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Abstract 

 
The intention of this thesis is to establish a foundation in the world of artificial intelligence, 

specifically in CARLA, an open-source autonomous driving simulator. The main objective of 

this work is to enable an autonomous car to drive any given route thanks to the implementation 

of a Deep Q-Network algorithm. 

 

Throughout the document, it is explained in detail how to create and configure a CARLA 

environment, including a tutorial on the installation of the software itself with all its 

dependencies. In addition, an attempt is made to simulate autonomous driving as close to real 

life as possible using a reward system and an efficient navigation system. 

 

It should be noted that despite having obtained reasonable results and fulfilling the objectives 

of the thesis, this project is merely introductory, and I hope that it will serve as a basis for future 

developments. 
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Resumen 

 
La intención de esta tesis es establecer una base en el mundo de la inteligencia artificial, 

específicamente en CARLA, un simulador de conducción autónoma de código abierto. El 

objetivo principal de este trabajo es conseguir que un coche autónomo pueda realizar una ruta 

cualquiera gracias a la implementación de un algoritmo de Deep Q-Network. 

 

A lo largo del documento se explica detalladamente como crear y configurar un entorno en 

CARLA, esto incluye un tutorial de la instalación del propio software con todas sus 

dependencias. Además, se intenta simular una conducción autónoma lo más cercana a la vida 

real en la que se utiliza un sistema de recompensas y un sistema de navegación eficiente. 

 

Cabe destacar que pese haber obtenido resultados razonables y cumplir los objetivos de la tesis, 

este proyecto es meramente introductorio y espero que sirva de base para futuros desarrollos. 
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Resum 

 
La intenció d'aquesta tesi és establir una base al món de la intel·ligència artificial, 

específicament a CARLA, un simulador de conducció autònoma de codi obert. L'objectiu 

principal d'aquest treball és aconseguir que un cotxe autònom pugui fer una ruta qualsevol 

gràcies a la implementació d'un algorisme de Deep Q-Network. 

 

Al llarg del document s'explica detalladament com crear i configurar un entorn a CARLA. Això 

inclou un tutorial de la instal·lació del propi programari amb totes les seves dependències. A 

més, s'intenta simular una conducció autònoma el més propera a la vida real on s'utilitza un 

sistema de recompenses i un sistema de navegació eficient. 

 

Cal destacar que malgrat haver obtingut resultats raonables i complir els objectius de la tesi, 

aquest projecte és merament introductori i espero que serveixi de base per a futurs 

desenvolupaments. 
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1. Context 

 

This is a Bachelor Thesis of the Computer Engineering Degree, specialisation in Computing, 

done in the Facultat d'Informàtica de Barcelona of the Universitat Politècnica de Catalunya, 

directed by Gerard Escudero, doctorate in Artificial Intelligence.  

 

1.1 Introduction 

 

Artificial Intelligence has become extremely popular in today’s world. It is the reproduction of 

regular knowledge in machines that are customised to impersonate the activities of people. 

These machines can learn and execute human-like tasks. As these technologies continue to 

grow, they will significantly affect our quality of life. 

 

One of the technologies that have emerged with this growth is autonomous driving. An 

autonomous car is a vehicle which senses its environment and operates without any human 

involvement. There are different levels of driving automation [1] as shown on Figure 1, starting 

from Level 0 (fully manual) up to Level 5 (fully autonomous) 

 

 

 
Figure 1: Levels of Driving Automation. Source: EPRS, European Commission [2] 
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The main aim of this thesis is to set a base on the topic of autonomous driving with the help of 

the open-source software CARLA in which we will be able to set up an environment and 

simulate the learning of an intelligent car. 

 

1.2 Terms and concepts 

 

The key concepts of this work are defined in the next section as the reader must be familiarised 

with the following concepts and understand them correctly as well as the topics related to 

autonomous driving that can generate more confusion. 

 

1.2.1 Machine learning 

 

Machine learning [3] is a method of data analysis that automates analytical model building. It 

is a branch of artificial intelligence based on the idea that systems can learn from data, identify 

patterns, and make decisions with minimal human intervention. 

 

1.2.2 Reinforcement learning 

 

Reinforcement learning [4] is a machine learning training method based on rewarding desired 

behaviours and/or punishing undesired ones. In general, a reinforcement learning agent is able 

to perceive and interpret its environment, take actions and learn through trial and error. 

 

1.2.3 DQN 

 

The Deep Q-Network algorithm [5] was developed by DeepMind in 2015. It could solve a wide 

range of Atari games (some to superhuman level) by combining reinforcement learning and 

deep neural networks at scale. The algorithm was developed by enhancing a classic RL 

algorithm called Q-Learning with deep neural networks and a technique called experience 

replay. 

