
Software acceleration of Graph

Neural Networks

Graph-Dependent Analysis of a Software Acceleration Technique for

Graph Neural Network Computation

Informatics engineering

Specialization in Computing

Author: Eloi Campeny Roig

Director: Sergi Abadal Cavallé (Computer Architecture)

GEP Tutor: Joan Sardà Ferrer

1st of July 2022

CONTENTS Software acceleration of GNNs

Contents

1 Context and Scope 12

1.1 Context . 12

1.1.1 Introduction . 12

1.1.2 Problem to be Resolved . 13

1.1.3 Stakeholders . 14

1.2 Contextualization . 14

1.2.1 Previous Studies . 14

1.2.2 Justification . 15

1.3 Scope . 16

1.3.1 Objective and Sub-Objective . 16

1.3.2 Requirements . 16

1.4 Methodology and Rigor of Project Planning 17

1.4.1 Methodology . 17

1.4.2 Project Validation . 18

2 State of the Art 20

2.1 Software Frameworks and Accelerators 21

2.1.1 PyTorch Geometric (PyG) . 22

2.1.2 Deep Graph Library (DGL) . 22

2.1.3 PCGCN . 23

2.1.4 TC-GNN . 23

3 Methodology of the Experiments 24

3.1 Datasets . 25

Page 1

CONTENTS Software acceleration of GNNs

3.1.1 Real Datasets . 25

3.1.2 Graphlaxy . 26

3.2 Features . 28

3.3 Procedure of the Experiments . 29

4 Results and Analysis 32

4.1 Comparison with the Original Paper 32

4.2 Visualization . 33

4.3 Models . 34

4.4 Final Results . 35

5 Conclusions 39

5.1 Conclusions . 39

5.2 Future Work . 39

6 Project Planning 40

6.1 Task Definition . 40

6.2 Resources . 43

6.2.1 Human Resources . 43

6.2.2 Hardware Resources . 43

6.2.3 Software Resources . 44

6.2.4 Material Resources . 44

6.3 Risk Management . 44

6.4 Gantt Chart . 47

7 Budget and Sustainability 48

Page 2

CONTENTS Software acceleration of GNNs

7.1 Budget . 48

7.1.1 Personal Costs per Activity . 48

7.1.2 Generic Costs . 50

7.1.3 Other Costs . 51

7.1.4 Total Cost . 52

7.1.5 Management Control . 52

7.2 Final Analysis of the Project Management 54

7.2.1 Risks that have Occurred . 54

7.3 Sustainability . 55

7.3.1 Economic Dimension . 55

7.3.2 Environmental Dimension . 57

7.3.3 Social Dimension . 58

Page 3

LIST OF FIGURES Software acceleration of GNNs

List of Figures

1 Diagram of the experimental methodology. [Own compilation] 24

2 Speedup of TC-GNN [9] respect to DGL [13] 32

3 Speedup of TC-GNN [9] respect to DGL [13] 32

4 Features vs Speedup in log2 scale. [Own compilation] 33

5 Nodes (left) and Edges (right) vs TC-GNN time. [Own compilation] . . 34

6 DGL model. [Own compilation] . 34

7 Linear regression and neural network models. [Own compilation] 36

8 Coefficients of most important features of TC-GNN model. [Own com-

pilation] . 36

9 Time and classification of our final model. [Own compilation] 37

10 DGL vs TC-GNN time with our model predictions. [Own compilation] 37

11 Time and model classification with real datasets. [Own compilation] . . 38

12 DGL vs TC-GNN time and the classification (real graph). [Own compi-

lation] . 38

13 Gantt Chart. [Own compilation] . 47

Page 4

LIST OF TABLES Software acceleration of GNNs

List of Tables

1 Real graph features. [Own compilation] 27

2 Summary of the information of the tasks. [Own compilation]. 46

3 Annual salary of the different project roles. [19] 49

4 Summary of the information of the tasks. [Own compilation]. 49

5 Amortization costs for the hardware resources. [Own calculations] . . . 50

6 Electric cost of the hardware resources. [Own calculations] 51

7 CG cost in the project. [Own calculations] 51

8 Incident costs of the project. [Own calculations] 52

9 Total cost of the project. [Own calculations] 53

10 Final amortization costs for the hardware resources. [Own calculations] 54

11 Final electric cost of the hardware resources. [Own calculations] 55

12 Final CG cost in the project. [Own calculations] 55

13 Final total cost of the project. [Own calculations] 55

Page 5

LIST OF TABLES Software acceleration of GNNs

Abstract Català

El camp de recerca de les xarxes neuronals aplicades a grafs (GNN) ha experimentat

un creixement explosiu en els darrers anys. Aquesta és una conseqüència de la seva

capacitat única per gestionar dades en forma de graf, una estructura de dades molt

comuna que s’aplica àmpliament a innombrables indústries, des de la sanitat fins als

sistemes de recomanació. Malgrat la popularitat, encara hi ha alguns aspectes que

no s’han desenvolupat tant com d’altres. Un dels casos és la recerca de maneres més

eficients de computar-los.

Aquest problema pateix d’una complexitat important, a causa de la flexibilitat dels

grafs per adaptar-se a una àmplia gamma de problemes. Les dissimilaritats estructurals

entre diferents grafs dificulten el disseny d’un algorisme eficient amb una bona gener-

alització. Juntament amb això, també hi ha la qüestió de la quantitat considerable de

multiplicacions de matrius esparses que afecten negativament a l’eficiència.

S’han proposat diversos nous algorismes d’acceleració, inclosos els enfocats al soft-

ware, hardware i el hardware-software. Hi ha acceleradors que es basen a represen-

tar el graf d’entrada d’una forma més adequada per al hardware per tal d’aconseguir

l’acceleració. Altres utilitzen un esquema diferent per calcular el graf per aprofitar

diferents plataformes hardware.

En aquesta tesi suggerim dues hipòtesis. A la llum del fet que no tots els acceler-

adors funcionen bé per a tots els grafs, la nostra primera hipòtesi és que no hi ha cap

accelerador que funcioni bé per a tots els grafs. La segona hipòtesi és que, donada una

caracterització adequada del graf, podem predir quin pot ser el millor accelerador entre

una selecció d’ells.

Per donar una resposta a ambdues hipòtesis, comparem dues alternatives de càlcul

GNN: deep graph library (DGL) com a model de referència i TC-GNN com a accelerador

de software per a GNN. La comparació es fa a través d’un conjunt de grafs tan ampli

i complet com sigui possible, que contingui grafs de moltes estructures diferents. Amb

tal de complir aquest objectiu, utilitzem un generador de graf sintètic, GraphLaxy, del

Page 6

LIST OF TABLES Software acceleration of GNNs

nostre grup de recerca. Usarem tots els grafs sintètics per enregistrar el temps que

triga DGL i TC-GNN. Amb aquestes dades, entrenem un model per predir el temps

d’execució d’ambdues alternatives en funció de les caracteŕıstiques dels grafs d’entrada.

Després de tots els experiments, hem descobert que, en general, TC-GNN té un millor

rendiment que DGL, especialment per a gràfics petits, mentre que DGL supera en grafs

grans i ultra esparsos.

Page 7

LIST OF TABLES Software acceleration of GNNs

Abstract Castellano

El campo de investigación de las redes neuronales aplicadas a grafos (GNN) ha experi-

mentado un crecimiento explosivo en los últimos años. Esta es una consecuencia de su

capacidad única para gestionar datos en forma de grafo, una estructura de datos muy

común que se aplica ampliamente a innumerables industrias, desde la sanidad hasta

los sistemas de recomendación. A pesar de la popularidad, todav́ıa existen algunos

aspectos que no se han desarrollado tanto como otros. Uno de los casos es la búsqueda

de maneras más eficientes de computarlos.

Este problema sufre de una complejidad importante, debido a la flexibilidad de

los grafos para adaptarse a una amplia gama de problemas. Las disimilitudes estruc-

turales entre distintos grafos dificultan el diseño de un algoritmo eficiente con una buena

generalización. Junto a ello, también está la cuestión de la cantidad considerable de

multiplicaciones de matrices poco densas que afectan negativamente a la eficiencia.

Se han propuesto varios nuevos algoritmos de aceleración, incluidos los enfocados al

software, hardware y hardware-software . Hay aceleradores que se basan en represen-

tar el grafo de entrada de una forma más adecuada para hardware para conseguir la

aceleración. Otros utilizan un esquema diferente para calcular el grafo para aprovechar

distintas plataformas hardware.

En esta tesis proponemos dos hipótesis. A la luz de que no todos los aceleradores

funcionan bien para todos los grafos, nuestra primera hipótesis es que no existe ningún

acelerador que funcione bien para todos los grafos. La segunda hipótesis es que, dada

una adecuada caracterización del grafo, podemos predecir cuál puede ser el mejor acel-

erador entre una selección de ellos.

Para dar una respuesta a ambas hipótesis, comparamos dos alternativas de cálculo

GNN: deep graph library (DGL) como modelo de referencia y TC-GNN como acelerador

de software para GNN. La comparación se realiza a través de un conjunto de grafos

lo más amplio y completo posible, que contenga grafos de muchas estructuras difer-

entes. Con el fin de cumplir este objetivo, utilizamos un generador de grafo sintético,

Page 8

LIST OF TABLES Software acceleration of GNNs

GraphLaxy, de nuestro grupo de investigación. Usaremos todos los grafos sintéticos

para grabar el tiempo que tarda DGL y TC-GNN. Con estos datos, entrenamos un

modelo para predecir el tiempo de ejecución de ambas alternativas en función de las

caracteŕısticas de los grafos de entrada. Después de todos los experimentos, hemos

descubierto que, por lo general, TC-GNN tiene un mejor rendimiento que DGL, espe-

cialmente para gráficos pequeños, mientras que DGL supera en grafos grandes y ultra

dispersos.

