitability or has the same
probability to exhibit a spike. The constants {ηj}j=1,...,N are distributed following a Lorentzian distribution
L of half-width ∆ and centered at η:

L(x) =
1

π

∆

(x − η)2 +∆2
.

The Lorentzian distribution was validated with several numerical simulations and it is chosen because
of its mathematically convenience for a dimensionality reduction [2]. Indeed, when N is very large, the
microscopic model (1) -(2) is computationally expensive to study. Therefore, we will consider instead a
system of FREs that provides an precise description of the macroscopic activity of the presented network
of QIF neurons [3], assuming that N tends to infinity. The mean field equations, derived in [2], are:{

τ2ṙ = ∆
π + 2τvr ,

τ v̇ = v2 + Jτ r + η − π2τ2r2 + I (t),
(3)

where r(t) and v(t) are respectively the average firing rate (spikes per second) and the average mem-
brane potential (voltage) of the network. The strength of the synaptic weights is represented by J, and
I (t) is the external input. Parameters η and ∆ are, respectively, the center and width of the Lorentzian
distribution of inputs, which brings heterogeneity in the network (as explained in the previous paragraph).
Finally τ is the membrane time constant of the individual neurons. Through all this work we fix the
parameters ∆ = 2 and τ = 20 ms, as it was done on the studied paper [3].

The external periodic input I (t) models the existing oscillations in the brain that might be involved in
the process of memorization and are the core of this work.
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3. Analysis of the network model without forcing

In this section we study the network model (3) without external input. This will bring information
about the possible final states of the network for different initial conditions of the mean firing rate and the
mean voltage. For example, for some given parameters, a goal is to know whether the network initialized
with a high mean firing rate will continue active as time goes, or its mean firing rate will decrease instead.
The analysis is done by means of the bifurcation theory, a type of study that we introduce in the next
paragraph.

3.1 Some concepts of bifurcation analysis

When analysing a dynamical system, we are interested in studying the invariant objects of the system,
since they organize the dynamics around them. Amongst the invariant objects one can look for the fixed
points, which are a type of steady states. For this thesis, the fixed points of interest are: the stable
node, the saddle point and the stable focus. The type of fixed point for any x can be determined by the
eigenvalues of the Jacobian matrix of system (3) evaluated in x . For instance, for x ∈ R2, x would be a
stable (or attracting) node if both eigenvalues are negative and real, a saddle point if the eigenvalues are
real and have different signs and, finally, a stable (or attracting) focus if both eigenvalues are complex with
negative real part.

Once the steady states of the system are known, the aim is to understand their dependence on the
parameters. How changes on one parameter can impact the existence or stability of the fixed points?

This question is studied through bifurcation analysis, which is the mathematical study of qualitative
changes in the system response when one or more parameters vary. The type of bifurcation particularly
relevant for the studied two dimensional model (3) is the Saddle-node bifurcation: as the parameter of
interest changes, two fixed points of the system appear, merge or disappear.

Consider for instance a function ft : RxR2 → R2 and a dynamical system S governed by the equation
ẋ = ft(x), for x ∈ R2. The flow of ft is a map φt(x0) : RxR2 → R2 that is solution of the dynamical
system in the sense that: {

dφt(x0)
dt = ft(φ

t(x0)),

φ0(x0) = x0.

Now let s∗ be a saddle point of this system. The stable and unstable manifolds of s∗, designated
respectively by Cstable and Cunstable , are curves defined as follows:

Cstable := {x ∈ R2|limt→∞ φt(x) = s∗},
Cunstable := {x ∈ R2|limt→−∞ φt(x) = s∗}.

In words, the stable manifold (resp. unstable) of s∗ is the set of points such that solutions of S initiated
at these points asymptotically approach the fixed point s∗ as t goes to +∞ (resp. −∞). Moreover, the
tangent vector to the unstable (resp. stable) manifold at the point s∗ is an eigenvector associated to the
positive (resp. negative) eigenvalue of the Jacobian matrix of ft evaluated at s∗.

For a non linear system, it is useful to compute the invariant manifolds associated to a saddle node in
order to understand the trajectories and behaviour of the system before, during and after the bifurcation.
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In particular, the stable manifolds of a saddle point delimit the basins of attraction of the other attracting
fixed points (See Fig.1).

Figure 1: Example of stable and unstable manifolds of a saddle point s∗. Some trajectories converging to
the attractors are drawn. It can be seen how the stable manifolds establish the limit between two basins
of attraction.

3.2 Steady states and bistability region of the unforced network

In this section we analyse the stationary states of the macroscopic model (3) without external input,
as parameters J and η vary. It is intended to find parameters that make the non forced network bistable,
so that it can be later approached as a model for neuronal populations implicated in memorization tasks.
In particular, the system should have two attractors: one resting state with a firing rate close to zero and
one active state with a high firing rate.

For a fixed and sufficiently strong J it is possible to identify a suitable range of η values such that
the network presents bistability (See Fig.2). Further investigation reveals that, in the region of bistability,
the stable resting state (rN , vN) is a node whereas the stable active state (rF , vF ) is a focus. Between
those two stable states there is a saddle point (rSP , vSP). The parameters ηc1, ηc2 for which a saddle node
bifurcation occurs can be found by computing the solutions of equations:

∆

π · τ2
+

2

τ
· r · v = 0 (4)

v2

τ
+ J · r + η

τ
− π2 · τ · r2 = 0 (5)(2v

τ

)2 − 2r

τ
· (J − 2π2τ · r) = 0, (6)

where r , v and η are variables. First, equations (4) and (5) impose (r , v) to be a steady state of the
system (note the simplification by τ and τ2 in the mean-field equations (3)). Then, equation (6) sets to
0 the determinant of the system’s Jacobian matrix evaluated at the fixed point (r , v), which forces the
solution to be a bifurcation point. The system (4)-(5)-(6) can be solved numerically, for example using
the function fsolve() in Matlab. When J is strong enough, it is possible to use different initial seeds until
achieving convergence to two solutions that have as third coordinate the wanted values ηc1 and ηc2.
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Figure 2: Bifurcation diagram for fixed J = 15
√
2 computed with a numerical procedure in Matlab. For a

particular range of η values, approximately from −11.5 to −6.5, the three steady states (node, saddle and
focus) coexist.

It is also interesting to vary the parameter J and compute the two dimensional bifurcation diagram
with respect to the parameters J and η (Figure 3). This diagram is also computed numerically using
Newton-Raphson method. (See the Annex A.2).

Figure 3: Bifurcation diagram with respect to J and η. We can identify the regions where the system has
only one steady state: a low activity state (light blue region) or a high activity state (red region). The
bistable region (purple) is delimited by the bistability boundary (black). Parameters: τ = 0.02,∆ = 2.
Parameters for Newton-Raphson method: ϵ = 0.1, tol= 10−5 (See Annex A.2 for the numerical details)

It can be seen that for several well chosen and fixed J, there is a range of η values for which the
system is bistable. The theory given in subsection 3.1 indicates that it is relevant to numerically compute
the unstable and stable manifolds related to the saddle point (rSP , vSP) (See Annex A.1). This was done
for different η values in the bistable range and helps to visualize how the fixed points appear, evolve and
disappear as η varies (See Figures 4 and 5).
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Figure 4: Superposition of the invariant manifolds of the saddle as η increases and moves away from the
first bifurcation value ηc1. The figure shows how the saddle point (red) moves away from the stable focus
(pink), two fixed points that have just been created. J = 15

√
∆,∆ = 2.

Figure 5: Superposition of the invariant manifolds of the saddle as η increases and approaches the second
bifurcation value ηc2. The figure shows how the saddle point (red) gets closer to the stable node (black).
When η reaches ηc2, these two fixed points will merge and disappear. J = 15

√
∆,∆ = 2.
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4. Behaviour of the network with periodic forcing

In this section we examine the response of the system (3) to a periodic external input of the form:

I (t) = A(γ · sin(π · freq · t)20 − 1), (7)

where A is the amplitude, freq the frequency and γ is a constant (independent from A and freq) such that∫ T
0 I (t) dt = 0. The input I (t) oscillates between values −A and A(γ − 1). For the numerical simulations
done in this thesis, we used a numerical approximation of γ.