1.2.4 ANNs 

 

Neural networks [6], also known as artificial neural networks (ANNs) are a subset of machine 

learning and are at the heart of deep learning algorithms. Their name and structure are inspired 

by the human brain, mimicking the way that biological neurons signal to one another. 
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1.2.5 Autonomous Car 

 

A self-driving car [7], also known as an autonomous vehicle (AV) or driverless car, is a car 

incorporating vehicular automation, that is, a ground vehicle that can sense its environment and 

moving safely with little or no human input 

1.2.6 CARLA  

 

CARLA [8] is the open-source simulator for autonomous driving research. It has been 

developed from the ground up to support development, training, and validation of autonomous 

driving systems. The simulation platform supports flexible specification of sensor suites, 

environmental conditions, full control of all static and dynamic actors, map generation and 

much more. 

 

1.3 Problem to be resolved  

 

The project consists of using the CARLA Simulator to obtain autonomous driving. It has been 

divided into two sections to facilitate and ensure the correct completion of the work. The first 

part consists of setting up the environment that we will be using for the execution of the 

learning process. This includes the prerequisites, software installation, library dependencies 

and any other requisite. The second part of the project is the proper learning of the car. To 

accomplish this a circuit will be defined with an origin, a destination, and a series of waypoints 

where the car must pass through. Once the waypoint system has been developed, we can start 

with the learning process of the car. Thanks to reinforcement learning, the car will perceive 

and interpret its environment, take actions, and learn through trial and error. 

1.4 Stakeholders  

 

This project has many involved parties, in a direct or indirect way, depending on the benefits 

and contribution they have with the project. 

 

1.4.1 CARLA Community 

 

One of the main beneficiaries will be the CARLA Community as most of the results and works 

obtained from this project will be easily reproduced and serve as feedback for them. 
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1.4.2 Director 

 

My director, Gerard Escudero Bakx, is a direct stakeholder of my project because we will have 

an implication on the thesis as he guides me during the execution of it. 

1.4.3 Myself 

 

I am a direct stakeholder of this project. The grade of this project will decide if I will turn into 

a computer science engineer or not.  



 
5 

 

 

 

2. Justification 

 

Most real-world reinforcement learning problems have an incredibly complicated state, 

environments, and actors. Therefore, any existing solution or study will be appreciated. That's 

why my director, Gerard Escudero Bakx, has provided me with two alumni theses to use in my 

favour. To obtain the best result for the project using and taking advantage of previous solutions 

will be mandatory. Adapting an existing study will help in achieving a better outcome for the 

thesis thanks to code reusability. Obviously, this will be a time-consuming decision due to the 

understanding and learning of a foreign project. Not using existing projects can be a major 

drawback since nothing ensures that we will achieve a significant advance in our study.  
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3. Project Scope 

 

3.1 Objectives 

 

This thesis has two main objectives. The first goal is to create and set up an environment for 

CARLA. This includes installing the prerequisites, the software used for the execution of the 

training and the libraries. 

 

The second goal of my thesis is to try to recreate an autonomous driving simulation as close as 

possible to real life. Starting first with a simple scenario such as, the car must travel a route that 

simply follows a straight line and ending with the car travelling through a much more complex 

route.  

 

3.2 Sub-Objectives 

 

All the sub-objectives come from the second goal of the thesis. 

 

3.2.1 Waypoints 

 

Firstly, a circuit will be created where origin and destination points will be defined, and a series 

of waypoints will be established through which the car will have to pass. The distance between 

waypoints will be 1 meter. 

 

3.2.2 Reinforcement Learning 

 

Secondly, the car will use reinforcement learning to perceive, interpret its environment, take 

actions and learn through trial and error. This objective will be achieved with the correct 

implementation of a control algorithm and a reward system which the car will use to know 

when a good or bad choice has been made. 
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3.3 Requirements 

 

The following requirements are needed to ensure the quality of the thesis 

 

3.3.1 Functional requirements 

 

The functional requirements [9] for this project are: 

 

● Setting up a proper Python3 environment on Window 

 

● A visual demonstration of the car’s apprenticeship. 

 

● Correct tuning of the hyper-parameters for the artificial neural network. 

