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Abstract. The problem dealt with in this paper is that of optimizing the

path of the extraction rate (and, consequently, the price) for the monopolistic
owner of the primary sources of a totally or partially durable non-renewable

resource (such as precious metals or gemstones) in a continuous-time frame,
assuming that there is an upper bound on the extraction rate and with an

interest rate equal to zero. The durability of the resource implies that, unlike

the case of non-durable resources, at any time there is a stock of already-used
amounts of the resource that are still potentially reusable, in addition to the

resource available in the ground for extraction. The problem is addressed using

the Maximum Principle of Pontryagin in the framework of optimal control
theory, which allows identifying the patterns that the optimal policies can

adopt. In this framework, the Hamiltonian is linear in the control input, which

implies a bang-bang control policy governed by a switching surface. There
is an underlying geometry to the problem that determines the solutions. It

is characterized by the switching surface, its time derivative, the intersection

point (if any) and the bang-bang trajectories through this point.

1. Introduction. The problem dealt with in this paper involves finding the op-
timal paths of the extraction rate and the price for the sole owner of the primary
sources of a totally or partially durable non-renewable (and therefore, exhaustible)
resource, considering continuous time and an upper bound on the extraction rate.
The main contribution of our paper is to consider an upper bound on the extraction
rate for the first time within the frame of this problem and, using the Maximum
Principle of Pontryagin, to identify the patterns of the optimal extraction policies
under the adopted assumptions.

Some natural resources are renewable, but others are not. Among the latter,
there are non-durable (e.g. fossil fuels and mineral fertilizers) and durable (gem-
stones, precious metals and other metals like copper) resources. Non-durable re-
sources disappear as such after being burnt or dispersed, whilst durable resources
may be reused, perhaps after recycling.
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The distinction between renewable and non-renewable resources has significant
implications on the optimal policies of extracting and pricing the resource. In this
regard, durable resources have the peculiarity that, at any time, in addition to the
resource available in the ground for extraction, there is a stock of already used
amounts of the resource that are still potentially reusable.

The problem was modelled in the frameork of Optimal Control where the Maxi-
mum Principle of Pontryagin and Dynamic Programming (Hamilton-Jacobi-Bellman
equation) are the pillars. Our approach is based on the Pontryagin Principle, as
in [8], because although it only provides a necessary condition to be fulfilled by the
solution, it is simpler to use as it is formulated in Ordinary Differential equations,
while the Hamilton-Jacobi-Bellman equation involves Partial Differential Equations.

The use of control theory for tackling the considered problem is not new, as it
is shown in the following paragraphs. However, the potential of this optimization
technique has not been fully explored so far. We have assumed a null rate of interest,
leaving cases with a different rate of interest for future research. Our approach
allows considering cases in which the optimal policy exhausts the resource available
in ground, or not.

The present paper considers the case in which there is a sole owner of the primary
sources of the resource. Given that if the resource is durable the supply comes
from the primary sources and from a stock of the already-used and potentially
reusable amounts of the resource, the scenario cannot be strictly called monopolistic.
However, as with many authors, the terms monopoly and monopolistic are used in
the present paper in this specific sense.

The short literature review shown in this section is, therefore, focused on the
monopolistic case. The reader can find a more comprehensive and detailed review
in [3], which, using a different technique, deals with the same problem considered
in the present paper.

The first two relevant papers to consider the economy of exhaustive resources
are [5] and [6], where the Hotelling’s rule concerning the price evolution of an
exhaustible resource in a competitive market is formulated.

Among the papers and books on the economics of non-renewable resources that
have been published after Hotelling’s, most focused mainly on the conditions under
which the Hotelling rule is valid or not. The majority refer to non-durable resources,
whereas those dealing with durable are scarce.

Coase, in [2], analyzes the implications of the durability for a monopolist. Bulow,
[1], Suslow, [14], and Malueg and Solow, [9] and [10], study the monopolistic markets
of durable, but renewable, goods and compare sales and rental policies. Malueg and
Solow [11], [12], are in the same line with respect to durable exhaustible resources.