We apply to the network this non-sinusoidal oscillatory input because the authors of the studied research
article [3] proved that this type of forcing was more effective than pure sinusoidal inputs in allowing flexible
switching between network states.

4.1 Numerical results

Fixed parameters J and η are chosen such that the network is bistable. It can be seen that the applied
oscillatory current I (t) (equation 7) has an important effect on the behaviour of the system (firing rates and
trajectories in Fig.6). Depending on the input frequency, we can observe transitions between the different
dynamical states. In the context of a network involved in a working memory task, the transition from a
low firing rate to a high firing rate is called Recall. The opposite transition, when the activated network is
”switched off”, is called Clearance. We will later study both phenomena.

In order to visualize these transitions and the surrounding dynamics, Figure 6 shows the trajectories of
the system starting at the resting and the active state, under the forcing of a periodic current, for different
input frequencies. The plots also show the two stable invariant manifolds of the saddle point (dotted curves
in Figure 6) associated to two particular values the input current takes. Only the stable invariant manifolds
are computed because they define the limit between the basin of attraction of the stable focus and the
one of the stable node. These basins change and even disappear as I (t) oscillates. We wanted to plot the
stable manifolds corresponding to the minimum and the maximum values of I (t) (7). However, with the
chosen parameters, the input varies between −1 and γ − 1 ≈ 4.68, and it was found that the saddle and
the stable node do not exist for fixed inputs larger than ≈ 3.73. Therefore, it was arbitrarily chosen to plot
the stable manifolds for fixed I = −1 and I = 0 in order to get a feeling of the variations of the system
phase portrait. Note that, given the governing equations (3), it is the same to consider the system with a
fixed input I = I ∗ than studying the non-forced system with a new η parameter ηnew := η + I ∗.

Therefore, Figure 6 shows the different behaviours of the bistable network depending on the frequency
of the input and the initial state. It can be seen in plot (a) that for low enough frequencies the system
is pushed from the state of low activity to the state of high activity. This behaviour corresponds to the
Recall in the context of cognitive tasks because if the neurons are activated, then some information is
being retained. The system undergoes damped oscillations when approaching the active state, what was
expected as the attractor is a focus. This type of attraction reflects the transient spike synchrony occurring
in the microscopic network when the neurons are globally activated and their firing rates increase. At
slightly higher frequencies (b), both steady states persist under the forcing. At some range of intermediate
frequencies (c), the high-activity state is driven to the low-activity state. In the context of working memory
this is the Clearance behaviour: the neurons that were active because of the memorizing task become
inactive and the information is forgotten. Finally, at high frequencies (d), both stable states persist under
the forcing.
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(a) freq=1.6Hz, Recall

(b) freq=4Hz
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(c) freq=16Hz, Clearance

(d) freq=80Hz

Figure 6: Response of the network to periodic forcing. For different input frequencies the figure shows
the firing rate (top) and the trajectory described (bottom) when taking as initial condition the resting state
(left) or the active state (right). The parameters are chosen so that the system presents bistability in the
absence of forcing: τ = 0.02s, η = −10,∆ = 2, J = 15

√
∆,A = 1.
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The numerical simulations of the mean firing rate model with the chosen parameters (specified in the
Figure 6’s caption) indicate that the Recall behaviour occurs for input frequencies in the range ]0, 1.75]
Hz. Likewise, it was found that when the input frequency is between 13.5Hz and 33Hz the Clearance
phenomenon is observed. This frequency band corresponds significantly with the [13 − 30]Hz beta range
[7].

4.2 Importance of subthreshold dynamics

In general, the FREs models consist on a single equation describing the dynamics of the network’s
mean firing rate [6], and follow the assumption that spiking neuronal activity is uncorrelated. However, the
authors of the research article [3] found that spike synchrony could be observed for the studied microscopic
model (equations (1), (2)). This synchronization phenomenon is then considered in the mean-field model
(3) by means of the voltage dynamics. Indeed, this equation describes the average activity of the neurons
that are not firing (subthreshold dynamics), hence their predisposition to spike.

In order to appreciate the importance of spike synchrony in the model for obtaining the behaviour
described in the previous paragraph, the mean-field equations are studied omitting the voltage equation.
A 1−dimensional equation can be derived by forcing v(t) to be constant over time in the system given by
(3), when I (t) = 0.

The first equation in system (3) gives an expression for r in terms of v :

r =
−∆
π
· 1

2τv
.

Now the terms are lifted to the square and v2 is replaced by its definition given in the second equation
in system (3), which results in:

r2 =
∆2

4τ2π2
· 1

π2τ2r2 − Jτ r − η

⇔ 0 = π2τ2r4 − Jτ r3 − ηr2 − ∆2

4τ2π2

⇔ 0 = π2τ2r4 + (−Jτ r − η)r2 +
−∆2

4τ2π2
.

This is an equation of the form ar4 + br2 + c = 0 and the corresponding generic solutions are:

r1,2,3,4 = ±

√
−b ±

√
b2 − 4ac

2a
.

In the studied case, r is a firing rate so it cannot be negative nor an imaginary number. Thus, there is
a unique biologically plausible solution:

r0 =

√√√√−(−Jτ r0 − η) +
√

(−Jτ r0 − η)2 − 4π2τ2( −∆2

4τ2π2 )

2π2τ2

=
1√
2πτ

√
Jτ r0 + η +

√
(Jτ r0 + η)2 +∆2.
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Therefore, the set of the first coordinates of the system (3)’s fixed points corresponds to the set of
fixed points of the equation:

r = Φ(Jτ r + η), (8)

where Φ(x) = 1√
2πτ

√
x +
√
x2 +∆2.

Now it is possible to construct a dynamical system in one dimension that has the same steady states
for the firing rate as the original model when I (t) = 0, but that depends only on r , as it is standard in
classical mean field models [6]. The heuristic model for this new system is:

τ ṙ = −r +Φ(Jτ r + η + I (t)). (9)

However, there are not exactly the same dynamics for the firing rate r(t) in the heuristic 1-dimensional
as there are in the original 2-dimensional model. Linear stability analysis reveals that the stable focus in
the complete model corresponds to an attracting node in the 1-dimensional model. This difference results
in the disappearance of the Clearance behaviour [3] of the forced system, for any amplitude and frequency
of the external input. Therefore the subthreshold dynamics are necessary to model the behaviour of the
studied network.

Indeed, there is a relation between spiking synchrony, and thus an attracting focus, and the switch from
the active to the inactive state. Consider the system without forcing and with parameters J, η such that
there are two stable states (r1, v1) and (r2, v2), and the saddle point (rSP , vSP).

The phase-plane dynamics in the 1D model are:

Figure 7: Phase portrait of the 1-dimensional model without external input

Whereas the phase-plane in the full model are:

Figure 8: Phase portrait in the full model without external input
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From these portraits it can be deduced that no excitatory perturbation on the 1D model (Fig. 7) can
force it to change from the active to the inactive state. On the contrary, in the 2D- model (Fig. 8), the
stable invariant manifolds of the saddle (in blue) have a particular form that allows and causes the switch.
Indeed, if an excitatory perturbation is strong enough, the solution with high firing rate could leave the
region of attraction of the stable focus and then be driven to the stable node, which corresponds to the
inactive state. This is why the Clearance phenomenon can occur in the full model, while it never happens
in the 1 dimensional simplification.

This dynamical analysis is useful to describe the different behaviours observed in the numerical results.
Applying a constant excitatory input (I (t) 7 is mostly positive), has the same effect on the invariant
manifolds as if a higher η parameter is fixed in the non forced system. If the frequency of the input is
low enough, the system will always tend to the high-activity state because, even when taking as initial
condition the resting state, the maximal value of input will force the disappearance of this stability point
and it will move into the region of attraction of the focus before the resting state becomes stable again
(Recall, Fig.6,(a) low). This phenomenon will be further studied in Section 7.