 

3.3.2 Non-functional Requirements 

 

In general, a good use of programming language to obtain the following non-functional 

requirements: reusability, performance, and portability  

 

3.4 Obstacles and Risks 

 

Every project has different difficulties that must be analysed in advance to minimise their 

impact. Here are some of the risks that need to be aware of: 

 

● Hyperparameters. Not tuning hyperparameters correctly is one of the biggest mistakes 

in hyperparameter optimization [10]. If they are not set explicitly on the model and, 

instead, model developer’s defaults are used, they may be inappropriate. 

 

● Computational power - Given the high computational requirements of neural network 

training, it is necessary for the computer running the learning to have a high performing 

CPU and GPU, as this may limit the development itself. 

 

● Deadlines - Delivery deadlines must be achieved at all costs. Lack of experience may 

be a drawback as I’m not familiar with this type of work. 

 

● Inexperience - As said before, inexperience can be a major disadvantage as learning 

and deciding the best way to develop this project will be a time-consuming task. 
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● Incompatibilities - Libraries incompatibilities are a big issue as some standard library 

interfaces may change during updates in ways that require different code than normal 

for example: Python3 code to achieve Python2/3 compatibility. 

 

3.5 Changes in Project Scope 

 

During the initial planning of the project the objectives where different. At first, we only had 

one main objective: to recreate an autonomous driving simulation as close as possible to real 

life. Then during the development of project, I realised that this main goal should be split into 

two as setting up the environment was a bigger task than previously planned. With this 

objective, we also added a risk that at first, we did not think about it, library incompatibilities. 
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4. Methodology and rigour 

 

This section will justify which methodology has been chosen and the reasons for the decision, 

a description of the tools to be used to develop the project and how the objectives will be 

validated. 

 

4.1 Agile Methodology 

 

The work methodology that will be used in this project will be agile [11]. Agile is an iterative 

approach to project management that helps teams deliver their product. Instead of clustering 

everything on a single launch the agile methodology divides the work in several sprints in 

which teams plan, design, develop, test, deploy and review constantly. In this case, sprints will 

last two weeks, starting and finishing with a meeting with the project director. 

 

 

 

 

 
Figure 2: Agile Methodology. Source: NVISIA, The Agile Process 101 [12] 
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The main reasons for choosing this methodology are:  

 

● Project predictability - Constant meeting with the project’s director will increase 

transparency making it easier to predict risk and plan for a smooth project execution. 

 

● Continuous improvements - This methodology works by iterations which means that 

each sprint will be better than the previous one and mistakes done in the past will not 

be repeated.  

 

● Better project quality - In agile project management, testing is always present in all 

sprints which implies that the overall quality of the final product is greater. 

 

 

4.2 Tools and Validation 

The tools that I’ll be using for my project development will be the open-source simulator for 

autonomous driving research, CARLA Simulator, Anaconda [13] and a Virtual Machine for 

Windows with Python 3 in which I’ll have an environment with all the libraries and 

dependencies needed to run de CARLA software. This environment will be set up with 

Anaconda. 

 

Thanks to agile methodology, every two weeks meetings with the project’s director will be 

arranged in which evaluation, objectives and even requirements will be discussed. 
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5. Task Definition 

 

The project will need a total of 550 hours. The work-to-begin date is on February 21st, same 

day as the first day of GEP, and will be delivered on June 11th. I expect an average of 5 hours 

of work per day among 110 days which is the time difference between the two dates. 

 

5.1 Tasks Description 

 

In this section I will identify and describe all tasks that are involved in this study. 

 

T1 - Project Management 

 

This task includes the context and scope task, project planning task, budget and sustainability 

task, final project definition task and the meetings task. 

 

T1.1 - Context and Scope 

In this task I will contextualise the thesis and describe its scope. I estimate that this task will 

consume a total of 20 hours. 

 

T1.2 - Project Planning 

In this task I will plan the start and end date, the hours per day and a brief description of all the 

tasks of this project. I estimate that this task will consume a total of 10 hours. 

 

T1.3 - Budget and Sustainability 

In this task I will draw up the budget of the project and the initial part of the sustainability 

report. I estimate that this task will consume a total of 15 hours. 

 

T1.4 - Final Project Definition 

In this task I will integrate the previous tasks (T1.1, T1.2 and T1.3) in a final document. I 

estimate that this task will consume a total of 15 hours. 

 

T1.5 - Meetings 

This task consists of carrying out meetings with the director of the project throughout the 

weeks. I estimate that this task will consume a total of 20 hours. 
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T2 - Research 

 

This part includes all the research tasks needed to start the implementation of the project. 

 

T2.1 - Get familiarised with ANNs 

This task consists of learning and getting familiar with the concept of ANNs. I estimate that it 

will take a total of 25 hours to complete. 