Page 9

LIST OF TABLES Software acceleration of GNNs

Abstract English

The research field of Graph Neural Networks (GNNs) has been experimenting an

explosive growth in the recent years. This is a consequence of their unique capability

to manage graph data, a highly common data structure which is widely applied across

innumerable industries ranging from healthcare to recommendation systems. Despite

the popularity, there are still some aspects which have not been developed as much as

others. One of the cases is the research on more efficient ways of computing.

This problem suffers from a significant complexity, due to the flexibility of graph

for adapting a wide range of problems. The structural dissimilarities between different

graphs makes it difficult to design an efficient computing algorithm with good general-

ization. Along with that, there is also the problem of the considerable amount of sparse

matrix multiplications which impact negatively on efficiency.

Several new acceleration algorithms have been proposed, including software, hard-

ware and hardware-software co-design approaches. There are accelerators which rely

on represent the input graph in a more suitable form for hardware in order to get the

speedup. Others use a different schema of computing the graph for taking advantage

of different hardware platforms.

In this thesis, we propose two hypotheses. In light of the fact that not all accel-

erators work well for all graphs, our first assumption is that there is no accelerator

that works well for all graphs.The second hypothesis follows that, given a proper graph

characterization, we can predict which can be the best accelerator among selection of

them.

Towards providing an answer to both hypotheses, we compare two GNN computing

alternatives: deep graph library (DGL) as a baseline library and TC-GNN as a software

accelerator for GNNs. The comparison is done over a wide and comprehensive graph

dataset which contains graphs of many different structures. To that end, we use a

synthetic graph generator, GraphLaxy, from our research group. We train all the

graphs with synthetic data and record the time taken by DGL and TC-GNN. With

Page 10

LIST OF TABLES Software acceleration of GNNs

this data, we train a model to predict the runtime of both alternatives based on the

input graph characteristics. After all experiments, we have discovered that in general

TC-GNN has better performance than DGL, especially for small graphs, while DGL

outperforms in large and ultra-sparse graphs.

Page 11

1 CONTEXT AND SCOPE Software acceleration of GNNs

1 Context and Scope

1.1 Context

1.1.1 Introduction

Machine Learning (ML) has experimented a massive growth in the last decade due to

its capacity to solve extremely complex problems. In particular, Deep Neural Networks

(DNNs) had expanded into every aspect of our lives like virtual assistant, recommend

systems or image processing for medical diagnosis are just a few examples [1].

However, it is well known that not all neural network architectures fit to all prob-

lems. The specific architecture of each DNN type of layers is focused on producing a

good results in certain tasks. For instance, by not making any assumption about the

structure of the data, a multi-layer perceptron are able to master a wide range of tasks

at the cost of being less efficient in a concrete task than other most specific DNNs.

In contrast, techniques such as Convolutional Neural Networks (CNNs) or Recursive

Neural Networks (RNNs) are biased toward extracting knowledge from a grill locality

and sequences of data. This makes them a better fit for specific tasks such as image

recognition or treatment of temporal signals, with the downside of being incapable of

efficiently handling data with arbitrary structures [2].

In light of the above, there has been a recent interest in deep learning techniques

able to model graph-structured data . This structure is inherent in a huge number of

problems in the field of complex systems in general. In essence, Graph Neural Networks

(GNNs) adapts their structure in order to handle an input graph and, through an

iterative process of aggregation of information across vertices. This allows to predict

properties for specific nodes, connections, or the graph as a whole, and generalize to

unseen graphs [2].

In recent years have seen a rapid increase in research activity in the field of GNNs

[3]. Great efforts have been devoted toward improving the efficiency of algorithms,

especially for massive graphs, and toward demonstrating their efficacy in a plethora of

Page 12

1 CONTEXT AND SCOPE Software acceleration of GNNs

application. However, less attention has been placed on the efficient processing of this

new type of neural networks. While the issue has already been extensively studied for

CNNs or RNNs, the treatment of GNNs remains largely unexplored [4] [5].

This is because GNNs are relatively novel and pose unique computing challenges, in-

cluding the need to support dense and extremely sparse operations for different graph

structures, scale to very large graphs and adapt the computation for handling in an

efficient way a huge number of GNN algorithm variant. Even though advances in

sparse/irregular tensor processing [6] and graph processing may prove useful in accel-

erating GNNs, addressing their unique computing challenges requires more specialized

efforts. Some attempts have been made from a software standpoint, adapting GNN

operations to better match the capabilities of processors or graphic units [4].

The Barcelona Neural Networking Center (BNN-UPC) [7] as an initiative of Prof.

Albert Cabellos and Prof. Pere Barlet at UPC (Universitat Politècnica de Catalunya)

with the main goals of carrying fundamental research in the field of Graph Neural

Network applied to Computer Networks, and educating and training the new generation

of students. This end degree project is part of this initiative, emphasizing this issue

and possible solutions for carrying in an efficient way the computations of GNN.

1.1.2 Problem to be Resolved

The current problem is that we do not know which GNN accelerator method performs

better depending on the input graph(s). It would be better to know which accelerator

to use depending on the characteristics of the graph(s) we have (number of vertex,

number of edges, sparsity, clustering coefficient, etc.).

As stated above, it is crucial to find which software accelerators are more suitable

depending on the input graph(s). The aim of this project is to analyze the impact on

the time performance during the training process of GNN.

More specifically we compare DGL and TC-GNN time during training process with

the same graph. And using the graph characteristics for training a machine learning

Page 13

1 CONTEXT AND SCOPE Software acceleration of GNNs

predictor in order to choose the best form of computing the input graph.

1.1.3 Stakeholders

The project has many involved parties, which can be Classified into two different groups

depending on the interaction and benefits they have with the project itself.

Firstly, the stakeholders that have direct interaction with the project are the tutor

and the researcher. Sergi Abadal Cavallé is the tutor of this project.

Moreover, one area of BNN-UPC research is focused on analyzing and improving

the performance of GNN using software accelerators. Thus, he will lead and guide the

researcher in the correct development of the project. The researcher, Eloi Campeny

Roig, is responsible for planning, developing and documenting the project, as well as

doing the experiments, analyzing and writing conclusions.

Secondly, the stakeholders that do not interact with the project, but receive direct

benefits can be divided into two more groups: companies, that use the software acceler-

ators in order to improve the performance of the machine learning methods (GNN). For

example recommender systems like amazon that need to compute an enormous graph

with millions of clients and products and cut result in huge savings energetic and eco-

nomic. And the scientific community, who gets access to the study realized and can use

the information and conclusions for further studies in this area including a reduction

of the computation time.

1.2 Contextualization

1.2.1 Previous Studies

In the past few years, there has been notably increasing research in improving the

performance of different software accelerators for GNN.

PCGCN [8] found that partitioning the adjacency matrix of the graph and making a

different treatment depending on the density of the matrix make a huge impact on the

Page 14

1 CONTEXT AND SCOPE Software acceleration of GNNs

performance of GNN. After partitioning the original adjacent matrix with a heuristic,

the accelerator decides based on the matrix density if is better to represent the adjacency

of nodes with the adjacency matrix or doing the calculations edge by edge.

Other researchers like TC-GNN [9] have focused on other forms of representing

the adjacency matrix in a more compact form. In this case the accelerator takes the

original matrix (n x n), an split it by rows (for example by 8 rows). In the next step,

the algorithm remove the columns that are all zeros (in this 8 x n sub-matrix). Using

this technique the accelerator reduce the size of the matrix blocks that is more suitable

for TPUs and GPUs.

There has also been research in proposing more methods that prune [10] the less

important edges or others that quantize the features of the nodes and edges [11].

1.2.2 Justification

All the research mentioned above only present accelerators and compare the perfor-

mance of frameworks baselines like PyTorch Geometric (PyG) [12] and Deep Graph

Library (DGL) [13]. However, none of them tries to combine more than one software

accelerator in order to choose which one are more suitable depending on the input

graph. Moreover, the evaluations made only consider a small selection of graphs which

not be representative of the entire graph space.

When dealing with GNN and big graph like Reddit dataset, it is very important to

select which accelerator must be used. This selection will directly affect the performance

in the training part of the GNN. From our point of view, the characterization of the

graph(s) is needed to select which of the software accelerator are more suitable. It could

be the case that one software accelerator performs better for a huge graph than the

other, but has poor performance for a smaller or more clustered graph. With all this

information, the software could make an automatic decision of which accelerator to use

depending on the features of the graph.

Page 15

1 CONTEXT AND SCOPE Software acceleration of GNNs

1.3 Scope

1.3.1 Objective and Sub-Objective

The main objective in this project is to analyze the best of two software accelerators

for GNN depending on the characteristics of the input graph(s).

To accomplish this objective, the project has been subdivided in several sub-objectives:

Theoretical Sub-Objective

• Learn how GNN software accelerators work.

• Learn different graph characterization.

• Analyze different GNN software accelerators.

Practical sub-objective

• Get an implementation of accelerations.

• Obtain and characterize graph datasets.

• Extract information from different software accelerators using characterized graphs.

• Make a time predictor of the accelerator.

• Analyze the accuracy of predictors.

1.3.2 Requirements

• Chose the features that can be useful to characterize a graph, but don not have

a huge negative effect on the running time.

• Obtain a wide and a diverse graph dataset that are a fair representation of the

graphs diversity.

Page 16

1 CONTEXT AND SCOPE Software acceleration of GNNs

• Train a machine learning model that give a accurate results and do not have a

huge negative effect on the running time.

• Use a controlled environment in order to avoid differences made by the execution

environment.

• Use good programming practices, with a readable style and least complexity pos-

sible.

1.4 Methodology and Rigor of Project Planning

In this section we explain the methodology and rigor of the project planning, the

methodology of the experiments is explained in Section 3.

1.4.1 Methodology

The methodology that I will use for the project is the Kanban methodology, whose

principal objective is to manage in a general way how the tasks are completed.