However, when the frequency of the input increases, the system does not have time to get close enough
to the focus and gets attracted by the node again. On the other side, the frequency of the manifolds
transformation is still too low to make the high-activity state sufficiently leave the proximity of the focus
and move to the stable node (Fig.6, (b), low).

Then, when the frequency of the input is further increased, the high-activity state is pushed outside
the region of attraction of the focus and moves to the low-activity state before the zone of attraction of
the focus gets bigger again (Clearance, Fig.6, (c) low). This phenomenon will be discussed in Sections 5
and 6.

Finally, for high frequencies, the invariant manifolds change too fast to have an impact on the trajectories
(Fig.6, (d), low).
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5. Linearized response of the network under peri-
odic forcing

It has been explained why the Clearance behaviour can occur in the studied model, the aim is now to
understand its relation and sensitivity to the input parameters. We have mentioned that this phenomenon is
linked to the subthreshold dynamics and thus, to the spiking synchrony in the high-activity state. Therefore,
this section and the following one (Section 6) will provide a further analysis of the dynamics organized by
the stable focus.

Thanks to the simplicity mean-field equations (3), it is possible to compute analytically the linear
response of the system under forcing. In particular, it is possible to find a resonant frequency of the
high-activity state (i.e. the focus), already noticeable for low amplitude external inputs.

5.1 Dynamics near the stable focus

As explained in paragraph 3.1, a stable focus is a fixed point of the dynamical system for which the
Jacobian matrix has complex eigenvalues with negative real part. The magnitude of the real part describes
how ”fast” the trajectories approach the fixed point: the trajectories will describe turns around the focus
while getting closer to it at a rate that depends on the real part. And the value of the imaginary part
corresponds to the angular frequency of the focus’ inherent oscillations (i.e. the damped oscillations that
appear when approaching the high-activity steady state). This frequency proper to the focus is in fact a
resonant frequency for the system and we will now compute it.

Consider the system in equation (3) without forcing (that is, I (t) = 0). The Jacobian matrix M
evaluated at the focus (rF , vF ) is:

M(rF , vF ) :=

( 2
τ vF

2
τ rF

J − 2π2rF τ
2
τ vF

)
, (10)

and the corresponding eigenvalues are given by:

det(M(rF , vF )− λId) =
(2
τ
vF − λ

)2
− 2

τ
rF (J − 2π2rF τ) = λ2 − 4vF

τ
λ+

4v2F
τ2
− 2JrF

τ
+ 4π2r2F

⇒ λ± =
2

τ
vF ±

√
−2rF (2π2rF −

J

τ
).

As (rF , vF ) corresponds to a stable focus, the obtained eigenvalues have non zero imaginary part.

Therefore it is assumed that 2π2rF > J
τ . The resonant angular frequency is then ωres =

√
2rF (2π2rF − J

τ ),

and the eigenvalues are λ± = 2
τ vF ± i · ωres . (A small error was found in the computation of the resonant

frequency in the studied paper [3] ). With the numerical parameters given in Fig. 6, and without forcing,
the focus has coordinates (rF , vF ) ≈ (72.87,−0.22). Thus, the linear resonant frequency for the focus in
this setting is freqres =

ωres
2π ≈ 37.35 Hz.
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5.2 Fourier decomposition of the linearized system

The study of the system’s linear response provides a first description of the dynamics and behaviour of
the forced model, near the steady states. We consider the Fourier decomposition of the T -periodic external
input with frequency freq (= 1

T ) and angular frequency ω := 2π · freq:

I (t) = I0 +
∞∑
k=1

Ike
ikωt .

Forced by this type of periodic input (at least for small amplitudes) the response of the system is
T -periodic as well. One can then give expressions for the firing rate r(t) and the membrane potential v(t)
as Fourier series around an initial fixed point (r0, v0):

r(t) = r0 +
∞∑
k=1

rke
ikωt , v(t) = v0 +

∞∑
k=1

vke
ikωt .

In order to find an approximation of the Fourier coefficients in a close neighbourhood of a fixed point, it
is sufficient to only consider the linear response of the model equations (and ignore the quadratic terms). We
are interested here in the linear response of the system in the vicinity of the focus (i.e. (r0, v0) = (rF , vF )).

On one side the linearized system is:(
ṙ

v̇

)
=

(
2
τ vF

2
τ rF

J − 2π2rF τ
2
τ vF

)
·

(
r − rF

v − vF

)
+

(
0

I (t)
τ

)
.

⇔

 ṙ = 2vF
τ r + 2rF

τ v − 4vF rF
τ

v̇ = (J − 2π2rF τ)r +
2vF
τ v − (J − 2π2rF τ)rF −

2v2
F
τ + I (t)

τ

.

On the other side we consider the Fourier series for the linearized r(t), v(t) with initial point the focus
(rF , vF ), and we differentiate them with respect to time :{

ṙ =
∑∞

k=1 ikωrke
ikωt

v̇ =
∑∞

k=1 ikωvke
ikωt

.

We proceed coefficient by coefficient and we obtain that, for k ≥ 1, the coefficients rk , vk must satisfy:{
ikωrk = 2vF

τ rk +
2rF
τ vk

ikωvk = (J − 2π2rF τ)rk +
2vF
τ vk +

Ik
τ

.

We solve these equations and obtain that, for k ≥ 1 :

rk = 2rF IkΩ
−1
k , vk = (τ ikω − 2vF )IkΩ

−1
k ,

with
Ωk = (τ ikω − 2vF )

2 + τ2ω2
res .
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We can easily recognize the presence of the focus resonant frequency in all terms. Finally, the full
description of the linearized focus’ response as Fourier series is obtained:

r(t) = rF +
∞∑
k=1

2rF IkΩ
−1
k e iωt , v(t) = vF +

∞∑
k=1

(τ ikω − 2vF )IkΩ
−1
k e iωt . (11)

a) freq = 4Hz, A = 1, N = 17 b) freq = 4Hz, A = 1, N = 5

c) freq = 4Hz, A = 0.5, N = 17 d) freq = 16Hz, A = 1, N = 17

Figure 9: Different plots of the firing rate r(t) (blue) and Fourier approximation of the linearized response
of r(t) (red) with the stable focus as initial condition and under the forcing of the external input I (t)
(7) with frequency freq and amplitude A. We considered N Fourier coefficients to compute the Fourier
approximations of the firing rate, voltage and external current.

Figure 9 presents different superposed plots of the firing rate from the forced system in equation (3) and
the Fourier approximation of the linearized firing rate response, when taking as initial condition the stable
focus. As expected, using a large number of Fourier coefficients allows to have a better approximation for

18



r(t), as confirms plot b). A comparison of the two left plots (a), c)) suggests that the smaller the input
amplitude, the better the Fourier approximation. This hypothesis is confirmed by the results in [3] which
show that under weak forcing, the system’s response is qualitatively identical to the linearized system’s
response.

Finally, plot d) invites to conjecture that the Clearance phenomenon does not occur when considering
uniquely the linear response of the system. Indeed, Figure 10 (extracted from [3]) corroborates that for
all input frequencies, beta range included, there exists a high-activity attracting orbit. This observation
indicates that the Clearance behaviour cannot be explained by the linear response of the model, and
thus the non linear effects have to be taken into account. Nevertheless, the linearized system already
provides information on the resonant frequency for the high activity state (See Fig.10), which indeed seems
to coincide with the frequence of the focus’ inherent oscillations (freqres) computed in paragraph 5.1.
Moreover, sub-harmonic resonances of the linearized system in range [12, 38]Hz can also be observed.