Other research concerning the economics of durable non-renewable resources fo-
cus on the validity of Hotelling’s rule for this kind of resources. Stewart, in [13],
assumes finite discrete time and, considering the notion of quasi-durability, which
is quantified by means of a coefficient corresponding to the fraction of the extracted
resource that remains from one period to the next, uses an optimization model and
the Lagrange multipliers’ technique to compare the strategy of a competitive ex-
tractive industry with that of a monopolistic one. It is concluded that Hotelling’s
rule applies to competitive and monopolistic markets, although in this latter the
optimal strategy may lead to falling prices, as opposed to the former. Levhari and
Pindyck, [8], instead, use a continuous time infinite horizon formulation and the
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Maximum Principle, briefly discuss the case of monopolistic markets and conclude
that Hotelling’s rule does not hold in them.

Malueg and Solow in [11] analyze in detail the two-periods case under the as-
sumptions of monopoly, static linear demand function, exhaustibility and perfect
durability, focusing on the differences that exhaustibility induces in the monop-
oly equilibrium of durable resources. The same authors, in [12], analyze whether
monopoly leads to over-conservation in the case of durable exhaustive resources.
They use two models with static linear demand functions and an infinite horizon (a
discrete-time model with perfect durability and a continuous-time model in which
costs are an increasing function of cumulative production). They obtain similar
results, with the general conclusions that monopoly is over-conservative and prices
fall monotonically during the production period.

Corominas [3] considers the monopolistic case, with partial or total durability.
Using a discrete-time mathematical programming model and Karush, Kuhn and
Tucker conditions, analytic solutions and their general properties are obtained in
some specific settings.

The discrete-time approach shows itself useful for finding the properties of the
optimal policies in specific scenarios and for obtaining numerical solutions in any of
a wide range of settings; however, it does not allow the shape of the optimal policies
under general assumptions to be described. Instead, considering continuous time,
one can expect that optimal control may be useful to this end. As pointed out
above, Levhari and Pindyck, in [8], use an optimal control model to deal with
the monopolistic case; however, their aim is not to find the optimal path of the
extraction rate, but to determine whether Hotelling’s rule holds in this case. Thus,
the use of optimal control to tackle our problem remains largely unexplored. As
Levhari and Pyndick indicate, an optimal control model of the problem may lead,
unless some appropriate assumption is introduced, to an unbounded solution. They
opt for considering that the cost of extracting the resource is a strictly convex
function of the extraction rate. Instead, we assume that the extraction rate is
bounded above and the extraction cost is negligible or does not depend on the
extraction rate.

The structure of the rest of the paper is as follows. The assumptions adopted
and the dynamic of the system are stated in section 2. Section 3 is devoted to the
general properties of the optimal solutions, as a starting point to find the diverse
patterns of the optimal paths that are deduced in section 4. Some examples are
outlined in Section 5. Section 6 closes the paper with the conclusions and proposals
of future research.

2. Problem definition. We consider a non-renewable durable resource with a
single primary supplier (the monopolist) possessing x0 units of the resource. As
long as the resource is available, the monopolist is able to decide its extraction rate
at any time, u(t), provided that 0 ≤ u(t) ≤ uM . As a result of the extractions
the stock in the ground, x(t), available to be put in the market by the monopolist,
decreases monotonically. All the extracted resource is sold at a price which is a
decreasing function of the stock, Q(t), of the previously sold amounts of the resource
that are potentially reusable at time t. Therefore, P (t) = P (Q(t)). For any given
value of t the price is a decreasing function of Q(t), since the marginal utility of
the resource decreases when the amount in the hands of the public increases. Once
a unit of the resource is extracted it vanishes at a rate ρ units/(time unit), so is,
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if u(t) = 0, dQ/dt = −ρQ. We assume that the extraction cost of a unit of the
resource is negligible.

The constrained system dynamics are defined by the following set of differential
equations:

dx

dt
= −u, x(t) ≥ 0 (1)

dQ

dt
= u− ρQ, Q(t) ≥ 0 (2)

Given a finite or infinite time horizon, T , and an interest rate, i, constant through-
out the time horizon, the monopolist’s objective is to maximize the present value
of the incomes obtained from the sale of the extracted units of the resource:∫ T

0

P (Q(τ))u(τ) e−iτdτ (3)

In the finite horizon case, the objective function could be extended to take into
account the value the remaining resource at time T has. This, assuming that this
value is proportional to the remaining amount of the resource at T , leads to adding
a new term c x(T ) to the objective function, where c is a positive constant and x(T )
is given by

x(T ) = x0 −
∫ T

0

u(τ)dτ (4)

Our aim is to analyze the problem in increasing degrees of difficulty that result
from combining i = 0 or i ̸= 0, finite or infinite horizon and considering the value
of the remaining resource, x(T ).