In this methodology, it uses cards, where each one represents a task to do. The

cards will be on a board with 4 different columns:

• To do: Composed of all tasks that have been specified, but have not been started

yet.

• In progress: Composed of all tasks that are being developed, but there are no

functional.

• Testing: Composed of all tasks that have been developed but did not pass the

tests yet.

• Completed: Composed of all finished and tested tasks.

To control the work, we will use Jira, a web application for software project man-

agement. It allows us to control the tasks that define a specific part of the project.

Page 17

1 CONTEXT AND SCOPE Software acceleration of GNNs

This methodology stands out for being very easy to use and adapt to any type of

project, as well as a very intuitive management of projects. In addition, this method-

ology offers a lot of flexibility that are needed in research projects since there can be

huge changes during the development of the project.

In this research, each card will represent an atomic part of the project, for instance

cars will be one of this type: research (read the papers, read documentation of program-

ming language, etc.), programming (create a controlled environment for tests, create

a prediction model or program a series of test), documentation (explain the context of

the project, write the methodology or write down the final conclusions of the project)

or management (make schedulers, do meetings budgets).

Since there is different types of tasks, some ones like reading papers can not be in the

testing column since there are nothing to test. However, When is needed to program a

model the card will pass through all the columns.

1.4.2 Project Validation

We will use a GitHub repository as a tool for version control due to the easy access

(cloud storage) and the failure recovery, since it stores previous versions of the code. One

master branch will include the tested code and one development branch will comprise

all the code that is in development or testing stage. The code will be publicly available

to the director, so he will have the possibility to follow the work and the results at any

time.

In the practical part, runtime measurements will be done in a controlled environment

to avoid interferences from other applications running in the same device. Moreover,

the entire methodology will be repeated multiple times to obtain a statistical measure

of the runtime, as well as validated in a second machine to compare the results. For a

fair comparison, it will be checked that all accelerators maintain the same learning rate

and output at inference (meaning that they only modify the execution time).

A weekly meeting will be scheduled with the director, with the intention of discussing

Page 18

1 CONTEXT AND SCOPE Software acceleration of GNNs

the project status and checking the tasks to be accomplished the following weeks.

Page 19

2 STATE OF THE ART Software acceleration of GNNs

2 State of the Art

Optimizing ML algorithms for high performance and efficiency has seen explosive growth

over the past few years. This took place soon after the community discovered the

tremendous potential of DNN algorithms and all possible applications. The field of

GNNs is arriving at a similar inflexion point. At the time of writing, research on

GNN methods was already extensive and is still refining algorithms and exploring new

applications with high impact potential [4].

GNN provides a unique set of challenges that have rendered existing libraries and

hardware platforms inefficient, including:

1. The existence of multiple GNN variants, which may include edge, vertex, and

graph wide updates, with a variety of aggregation and combination functions and

possibly incorporating pooling and graph/layer sampling operations as well.These

functions affect aspects such as the choice of operations to be accelerated, the

complexity of the relative calculation of the aggregation and the combination, or

the constraints of order between them and between layers.

2. The dependence of computation on the characteristics of the input graph in terms

of size, sparsity, clustering, or the length of the associated feature vectors. The

challenge is, therefore, to develop accelerators that can dynamically adapt to the

graph characteristics.

3. A unique combination of computing characteristics of deep learning and graph

processing. More specifically, the combination often implies MLP-like operations

over a dense weight matrix. In contrast, aggregation involves, among other oper-

ations, fetching groups of vertices that often lead to irregular memory patterns.

Therefore, the challenge is to develop architectures that accelerate such distinct

phases and their intertwining at runtime.

4. A wide pool of applications with not only different graph characteristics, but also

different performance targets. For example, recommendation systems need to

Page 20

2 STATE OF THE ART Software acceleration of GNNs

scale to extremely large graphs of up to billions of edges and target high com-

putational throughput. In contrast, applications such as fraud detection rather

need to focus on latency. This highlights the need for acceleration techniques that

address huge number of possible scenarios.

A direct consequence of the aforementioned aspects is that the bottleneck or the

critical operation may vary across GNNs or applications. In light of these challenges,

several libraries have been proposed to improve the support for GNNs and efficiently

compute its multiple variants both in inference and training. The extensions of popular

libraries such as PyTorch or Tensorflow (TF) are clear examples of this.

2.1 Software Frameworks and Accelerators

The challenges of GNN processing rendered both traditional DNN libraries and graph

processing frameworks inefficient. The reason is the alternating computing phases of

GNNs. DNN libraries would be good at speeding up combination operations within

vertices and edges, but perform poorly during aggregation. Graph processing libraries,

instead, do a good job at managing irregular memory accesses when traversing the

graph. However, these libraries assume trivial operations at the vertices, which is not

the case in GNNs. To bridge this gap, recent works have started investigating how

to adapt the libraries to (i) provide easy to program interfaces to implement multiple

GNN variants, (ii) handle the variety of potentially sparse GNN operations efficiently

in widespread GPU hardware, and (iii) scale computations to large-scale graphs and

multiple GPUs [4].

In the following part of this subsection is a brief summary of some GNN frameworks

(PyG and DGL) and some accelerators (PCGCN and TC-GNN). However there exist

an increasing number of papers on differents forms to tackle the computations of GNN.

In this tesis we only explore the accelerations that keeps the accuracy of the models.

However exists a pruning algorithms [10][14] or quantifying algorithms [11][15]. A big

picture of all kinds of accelerators are exposed at this GNN survey [5]

Page 21

2 STATE OF THE ART Software acceleration of GNNs

2.1.1 PyTorch Geometric (PyG)

PyG [12] is a widespread library that is built upon PyTorch and that provides support

for relational learning. The key aspect is the definition of a message passing inter-

face with definition of message and update functions for neighbourhood aggregation

and combination, respectively, and multiple pooling operations. To accelerate GNN

processing, PyG handles sparsity via dedicated GPU scatter and gather kernels that

operate in all edges and nodes in parallel, instead of using sparse matrix multiplication

kernels. Relevantly, Facebook released Pytorch-BigGraph, a library that allows to pro-

cess arbitrarily large graphs by introducing partitioning and distributed processing and

that could complement PyG.

2.1.2 Deep Graph Library (DGL)

DGL [13] is a recent library that works on top of Tensor Flow (TF), PyTorch, or

MXNet, and provides plenty of examples and code for multiple GNNs. The library

defines three functions: message for edge aggregation and update and reduce and update

for aggregation and combination at the nodes. To boost performance, DGL takes a

matrix multiplication approach and leverages specialized kernels for GPUs or TPUs. In

particular, both sampled dense-dense and sparse matrix multiplications are considered

together with node, edge or feature parallelization. As discussed in their work, DGL uses

heuristics to choose among the different options as the optimal parallelization scheme

depends on multiple factors including the input graph. Thanks to this approach, DGL

claims to achieve an order of magnitude faster training than PyG. Recently, researchers

at Amazon have released a DistDGL, a system based on DGL for distributed mini-batch

training scalable to billion-edge graphs . To achieve it, DistDGL uses min-cut graph

partitioning via a lightweight algorithm.

Page 22

2 STATE OF THE ART Software acceleration of GNNs

2.1.3 PCGCN

PCGCN [8], the paper by Tian and co-authors present a partition-centric approach

to acceleration of GNNs in GPUs, which they implement on top of Tensor Flow.

The contribution is motivated by the power-law distribution of the node degrees in

a graph, which largely affects partitioning. PCGCN applies a locality-aware partition-

ing, METIS, that helps obtaining dense sub-matrices. That, however, does not prevent

sparse partitions to appear. To combat this, PCGCN profiles the partitions at runtime

and applies a dual-mode of operation: dense matrix representation and multiplication

kernels when dense, and column-sparse representation and sparse kernels otherwise. In

the paper, the authors compare their implementation with vanilla TF, and also DGL

and PyG, and report the lowest speedup across libraries. Even in this case, PCGCN

always speeds up execution and achieves up to 8.8× in highly clustered graphs.

2.1.4 TC-GNN

TC-GNN [9] introduce the first TCU-based GNN acceleration design on GPUs. The

key insight is to let the input sparse graph fit the dense computation of TCU. Instead

of exhaustively traversing all sparse matrix tiles and determine whether to process each

tile, TC-GNN use a new sparse graph translation (SGT) technique that identify those

non-zero tiles and condense non-zero elements from these tiles into a fewer number of

“dense” tiles. Therefore, SGT merges the unnecessary data in order to avoid high-cost

memory access. TC-GNN exploits the benefits of CUDA core and TCU collaboration.

The major design idea is that the CUDA core which is more excel in fine grained

thread-level execution would be a good candidate for managing memory-intensive data

access. While TCU which is more powerful in handling simple arithmetic operations

(e.g., multiplication and addition) can be well-suited for compute-intensive GEMM on

dense tiles generated from SGT. At the framework level, TC-GNN is integrated with

Pytorch framework.

Page 23

3 METHODOLOGY OF THE EXPERIMENTS Software acceleration of GNNs

3 Methodology of the Experiments

Towards proving both initial hypotheses, there are not an ideal GNN accelerator and

depending on the graph characteristic we can predict the best compute platform, sev-

eral experiments have been implemented. These involve measuring the performance of

the two models on the selected datasets. All the experiments carried out to compare

the different algorithms consist on the training task using the graph convolution. The

experiments have been executed in a server of BNN-UPC group. Concretely, this en-

vironment is equipped with an AMD Ryzen 9 3950X 16-Core Processor, an NVIDIA

GeForce 3090 with 24 GB G6X GPU and 64 GB of RAM memory. To measure the run-

time, the time module from python has been used. The time measured is the average

of 200 epochs in the training phase.