Figure 10: (Figure from Schmidt et al. [3]) Lin-
ear response of focus (red), saddle (green) and node
(blue) to input I (t) (7). The focus exhibits a char-
acteristic resonant response at approximately 38Hz
as well as sub-harmonic resonances. The function
rlin(freq) is derived in [3] from the Fourier approxi-
mation of the firing rate in (11):

rlin(2π · freq) =
maxt r(t)−mint r(t)

2
.
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6. Analysis of the forced system by means of the
stroboscopic map

In the previous section we advanced that, to explain phenomenon Clearance, the nonlinear resonance
of the focus needs to be considered. This section analyses the complete response of the network to forcing
for different frequency values by means of the stroboscopic map (also known as Poincaré map).

From this section ahead, the model equations (3) will be referred by the vector field ft . That is(
ṙ
v̇

)
= ft(r , v) with

ft(r , v) :=

(
∆

π·τ2 +
2
τ rv

v2

τ + Jr + η
τ − π2τ · r2 + I (t)

)
. (12)

6.1 Fixed points of the stroboscopic map

When an oscillatory input I (t) of period T = 1
freq is applied to the system, there are no longer fixed

points. However, we still want to identify invariant objects in order to understand the different dynamics.
In particular, the aim of this section is to analyse further the conditions leading to the ”disappearance” of
a high activity attracting state, that is, the Clearance behaviour.

The stroboscopic map is a useful tool for finding periodic orbits of a system forced by a periodic
input. Let φt(r0, v0) be the flow of ft (i.e. φt(r0, v0) := (r(t), v(t)) solution of d(r ,v)

dt = ft(r , v) with
initial condition (r(0), v(0)) = (r0, v0)). Given T the period of the external input, the stroboscopic map
PT : R2 → R2 is defined by PT (x0, v0) = φT (r0, v0). In words, this map outputs the state of the system
(3) under forcing after time T , for a given initial condition (r0, v0).

The aim now is to find fixed points of the map PT . Indeed, if they exist, these points correspond
to periodic orbits of the forced system. Thus, we are looking for points (r , v) for which G (r , v) :=
PT (r , v) − (r , v) vanishes. This will be done by means of the Newton-Raphson method, which involves
the differentiation of map PT that is only known numerically.

Suppose G (ri , vi ) ̸= 0 for some (ri , vi ). The goal is to find some (ri+1, vi+1) = (ri , vi ) + (∆ri , ∆vi )
such that G (ri+1, vi+1) = 0. Let DG be the Jacobian matrix of G . If the quadratic terms are omitted in
the Taylor expansion, G (ri+1, vi+1) can be approximated by G (ri , vi ) + DG (ri , vi ) · (∆ri , ∆vi )

T . Observe
that DG (ri , vi ) = DPT (ri , vi )− Id , where DPT is the Jacobian matrix of the map PT and Id is the identity
map in dimension 2.

Now follows the computation of DPT (r , v). We denote by Dft(r , v) the Jacobian matrix of the vector
field ft (defined as in equation (10)). The variational equations [8] are:

dDPt(r , v)

dt
= Dft(r , v) · DPt(r , v). (13)

Let us define DPt(r , v) =:

(
a(t) b(t)
c(t) d(t)

)
. Then we obtain the following set of equations:
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ṙ = ∆
πτ2

+ 2
τ vr ,

v̇ = v2

τ + Jr + η
τ − π2τ r2 + I (t)

τ ,

ȧ = 2
τ va+

2
τ rc ,

ḃ = 2
τ vb + 2

τ rd ,

ċ = (J − 2π2rτ)a+ 2
τ vc ,

ḋ = (J − 2π2rτ)b + 2
τ vd .

The two first equations are the mean-field equations (3) whereas the other four equations correspond
to the variational equations (13). Taking as initial conditions (ri , vi ) and defining DP0(ri , vi ) = Id , that is
(r(0), v(0)) = (ri , vi ) and (a(0), b(0), c(0), d(0)) = (1, 0, 0, 1), it is possible to integrate numerically the
equations from t = 0 to t = T and obtain DPT (ri , vi ).

It remains to solve G (ri , vi ) + (DPT (ri , vi ) − Id) · (∆ri , ∆vi )
T = 0. That is, finding (∆ri , ∆vi ) such

that: (
a(T )− 1 b(T )
c(T ) d(T )− 1

)(
∆ri
∆vi

)
+ G (ri , vi ) =

(
0
0

)
.

Finally, if G (ri+1, vi+1) is small enough (up to some tolerance), (ri+1, vi+1) is considered a fixed point
of the stroboscopic map. Otherwise, the procedure is iterated until the error is smaller than the chosen
tolerance.

6.2 Periodic orbits of the forced system

Two oscillatory systems, one forcing the other, are in p : q phase− locking relation if, when the forcing
system turns q times, the other completes p cycles. In the context of this work, the stimulating oscillator
corresponds to the input I (t) and the second system is the one governed by the vector field ft (12).

As previously mentioned, if they exist, the fixed points of the stroboscopic map PT correspond to
periodic orbits in the forced system (3) and thus provide information on its 1 : 1 phase-locking properties.
Indeed, as these points are bound to return to their initial state, the trajectory of any fixed point of PT

after time T will be a periodic orbit in the forced system.

It is well known [9] that if a system has attracting fixed points and an oscillatory input with suffi-
ciently small amplitude is applied, then a periodic orbit will appear around each one of those points. Or,
equivalently, the stroboscopic map will have fixed points close to the non-forced system’s fixed points. For
the interest of the model studied in this work, we plot the periodic orbits around the focus (rF , vF ) for
increasing external input frequency. The previous numerical results (Fig. 6) suggested that, after some
critical frequency between 4Hz and 16Hz, no periodic orbit exists around the point for the given parameters.

Figures 11 and 12 seem to indicate that, when the external input has amplitude A = 1 and its frequency
gets higher than 13 Hz, the only fixed points for the stroboscopic map are located near the stable node
as the drawn orbits appear only around the low-activity state. Then, when the frequency increases up to
34Hz, periodic orbits reappear around the high activity state (but the low activity state still has periodic
orbits around).
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Figure 11: Periodic orbits near the focus (red point)
computed using the stroboscopic map PT for differ-
ent external input frequencies and fixed amplitude
A = 1. Frequencies increase from 1Hz (thicker line)
to 13Hz (thinner line).

Figure 12: Periodic orbits computed from the fixed
points of the stroboscopic map PT for different ex-
ternal input frequencies and fixed amplitude A =
1. Frequencies increase from 15Hz (thicker line)
to 80Hz (thinner line). First, we only observe or-
bits around the stable node (light blue point) and
then they reappear also around the stable focus (red
point) of the non-forced system.

To obtain further information on the system’s bifurcations, it is useful to keep track of the eigenvalues
λ1,λ2 of the matrix DPT associated to each fixed point of PT . The eigenvalues vary between complex
and real values, depending on the attraction type of the trajectory under the stroboscopic map. Figure
13 shows the absolute values of these eigenvalues and, whenever they are complex, |λ1| = |λ2|. However,
when the eigenvalues are real, their absolute values are different and this explains why both curves do not
coincide in the figure for some frequency ranges.

Figure 13: Absolute value of the eigenvalues for the matrix DPT evaluated in the stroboscopic map’s fixed
point near the focus (rF , vF ) for increasing input frequencies.
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It can be noticed that, until reaching an input frequency of 13Hz, both values |λ1|, |λ2| remain below
0.2. Then, between 13Hz and 13.1Hz, the absolute value of one eigenvalue increases very fast approaching
the value of 1. This indicates the presence of a saddle-node bifurcation of fixed points of the stroboscopic
map, which corresponds to a saddle node bifurcation of periodic orbits for the forced system (3).

According to the results of [3], the bifurcation structure of the forced system is indeed governed by SN
bifurcations of periodic orbits, but also period-doubling (PD) bifurcations (See Fig.14). For large enough
input amplitudes, these bifurcations lead to a frequency range where all periodic orbits in the high activity
state are unstable. As a result, the only attracting orbit of the system is near the low activity attracting
node, which explains the Clearance behaviour for this input frequency band.