 

T2.2 - Get familiarised with PPO 

This task consists of learning and getting familiar with the concept of PPO. I estimate that it 

will consume a total of 25 hours. 

 

T2.3 - Learn about CARLA simulator 

This task consists of learning and getting familiar with the CARLA simulator environment. I 

estimate that it will take a total of 40 hours to complete. 

 

T2.4 - Learn KERAS and TensorFlow 

This task consists of learning and getting familiar with the KERAS and TensorFlow. I estimate 

that it will take a total of 20 hours to complete. 

 

 

 

T3Pre - Setting up 

 

This part includes all the tasks that consist of preparing the environment for the CARLA 

simulator. 

 

T3Pre.1 - Installing prerequisites 

This part consists of installing all the necessary prerequisites to be able to start with the 

installation of the software. I estimate that this task will take a total of 10 hours. 

 

T3Pre.2 Installing software 

This part consists of installing all the necessary prerequisites to be able to start with the 

installation of the libraries. I estimate that this task will take a total of 20 hours. 

 

T3Pre.3 Installing libraries 

This part consists of installing all the necessary libraries. Once it’s finished, I will be able to 

start with the programming part. I estimate that this task will take a total of 20 hours.  
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T3 - Programming part 

 

This part includes all the tasks that consist of programming in Python3 or in the CARLA 

simulator. 

 

T3.1 - Designing map levels 

For this task I will be designing five different maps in which the autonomous car will drive and 

learn. This task will cost 20 hours. 

 

T3.2 - Implementation of waypoints 

This task consists of implementing the waypoints system that the car will use to move around 

the map. This task will consume 20 hours. 

 

T3.3 - Implementation of reward system 

This task consists of implementing the reward system that the car and the ANN will use to 

learn what is “right” or “wrong”. This task will cost 40 hours. 

 

T3.4 - Implementation of RL in car 

This task consists of implementing the reinforcement learning algorithm with the proximal 

policy optimization and including the waypoint and reward system. This task will cost 50 hours 

of work. 

 

 

T4 - Experiments, Analysis and Conclusion 

 

This task consists of the testing part of the project. Which includes, tuning the hyperparameters 

of the ANN, testing the car in different map levels, testing the car with different map 

difficulties, and collecting all the data from the experiments. 

 

T4.1 - Tuning hyperparameters 

During experiments, I will be fiddling with the hyperparameters in order to approach the best 

solution. I estimate that this task will consume a total of 15 hours. 

 

T4.2 - Testing in different map levels 

During the training of the car, I will be changing the maps to obtain the best outcome from the 

ANN’s. I expect that this task will consume 25 hours of work. 
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T4.3 - Testing with increased level difficulty 

During the training of the car, I will also be changing the map difficulty. I’ll be adding traffic 

lights, other cars, pedestrians, and even realistic weather. This task will consume a total of 30 

hours.  

 

T4.4 - Collecting data 

During all the experiments tasks (T4.1, T4.2, T4.3), I’ll be collecting data obtained by the 

autonomous car. I estimate that this task will take 30 hours of work. 

 

T5 - Project Documentation 

 

When I have finished task T4 (experiments, analysis, and conclusion), I will be able to start 

with the project documentation. I’ll be using Google Docs and this task will consume 50 hours. 

 

 

T6 - Bachelor Thesis Defence Preparation 

 

In this task I’ll be preparing and practising the defence of my bachelor thesis. Obviously, this 

task has a dependency with T5, and I will take a total of 30 hours of work. 

 

 

5.2 Resources 

 

In this section we will be mentioning the human and material resources used in this research 

project. 

 

5.2.1 Human Resources 

 

The main human resource of the thesis is: 

 

● The researcher, Enrique Martinez Martel 

 

● Director of the project, Gerard Escudero Bakx 

 

● GEP Tutor, Paola Lorenza Pinto 
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5.2.2 Material Resources 

 

The material resources are the following: 

 

● PC - The computer used to carry out the project is a MSI GE75 Raider 8SE with an 

Intel(R) Core (TM) i7-8750H CPU, 16 GB of RAM and a NVIDIA RTX 2060 GPU. 

 

● ATENEA - The UPC's virtual learning environment. 

 

● Google Meet -The video-communication service developed by Google used for the 

with the director of the project. 

 

● CARLA - The open-source simulator for autonomous driving research used to carry 

out important tasks. 

 

● Python3 - Programming language used for this project. 

 

● Anaconda - Anaconda is a distribution of the Python and R programming languages 

for scientific computing that aims to simplify package management and deployment. 