Figure 1: Diagram of the experimental methodology. [Own compilation]

Page 24

3 METHODOLOGY OF THE EXPERIMENTS Software acceleration of GNNs

3.1 Datasets

For the experiments, a total number of 14 real datasets and 1 000 synthetic datasets have

been used. The real datasets are from TC-GNN original papers and the synthetic are

generated using the tool graphlaxy. This dataset has been chosen with the intention of

providing the most variety possible to make a solid study of the hypotheses. The results

of the characterizations of the graphs (number of nodes, density, average clustering

coefficient, etc.) have been obtained via the pertinent functions of NetworkX library.

Some examples of the variety of graphs from the real datasets are listed below, and

their characteristics of all graphs are shown in Tables 1.

3.1.1 Real Datasets

Here there is some examples of the real graph.

• The CiteSeer dataset consists of 3 312 scientific publications classified into one of

six classes. The citation network consists of 4 732 links. Each publication in the

dataset is described by a 0/1-valued word vector indicating the absence/presence

of the corresponding word from the dictionary. The dictionary consists of 3 703

unique words [16].

• The Cora dataset consists of 2708 scientific publications classified into one of

seven classes. The citation network consists of 5429 links. Each publication in the

dataset is described by a 0/1-valued word vector indicating the absence/presence

of the corresponding word from the dictionary. The dictionary consists of 1433

unique words [16].

• The Pubmed dataset consists of 19717 scientific publications from PubMed

database pertaining to diabetes classified into one of three classes. The cita-

tion network consists of 44338 links. Each publication in the dataset is described

by a TF/IDF weighted word vector from a dictionary which consists of 500 unique

words [16].

Page 25

3 METHODOLOGY OF THE EXPERIMENTS Software acceleration of GNNs

• Protein-Protein Interaction (PPI) consists of a set of graph corresponding

to a different human tissue. positional gene sets are used, motif gene sets and

immunological signatures as features and gene ontology sets as labels (121 in

total), collected from the Molecular Signatures Database. The average graph

contains 2373 nodes, with an average degree of 28.8 [16].

• PROTEINS is a dataset of proteins that are classified as enzymes or non-

enzymes. Nodes represent the amino acids and two nodes are connected by an

edge if they are less than 6 Angstroms apart [16].

• Yeast dataset consists of a protein-protein interaction network. Interaction detec-

tion methods have led to the discovery of thousands of interactions between pro-

teins, and discerning relevance within large-scale datasets is important to present-

day biology [16].

• Amazon product co-purchasing network (com-amazon) was collected by

crawling Amazon website. It is based on Customers Who Bought This Item Also

Bought feature of the Amazon website. If a product i is frequently co-purchased

with product j, the graph contains a directed edge from i to j [17].

In our experiment the dimensions and class are not relevant, we only use the struc-

ture of the graph. The calculations are done with random numbers due to that we

only need the time and not the accuracy. We only expose these characteristics for

giving a general idea of the huge differences between graph. In the Table 1 are some

characteristics of all real graphs.

3.1.2 Graphlaxy

Since we need a huge and as representative as possible graph dataset for training the

models we use synthetic data. For carrying out this problem of generating graphs we

use graphlaxy [18], a new tool that which allows us to generate a massive dataset.

Page 26

3 METHODOLOGY OF THE EXPERIMENTS Software acceleration of GNNs

, , , , , , , , Dataset #Vertex #Edge Dim. #Class Density Gini

Citeseer 3 327 9 464 3 703 6 8.45e-04 0.40

Cora 2 708 10 858 1433 7 1.44e-03 0.39

Pubmed 19 717 88 676 500 3 2.28e-04 0.58

PPI 56 944 818 716 50 121 5.05e-04 0.57

PROTEINS full 43 471 162 088 29 2 8.58e-05 0.12

OVCAR 8H 1 890 931 3 946 402 66 2 1.11e-06 0.27

Yeast 1 714 644 3 636 546 74 2 1.24e-06 0.14

DD 334 925 1 686 092 89 2 1.50e-05 0.18

YeastH 3 139 988 6 487 230 75 2 6.59e-07 0.28

amazon0505 410 236 4 878 875 96 22 2.9e-05 0.38

artist 50 515 1 638 396 100 12 6.42e-04 0.65

com-amazon 334 863 1 851 744 96 22 1.65e-05 0.36

soc-BlogCatalog 88 784 2 093 195 128 39 5.311e-04 0.85

amazon0601 403 394 3 387 388 96 22 3.00e-05 0.35

Table 1: Real graph features. [Own compilation]

As it is explained in the original paper, graphlaxy generate a uniform distribution

along the clustering coefficient and the logarithm of the density.

The input for graphlaxy are the range between the minimum and maximum number

of edges and the number of graphs. In this experiment the edges range between 1 000

and 1 000 000. We chose the minimum of 1 000 edges, because the smaller graph can be

computed in no time. The maximum of 1 000 000 are chosen due to the server capacities

and time restriction impose. We impose a maximum of 5 minutes to generate a graph,

and a good approximation of this is 1 000 000: Without this condition the experiment

will take much time. Finally, we chose 1 000 graph because is a huge amount of graph

and all tests can be computed in approximate 4 h.

Page 27

3 METHODOLOGY OF THE EXPERIMENTS Software acceleration of GNNs

3.2 Features

In order to characterize the graph, we use several metrics that are explained in the next

list.

• Number of nodes (|N |) : Just the total number of nodes in the graph.

• Number of edges (|E|): Just the total number of edges in the graph.

• Number of density: density of a graph is calculated with the next formula

D = |E|
|N |×(|N |−1)

• Clustering: is the average of the number trips with size 3 of each node.

• Min Degree: the minimum number of neighbours.

• Q1 neighbours: the number of neighbours of the fist quantile, ordered an increas-

ing number of neighbours.

• Q2 neighbours: the number of neighbours of the second quantile, ordered an

increasing number of neighbours.

• Q3 neighbours: the number of neighbours of the third quantile, ordered an in-

creasing number of neighbours.

• Max Degree: the maximum number of neighbours.

• Average Neighbors: the average number of neighbours for each node.

In order to obtain more information from the graph use metrics from other fields of

knowledge for a better graph characterization.

• Gini perfect: this metric is generated in order to calculate Gini metric. This metric

is approximately #Nodes x #Edges and represents the most equal distribution

of the node’s degree.

Page 28

3 METHODOLOGY OF THE EXPERIMENTS Software acceleration of GNNs

• Gini difference: this metric is generated in order to calculate Gini metric. This

metric is at most equal to Gini perfect and represents the real distribution of the

graph node’s degree.

• Gini: is an economic metrics for inequality, we use this metric to measure the

inequality in the node’s degree.

3.3 Procedure of the Experiments

First of all we generate 1 000 graph using graphlaxy. With the specified parameters

(between 1 000 - 1 000 000 edges). In reality the number of edges is under the specified

conditions due to the probabilistic form of generating the graph.

When all 1 000 graphs are generated, we need to extract the metrics of every single

graph. As is mentioned in previous sections, this is done with NetworkX framework

and specific code programmed by the researcher. The characteristics analyzed can be

found in the Section 3.2.

After generating the graph we use the main code for executing all the graph with

the same number of: input features (16), hidden features (16), number of classes (2)

and number of layers (2). With this experiments, we obtain the times for the TC-GNN

and DGL. We save this information in a CSV format for a posterior analysis.

When we have all the tests done on the server, we can proceed with the analysis of

the times and the speedup of TC-GNN and DGL.

Before we can move into training phase, first we have to analyze the times of DGL

and TC-GNN. In order to take a big picture of the problem, we analyse the speedup

depending on the different variables previously extracted from the graph. We plot with

scatter-plot the speed up (the color of each point) compared with 2 variables. In this

part we are looking for a clearly defined zone, one green (TC-GNN is faster) and a red

one (DGL is faster) and a black zone (Booth are even) that divides the other two zones.

For a more specific analysis, we will compare the time of each accelerator with each

Page 29

3 METHODOLOGY OF THE EXPERIMENTS Software acceleration of GNNs

variable in order to find a patron. If one variable has a clear distribution this means that

is an important feature in order to predict the time. If there is not a clear distribution,

looks like there are not a correlation between the time and the feature, this means that

the characteristic is not the ideal variable (at least not alone).

After all the analysis is done, we can proceed with the training different regressors

for predicting the times of TC-GNN and DGL. First, we split the datasets in train (50),

validation (20) and test (30). The training data are used for training the model, this

will be the only part of the process that the model will be trained. The validation data

are used for choosing the best of the different model. And the test data are used for

comparing the choices made using both models DGL and TC-GNN.

Secondly, we train different models for predicting the DGL and TC-GNN time. The

models that we train and after testes with the validation set are: linear regressor, is

the simplest of all models that give us the first view of the difficulty of the problem. A

little bit more sophisticated model that we have tested are the K-nearest neighbours, a

distance base model, for this reason we rescaled all values in the range of 0-1. In order to

find the best parameters we use the function GridSearchCV, this function tries different

parameters in order to obtain good parameters (probably not the optimal parameters).

The first non-lineal model is random forest, the parameters are obtained via the function

RandomizedSearchCV, this function is similar to GridSearchCV, however, this function

is faster but give worst result. Ending the list of models are the neural network, the

architecture of this net are: four layers (16,8,4,1 respectively output variables) the first

three with relu activation function, and the last one with lineal activation function.

The optimizer is Adam with an exponential decay learning rate starting in 1e-3 and a

decay of 0.8, the optimization variable is the mean square error. These parameters are

chosen with the train and error method and the experience of the researcher.

With all of these models trained: linear regressor, K-nearest neighbours, random

forest and neural network. We select the best one.

With the both models chosen, we made the final model that for a given character-

istics of the graph, calculate the time for DGL and TC-GNN and give the decision of

Page 30

3 METHODOLOGY OF THE EXPERIMENTS Software acceleration of GNNs

which one is the best for that graph. With this model, we use the test set for obtaining

the answers of the final model. With this results we sum of the real times of the selected

accelerators and compare with the ideal time (chose always the smallest real time), and

the naive decision of choosing only DGL and only TC-GNN.