It should also be remarked that this frequency range corresponds to the one causing a resonant response
in the linearized system (Fig. 10). Therefore, the frequencies effective in switching off the active states
depend on the resonant frequency of the focus’ inherent oscillations, which themselves are determined by
the subthreshold dynamics of the system. The Clearance frequency range depends then on the model
parameters (J, τ , ∆, η), as they are all involved in the definition of the resonant frequency.

Figure 14: (Figure from Schmidt et al. [3]) Non-
linear response of focus (red), saddle (green) and
node (blue) by means of bifurcation analysis to in-
put I (t) (7) for different amplitudes. For each input
frequency and each steady state, the figure shows
the L2-norm of the firing rate along the correspond-
ing periodic orbit. The solid (resp. dashed) lines
indicate that the periodic orbit is stable (resp. un-
stable).
We can see that, for small amplitudes (A = 0.1 in
this figure), the network response is similar to the
linear response: there is a stable periodic orbit near
each non forced fixed point at any input frequency.
As A increases, a richer bifurcation structure ap-
pears. In particular, for A = 1 several bifurcations
occur and are responsible for the Recall and Clear-
ance behaviours.
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7. Mechanism underlying the ”switching on” of the
neuronal network

The previous sections were dedicated to the study of the ”switching off” of the activated states. The
current section studies the mechanisms involved in the ”switching on” of the network, observed in Figure 6
(a). This is the switch corresponding to the Recall phenomenon in the context of working memory tasks.

When the system is forced with a low-frequency input, it can be studied as an almost stationary
response. As time goes and I (t) slowly varies, the time evolution of the firing rate almost tracks the
system’s fixed point for the current value of I (t). As the switch to the active state happens when the input
current has a low frequency (Fig. 6 (a)), this phenomenon can be studied by analysing the steady states
of the system for different fixed values of I .

Consider the bifurcation diagram of the model with a chosen parameter J such that the system is in
a bistable regime. This range is delimited by two saddle-node bifurcations, occurring at ηc1 and ηc2 (See
boundary of bistability in Fig. 3). In order to understand the mechanisms that push the system from the
vicinity of one stable state to the other, we must consider the system with a chosen parameter η0 with
ηc1 < η0 < ηc2 (Fig. 15), to which the external current I (t) is applied. It will be shown that the switching
depends on the amplitude A of the external input.

Figure 15: Bifurcation diagram of stationary states
with critical values for saddle node bifurcation
(ηc1, ηc2) and a chosen parameter η0. Parameters:
J = 15

√
∆,∆ = 2.

Figure 16: Non-sinusoidal external current (7) with
indicated minimum and maximum values. Parame-
ters: A = 1, freq = 1.6Hz, γ ≈ 5.68.

The studied input current (7) oscillates between values −A and A(γ − 1) (see Fig. 16). Then, the
minimal amplitude required to push the inactive steady-state of the system past the saddle-node bifurcation
(ηc2) (force it to go the upper branch) and change it to an active state is A1 such that:

η0 + A1(γ − 1) = ηc2

⇔ A1 =
ηc2 − η0
γ − 1

.

And the maximum amplitude up to which the system stays in the high activity state is A2 such that:

η0 − A2 = ηc1

⇔ A2 = η0 − ηc1.
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For amplitudes below A1 the system is unable to ”jump” from the inactive to the active state and will
just present oscillations of low firing rate. When the external input frequency A is greater than A1, but also
greater than A2, the system will first jump from the inactive state to the active state but, as the oscillatory
external input decreases to its lowest value, the system will switch back to the inactive state (”fall” to the
lower branch). In this case the system constantly varies between the steady and the active state.

In conclusion, the Recall behaviour occurs for an external input with amplitude between A1 and A2.
With this condition, the switch from inactive to active state happens and then the firing rate keeps oscil-
lating around high values. Finally, if the parameters of the model are such that A2 < A1, then there is no
range of amplitude values at which the robust ”switching on” occurs and increasing the input amplitude
directly leads the system to a constant switching between states. Thus, the range of suitable input am-
plitudes A allowing a Recall behaviour must verify the condition A1 ≤ A ≤ A2, so it is dependant on the
network parameters.

Explanation of the Recall behaviour in numerical computations for Fig. 6:
In Figure 6 the plots were realized with chosen parameters η0 = −10, τ = 0.02, J = 15

√
2 and A = 1

(as indicated in the caption). With this setting it is possible to numerically compute the coordinates of
the two saddle node bifurcations by solving the set of equations (4), (5) and (6). The obtained result is
ηc1 ≈ −11.49, ηc2 ≈ −6.27. Then, the current I (t) = A(γ ·sin(π · freq · t)20−1) is applied, where γ ≈ 5.68
(independent of A) was approximated numerically. Thus, applying the previous definitions, A1 ≈ 0.80 and
A2 ≈ 1.49 in this setting. As the amplitude used in the plot was A = 1 and A1 < 1 < A2, the phenomenon
of Recall for low input frequencies was to be expected, and indeed happens (Fig. 6 (a)).

In Figure 14, extracted from [3], it can be seen that for lower input amplitudes (0.1 and 0.5 Hz) there
is always an existing attracting orbit near the low activity state. This implies that a ”switching on” of the
resting state would not occur in those cases, even for low input frequencies.
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8. Application of the model in a setting of working
memory

In the previous sections (Sections 3 to 7) the model (3) has been extensively analysed in order to
understand the mechanisms underlying the role of an oscillatory input I (t) in activating and clearing
neuronal states of a single neuronal population. In particular it has been revealed that the amplitude of
the input is important for the existence of the Recall and the Clearance behaviours, and that the second
one happens only for well chosen input frequencies (close to the resonant frequency of the model’s stable
focus).

The aim of this last section is to reproduce the studied mechanisms in a setting of multiple intercon-
nected neuronal networks involved in the realization of a working memory task.

8.1 Working memory and its relation with the model

8.1.1 What is the working memory?

Long-term memory is the memory we use to hold in our mind information for a long period, such as
our sisters’ name or our parents’ birthdays, whereas we use the short-term memory or working memory
(WM) to memorize things for a short period of time (usually less than a minute) [10]. The second type of
memory is the system we use, for example, to remember the random number sequence we were assigned at
the doctor’s waiting room. We keep the sequence in our memory, expecting to be called by the physician,
but as soon as we enter in the office we will undoubtedly forget the number.

This section is focused in the process of working memory and its different phases. As it is a temporary
storage of information, the neuronal network implicated is first in a resting state, then, when the information
to memorize is presented, the neurons spike and the firing rate of the population increases. This activation
is the Recall behaviour we have been studying. While the subject is memorizing (usually a few seconds)
the population remains active but, as soon as the information held is no longer useful (when the subject
enters the physician’s office in the previous example), the network firing rate drops back to a low state.
This ”switching off” phenomenon is Clearance, as we mentioned in previous sections.

8.1.2 The theory of the model in higher-dimensional networks

So far, this work has only been focused in the model of a single neuronal population. In the studied
paper [3], the authors explore as well the effect of the periodic input I (t) (7) in systems of multiple neuronal
networks. They consider neuronal populations that, when isolated, follow the behaviour modelled by the
studied mean-field equations (3) and are bistable. The authors propose a model for interacting neuronal
populations, inspired by the single-population model, that takes into account excitatory or inhibitory synap-
tic connections among them. The simulations performed for different external input frequencies revealed
that, in this higher-dimensional context, the robust switching between low and active states also happens.
It was found that the application of an external current of low frequency (2Hz) in the presence of weak
noise leads to the random activation and deactivation of some populations, whereas fast oscillations (40Hz)
drive all populations to the inactive state.

These results, together with the fact that the behaviour of WM networks is accurately described by the
mean-field model (3), motivated us to create a working memory model with several interacting populations.
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8.2 A working memory model

Inspired by the PhD thesis of João Moura Barbosa [4], we propose a study of the effect of oscillations
in a simple setting of working memory. The model proposed represents the neuronal behaviour in a subject
realizing a simple short-term memorization task (Fig. 17). The experiment is as follows: the subject sees
an image with two circles, one blue and one green, in different locations (Left and Right for instance).
Then the image is removed. A short-time later, the subject is shown the image with one of the colors and
must respond what was the position of that color. Alternatively, the subject might be shown a position
and must indicate the color that was in that place.