Hence, from now on throughout this paper, i = 0 is considered. Then, the
objective function reduces to:∫ T

0

P (Q(τ))u(τ)dτ + c x(T ) (5)

Using Equation 4 in the previous equation it is clear that optimizing (5) is equivalent
to optimizing ∫ T

0

P̂ (Q(τ))u(τ)dτ =

∫ T

0

(P (Q(τ))− c) u(τ)dτ (6)

In order to simplify the developments and to reduce the number of parameters,
the following change of variables is considered,

z =
x

uM
, q =

ρ

uM
Q and v =

u

uM
, (7)

then, q ∈ [0, 1) and v ∈ [0, 1].
In the new variables, the optimal control problem means maximizing the func-

tional ∫ T

0

P̂

(
uM

ρ
q(τ)

)
uM v(τ) dτ = uM

∫ T

0

P̂

(
uM

ρ
q(τ)

)
v(τ) dτ,
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subject to the constraints:

0 ≤ z(T ), (8)

dz

dt
= −v, (9)

dq

dt
= ρ (v − q). (10)

Note that the constraint x(t) ≥ 0 in Equation (1) has been replaced by z(T ) ≥
0, because x(t) is a decreasing function of time. The constraint on z will result
in a transversallity condition on the co-states. Furthermore, since uM > 0, the
functional to be maximized can be reduced to∫ T

0

p(q(τ)) v(τ) dτ,

where p(q(τ)) = P̂
(

uM

ρ q(τ)
)
.

In addition, in the new variables only one parameter remains, ρ, which is positive.

3. General results. In order to apply Pontryagin’s Maximum Principle (PMP),
we state the Hamiltonian:

H(q, λ1, λ2, v) = p(q) v − λ1 v + λ2 ρ (v − q), (11)

where λ1, λ2 are co-states associated to the state variables z and q respectively.
Their dynamics are given by:

dλ1

dt
= −∂H

∂ z
= 0, (12)

dλ2

dt
= −∂H

∂ q
= −dp

dq
v + ρ λ2 = −dp

dt

v

ρ(v − q)
+ ρ λ2. (13)

and the transversallity conditions result in λ1(T ) = 0 if the constraint z(T ) ≥ 0
is not considered, which is the case if it is presumed z(0) is large enough as taken
in subsection 4.1. The constrained case is considered in subsection 4.2. As for λ2,
since there is no constraint on Q(T ), λ2(T ) = 0.

Note that the Hamiltonian is linear with respect to v. From the PMP, the optimal
value of v is found among the arguments that maximize H(v), assuming that all
variables different to v are constant. Hence,

v =

{
0 if p(q)− λ1 + ρλ2 < 0
1 if p(q)− λ1 + ρλ2 > 0

(14)

We are dealing with is a Filippov’s1 system with switching surface σ = 0, where

σ(q, λ1, λ2) = p(q)− λ1 + ρ λ2. (15)

Note that dσ
dt does not depend on v. Indeed,

dσ

dt
=

dp

dq
ρ (v − q)− 0 + ρ

(
−dp

dq
v + ρ λ2

)
= ρ

(
ρλ2 − q

dp

dq

)
Hence, dσ

dt has the same sign at both sides of σ = 0. As a consequence, σ(t), i.e. σ
evaluated on optimal trajectories, does not present oscillations of infinite frequency
around σ = 0. If an optimal trajectory does eventually cross σ = 0 it does not
immediately recross the switching surface. Actually, as it will be shown, it will not

1A Filippov system is a dynamical system with discontinuous right-hand side. A basic reference
for these systems is [4].
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cross it again. The expected optimal dynamics is a discontinuous dynamics because
of the discontinuity in v. Then Equations (9), (10), (12) and (13) should be solved
for v = 0 and for v = 1. This results in:

z(t) = z(0), if v = 0, t0 = 0; (16)

z(t) = max{z(0)− t, 0}, if v = 1, t0 = 0; (17)

q(t) = e−ρ t q(0), if v = 0, t0 = 0; (18)

q(t) = 1 + e−ρ t (q(0)− 1), if v = 1, t0 = 0; (19)

λ1(t) = λ1(0) ∀t ≥ 0; (20)

λ2(t) = eρ t λ2(0), if v = 0 (21)

λ2(t) =

(
p(q)

ρ (q(0)− 1)
+ C

)
eρ t, if v = 1, t0 = 0 (22)

where C = λ2(0)− p(0)
ρ (q(0)−1) .