Page 31

4 RESULTS AND ANALYSIS Software acceleration of GNNs

4 Results and Analysis

4.1 Comparison with the Original Paper

Before we run our experiment, we try to reproduce the original paper experiments.

Surprisingly, our results were totally different as the Figure 2 and the Figure 3 show.

Figure 2: Speedup of TC-GNN [9] respect to DGL [13]

extracted from the original paper. [9]

cit
es

ee
r

co
ra

pu
bm

ed pp
i

PR
OT

EI
NS

_f
ul

l
OV

CA
R-

8H
Ye

as
t

DD
Ye

as
tH

am
az

on
05

05
ar

tis
t

co
m

-a
m

az
on

so
c-

Bl
og

Ca
ta

lo
g

am
az

on
06

01

0

1

2

3

Sp
ee

d
Up

Speed up TCGNN compared with DGL

GCN
AGNN

Figure 3: Speedup of TC-GNN [9] respect to DGL [13]

obtained from our experiments. [Own compilation]

Page 32

4 RESULTS AND ANALYSIS Software acceleration of GNNs

In the original Figure 2 all the speedups are above one, whereas our results show

some cases that have a speedup under one. We think that the difference between our

results and the results of the original paper it is produced by some changes in the

DGL back-end. But given that we do not have access to the original times (only the

speedups) we cannot give a clear answer. The hypothesis of using different hardware

can not explain this huge difference. Both experiments are done with the same GPU

and both CPUs have approximate the same capacities.

4.2 Visualization

In order to obtain a better perspective of the problem we generate different scatter-

plots. The Figure 4 show the speedup of TC-GNN respect to DGL with different

features values. We can observe that there are some characteristics that clearly divide

the ones with a speed up bigger than one (green) and the once that are below (red).

7.5 10.0 12.5 15.0 17.5
Nodes

7.5

10.0

12.5

15.0

17.5

Ed
ge

s

Speedup TC-GNN vs DGL

5.0 7.5 10.0 12.5 15.0 17.5
Max Degree

15

20

25

30

35

Gi
ni

 D
iff

er
en

ce

Speedup TC-GNN vs DGL

Figure 4: Features vs Speedup in log2 scale. [Own compilation]

Green: TC-GNN is faster than DGL Red: DGL is faster than TC-GNN

Black: TC-GNN and DGL are even.

In addition to the previous plots, we generated plots of the time of TC-GNN de-

pending on one feature. The results are plotted in the Figure 5. It is important to

notice that the plot of time respect to the edges has a plain part at the star, where

there are below 75 000 edges. We suppose that this is produced due to the time that

takes to move all the graph information from the CPU to the GPU and the other way,

have a bigger impact on the time performance than the effect done by the calculations.

Page 33

4 RESULTS AND ANALYSIS Software acceleration of GNNs

0 100000 200000 300000
Nodes

0

10

20

30
Ti

m
e

Nodes vs TC-GNN Time

0 200000 400000 600000
Edges

0

10

20

30

Ti
m

e

Edges vs TC-GNN Time

Figure 5: Nodes (left) and Edges (right) vs TC-GNN time. [Own compilation]

With all this plots we can conclude that the are some features that clearly split the

space of positive speedup (> 1) and negative speedup (< 1). Moreover, we can start

thinking that the flat plane in the TC-GNN time will be a problem for the regressor.

4.3 Models

First, we start with the lineal regressor of DGL, as the images on the left part of Figures

6 show, is a very accurate model (98% using R2 score).

2 4 6 8 10
Y Predicted

2

4

6

8

10

Y
Re

al

log_Q2 Q3 log_Q3 gini
400

200

0

200

Figure 6: DGL model. [Own compilation]

Left: DGL time prediction using linear regression,

Right: Coefficient importance of more important features from DGL time regression

Page 34

4 RESULTS AND ANALYSIS Software acceleration of GNNs

Moreover, on the right part of Figure 6 reveals the most important features of this

model. If the box-plot are near to zero, this features has a small effect on the final

decision. In the cases that box-plots are in the positive zone this means that this

features makes the GNN computation slower and if there are in negative zones they

make the calculus faster.

This feature importance is obtained multiplying the coefficients of the lineal regres-

sor with the trained values. This give has a vector of all the predictions made with the

validation set and we represent with this box-plot.

Given the high accuracy of the linear regressor we decide that we will take this

model. This decision is made because the linear regressor is the fastest method in

inference.

Now we proceed with the TC-GNN model, we use the same method with TC-GNN.

However, this time it do not work as well as DGL model, the score is around 52%, the

results showed in Figure 7.

When we saw these results we try different methods to obtain a better accuracy.

We try KNN, random forest and a neural network as we explained at Section 3.3. The

best result was with the neural network with 78% using R2 score, this result are not

as good as with the DGL model, but is a huge improve respect the lineal regressor, the

results showed in Figure 7.

Like what we did for features of the DGL model, we take the feature importance

of the TC-GNN model. This time we use a random permutation in order to infer the

importance of each feature. The results are in the Figure 8.

4.4 Final Results

With all models trained, it is time to test the second initial hypothesis, we can predict

with is the best form of computing GNN with the graph characteristics. The best

approach to see if the hypothesis is true, is measuring the time of the test set with

different strategies. First, we calculate the ideal time taking the minimum time between

Page 35

4 RESULTS AND ANALYSIS Software acceleration of GNNs

0 5 10 15
Y Predicted

0

5

10

15

20

25

Y
Re

al

0 5 10 15
Y Predicted

0

5

10

15

20

25

Y
Re

al
Figure 7: Linear regression and neural network models. [Own compilation]

Left: TC-GNN time with linear regression model,

Right: TC-GNN time with neural network model

Log Nodes Log Gini Perf. Nodes Log Edges Log Q2
0.20

0.25

0.30

0.35

0.40

0.45

0.50

Figure 8: Coefficients of most important features of TC-GNN model. [Own compilation]

DGL and TC-GNN. Secondly, the hypothesis strategies, that is predicting the time with

two models and taking the fastest model. And third trying the naive strategies using

only DGL and TC-GNN. The model is only used for choosing the model between DGL

Page 36

4 RESULTS AND ANALYSIS Software acceleration of GNNs

and TC-GNN, but the times used for comparing the models is always the real time.

The final results of the experiments are Ideal: 499.59s, the Chosen: 507.24s, DGL:

741.87s and TC-GNN: 763.47s, this is shown in the bar plot in the Figure 9. Also there

are in the same figure a confusion matrix with the model classifier and real values. As

a combination of both graphics, Figure 10 give a general idea of the accuracy of the

models.

Optimal Choosen DGL TC-GNN
0

200

400

600

800

Ac
cu

m
ul

at
ed

 T
im

e

Time Comparison

DGL TC-GNN
Predicted label

DGL

TC-GNN

Tr
ue

 la
be

l

63 2

10 222 50

100

150

200

Figure 9: Time and classification of our final model. [Own compilation]

Left: Added time with different strategies, Right: Classification of faster accelerator

0 2 4 6 8 10
DGL Time

0

5

10

15

20

25

30

TC
-G

NN
 T

im
e

DGL
TC-GNN

Figure 10: DGL vs TC-GNN time with our model predictions. [Own compilation]

Page 37

4 RESULTS AND ANALYSIS Software acceleration of GNNs

In the bar-plot 9 we can observe that our model is almost the same as ideal time

and are much better than the naive models. However the confusion matrix shows that

our model have some cases that do not correct classify the graph, but with the last plot

unveil that the miss-classified graph needs approximately the same time.

In the Figures 11 and 12 is the same of the above using real graph as a test.

Optimal Choosen DGL TC-GNN
0

100

200

300

Ac
cu

m
ul

at
ed

 T
im

e

Time Comparison

DGL TC-GNN
Predicted label

DGL

TC-GNN

Tr
ue

 la
be

l 3 0

4 7

0

2

4

6

Figure 11: Time and model classification with real datasets. [Own compilation]

Left: Added time with different strategies, Right: Classification of faster accelerator

0 20 40 60 80 100
DGL Time

0

20

40

60

80

100

TC
-G

NN
 T

im
e

DGL
TC-GNN

Figure 12: DGL vs TC-GNN time and the classification (real graph). [Own compilation]

Page 38

5 CONCLUSIONS Software acceleration of GNNs

5 Conclusions

5.1 Conclusions

From the results of the visualization phase, we can infer that the TC-GNN have a better

performance for smaller graph.

As the Figure 10 shows in the synthetic graph our model has very good results,

almost the same as the ideal time and produce an approximate 1.5x speedup compared

with using always DGL or TC-GNN. Whereas with real datasets the difference between

ideal, our model and base lane have approximate the same time. With this result we

can not give a clear answer if our model would have a good performance with other

real graphs.

5.2 Future Work

In this thesis, we explore among different graph, but we use the same architecture,

convolutional neural network with same number layers, input feature size, hidden fea-

ture size and number of classes. Moreover the test with real graph do not have enough

graphs in order to accept or reject the initial hypotheses.

With all in mind, we propose a study that the same approach will work with dif-

ferent types of GNNs like Attention-based graph Neural Network (AGNN) or Graph

Isomorphism Networks (GIN). In addition, with the same architecture with different

parameters: number of layers, number of features (input and hidden) or classes. And

use more real graphs as a a final test.

In addition, we only use one server, we do not know if the model will generalize for

other hardware or all this process have to be done with different hardware.

Finally, we use accelerators that do not lose accuracy, we expect that the same

hypothesis can be tackled for the accelerators that lose accuracy. But in this case the

experiments should take in mind the accuracy lost in the acceleration process.

Page 39

6 PROJECT PLANNING Software acceleration of GNNs

6 Project Planning

This project had taken approximately 530 hours, distributed in 140 days starting from

February 1st, 2020 until June 22nd, 2020. It was planned to work 3,8 hours approxi-

mately every day.