Figure 17: Working memory task. During a short
period of time, the subject is shown two coloured
circles: one blue and one green. The circles are lo-
cated one at the right and one at the left of the
sample image. After the delay period either i) the
target is revealed by showing its colour and the sub-
ject must indicate its location, or ii) the location of
the target is shown and the subject must report its
colour. (The image was inspired by Figure 1.1.c) in
[4])

To model the experiment, a simplification of the neuronal architecture considered in the PhD thesis[4]
is done. We model four neuronal populations, two coding for the position (Left and Right) and two coding
the color (Blue and Green). The two populations coding for the same type of information inhibit each
other, while any two populations coding for a different feature mutually excite each other. Moreover, each
neuronal population receives recurrent excitation (See Fig. 18). Finally, all populations have two stable
states when uncoupled: either they have a low firing rate or a high firing rate.

Figure 18: Four populations with self excitation (JSE ) and inter-connected with excitation (JE ) or inhibition
(JI )
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The equations for the mean-activity of the Left population and the Blue population are:

ṙL =
∆

π · τ2
+

2

τ
· rL · vL

v̇L =
v2L
τ

+ JSE · rL − JI · rR + JE · rB + JE · rG +
η

τ
+

I (t)

τ
− π2 · τ · r2L

(14)

˙rB =
∆

π · τ2
+

2

τ
· rB · vB

˙vB =
v2B
τ

+ JSE · rB − JI · rG + JE · rL + JE · rR +
η

τ
+

I (t)

τ
− π2 · τ · r2B

(15)

The equations for the Right populations are found by exchanging L and R in system (14). Similarly,
by exchanging indices B and G in system (15), we obtain the equations for the Green population. This
system of four equations is a simplification of the set of equations proposed for multiple interconnected
neuronal populations in the main studied research article [3].

Without loss of generality, we decided to consider only the experiment where the report consists in giving
the location of the clued colour, and Blue was chosen to be the target. We explored several approaches to
model the neuronal activity during the realization of the task. In all our simulations we assumed that the
complete experiment had a duration of approximately 1 second, as this period was sufficient to see all the
phases of the neuronal behaviour for the working memory task. Nevertheless, depending on the experiment
we want to simulate, the models can be generalised for a longer period of time.

The two models presented in this section follow the same approach. In fact, the second one provides
a further development of the first one. The common idea is to model the memorization part (for instance
associating Left with Blue and Right with Green) by forcing each pair to exhibit oscillations that are
synchronized and in opposite phase with respect to the other pair. The decoding part is modelled in
different ways but in both models an external input is applied to one of the color populations, and the aim
is to decode the location associated to the Blue population.

8.2.1 First model: phase synchronization between associated populations

Theory:

At the beginning of the experiment, all the populations are in a resting state, with oscillations of the
form:

A(γ · sin (π · 80 · (t + phase))20 − 1).

Thanks to the previous sections we know that these fast oscillations (freq = 80Hz) do not provoke
switches between the active and inactive state (Fig 6 (d)). They model here inherent oscillations that the
neurons have (as they are never completely inactive) and will be present until the decoding is finished (i.e.
the task is accomplished). The four phases are randomly chosen between 0 and 1

freq (which is the period
of the rapid oscillations).

When the experiment starts, the image is presented to the subject and the four populations involved
must be activated. First, this was modelled by adding the oscillating input that causes Recall in the single
population model (Fig 6 (a) ). But it turns out that a transient step current I1 = γ − 1 is sufficient
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to activate the four populations. Then, to model the pairing in the memorization task, we synchronized
two by two the phases of the fast oscillations (Blue with Left and Green with Right). When the image is
removed, the neuronal activity is still color-position synchronised.

The decoding in this model is done by injecting an external transient input I2 to the queried color
neuronal population. Then, as this color was in the same phase than the associated location firing rate,
and it exerts excitation on it, the wanted location is expected to follow the Blue firing rate increase,
making possible its decoding. Finally, all four populations are sent to 0. Once the subject has answered
the question, the task is finished.

Results:

Figure 19: Results First Model WM. In this plot we can identify the different phases for the neuronal
populations involved in the WM task: recall, memorization of the color-location pairs, correct report of the
Blue location and clearance of all states. Parameters used: τ = 0.02, η = −10,∆ = 2,A = 1, γ ≈ 5.68,
JSE = 15 ·

√
∆, JE = 3, JI = 4. Transient input for activation: I1 = γ − 1 at t1 = 0.2 s, transient input

for decoding: I2 = 4(γ − 1) from t3 = t2 + 20/freq + 1/(3 · freq) s to t4 = t3 + 0.8/freq s. Phase
synchronization at t2 = 0.4.

a) Synchronization: The color population gets syn-
chronised with the corresponding location population
(in this case Blue with Left and Green with Right).

b) Decoding: an external current is applied to the
Blue population. The location population (Left here)
that has an immediate increase of its firing rate is
the location that was memorized for the Blue circle.

Figure 20: First model WM: zoom synchronization and decoding
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t3 = t2 + 20/freq + 1/(6 · freq)

t3 = t2 + 20/freq + 4/(6 · freq)

t3 = t2 + 20/freq + 2/(6 · freq)

t3 = t2 + 20/freq + 5/(6 · freq)

t3 = t2 + 20/freq + 3/(6 · freq)

t3 = t2 + 20/freq + 6/(6 · freq)

Figure 21: First model WM: decoding at different times t3. If the decoding step current is applied when the
Blue mean firing goes from its maximum to its minimum (1/(6 · freq) to 3/(6 · freq)), the Left population
increases more than the Right population, so the decoding can be done correctly. On the contrary, the
decoding is incorrect if the input is applied when the Blue mean firing rate varies from its minimal value
to its maximal value ( 4/(6 · freq) to 6/(6 · freq)).

Observations:
After several plots, it was found that the outcome of this model depends considerably on the moment of
decoding t3 (See Fig. 21).

For a range of well chosen t3, the model seems to be robust. As the Blue and Left populations are in
phase and excite each other, the Left population firing rate also increases just after the Blue population
receives the excitatory input. The Green population firing rate (rG ) also increases but, as it is in phase with
the Right population activity which is being strongly inhibited by the Blue one, its increment is reduced.
Therefore, a correct decoding is possible (See example in Figures 19 and 20 ). Moreover, the amplitude of
the decoding step current can be moderately modified and the output will still be correct.
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However, for t3 that are not in the particular range, it is common to observe an increase on the Right
population firing rate (rR) following the Blue large spike, which would lead to an incorrect decoding. This
happens because the Blue population excites both the Left and Right populations with the same intensity
and, as they both experience oscillations, one of them will be more likely than the other to follow the
Blue increase depending on their current oscillation phase. Unfortunately, this sensitivity to the decoding
time implies the impossibility to change the target without changing the time parameter t3 in the code.
Indeed, a time t3 that guarantees a correct decoding for the Blue location (Left in this example) will give
a wrong outcome when asking the Green location. This is the consequence of having the Blue and the
Green populations oscillating in anti-phase.

Possible improvements:
The presented model could be improved in several ways. First, it might be possible to define the decoding
time t3 as dependant on the phase of the target population. This could be implemented by means of
trigonometric functions and it would allow us to use the same model for any chosen target.

Also, it is coherent to have small oscillations in all populations during the complete task, considering
that the neuronal oscillations are widely observed in the brain. Thus, it would be more realistic if those
oscillations persisted after the decoding, instead of imposing a 0 value for the four mean firing rates. In
fact, it would be interesting to find a more natural way to make the populations go back to the resting
state (Clearance). A way that does not involve manually changing their mean firing rate for a lower one.