The dynamics in the variables (z, q, λ1, λ2) are decoupled. Indeed, the dynamics
for z depends on z and v only and the revenues do not depend on z except for
stopping the extraction if z reaches zero. In addition, λ1 is a constant. As for q and
λ2, their dynamics only depend on q, λ2 and σ which, in turn, depends on q, λ2

and λ1, but λ1 is a constant. Hence, the optimal control problem may be reduced
to the decoupled system given by variables q and λ2. The dynamics is well defined
if σ is strictly positive or negative while on σ = 0 the input may take any value in
the set [0, 1]. The curve defined by dσ

dt = 0 is also relevant because it divides the
plane (q, λ2) into regions where σ evaluated on solution trajectories is an increasing
or a decreasing function of time.

-(q⋆, λ⋆
2)

Figure 1. The plane (q, λ2)

Curves σ = 0, dσ
dt = 0 and two optimal trajectories are outlined in Figure 1.

The picture is particularized for a case where p(q) = a0 − a1q, a0 > 0, a1 > 0, and
λ1 = 0 in order to depict an example and to emphasize the important objects. The
picture represents the plane (q, λ2) for q ≥ 0 and λ2 ≤ 0 as well as the curve σ = 0,
which in this example is given by the line ρ λ2 = −p(q), the curve dσ

dt = 0, which in
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this example is given by the line ρ λ2 = q dp
dq , the regions where σ > 0 (respectively

σ < 0) as well as where dσ
dt > 0 (respectively, dσ

dt < 0). The picture includes a

trajectory in dσ
dt < 0 (dotted line). It starts in σ > 0 at (0, λ20), evolves with v = 1

until it reaches σ = 0 then, v switches to v = 0 and the trajectory continues in
{σ < 0}∩{dσ

dt < 0} for all t. For t → ∞, the trajectory evolves to q = 0, λ2 = −∞.

A trajectory in dσ
dt > 0 (dashed line) is also drawn. It starts in σ < 0 (v = 0) at

(1, λ21) and evolves with (v = 0) until reaching σ = 0, then v switches to v = 1
and the trajectory continues in {σ > 0} ∩ {dσ

dt > 0} for all t > 0. For t → ∞, the
trajectory evolves to q = 1 and λ2 = +∞.

It should be noted that

• The domains {σ < 0} ∩ {dσ
dt < 0} and {σ > 0} ∩ {dσ

dt > 0} are invariant for
the dynamical system.

• Let (q, λ2) be a point in {σ = 0}∩{dσ
dt < 0}, then σ evaluated on the solution

trajectory through this point is a decreasing function while, if (q, λ2) is on
{σ = 0}∩{dσ

dt > 0}, σ evaluated on the solution trajectory through this point
is an increasing function.

• If (q, λ2) belongs to {σ = 0} ∩ {dσ
dt = 0}, then v may take any value in the

interval [0, 1] and for v = v⋆ = q, the q−component of the intersection point,
(q, λ2) is an equilibrium point of the system denoted, from now on, by (q⋆, λ⋆

2).
Its coordinates fulfill

ρ λ⋆
2 = −p(q) = q⋆

dp

dq

∣∣∣∣
(q⋆,λ⋆

2)
. (23)

And, consequently, for v = q⋆ we have

dq

dt

∣∣∣∣
(q⋆,λ⋆

2)
= 0 and

dλ2

dt

∣∣∣∣
(q⋆,λ⋆

2)
= 0

(q⋆, λ⋆
2) is an equilibrium point while v = v⋆. If v changes to v = 1 at a given

time instant, then the trajectory would leave the equilibrium point.
• Trajectories for v = 0 and v = 1 at (q⋆, λ⋆

2) are tangent to σ = 0.
• If q⋆ > 1, the domain {σ < 0} ∩ {0 ≤ q ≤ 1} is also invariant for the system
dynamics. Hence if a trajectory reaches σ = 0 or starts in σ ≤ 0, it goes to
q = 0 and λ2 = −∞ when t → ∞. The same occurs for σ > 0. In this case,
trajectories go to q = 1 and λ2 = +∞ when t → ∞

Note that these remarks are valid for a general p(q) such that dσ
dt = 0 intersects

σ = 0 at a unique point (q⋆, λ⋆
2) with q⋆ ≥ 0. In general σ = 0 and dσ

dt = 0 may
intersect or not in the domain 0 ≤ q ≤ 1 and the intersection may contain one
point or more. However, in order to make the analysis easier, from now on it will
be assumed that σ and dσ

dt = 0 intersect at a unique point, which may lie in the
domain 0 ≤ q ≤ 1 or not. Since λ1 is constant, λ1 different from zero would lead to
a similar diagram except that the line σ = 0 would be relocated to a parallel line.