6.1 Task Definition

Following, it is presented all the tasks that will be carried out along the project. For

each one, a description is given, together with duration and dependencies with the other

tasks. Table 2 summarizes all the information and Figure 13 illustrates the project

schedule.

The project management is probably one of the most important group of tasks for

the project. It defines the scope of it, the tasks and plans its distribution. Below are

shown the multiple tasks for the project management.

• ICT tools to support project and team management (5h). We need the

latest technology, devices and concepts support the development of a project of

this kind. To do so, we have to research different types of software for different

types of tasks (e.g. sharing documents and task planning).

• Context and scope (20h). We have to indicate the general objective(s) of the

project, contextualize it and justify the reason for selecting this subject area.

• Project planning (10h). To achieve the project deadline, we need a good

planning for all the tasks. This will help us to know in which tasks we have to

focus on more and which are the critical ones.

• Budget and sustainability (15h). When doing a project, it is very important

to know what will be the total cost of it and the impact that will produce its

development. Hence, this task focuses on making a budget and analyzing the

sustainability of the project.

Page 40

6 PROJECT PLANNING Software acceleration of GNNs

• Final project definition (20h). We have two group the project done in the

previous tasks, modifying the parts that were wrong.

• Meetings (25h). Face-to-face meetings are scheduled once every week with the

tutor of the project. We will discuss the status and the following tasks to carry

out. We have added extra time due to possible extraordinary meetings.

But before we can proceed with project management, we have to do some research

in order to make an accurate project management.

This project has a big part of research (70h). Hence, before starting the experimental

part it is mandatory to do research about previous studies to see the past and recent

investigations in multiple software accelerators methods for the GNN (graph neural

networks). We will also have to document ourselves in the GNN state of art, as well as

the general tools used to program and run GNN like PyG [12] and DLG [13] .

In the theoretical part, we will focus specifically on the paper that propose general

accelerators that do not effect the accuracy (or not much) and if possible that have a

usable implementation of the algorithm(s). Finally, define for which type of graph can

be generalised the methods. This part is divided into three tasks that previously need

some research.

• Check accuracy (10h): for different types of graph and for every method re-

spect non using accelerators.

• Compute the expected speed up (30h): for different types of graph and for

every method respect non using accelerators.

• Generalisation of graph (30h): for every type of graph and for every method.

Before starting with the experimentation, it is needed to have been done the theoret-

ical part. In addition is needed to adapt the software accelerators to different types of

graph. Each algorithm will have to be tested for the correct functioning. And generate

a controlled environment. It has been divided also in three tasks.

Page 41

6 PROJECT PLANNING Software acceleration of GNNs

• Check accelerators (40h): in order to detect any bug that produce an unde-

sired result.

• Adapt methods (15h): for all types of graph that will be used in the tests.

• Make a controlled environment (20h): in order to obtain a fair comparison

between different algorithms.

After the experimentation part concludes, we can start with the experimental part.

The experimental and analysis part is the most important one, as this project is

oriented to automatically choose the best accelerator depending on the input graph. It

has fife different tasks.

• Obtain the datasets (20h): to experiment with. It can be divided in two

sub-tasks. On the one hand, we can produce a synthetic graph in order to have a

huge diversity of the graph. On the other hand, we have to search data sets with

all the desired types of graph and have all types of predictions that a GNN can

do (node, edge or graph prediction).

• Experiment (30h): with the programmed methods and the created and col-

lected data sets and characterize the graph impute. With this information.

• Generate dataset (20h): of graph characteristics and running times.

• Train a predictor (40h): with the time depending on the graph characteriza-

tion.

• Analyze the results (10h): obtained in the experiments and draw conclu-

sions.

Once we have finished will all the previous tasks, we will have to document every-

thing. Firstly, we will have to collect all the information obtained in the experimental

and analytical part (15h). Afterwards, we can start writing the documentation of the

project (60h).

Page 42

6 PROJECT PLANNING Software acceleration of GNNs

Finally, we will have to prepare for the oral defense for the presentation of the

project. To do so, we will think about possible questions that may come to mind to

the senior FIB TFG tribunal members.

6.2 Resources

Every project needs resources to be able to organize it properly and carry out its

correct development. These resources have been divided in 4 different groups: human,

hardware, software and material resources.

6.2.1 Human Resources

In this project we find three human resources. Firstly, the researcher has the respon-

sibility for the correct development of the project. He will have to plan, experiment,

analyze and document the project. On the other hand, the tutor of the project is

responsible for leading and guiding the researcher for the correct development of the

project. Finally, the GEP tutor is in charge of helping the researcher to do the project

management correctly during the first month of the project.

6.2.2 Hardware Resources

One of the essential resources needed is a computer. In this project, it will be Used two

different types of personal computers:

• Personalized desktop computer: 16 GB of RAM, AMD Ryzen 5 3600 6-Core

Processor 3.60 GHz, NVIDIA GeForce GTX 1050 Ti

• lenovo laptop: 8 GB of Ram, Intel(R) Core(TM) i5-4200M CPU @2.50 GHz,

NVIDIA GeForce 820M

Moreover, we also have to take into account all the resources for the connection to

the network (e.g. the router).

Page 43

6 PROJECT PLANNING Software acceleration of GNNs

6.2.3 Software Resources

We need multiple software resources. Each one will help us in a specific part of the

project. To be able to manage the meetings we will use Google Calendar and in case

of not being able to meet the tutor in person we will use Google Meet. All the infor-

mation for the project will be saved in a GitHub repository and on google Colab. The

Gantt chart will be created using Ganttproject. We will need a programming language

(Python) and some frameworks (PyTorch and PyG) to code the GNN accelerators and

the running time predictor. Besides, we will use overleaf as our text editor.

6.2.4 Material Resources

In research projects there is always the need to get knowledge from previous studies

and the area in question. In order to obtain this knowledge we will have to read several

papers.

6.3 Risk Management

There can be some risks that prevent the correct functioning of the project. Besides,

there can appear some obstacles during the execution of the project.

• Deadline of the project [High risk]: It can be caused by a bad estimation of

the tasks and its duration. As we are doing the planning before having started

anything, it is very probable that it will happen. This can be solved by doing

a second planning in a more advanced point of the project. We would need to

reuse the PC, Ganttproject software, the GEP tutor and the researcher. In case

we are running out of time and a new planning does not help, we can still solve

this problem by increasing the number of working hours per day.

• Inexperience in the programming language [Medium risk]: In this case

we decide to use a programming language the researcher has never used, we will

have to create a new task of a duration of 25-30 hours that will go before the

Page 44

6 PROJECT PLANNING Software acceleration of GNNs

programming part. Thus, we will create a new dependency: the tasks on the

programming part cannot begin before the end of the ”learning the programming

language” task. The new task would have the PC, the programming language

and the researcher as resources.

• The incompleteness of the accelerators [Extreme risk]: The researcher

will probably use a software accelerator that is relatively novel, they cut contain

bugs and lack of information. This is a high risk due to the fact that the software

accelerators use a plenty of technology’s witch the researcher not an expert. For

this reason it is so improbable that he can fix a medium/hard bug and I have to

chose another accelerator.

• Back up environment [Medium risk]: Since for this project is based on time

performance, it is important to have an alternative form to execute. If we can not

guaranty a controlled environment in Colab, the researcher will have to change the

execution environment an execute all the performance test from the beginning.

• Inexperience in the field [Medium risk]: Since is the first time the researcher

work’s in a deep learning and GNN project, it could be the case that the researcher

has to spend an 25-30 h in delving on deeper learning and GNN.

Due to all these risks and obstacles we have overestimated the time for the Meeting

task. In case some obstacle appears, we can have an extraordinary meeting to solve it.

Page 45

6 PROJECT PLANNING Software acceleration of GNNs

ID Name Time (h) Dependencies Resources

T1 Project management 95 PC, R

T1.1 ICT tools and team management 5 PC, overleaf, R, GEPT

T1.2 Context and Scope 20 T2 PC, overleaf, R, GEPT

T1.3 Project Planning 10 T1.2 PC, overleaf, R, GEPT

T1.4 Budget and Sustainability 15 T1.3 PC, overleaf, R, GEPT

T1.5 Final project definition 20 T1.1,T1.2,T1.3 PC, overleaf, R, GEPT

T1.6 Meetings 25 PC, R, T

T2 Research 70 PC, papers, R

T3 Theoretical part 70

T3.1 Check accuracy 10 T2 PC, papers, R

T3.2 Compute the expected speed up 30 T2 PC, papers, R

T3.3 Generalisation of graph 30 T2 PC, papers, R

T4 Programming part 75

T4.1 Check accelerators 40 T3.1 PC, PyG, colab, R

T4.2 Adapt methods 15 T4.1 PC, PyG, colab, R

T4.3 Make a controlled environment 20 PC, PyG, colab, R

T5 Experiments and analysis 120

T5.1 Obtain the data sets 20 T2 PC, R

T5.2 Experiment 30 T4.2 PC, PyG, colab, R

T5.3 Generate data set 20 T5.2 PC, PyG, colab, R

T5.4 Train a predictor 40 T5.3 PC, Py, colab, R

T5.5 Analyze the results 10 T5.4 PC, Py, colab, R

T6 Project documentation 75

T6.1 Collect all the information obtained 15 T5.5 PC, overleaf, R

T6.2 Write the documentation 60 T6.1 PC, overleaf, R

T7 Bachelor thesis defense preparation 25 T6.2 PC, R

Total 530

Table 2: Summary of the information of the tasks. [Own compilation].

GEPT: GEP tutor, T: Tutor and R: Researcher

Page 46

6
P
R
O
J
E
C
T

P
L
A
N
N
IN

G
S
oftw

are
acceleration

of
G
N
N
s

6.4 Gantt Chart

Figure 13: Gantt Chart. [Own compilation]

P
age

47

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

7 Budget and Sustainability

It will be described the elements to consider when doing the budget estimate, which

includes personnel costs per task, generic costs and other costs. Moreover, it will be

defined management control mechanisms to control the deviations that can appear in

the project due to unforeseen obstacles. Finally, it will be answered some questions

regarding the sustainability aspect of the project.