 

● Visual Studio Code - VS Code, is a source-code editor made by Microsoft for 

Windows, Linux and macOS. Features include support for debugging, syntax 

highlighting, intelligent code completion, snippets, code refactoring, and embedded 

Git. 

 

 

5.3 Changes in Task Definition 

 

During the initial planning of the project the objectives where different. Therefore, there was a 

different task planification. Previously we didn’t have any T3Pre tasks as they were created 

with the introduction of the new objective: setting up an environment for CARLA. With this 

changes, the total time increased from 500 hours to 550 and the delivery date was postponed 

from June 1st to June 11th. 
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6. Estimates and the Gantt 

 

In this section, we have an overview of the workload estimation in Table 1 and the Gantt 

diagram in Figure 3. 

 

6.1 Workload estimation  

 

The following table summarises the previously explained tasks. Each task has an ID for 

identification, a name, time estimated for completion, dependencies and the resources needed. 
 
 

ID Name Time(h) Dependencies Resources 

T1 Project Management 80   

T1.1 Context and Scope 20  PC, Atenea 

T1.2 Project Planning 10 T1.1 PC, Atenea 

T1.3 Budget and Sustainability 15 T1.1, T1.2 PC, Atenea 

T1.4 Final Project Definition 15 T1.1, T1.2, T1.3 PC, Atenea 

T1.5 Meetings 20  PC, Google Meet 

T2 Research 110   

T2.1 Get familiarised with ANNs 25  PC 

T2.2 Get familiarised with PPO 25  PC 

T2.3 Learn about CARLA simulator 40  PC, CARLA, Python3 

T2.4 Learn KERAS and TensorFlow 20  PC 

T3Pre Setting up 50   

T3Pre.1 Installing prerequisites 10  PC 

T3Pre.2 Installing software 20 T3Pre.1 PC, CARLA, Python3, 

Anaconda 

T3Pre.3 Installing libraries 20 T3Pre.1, T3Pre.2 

 

PC, CARLA, Python3, 

Anaconda 

T3 Implementation 130   

T3.1 Designing map levels 20 T2.3, T3Pre PC, CARLA, Python3, 

Anaconda, VSC 
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T3.2 Implementation of waypoints 20 T2.3, T3.1 PC, CARLA, Python3, 

Anaconda, VSC 

T3.3 Implementation of reward system 40 T2 PC, CARLA, Python3, 

Anaconda, VSC 

T3.4 Implementation of RL in car 50 T2, T3.2, T3.3 PC, CARLA, Python3, 

Anaconda, VSC 

T4 Experiments, Analysis and Conclusion 100   

T4.1 Tuning hyperparameters 15 T3 PC, CARLA, Python3, 

Anaconda, VSC 

T4.2 Testing in different map levels 25 T3 PC, CARLA 

T4.3 Testing with increased level difficulty 30 T3 PC, CARLA 

T4.4 Collecting data 30 T3 PC, Google Docs 

T5 Project Documentation 50 T4 PC, Google Docs 

T6 Bachelor Thesis Defence Preparation 30 T5 PC 

Total  550   

Table 1: Summary of the tasks. Source: Own compilation 
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6.2 Gantt Chart 

 

 
  

Figure 3: Gantt Chart. Source: Own compilation
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6.3 Changes in Estimates and Gantt Chart 

 

The workload estimation changed from the first planification because the task T3Pre was added 

after. Therefore, the workload estimation and the Gantt Chart changed (see Appendix A). 
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7. Risk Management 

 

It is important to predict the risks and obstacles that may emerge during the project’s 

development. In this section you will find a description of the problems mentioned in the first 

deliverable and the alternative plans to overcome them.  

7.1 Hyperparameter tuning 

 

Not tuning hyperparameters correctly is one of the biggest mistakes in hyperparameter 

optimization. If they are not set explicitly on the model and, instead, model developer’s defaults 

are used, they may be inappropriate. 

 

● Impact: Medium 

● Alternative plan: To solve the problem, I could adapt the project planning and add a 

new task that would focus on hyperparameter tuning. I estimate that this new task will 

take 15 hours. 

 

7.2 Computational power 

 

Given the high computational requirements of neural network training, it is necessary a high 

performing CPU and GPU, as this may limit the development itself. 

 

● Impact: Low 

● Alternative plan: To solve the problem, I will plan to use my resources wisely. I will 

try to train my neural network at night when I’m not working on my laptop. This 

alternative plan can bring problems such as: not choosing the right learning rate, not 

choosing the appropriate number of epochs or iterations, or not knowing when to stop 

the training. Nevertheless, it’s better than not doing anything. I estimate that this task 

will cost 10 hours. 