The optimal extraction rate will follow a bang-bang pattern that results from the
Pontryagin Maximum Principle because the function to be optimized (Equation 11)
is linear in the control input v. Hence, maximum values for v are at the beginning
or at the end of the interval where the extraction rate belongs: [0, 1]. However,
to be precise, the optimal extraction rate will not be a pure bang-bang control.
As explained in the next section, if the equilibrium point (q⋆, λ⋆

2) is in the domain
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0 ≤ q ≤ 1, then the normalized optimal extraction rate may be equal to q⋆ for a
certain time to optimize the cost function.

4. Optimal control design. General results stated in the previous section are
used here to obtain the optimal control and optimal trajectories. Three trajectories
will be relevant in our discussion. Namely, the trajectory with v = 0 that reaches
(q⋆, λ⋆

2), the trajectory with v = 1 that reaches (q⋆, λ⋆
2) and the trajectory with

v = 1 and initial conditions (q⋆, λ⋆
2).

4.1. Finite time horizon, T , and z(0) large enough. In a first optimal control
design, suppose that z(0) is large enough so that, with an optimal policy, the product
is not exhausted during the interval [0, T ]. As for the final conditions, q(T ) is free
as well as z(T ) because the hypothesis on z(0). Thus, the transversality conditions
of the Pontryagin Maximum Principle, see for instance [7], yield to λ1(T ) = 0 and
λ2(T ) = 0.

� (q⋆, λ⋆
2)

Figure 2. Control strategies

The dynamics of the optimum control system are characterized by two curves:

• Γ1(t), the trajectory solution of the control system with v = 1, which is
tangent to σ = 0 at (q⋆, λ⋆

2). It corresponds to trajectory (a) in Figure 2.
• Γ0(t), the trajectory solution of the control system with v = 0, which is

tangent to σ = 0 at (q⋆, λ⋆
2). As for this second curve only the arc that ends at

the tangent point is relevant because the region defined by {σ < 0}∩{dσ
dt < 0}

does not intersect the line λ2 = 0. It corresponds to trajectory (c) in Figure 2.

Given initial conditions for z and q, z(0) and q(0), we consider λ2(0) so that the
solution of Equations (10), (13) with v defined by Equation(14) fulfills λ2(T ) = 0.
It follows from the geometry just discussed that v(T ) = 1. In order to find optimal
trajectories let us distinguish two cases depending on whether q⋆ > 1 or 0 < q⋆ ≤ 1.

Case q⋆ > 1. In this case v(t) = 1 ∀t ∈ [0, T ] and the trajectory never meets
σ = 0 because if an optimal solution intersected σ = 0 or started in σ < 0, it
would never reach λ2 = 0. Actually, it would go to (0,−∞) as t goes to ∞, being
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λ2(t) a decreasing function. The initial condition for λ2 may be obtained from
Equations (19) and (22).

It should be noted that p(q(t)) ≥ 0 ∀t ∈ [0, T ]. Indeed, since {σ = 0} ∩ {dσ
dt } =

{(q⋆, λ⋆
2)} and q⋆ > 1, Equation (23) is not fulfilled for q ∈ [0, 1]. Instead,

q
dp

dq
> −p(q), ∀q ∈ [0, 1].

If ∃q1 ∈ [0, 1] such that p(q1) = 0, then dp
dq

∣∣∣
q=q⋆

would be strictly positive which is

not possible because dp
dq is negative or zero.

Case 0 ≤ q⋆ ≤ 1. In this case there are several trajectories compatible with
λ2(T ) = 0. Namely,

• v = 1 during the whole trajectory.
• v = 1 during the whole trajectory, except for a time interval where the tra-
jectory remains at (q⋆, λ⋆

2).
• The trajectory starts with v = 0 in the domain {σ < 0}∩ {dσ

dt > 0}, it crosses
σ = 0 and continues through {σ > 0} ∩ {dσ

dt > 0} until it reaches λ2 = 0 at
time t = T .