8.2.2 Second model: synaptic facilitation

One of the improvements to do in the first model is to induce Clearance in a more natural way. In the
previous sections and the higher-dimension model studied in [3], it was found that an oscillatory input with
frequency in a specific range could drive all the targeted populations to their resting state. Unfortunately,
the application of this type of current for the decoding and Clearance in a similar model to the previous one
turned it even more dependant on the time for decoding and lead usually to incorrect results (See Annex
B.1).

A new idea to overcome the phase dependency for decoding could be to explore the concept of synaptic
facilitation. The brain is in constant activity: new neuronal connections arise, some old connections become
weaker and other get stronger. Synaptic facilitation is a form of short-term brain plasticity that strengthens
the connection between some neurons. It has the opposite effect to the usual synaptic fatigue, or short-term
synaptic depression. The role of synaptic facilitation was studied in the scientific paper [11].

In the framework of this project, for the working memory problem, the connection between the memo-
rized pairs of location and position could be strengthen as a consequence of synaptic facilitation. Further
studies of the molecules implicated should be done to adequately justify the modifications in the model.
But, in the meantime, to have a motivating result, we applied linear synaptic facilitation and linear synaptic
fatigue to the first model (Paragraph 8.2.1). The synaptic strength parameters when the memorization
starts are: JSE = 15 ·

√
∆, JI = 4, JstrongE (t) = 3+ t, JweakE (t) = 3− t. Then, for the example case where

the Blue circle is on the Left, the diagram in Figure 22 is obtained.

The equations describing the dynamics of each population are the same as in the first model (14) -
(15) with the exception of the synaptic parameters, that follow here the configuration given in Fig. 22.
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Figure 22: WM colour-position diagram with synaptic facilitation and fatigue

This model follows the same steps as the previous one but, instead of targeting the Blue population
and clearing all states at the end, an external input with frequency in the clearing range is applied to the
Green population so that the only color population remaining is the Blue one. As in the previous model,
due to the fact that the firing rate of the Green and Right population are in phase, it is intended that the
Right population follows the Green one and shifts to the inactive state. If this happens, the only active
position population to still be active would be the Left population and there will be a correct decoding.
Moreover, as this model considers stronger Green-Right and a weaker Green-Left synaptic connections, it
is expected to be more robust than previous trials (See Annex B).

Results:

a) Decoding at t=0.6s b) Decoding at t=0.7321s c) Decoding at t=0.81s

Figure 23: Model applying linear synaptic facilitation and fatigue.

Observations:
The obtained plots show indeed correct outcomes for different decoding times, which is an improvement
from the previous model. In this case the decoding and partial Clearance are a consequence of the same
oscillating input, and not forced by the program.
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This results are only a motivation to investigate further in this direction. As a matter of fact, it is not
neurologically coherent that the synaptic facilitation and fatigue are linearly dependant of time. Probably,
the synaptic strength should follow other better justified specific function [11].

8.3 Model discussion and further ideas

Both presented models proved to be very sensitive to changes in the synaptic strength JSE , JE , JI
parameters. If the inhibition is too strong or not strong enough, some or all populations never get activated.
The same happens for the excitation parameter. Surely, there is a relation between the values of the synaptic
weight parameters and the input amplitude necessary for activation. This dependency could be a subject
for future studies.

In addition, we could consider neuronal networks for which the fast oscillations spontaneously happen.
In the studied paper [3] the authors show that simple circuits of excitatory and inhibitory populations can
generate oscillations of the desired form (7). It could be possible to use two populations, one excitatory and
one inhibitory, to model each one of the four neuronal populations (Blue, Green, Left and Right). Then we
should investigate how to induce phase synchronization to the oscillatory associated color-location pairs.

With respect to the synchronization, we also considered another approach: frequency-synchronization.
As the first model revealed that a phase-synchronization of the inherent oscillations was not sufficient
to have a correct decoding, the idea arose that synchronizing the pairs with respect to their oscillating
frequency could give better results. Inspired by the previous sections and, particularly, by the Figure
6 (a) and (d), we decided to activate all four populations and then establish slow oscillations for the
Blue-Left pair and fast oscillations for the Green-Right pair. The details of this trial are given in the
Annex B.2. Unfortunately, the strength of the synaptic connections between the populations, which was
necessary for their activation, was an obstacle for the frequency synchronization. However, on this line,
other synchronization techniques could be explored.
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9. Conclusion

In this work we analysed the role of oscillations in switching or maintaining specific neuronal states in
the brain. Following the approach of the research article by Schmidt et al. [3], we studied a mean field
model for a network of QIF neurons. First we considered a single network governed by the given mean
field equations (3). Using tools from bifurcation analysis we could describe the different steady states and
bifurcations parameters (see Fig. 2) in absence of forcing. This procedure allowed us to find the range of
(J, η) values for which the system has two steady states (Fig. 3), and is likely to endure a switch from one
to the other when an external current is applied.

Then, we analysed the behaviour of the system under periodic forcing I (t) (7). The results presented
in [3] were corroborated: for low input frequencies (≈ 1.6Hz) the system switches from the low-activity
to the high activity state and, for input frequencies in a band near the beta range (around 13-30 Hz), the
active state is cleared (driven to the inactive state). Those two phenomena can be related to the Recall
and Clearance phases in a context of working memory. In fact, the studied model was used later to describe
the behaviour of neuronal populations implicated in a working memory task.

Some further analysis were proposed in order to achieve a better understanding of the two types of
robust switching and their dependence on the model parameters. First, an inspection of the linearized
system provided some information on the frequency band leading to a Clearance behaviour. Then, the
study of the stroboscopic map and its fixed points revealed the presence of a saddle-node bifurcation of
periodic orbits in the forced system. This bifurcation causes the disappearance of high-activity attracting
periodic orbits and drives the system to the quasi-inactive state. Finally, the mechanisms involved in the
Recall behaviour were studied in detail. The stationary analysis revealed the importance of the input
amplitude in the switching from the resting state to the active state.

Going beyond the previous work [3], we proposed an application of the model in a setting of working
memory (WM). This last section 8 was inspired by the results of the PhD thesis [4]. The WM task consists
in presenting a sample with coloured circles in different locations to the subject and remove it after a few
seconds. Once a delay period finishes, the subject is asked to report either the location of an asked colour
or, alternatively, the colour of a cued location. To simplify the neuronal architecture described in [4], we
considered only four interacting neuronal populations, encoding two colours (Blue and Green) and two
positions (Left and Right). When analysed individually, each one of the neuronal population was bistable
and its behaviour was described by the model studied in previous sections.

In this thesis report, we propose and study two complete models that try to reproduce the neuronal
behaviour in the explained WM setting. In both, it was decided to model the neuronal link between the
colour and the location presented in the sample by phase-synchronizing the corresponding populations.
The theory of the higher dimensional version of the model presented in [3] (Section 8.1.2), as well as
the previously obtained results, were essential to design a plausible WM model that enabled to decode
the correct colour-location pairs. In particular, we decided to use high-frequency oscillations in the model
because they proved to maintain the existent state.

The first model goes through all stages in a WM context and, under some parameter conditions, leads
to an accurate decoding. However, the model presents several drawbacks and needs several changes to be
robust. Specifically, the correct decoding is very sensitive on the oscillatory phase of the targeted population
and the Clearance phase that follows has to be achieved manually. To overcome these issues, the second
model improves the first one thanks to synaptic facilitation. The results given by a first rough version
seem to indicate a gained robustness in the model (a correct decoding) and a more natural induction of
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Clearance. Even though we did not refer to neurological observations in order to prove our implementation
of the synaptic adaptation, this second model simulates remarkably well the behaviour of neuronal networks
involved in the completion of the WM task. We think that this approach could be further investigated.
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[1] G. Buzsáki (2006) Rythms of the brain. Oxford University Press, New York.
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A. Numerical details

A.1 Computing invariant manifolds:

Consider ft the vector field (12) describing the studied dynamical system. Let s∗ = (rSP , vSP) be the
saddle point of the system, that has suitable parameters so that the saddle point exists ((J, η) in the
bistable range in Fig. 3). The first step to construct the invariant manifolds of s∗ is to compute the
eigenvalues of the Jacobian matrix of ft evaluated at point s∗ (as in 10). As s∗ is a saddle point, one
eigenvalue is positive (λ+) and the other negative (λ−), and their respectively associated eigenvectors can
be called e+ and e−. If the system (equation 3) is integrated numerically backwards from s∗ ± ϵ · e−,
for ϵ sufficiently small, then a numerical approximation of the stable invariant manifolds (dotted curves in
Figure 6) is obtained. Similarly, to obtain a numerical approximation of the unstable manifolds, a forward
integration of the system starting at points s∗ ± ϵ · e+ must be done.