 

7.3 Deadline 

 

Due to academic deadlines, the project should not be extended more than the initial time 

planned. 

 

● Impact: High 

● Alternative plan: To solve the problem, I could recalculate every week in the project 

meetings the hours of my time planning. Therefore, I could approach a more realistic 

and updated time schedule. I estimate that this task will cost 15 hours. 
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7.4 Inexperience 

 

Inexperience can be a major disadvantage as I have never used the CARLA simulator 

environment, worked with the proximal policy optimization (PPO) or even the neural networks 

before. Thus, this problem should be dealt with carefully. 

 

● Impact: Medium 

● Alternative plan:  To solve the problem, I could adapt the project planning and 

extend time on the tasks that I find more difficult. I estimate that this extension 

would be never more than 10 hours for each task. 

 

7.5 Incompatibilities 

 

Inexperience can be a major disadvantage as I have never used the CARLA simulator 

environment, worked with the proximal policy optimization (PPO) or even the neural networks 

before. Thus, this problem should be dealt with carefully. 

 

● Impact: High 

● Alternative plan:  To solve the problem, I could extend the duration for the setting 

up of the environment task. I estimate that this task will cost 20 more hours. 
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8. Budget 

 

In this section I will talk about the project's budget. It will include the different types of costs 

associated with the personnel’s costs by activity, the hardware and software used and the 

workspace. In addition, to overcome the obstacles that may arise during the development, we 

have created a contingency plan with an estimated budget and an estimation cost for the 

incidents that can occur. 

 

 

8.1 Identification of costs and cost estimates 

 

8.1.1 Personnel cost per activity 

 

In this project there are 4 types of different personnel, and they all have different costs per hour. 

Firstly, we have the project manager, who is responsible for the planning and execution of the 

project. Secondly, we have the researcher, who will oversee collecting information about the 

project and technologies. Thirdly, we have the programmer who will be doing all the 

implementation of the project. Finally, we have the tester who will be responsible for the testing 

and reviewing the work done by the programmer. 

 

 

 

Role Cost per hour without SS  Cost per hour with SS 

Project Manager 23,07€/hour 30 €/hour 

Researcher 15,38 €/hour 20 €/hour 

Programmer 12,30 €/hour 16 €/hour 

Tester 12,30 €/hour 16 €/hour 

Table 2: Personnel costs. Source: Hays labour market guide [14] 

 

 ID Activity Cost (€)   Comments 

T1.1 Context and Scope 600 20 hours, Project Manager 

T1.2 Project Planning 300 10 hours, Project Manager 

T1.3 Budget and Sustainability 450 15 hours, Project Manager 

T1.4 Final Project Definition 450 15 hours, Project Manager 

T1.5 Meetings 600 20 hours, Project Manager 
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T2.1 Get familiarised with ANNs 500  25 hours, Researcher 

T2.2 Get familiarised with PPO 500 25 hours, Researcher 

T2.3 Learn about CARLA simulator 360 40 hours, Researcher 

T2.4 Learn KERAS and TensorFlow 400 20 hours, Researcher 

T3Pre.1 Installing prerequisites 160 10 hours, Programmer 

T3Pre.2 Installing software 320 20 hours, Programmer 

T3Pre.3 Installing libraries 320 20 hours, Programmer 

T3.1 Designing map levels 320 20 hours, Programmer 

T3.2 Implementation of waypoints 320 20 hours, Programmer 

T3.3 Implementation of reward system 640 40 hours, Programmer 

T3.4 Implementation of RL in car 800 50 hours, Programmer 

T4.1 Tuning hyperparameters 240 15 hours, Tester 

T4.2 Testing in different map levels 400 25 hours, Tester 

T4.3 Testing with increased level difficulty 480 30 hours, Tester 

T4.4 Collecting data 600 30 hours, Researcher 

T5 Project Documentation 1500 50 hours, Project Manager 

T6 Bachelor Thesis Defence Preparation 900 30 hours, Project Manager 

 TOTAL PERSONNEL COST BY ACTIVITY 11160 550 hours, All Roles 

Table 3: Total Personnel Cost. Source: Own compilation 

 

8.1.2 Generic costs 

 

Hardware and software 

In this project, we only have amortisations for hardware because all the software used is open 

source or the UPC has given us a licence to use it. The resources will be used for a total of 550 

hours. The amortisation costs are shown below: 

 

𝐴𝑚𝑜𝑟𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛 (€) =  𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑟𝑖𝑐𝑒 𝜒 
1