• The trajectory starts with v = 0 in the domain {σ < 0}∩{dσ
dt > 0}, intersects

σ = 0 at the equilibrium point (q⋆, λ⋆
2) where it remains for a time interval

and continues through the domain {σ > 0}∩ {dσ
dt > 0} until it reaches λ2 = 0

at t = T .

Equations from (18) to (22) allow calculating λ2(0) from q0.

In optimal trajectories p ≥ 0 while v = 1. Indeed, let (q(t), λ2(t)) any point of a
trajectory with v = 1; this means σ (q(t), λ2(t)) ≥ 0. Additionally, σ = 0 intersects
λ2 = 0 at a point (q2, 0) where p(q2) = 0 for q2 > q(t). Thus, since p(q) is a
decreasing function of q, p(q(t)) ≥ p(q2) = 0.

Optimal control policy Let q(0) be an initial condition for q and, as discussed
earlier, let us assume that there is enough of the resource to extract so that z(t) ≥ 0
for all t ∈ [0, T ]. Then, the optimal control policy is defined by the next algorithm:

• If 0 ≤ q(0) ≤ q⋆, let t1 be the time it takes to go on the curve Γ1 from q = q(0)
to λ2 = 0. Then:
– If t1 ≥ T , let us take v = 1 until reaching (q⋆, λ⋆

2), then v = q⋆ for T − t1
units of time and then v = 1 again until reaching λ2 = 0 at t = T . The
initial condition for λ2 is given by the λ2-component of the intersection
point {q = q(0)} ∩ Γ1 (trajectory (a) in Figure 2).

– Otherwise take v = 1 for all t ∈ [0, T ]. Equation (22) allows computing
the appropriate value for λ2(0) (trajectory (b) in Figure 2) .

• If q⋆ ≤ q(0) ≤ 1, let t0 be the time it takes to go on the curve Γ0 from
q = q(0) to (q⋆, λ⋆

2) and t1, the time it takes to go on the curve Γ1 from
(q⋆, λ⋆

2) to λ2 = 0. Then:
– If t0 + t1 ≥ T , let us take v = 0 until reaching (q⋆, λ⋆

2), then v = q⋆

for T − (t0 + t1) units of time and then v = 1 until reaching λ2 = 0 at
t = T . The initial condition for λ2 is given by the λ2-component of the
intersection point {q = q(0)} ∩ Γ0 (trajectory (c) in Figure 2).

– Otherwise, let (q(0), λ21) the intersection point between q = q(0) and
σ = 0 and t2 the time the trajectory with v = 1 takes from (q(0), λ21) to
λ2 = 0. Then, if t2 ≥ T , take v = 1 for all t ∈ [0, T ]; the initial condition
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for λ2 may be calculated from Equation (22). If t2 < T , then there exists
t3 > 0 and an initial condition for λ2, λ2(0), so that the trajectory starting
at (q(0), λ2(0)) with v = 0 for t ∈ [0, t3) reaches σ = 0 at t = t3 and,
switching the control input to v = 1 at this point, it reaches λ2 = 0 at
time t = T . t3 and the initial condition for λ2 may be calculated from
Equations from (18) to (22) (trajectory (d) in Figure 2).

4.2. Finite time horizon, T , and z(0) = zM . Let us consider, in this subsection,
the case where only a limited quantity of product can be put on the market. Let
zM be the initial condition for variable z, roughly speaking, the maximum amount
of product to be extracted. Our purpose is to determine the optimal control policy
fulfilling the constraint z(t) ≥ 0 for all t ∈ [0, T ]. So, let v∞(q(0), T ) denote the
optimum solution obtained when assuming that an unlimited amount of product
that can be put on the market and vzM (q(0), T ) the optimum solution in the case
z ∈ [0, zM ]. An algorithm for an optimal extraction policy is described below.

If
∫ T

0
v∞(q0, T, τ)dτ ≤ zM , then vzM (q0, T ) = v∞(q0, T )

For the algorithm in the case where
∫ T

0
v∞(q0, T, τ)dτ > zM , some remarks are

in order:

• With the optimal extraction policy, the whole amount of the resource ought
to be extracted. This means z(T ) = 0.

• The problem we are dealing with, in the Pontryagin Principle framework,
shows a geometry identical to the one described in previous subsections. In
this case, z(T ) is not free (actually, z(T ) = 0). Therefore, λ1 may not nec-
essarily be 0 but it is still constant. Then, the unique modification in the
geometry of this dynamical system with regard to the case where z(0) is large
enough is that the curve σ = 0 has been shifted at a distance λ1. Conse-
quently, the type of optimal trajectories obtained are the same as in the case
studied in the previous section.