7.1 Budget

7.1.1 Personal Costs per Activity

In this section it is computed the total cost for each task defined in previous delivery.

The cost for one task will be calculated summing the cost of the work of the personnel.

The cost for each worker will be computed multiplying his cost per hour by the amount

of time that they will be involved in the activity.

In this project there are 5 types of personnel, each one with a different cost per hour.

Firstly, the project manager is responsible for the planning and correct development

of the project. The GEP tutor, the tutor and me will play this role. Secondly,

the programmer and the tester have to program the code and verify its correct

functioning. These two roles will be played only by me. On the other hand, the

researcher has to experiment, analyze the results and draw conclusions. I will play

this role. Finally, there is the technical writer who has to document everything that

involves the development and results of the project. This role will also be played by

me. Following, it is shown the annual salary of the different project roles.

Now, we can compute the total cost for each task. Table 4 shows the distribution

of time for the personnel for each task, and its total cost. This is known as CPA.

Page 48

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

Role Annual Salary (e) Total including SS (e) Price per hour (e) Role played by

Project manager 45 000 58 500 30.47 GEPT, T, R

Programmer 30 000 39 000 20.31 R

Tester 30 000 39 000 20.31 R

Researcher 35 500 45 500 23.70 R

Technical writer 30 000 39 000 20.31 R

Table 3: Annual salary of the different project roles. [19]

ID Name Time (h) Hours Cost (e)

Project manager Programmer Tester Researcher Technical writer

T1 Project management 90 90 25 25 25 25 5 010.40

T1.1 ICT tools and team management 5 5 0 0 0 0 152.35

T1.2 Context and Scope 20 20 0 0 0 0 609.40

T1.3 Project Planning 10 10 0 0 0 0 304.70

T1.4 Budget and Sustainability 15 15 0 0 0 0 457.05

T1.5 Final project definition 20 20 0 0 0 0 609.40

T1.6 Meetings 25 25 25 25 25 25 2 877.50

T2 Research 70 0 0 0 70 0 1 659

T3 Theoretical part 70 0 0 0 70 0 1 659

T3.1 Check accuracy 10 0 0 0 10 0 237

T3.2 Compute the expected speed up 30 0 0 0 30 0 711

T3.3 Generalisation of graph 30 0 0 0 30 0 711

T4 Programming part 75 0 35 40 0 0 1 523.25

T4.1 Check accelerators 40 0 0 40 0 0 812.40

T4.2 Adapt methods 15 0 15 0 0 0 304.65

T4.3 Make a controlled environment 20 0 20 0 0 0 406.20

T5 Experiments and analysis 120 0 0 0 120 0 2 844

T5.1 Obtain the data sets 20 0 0 0 20 0 474

T5.2 Experiment 30 0 0 0 30 0 711

T5.3 Generate data set 20 0 0 0 20 0 474

T5.4 Train a predictor 40 0 0 0 40 0 948

T5.5 Analyze the results 10 0 0 0 10 0 237

T6 Project documentation 75 0 0 0 0 75 1 523.25

T6.1 Collect all the information obtained 15 0 0 0 0 15 304.65

T6.2 Write the documentation 60 0 0 0 0 60 1 218.6

T7 Bachelor thesis defense preparation 25 25 0 0 0 0 761.75

Total 530 115 60 65 285 100 14 980.65

Table 4: Summary of the information of the tasks. [Own compilation].

GEPT: GEP tutor, T: Tutor and R: Researcher

Page 49

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

7.1.2 Generic Costs

Amortization One aspect to take into account is the amortization of the material

resources used in the project. It is considered an average of 3,8 working hours per day

during a total of 140 days. It is estimated that an 80% of the project has been carried

out using the desktop computer, whereas the other 20% has been done using the laptop

computer. The equation to compute the amortization for each resource is the following:

Amortization (e) = Resource price× 1

4 years
× 1 years

273 days
× 1 days

8 hours
× hours used

The amortizations in this project are only of hardware because all the software used

is free to use. The resources will be used a total of 530 hours. The amortization costs

are shown below.

Hardware Price (e) Time (h) Amortization (e)

Personalized desktop computer 1 200 424 58.24

Lenovo laptop 800 106 9.7

Total 67.94

Table 5: Amortization costs for the hardware resources. [Own calculations]

Electric cost Regarding the electricity cost, the actual cost of the kWh is 0,2 e[20].

We only count the expenses of the hardware when they are turned on. I should remark

that for the desktop computer, we have to add also the monitor expenses. Table 6

shows the individual and total costs of energy consumption.

Internet cost The internet rate costs 50 e per month. Taking into account that the

project lasts 5 months and that the working hours per day are 3,8 the internet cost is

5 months× 50 e
1 month

× 3.8 h
24 h

= 39.58 e.

Page 50

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

Hardware Power (W) Time (h) Consumption (kWh) Cost (e)

Desktop computer 300 424 127 200 25.44

Lenovo laptop 70 106 7 420 1.48

Total 134 620 26.92

Table 6: Electric cost of the hardware resources. [Own calculations]

Travel cost I have to use the public transport to meet with the tutor once every

week. The expected number of travels is twice the number of meetings, therefore I have

to do 44 travels during the project. To do so, I have to use the T-Casual of 4 zone [21]

, which costs 10 journeys/39.20 e. Consequently, the total cost due to travel is (39.20

e/10 journeys) * 40 journeys = 156.80 e.

Generic cost of the project Table 7 summarizes all the generic costs of the project

introduced in the previous sections. The total cost is computed summing the CPA cost

with the CG cost (generic cost).

Concept Cost (e)

Amortization 67.94

Electric cost 26.92

Internet cost 39.58

Travel cost 156.80

CG cost 291.24

Table 7: CG cost in the project. [Own calculations]

7.1.3 Other Costs

Contingencies During the development of the project, it can appear unforeseen

events, which take part of our budget. For this reason, it is always necessary to prepare

a fund of contingency to be prepared to face these events. For the total cost (CPA +

Page 51

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

CG = 15 271.89), we have to add a 15% contingency margin. With this, the computed

contingency cost is 2 290.78.

Incidental costs We have also to take into account the cost of applying alternative

plans in case unexpected events occur during the course of the project. The alternative

plans can be found in Table 8 show the total cost to solve these events. The cost for

each incident is computed multiplying the price it would cost by the risk probability

that the event occurs.

Incident Estimated Cost (e) Risk (%) Cost (e)

Deadline of the project (20 h) 406.2 30 121.86

Inexperience (15 h) 304.65 20 60.93

Accelerators incompleteness (30 h) 609.30 30 182.79

Back up environmen (10) 203.10 30 60.93

Inexperience in the field (10) 237.00 10 23.70

Total 450.21

Table 8: Incident costs of the project. [Own calculations]

7.1.4 Total Cost

The total cost expected for the project is found in Table 9, computed using all the

justified costs calculated in the previous sections.

7.1.5 Management Control

In big projects, it is very probable that the budget and time estimations will not be

100% fulfilled due to obstacles (expected and unforeseen). Consequently, we need to

define a model for controlling the potential budget differences.

Every time we finish a task, we have to compute the difference of all the involved

costs in it (CPA, CG, contingency and incidents). This difference will be computed

Page 52

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

Activity Cost (e)

CPA cost 14 980.65

CG cost 291.24

Contingency 2 290.78

Incidental cost 450.21

Total 18 012.88

Table 9: Total cost of the project. [Own calculations]

in excel document in order to do an exhaustive analyzes. The following are listed the

different indicator formulas for the differences we can have:

• Human resources difference: It is caused when the personnel do less or more

hours than the expected. We compute this difference as shown below.

Human Resources Difference =
∑
i∈pit

(Estimatedi −Reali)× TotalReali

Where pit refers to all personnel involved in that task.

• Amortization difference: In case we use the hardware resource less or more

time than the expected the amortization cost will vary.

Amortization Difference =
∑
i∈hr

(Estimatedi −Reali)× PriceHouri

Where hr refers to all hardware resources.

• Travel cost difference: Probably the number of meetings will vary from the

expected due to unexpected obstacles in the project.

Travel Costs Difference =
∑
i∈pit

(Estimatedi −Reali)× 3.92

• Total cost difference: Groups all differences in the different tasks. It does not

take into account contingencies nor incidents.

Total Costs Difference =
∑
i∈pit

(Estimatedi −Reali)× TotalReali

Page 53

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

Doing this, we can visualize and comprehend easily where and why has been a

difference and how much is the difference cost. In case the total cost difference is

negative, we will have to use the budget reserved for contingencies.

Finally, we will update a list of incidental costs in case any unforeseen event occurs.

In case any of these events happen, we will have to use the budget part reserved for

incidents.

7.2 Final Analysis of the Project Management

7.2.1 Risks that have Occurred

In this project he only risks that have occurred is the backup environment. Our initial

plan contemplated using google celebratory, but TC-GNN do not work in this environ-

ment. As an alternative we use a BNN-UPC server, the consequences derived from this

fact is the increase of the cost in hardware that is calculated in the following tables. 11.

A part of this risk, there have not occurred any other, the entire schedule was

completed as originally planned.

Hardware Price (e) Time (h) Amortization (e)

Personalized desktop computer 1 200 424 58.24

Lenovo laptop 800 106 9.7

BNN-UPC cervee 2 500 20 5.72

Total 73.66

Table 10: Final amortization costs for the hardware resources. [Own calculations]

Amortization Difference = 5.72 e

Electric Cost Difference = 2.2 e

Final Cost Difference = - 2 733.07 e

Thanks to the initial plan and only one risk that has occurred, we save 2 733.07 e.