4𝑦𝑒𝑎𝑟𝑠
𝜒 

1

100𝑑𝑎𝑦𝑠
𝜒 

1

5ℎ𝑜𝑢𝑟𝑠
𝜒 𝐻𝑜𝑢𝑟𝑠𝑈𝑠𝑒𝑑   

 

Hardware Price Time used(h) Amortisation (€) 

Laptop 1650 550 453.75 

Display 110 550 30.25 
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Hardware Price Time used(h) Amortisation (€) 

Laptop 1650 550 453.75 

Keyboard 50 550 13.75 

Mouse 30 550 8.25 

Microphone 50 20 0.5 

  TOTAL 506,5 

Table 4: Hardware and Software Total Cost. Source: Own compilation 

 

Workspace 

In this section we will calculate the total cost for the workspace. This includes the electricity, 

furniture, and internet. For the furniture we used the following formula and obtained a total 

of 300*(¼)*(1/100) *(⅕)*550 = 82.5€. 

 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑂𝑓𝐹𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒 𝜒 
1

4𝑦𝑒𝑎𝑟𝑠
𝜒 

1

100𝑑𝑎𝑦𝑠
𝜒 

1

5ℎ𝑜𝑢𝑟𝑠
𝜒 𝐻𝑜𝑢𝑟𝑠𝑈𝑠𝑒𝑑  

 

Considering that the price of the kWh in Spain is 0,3544 €/kWh [15] and the total hours of 

consumption will be 550, we will calculate the total cost of electricity and obtain 34,55€. 

 

Hardware Power (W) Time used (h) Consumption (kWh) Price (€) 

Laptop 150 550 75 26,58 

Display 45 550 22,5 7,97 

   TOTAL 34,55 

Table 5: Hardware and Software Total Cost. Source: Own compilation 

 

The internet costs 25€ per month. Considering that the project lasts 4 months (110 days) and 

that the working hours per day are 5 the internet cost is 4 months * (30€/month) * (5h/24h) = 

25€. 

 

In conclusion, we have a total generic cost of 648,55€ and if we sum the total personnel cost 

by activity, we obtain a total of 648,55€+11160€= 11808,55€. 

 

8.1.3 Contingencies 

 

During the project’s development, potentially negative events can occur. Therefore, it is always 

necessary to prepare a budget to reduce the impact as much as possible. In this case we have a 

contingency margin of 15%, 1771,28€.  
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8.1.4 Incidental costs 

We also need to consider the possible cost of applying alternative plans in case of unforeseen 

events. These plans have been discussed previously and the total cost of them are calculated in 

the following table. 

 

 

Risks Estimated hours (h) Risk (%) Cost (€) 

Hyperparameter tuning 15 20 90 

Computational power 10 10 30 

Deadline 15 15 67,5 

Inexperience 10 20 60 

Incompatibilities 20 20 60 

  TOTAL 337,5 

Table 6: Incidental Costs. Source: Own compilation 

 

 ID Activity Cost (€)   Comments 

T1.1 Context and Scope 600 20 hours, Project Manager 

T1.2 Project Planning 300 10 hours, Project Manager 

T1.3 Budget and Sustainability 450 15 hours, Project Manager 

T1.4 Final Project Definition 450 15 hours, Project Manager 

T1.5 Meetings 600 20 hours, Project Manager 

T2.1 Get familiarised with ANNs 500 25 hours, Researcher 

T2.2 Get familiarised with PPO 500 25 hours, Researcher 

T2.3 Learn about CARLA simulator 360 40 hours, Researcher 

T2.4 Learn KERAS and TensorFlow 400 20 hours, Researcher 

T3Pre.1 Installing prerequisites 160 10 hours, Programmer 

T3Pre.2 Installing software 320 20 hours, Programmer 

T3Pre.3 Installing libraries 320 20 hours, Programmer 

T3.1 Designing map levels 320 20 hours, Programmer 

T3.2 Implementation of waypoints 320 20 hours, Programmer 

T3.3 Implementation of reward system 640 40 hours, Programmer 

T3.4 Implementation of RL in car 800 50 hours, Programmer 

T4.1 Tuning hyperparameters 240 15 hours, Tester 

T4.2 Testing in different map levels 400 25 hours, Tester 

T4.3 Testing with  increased level difficulty 480 30 hours, Tester 
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T4.4 Collecting data 600 30 hours, Researcher 

T5 Project Documentation 1500 50 hours, Project Manager 

T6 Bachelor Thesis Defence Preparation 900 30 hours, Project Manager 

  Total CPA 11160 Total personnel costs by activity (Gantt activities) 