• T > zM . Indeed,

zM <

∫ T

0

v∞(q0, τ)dτ ≤
∫ T

0

dτ = T

• Since zM < T , the optimum extraction policy requires extracting over a cer-
tain period of time with extraction rate strictly less than 1. This in only
possible increasing the time for v = q⋆ or for v = 0.

• From the geometry of the solutions and the type of optimal solutions, vzM (q0,
T, t) takes one of these forms:

A

vzM (q0, T, t) =

 1 if t ∈ [0, t1)
q⋆ if t ∈ [t1, t2)
1 if t ∈ [t2, T ]

B1 B2

vzM (q0, T, t) =

 0 if t ∈ [0, t1)
q⋆ if t ∈ [t1, t2)
1 if t ∈ [t2, T ]

vzM (q0, T, t) =

{
0 if t ∈ [0, t1)
1 if t ∈ [t1, T ]

B2 appears when spending an extra time with v = 0 is enough to get
z(T ) = 0.
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• Equations that must hold in case A:

zM = (t2 − t1)q
⋆ + T − (t2 − t1) (24)

(q⋆, λ⋆
2) = Γ1(q(0), λ2(0), t1) (25)

(q2, 0) = Γ1(q
⋆, λ⋆

2, T − t2) (26)

Equation (24) states that at time T the resource that can be extracted is
depleted, while Equations (25) and (26) describe the solution in variables q
and λ2 in the two intervals where v = 1. In the interval [t1, t2), for t2 > t1,
the trajectory remains at the equilibrium point (q⋆, λ⋆

2) at a constant price.
• Equations that must hold in case B1:

zM = (t2 − t1)q
⋆ + T − t2 (27)

(q⋆, λ⋆
2) = Γ0(q(0), λ2(0), t1) (28)

(q2, 0) = Γ1(q
⋆, λ⋆

2, T − t2) (29)

Equation (27) states that at time T the extractable resource is depleted. Equa-
tions (28) and (29) describe the solution in the variables q and λ2 in the in-
tervals where v = 0 and v = 1, respectively. If t2 > t1, in the interval [t1, t2),
the trajectory remains on the equilibrium point (q⋆, λ⋆

2) at a constant price.
• Equations that must hold in case B2:

zM = T − t1 (30)

(q(t1), λ2(t1) = Γ0(q(0), λ2(0), t1) (31)

(q2, 0) = Γ1(q(t1), λ2(t1, T − t2) (32)

Equation (30) states that at time T the extractable resource is depleted. Equa-
tions (31) and (32) describe the solution in the variables q and λ2 in the
intervals where v = 0 and v = 1, respectively.

• For all the cases (A, B1 and B2) the unknowns t1, t2 and λ2(0) may be
obtained by using numerical methods to solve the equations. The respective
dynamics are obtained from Equations (9), (10), (12) and (13) using a bang-
bang control except while trajectories must remain in the equilibrium point.

• In A, B1 cases, λ1 = p(q⋆) + λ⋆
2, while in case B2, λ1 = p(q(t1)) + λ2(t1) .

Indeed, from the geometry of the dynamical system (q⋆, λ⋆
2) is on the curve

σ = 0. Hence the value of λ1. Mutatis mutandis for case B2.
• A priori, optimal control may take any of the three forms when v∞(q0, T, 0) =
1 (the z∞ optimal control starts with v = 1), but only forms B1 and B2 are
appropriate for v∞(q0, T, 0) = 0. In the first case, the relative position between
q0 and of q⋆ due to the relocation of σ = 0 because of λ1 ̸= 0 determines the
appropriate optimal control. However, since in order to do this, the value of λ1

is needed, so, it may be better to calculate for both cases and take optimum.

5. Examples. This section uses some examples to describe several optimal trajec-
tories for u and Q. Note that optimal trajectories in reduced variables have already
been described in Figure 2. The simulations presented in this section had been
made in the reduced model using variables (z, q, λ1, λ2), while in the figures the
original variables u and Q have been depicted. A linear function has been used for
P (Q). Actually, P (Q) = A0 − A1 Q. Remember that (q⋆, λ⋆

2) denotes the equilib-
rium point, the intersection between σ = 0 and dσ

dt = 0, which is presumed to be a
unique point.