The main reason this project has ended with this difference in final cost is due to the

Page 54

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

Hardware Power (W) Time (h) Consumption (kWh) Cost (e)

Desktop computer 300 424 127 200 25.44

Lenovo laptop 70 106 7 420 1.48

BNN-UPC cervee 550 20 11 000 2.2

Total 145 620 29.12

Table 11: Final electric cost of the hardware resources. [Own calculations]

Concept Cost (e)

Amortization 73.66

Electric cost 29.12

Internet cost 39.58

Travel cost 156.80

CG cost 299.16

Table 12: Final CG cost in the project. [Own calculations]

Activity Cost (e)

CPA cost 14 980.65

CG cost 299.16

Total 15 279.81

Table 13: Final total cost of the project. [Own calculations]

main risk of having problems with the accelerator, do not have occurred.

7.3 Sustainability

7.3.1 Economic Dimension

Regarding PPP: Reflection on the cost you have estimated for the comple-

tion of the project.

Page 55

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

The reflection on the estimated cost for the project, as well as the management

control, can be found in Section 7.1.1 of the document. It has taken into account the

human, hardware, software and material resources. The salary for the personnel has

been obtained searching through the internet. Moreover, we have also measured other

costs (contingencies and incidental costs) and their effects on the budget.

Regarding Useful life: How are currently solved economic issues related to

the problem that you want to address? Nowadays, the economic issue related

to the problem is very high, because there is no research that says which accelerator is

better depends on the input graph. Consequently, the studies have to program and test

the different algorithms and experiment with each one, which costs a lot. Moreover,

the focus of the investigations about GNN is on design new types of GNN or problems

that are suitable to be solved by GNN.

One way to reduce the economic cost in our project would be reusing some software

resource such as the code that have been previously programmed. Doing this, we could

reduce the total time for the programming and testing tasks (T4) which would reduce

the total economic cost for the project.

How will your solution improve economic issues with respect other existing

solutions? As explained in the previous question, in the recent studies and in real

life cases, they have to experiment with the different methods to see which one(s) works

better for their own graph. This has a very high economic cost. In case we succeed

in this project, we should be able to explain and justify which method should be used

depending on the multiple cases. This would decrease a lot the economic cost, as they

would no longer need to experiment with all the methods and choose the one that gives

the best results.

Page 56

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

7.3.2 Environmental Dimension

Regarding PPP: Have you estimated the environmental impact of the project?

I have estimated the environmental impact of the project will be positive. Since the

use of better accelerators reduce the time and energy needed to use by GNN. However,

each experiment will be done several times and the average of the results will be the

final result. Hence, there will be a high invest of electrical and computational power.

Regarding PPP: Did you plan to minimize its impact, for example, by

reusing resources? As said before, the only resource that could be reused is the

programmed code by other researchers. With this, we would not need to develop the

program and testing tasks (T4) and we could decrease the total electricity consumption.

Note that we cannot use results obtained in other researches because we have to

experiment with our own methodology and hardware. Thus, we cannot reuse resources

regarding the experimental part.

Regarding Useful Life: How is currently solved the problem that you want

to address? As there is no way to know which method works the best for a particular

graph with a specific percentage of missing values, people have to experiment with all

the algorithms and then choose the best one. Since the novelty of the GNN huge part

of the researchers and companies that use GNN probably do not use accelerators.

How will your solution improve the environment with respect other existing

solutions? Our solution will advise which method should be used depending on the

characterization of the graph. Thanks to that, the electricity consumption can be

decreased, as they should no longer experiment with all the existing algorithms or just

choose one which is probably the best option.

Page 57

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

7.3.3 Social Dimension

Regarding PPP: What do you think you will achieve -in terms of personal

growth- from doing this project? First, this project will help me to introduce

in the research world and learn which are the steps needed to do for research of this

kind. Secondly, be the principal responsible for a big project will help me to organize

myself better and plan the projects correctly. Finally, it will also help me to measure

the sustainability aspects of the project.

Regarding Useful Life: How is currently solved the problem that you want

to address? Currently, the problem is being solved by just choosing one accelerator

with no rigorous information about which one is more suitable for that type of graph

or even non using one at all.

How will your solution improve the quality of life with respect other existing

solutions? The aim of this project is to reduce the time that people need to compare

the performances of the methods by advising which ones should give the best results

depending on the characterization. Hence, people would have more time to focus on

other important tasks rather than choosing the best method. In addition, for the final

users of applications that will use GNN (recommendation system) will have a more

faster interaction with the application.

Regarding Useful Life: Is there a real need for the project? There is a real

need for the project. Probably, it will help more people that do not have high power

computers that can only execute few algorithms in the same computer. People who have

high power computers can execute multiple methods at the same time and therefore

can evaluate the results very quickly. On the other hand, however, those who do not

have high power computers will (like smartphones) be able to select which method(s)

is the best for the specific case they have and.

Nevertheless, the results and conclusions will serve to guide people to which methods

Page 58

7 BUDGET AND SUSTAINABILITY Software acceleration of GNNs

to choose/experiment. In this way, they will be able to turn away some algorithms and

will decrease the power consumption, the economic cost and the total time spent on it.

Page 59

REFERENCES Software acceleration of GNNs

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[2] P. W. Battaglia, J. B. Hamrick, V. Bapst, et al., “Relational inductive biases,

deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[3] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive

survey on graph neural networks,” IEEE transactions on neural networks and

learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[4] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón, “Computing

graph neural networks: A survey from algorithms to accelerators,” ACM Com-

puting Surveys (CSUR), vol. 54, no. 9, pp. 1–38, 2021.

[5] X. Liu, M. Yan, L. Deng, et al., “Survey on graph neural network acceleration:

An algorithmic perspective,” arXiv preprint arXiv:2202.04822, 2022.

[6] S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, and B. Li, “Hard-

ware acceleration of sparse and irregular tensor computations of ml models: A

survey and insights,” Proceedings of the IEEE, vol. 109, no. 10, pp. 1706–1752,

2021.

[7] “Barcelona neural networking center.” (), [Online]. Available: https://bnn.upc.

edu/. (accessed: 18.03.2022).

[8] C. Tian, L. Ma, Z. Yang, and Y. Dai, “Pcgcn: Partition-centric processing for

accelerating graph convolutional network,” in 2020 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), IEEE, 2020, pp. 936–945.

[9] Y. Wang, B. Feng, and Y. Ding, “Tc-gnn: Accelerating sparse graph neural net-

work computation via dense tensor core on gpus,” arXiv preprint arXiv:2112.02052,

2021.

Page 60

https://bnn.upc.edu/
https://bnn.upc.edu/

REFERENCES Software acceleration of GNNs

[10] T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang, “A unified lottery ticket

hypothesis for graph neural networks,” in International Conference on Machine

Learning, PMLR, 2021, pp. 1695–1706.

[11] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-quant: Quantization-

aware training for graph neural networks,” arXiv preprint arXiv:2008.05000, 2020.

[12] “Pytorch geometric.” (), [Online]. Available: https://pytorch- geometric.

readthedocs.io/en/latest/. (accessed: 18.03.2022).

[13] “Deep graph library.” (), [Online]. Available: https://docs.dgl.ai/. (accessed:

18.03.2022).

[14] H. Zhou, A. Srivastava, H. Zeng, R. Kannan, and V. Prasanna, “Accelerat-

ing large scale real-time gnn inference using channel pruning,” arXiv preprint

arXiv:2105.04528, 2021.

[15] M. Bahri, G. Bahl, and S. Zafeiriou, “Binary graph neural networks,” in Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2021, pp. 9492–9501.

[16] “Papers with code.” (), [Online]. Available: https : / / paperswithcode . com.

(accessed: 17.06.2022).

[17] “Snap.” (), [Online]. Available: https://snap.stanford.edu. (accessed: 17.06.2022).

[18] A. Wassington and S. Abadal, “Bias reduction via cooperative bargaining in syn-

thetic graph dataset generation,” arXiv preprint arXiv:2205.13901, 2022.

[19] “Glass door.” (), [Online]. Available: https://www.glassdoor.es. (accessed:

18.03.2022).

[20] “Organización de consumidores y usuarios.” (), [Online]. Available: https://

www.ocu.org/vivienda-y-energia/gas-luz/informe/precio-luz. (accessed:

18.03.2022).

[21] “Transports metropolitans de barcelona.” (), [Online]. Available: https://www.

tmb.cat/. (accessed: 18.03.2022).

Page 61

https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://docs.dgl.ai/
https://paperswithcode.com
https://snap.stanford.edu
https://www.glassdoor.es
https://www.ocu.org/vivienda-y-energia/gas-luz/informe/precio-luz
https://www.ocu.org/vivienda-y-energia/gas-luz/informe/precio-luz
https://www.tmb.cat/
https://www.tmb.cat/

	Context and Scope
	Context
	Introduction
	Problem to be Resolved
	Stakeholders

	Contextualization
	Previous Studies
	Justification

	Scope
	Objective and Sub-Objective
	Requirements

	Methodology and Rigor of Project Planning
	Methodology
	Project Validation

	State of the Art
	Software Frameworks and Accelerators
	PyTorch Geometric (PyG)
	Deep Graph Library (DGL)
	PCGCN
	TC-GNN

	Methodology of the Experiments
	Datasets
	Real Datasets
	Graphlaxy

	Features
	Procedure of the Experiments

	Results and Analysis
	Comparison with the Original Paper
	Visualization
	Models
	Final Results

	Conclusions
	Conclusions
	Future Work

	Project Planning
	Task Definition
	Resources
	Human Resources
	Hardware Resources
	Software Resources
	Material Resources

	Risk Management
	Gantt Chart

	Budget and Sustainability
	Budget
	Personal Costs per Activity
	Generic Costs
	Other Costs
	Total Cost
	Management Control

	Final Analysis of the Project Management
	Risks that have Occurred

	Sustainability
	Economic Dimension
	Environmental Dimension
	Social Dimension