A.2 Computing the bistability boundary:

The aim is to numerically compute a set of 4-dimensional points (J, η, r , v) such that, when the model
has parameters (J, η), there is a saddle node bifurcation and the conjunction of the two implicated stable
points has coordinates (r , v). This will allow us to compute the model’s bistability boundary (Fig. 3).

The computations are based in the Newton-
Raphson method. Without loss of generality, this
subsection will only explain the computation for the
left bound of the boundary, i.e. the points corre-
sponding to the first saddle node bifurcation with
parameter ηc1 in Fig 15 (left branch of the curve
in Fig. 24). The computation of the right bound
follows the same steps.

To start the procedure a J1 is chosen and fixed.
Then, the system of equations (4), (5), (6) is numer-
ically solved for J = J1 and a small initial η. This
computation provides a first point of the left bound-
ary x1 = (J1, η1, r1, v1). The following points will be
found by approaching the boundary curve with small
steps.

Figure 24: Coordinates J, η of the bistability bound-
ary. The point (η1, J1) is an example of initial point
for the computation.

The Newton-Raphson method allows to find a good approximation for the root of a real-valued function.
In the case of the bistable boundary, the function of interest is the one given by equations (4), (5), (6),
but considering J also as a variable. This vector-field function will be called F :

F (J, η, r , v) =


∆
πτ2

+ 2
τ · r · v

v2

τ + J · r + η
τ − π2τ · r2(

2v
τ

)2 − 2r
τ (J − 2π2τ · r)

 . (16)
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We have coloured the variables to emphasize that, instead of considering the equations with J and η
as parameters as we did in the main part of this thesis, here we take them as variables.

Notice that, if we want to find solutions for F (J, η, r , v) = 0, we have three equations and four variables.
This defines a curve in the space and to compute it we use a predictor-corrector method. The corrector
step is based in the Newton method and Langrange multipliers.

Consider the Jacobian matrix of F :

DF (J, η, r , v) =


0 0 2

τ · v
2
τ · r

r 1
τ J − 2π2τ r 2

τ · v

− 2
τ · r 0 − 2

τ (J − 2π2τ · r) + 4π4 · r 8
τ2
· v

 . (17)

First, starting at the point x1 = (J1, η1, r1, v1), the lower part (J decreases) of the boundary’s left side
(pink curve in Fig.24) will be progressively computed. Let s be a vector in the kernel of DF (x1), and define
w = x1 − ϵ · s, for a small constant ϵ (0.1 for the plot of Fig. 3). Then, if the norm of F (w) is sufficiently
small, up to some chosen tolerance (tol= 10−5 in Fig. 3), the point w can be consider as a new point
x2 of the bistability boundary. Otherwise, as long as norm (F (w)) > tol , the code follows a sequence
of steps to decrease this norm. It becomes a problem of finding the local minima subject to an equality
constraint, which we will solve using the method of Lagrange multipliers. We compute K := DF (w) and
p := −KT (KKT )−1 · F (w). Then we define a new w∗ ← w + p and checks the tolerance condition for
F (w∗). If w∗ does not verify it, w ← w∗ and the steps sequence is repeated until a suitable point x2 is
found. (See Fig. 25 for an illustration when F : R→ R).

Figure 25: Newton-Raphson method for the approximation of a root of a function F : R→ R.

Then, from the new point x2, the code runs again the procedure to find the following point x3 and so
on until all the lower part of the boundary’s left side is computed. In fact, there must be a condition on the
norm of the matrix KKT ’s determinant. If the norm is too small, the matrix cannot be correctly inverted
and the code should stop. This will happen when one reaches a point too near to the cusp bifurcation,
which corresponds to the collision of the three fixed points (node, saddle and focus). So once such a
problematic point is reached, the computations for this part of the boundary are done.

The procedure to compute the upper part of this branch is the same as the one previously explained
with the only difference that the new points are chosen by adding ϵ · s, and not subtracting it.
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B. Other applications in a WM model

B.1 First trial

Theory:
All populations start activated, forced by high frequency oscillations (80 Hz), where the Blue and the Left
populations have the same phase and the Green and Right populations share a shifted phase. Rapidly, the
two associated pairs get synchronized.
At 0.5 seconds the high frequency external input is removed. This symbolises the removal of the image
that the subject was memorising. Then, at x seconds is added a sinusoidal current (of the studied form as
in expression (7)), with frequency of 14 Hz to the Green population.
Observe that this frequency is in the range of ”Clearance”. As the Green population and the Right
population were in phase and mutually excite each other, it is expected that, as the Green population goes
to the resting state according the Clearance phenomenon, the Right population would follow too and get
inactive. On the other hand, the Blue population would be less inhibited by the green population and thus
remain active. And, with the previous reasoning, the Left population is expected to remain active too and
thus the subject’s answer can be decoded: the Blue circle was located in the Left.

Results:

Figure 26: Results of the WM model first trial. The decoding input is added at 0.56 seconds (left) and
at 0.55 seconds (right). For both plots the parameters used are: τ = 0.02, η = −10,∆ = 2,A = 1, γ =
5.675463855030419, JSE = 15

√
∆− 1, JE = 3.4, JI = 5.8.

Observations:
The figures show that, indeed, the applied input with 14Hz frequency makes the Green population go to 0
and the Blue population remain active. However, depending on the time this current is applied, either the
Left or the Right populations become inactive (Fig. 26). Thus, this model is not functional because it is
not possible to correctly decode which location was memorized with each color.
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B.2 Frequency synchronization

Theory:
All four populations start in a resting state without oscillations. Then they are all activated thanks to a
strong transient input simulating the moment where the image is presented.
When the subject is memorizing, oscillations of the form A(γ ·sin(π · freq · t)20−1) arise in each population,
but, for each associated pair (Blue with Left and Green with right), the chosen firing frequency is different.
Inspired by the previous observations about the different frequency ranges and their impact in changing
or not the state, it is chosen to give a slow firing rate to one pair of populations (as in Fig. 6 (a) and
(b)) and a fast firing frequency (as in Fig. 6 (d)) to the other pair. It is expected that with these chosen
frequencies, all populations will remain active and synchronized by pairs.
For the decoding part an oscillatory input is injected to the color population that is not queried (Green
for instance). This input has frequency in the range responsible for the Clearance phenomenon. The
aim is that the Green population, followed by the population of its associated location, go to the resting
state. This way, the population coding for the location where the Blue circle will remain active and can be
decoded.

Results:

a) Pair Blue-Left: frequency 3Hz, pair Green-Right:
frequency 100 Hz, Clearance: frequency 28Hz.

b)Pair Blue-Left: frequency 2Hz, Pair Green-Right:
frequency 80 Hz, Clearance: frequency 30Hz.

Figure 27: Results second model WM. Parameters used: τ = 0.02, η = −10,∆ = 2,A = 1, γ =
5.675463855030419, JSE = 15 ·

√
∆, JE = 3, JI = 4. First transient input (activation): I1 = 200.

Observations:
The synchronization via the firing rate frequency does not seem to work. In the numerical results the
difference between the two pairs cannot be appreciated. Unfortunately the expected result is not obtained.
Although the Green population indeed goes to the inactive state and the Blue population remains active,
what happens with the populations coding for color seems very random and sensible to small frequency
changes. With different simulations it was not possible to find characteristics for which the desired result
is obtained.
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