3244 ENRIC FOSSAS AND ALBERT COROMINAS

Figure 3. Optimal stock trajectories

5.1. q⋆ > 1. The equilibrium point is not in the range of q ∈ [0, 1]. As described
previously, the optimal control input is u = uM for all t ∈ [0, T ] where T stands
for the time-horizon of the optimal control problem. The next parameters are
common to the simulations: A0 = 3, A1 = 1, ρ = 1 and q0 = 0 is a common initial
condition. Optimal stock trajectories are depicted in Figure 3. These trajectories
were obtained in normalized variables from equations (7), (9), (10) and (8). They
correspond to uM = {0.75, 1, 1.25} and the optimal control input u = uM ∀t ∈
[0, T ]. Hence, the normalized optimal input results in v = 1, regardless of the
values uM takes. These trajectories are thus obtained from a unique trajectory
corresponding to uM = 1 multiplying by 0.75 and 1.25 respectively. As can be seen,
trajectories come from multiplying the one corresponding to uM = 1 (dashed line)
by uM = 0.75 (continuous line), 1 and 1.25 (dash-dotted line).

Figure 4. Optimal extraction rate (left) and stock trajectories (right)

5.2. 0 < q⋆ < 1. In this case the equilibrium point is in [0, 1]. Although q⋆ depends
on the value of uM , because changes in uM result in changes in σ, Q⋆ is independent
from uM . The next parameters are common to the simulations: A0 = 0.8, A1 = 1,
ρ = 1 while q0 = 0 is a common initial condition. Three values have been taken
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Figure 5. Optimal extraction rate (left) and stock trajectories (right)

for uM . Namely, uM = 0.75 (continuous-trace), uM = 1 (dashed) and uM = 1.25
(dash-dotted).

Let t1 be the time the q trajectory for v = 1 takes to go from q0 = 0 to q = q⋆

and t2 be the time λ2 takes from λ2(0) = λ⋆
2 to λ2 = 0. Thus, depending on whether

t1 + t2 ≤ T , u = uM for all t in [0, T ] (uM = 0.75) or u follows a sequence u = uM ,
u = Q⋆ and u = uM again (uM = 1 and uM = 1.25).

Optimal control inputs and stock trajectories are depicted in Figure 4. When
uM = 1 and uM = 1.25, t1 + t2 < T . Hence optimal extraction rate remains for
T−(t1+t2) in u = q⋆, the equilibrium value for the input control. When uM = 0.75,
t1 + t2 ≥ T , then u(t) = uM for all t in [0, T ].

Figure 5 corresponds to the case of Q(0) = uM/ρ. In this case the specific times
to be considered are t1, the time the trajectory for v = 0 takes from q(0) = 0 to q⋆

and t2, as defined before, the time the trajectory for v = 1 takes from λ2(0) = λ⋆
2

to λ2 = 0. Depending on whether t1 + t2 ≤ T or not, the optimal control input
is given by the sequence u = 0, u = uM (uM = 1.25) or by u = 0, u = Q⋆ and
u = uM (uM = 1 and uM = 0.75). It should be noted that, according to what was
previously explained in the text, the equilibrium value for the input control is the
same (0.4) regardless of the value of uM .

6. Conclusions and prospects of future research. The aim of this paper is to
determine the extraction policy that maximizes the revenue of the single primary
supplier of a totally or partially durable non-renewable resource. The problem is
solved within the framework of optimal control theory, assuming that the resource’s
sale price is a decreasing function of the stock of previously sold amounts of resource
that are still reusable, the extraction cost is negligible and there is an upper bound
on the extraction rate.

Optimal policy obviously depends on the initial stock, the amount of the re-
source possessed by the monopolist, the degree of durability of the resource and
the planning time horizon. However, the shapes of the optimal policies follow a
small number of patterns consisting of a maximum of three phases, in a variable
order, in which, respectively, the extraction rate is null, equal to its upper bound or
equal to an equilibrium rate that is strictly lower than the upper bound, so that in
this phase of extraction the price remains constant. For example, with initial stock
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equal to 0, the optimal policy can have two phases (initial and final) with the max-
imum extraction rate, separated by one extraction phase with the equilibrium rate.
Depending on the initial conditions and the specific parameters of each particular
case, the optimal policy may or may not exhaust the monopolist’s resource.

This work leaves two questions open. Namely, the optimization of the present
income value with non-zero interest rates, and the treatment of cases with multiple
equilibrium points. These are prospects for future research.
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