  Hardware     

H1 Laptop 453,75 Amortisation 

H2 Display 30,25 Amortisation 

H3 Keyboard 13,75 Amortisation 

H4 Mouse 8,25 Amortisation 

H5 Microphone 0,5 Amortisation 

  Software     

S1 CARLA Software 0 Free to use 

S2 VisualStudio 0 Free to use 

S3 Python3 0 Free to use 

S4 Microsoft Office 0 UPC licence 

S5 Google Meet 0 Free to use 

S6 GanttProject 0 Free to use 

  Workspace     

W1 Electricity 34,55   

W2 Furniture 82,5    

W3 Internet 25   

  Total GC 649,55 Total Costs imputed generically (not detailed by activity) 

  Total CPA + Total GC 11808,05 Total Costs 

  Contingency 1771,29 Contingency margin of 15% 

  Total CPA + Total GC + Contingency 13579,83   

  Risks    

R1 Hyperparameter tuning 90 15 hours, risk = 20%, cost per hour = 30€ 

R2 Computational power 30 10 hours, risk = 10%, cost per hour = 30€ 

R3 Deadline 67,5 15 hours, risk 15%, cost per hour = 30€ 

R4 Inexperience 60 10 hours, risk 20%, cost per hour = 30€ 

R5 Incompatibilities 90 20 hours, risk 20%, cost per hour = 30€ 

  Total incidentals 337,5   

  Total 13917,33 Total cost: CPA+CG+Contingency+Incidentals 

Table 7: Total Project Cost. Source: Own compilation 
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8.2 Management control 

 

In this section, we will describe the procedures and methods used to control the budget. Also, 

we will define the control indicators that will help us supervise the cost deviations during the 

development of the project. Control mechanisms are the difference between the real and 

estimated resource consumptions, and they are used to measure and avoid deviations. 

 

This is the formula used to obtain the personnel cost deviation: 

 

 

 

For the hardware and software deviation: 

Hardware Software Deviation= (EstimatedCostPerHours -RealCostPerHours)*TotalHoursConsumed 

 

For the workspace deviation: 

Workspace Cost Deviation = (EstimatedCostPerHours - RealCostPerHours) * TotalHoursConsumed 

 

For the incidental cost deviation: 

Incidental Cost Deviation =(EstimatedIncidentalHours - RealIncidentalHours)*TotalIncidentalHours 

 

Finally, we need to sum up all if we want to know the general costs deviation: 

 

Costs Deviation = Personnel Cost Deviation + Hardware Software Deviation  

                             + Workspace Cost Deviation + Incidental Cost Deviation 

 

All these indicators will help us know where the deviations in the budget are. 
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9. Sustainability report 

 

9.1 Self-assessment 

 

After reading the first question from the pool I realised that my knowledge of sustainability 

was poor. Therefore, I started by looking for the definition of the word. Sustainability is a broad 

policy concept in the global public discourse and is often conceived of in terms of three pillars: 

environmental, economic, and social. The original semantic meaning of “sustainability” and 

“to sustain” refers to the ability to continue over a long period of time. Once I had the correct 

definition of sustainability, I started the poll.  

 

At first, I could not give an answer to many of the questions of the pool because I simply never 

thought about it. I used to think that the basics of sustainability was to reduce the CO2 

emissions, but I was totally wrong. A sustainability report should consider how I will approach 

sustainable development, what are the social, economic, and environmental impacts of the 

product, the health, safety, and social justice implications of my product, how to measure it 

(ISO 26000, 2014/95/EU Directive), what are the methods and tools for estimating the 

economic feasibility of a project and the deontological principles of my product and the ethical 

principles of sustainability. 

 

Throughout the questionnaire, I concluded that there are many things we overlook in our day-

to-day life. All businesses need to follow a sustainable report to minimise their footprint, 

innovate around the life cycle of a product and be transparent. This brings several benefits such 

as: improved brand image, increase productivity, reduce costs, attract employees and investors, 

reduce waste, and even make shareholders happy. 

 

To summarise the above, this self-assessment has made me understand the importance of 

sustainability and the little I knew about it. A project, idea or product that does not take this 

into account will negatively affect our society, economics and environment and probably will 

be doomed to failure. 

 

9.2 Economic 

 

Regarding PPP, have you estimated the environmental impact of undertaking the 

project? Have you considered how to minimise the impact, for example by reusing 

resources? 

 

The cost of undertaking the project, human and material resources, estimation can be found in 

Section 8 of the document. 
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Regarding useful life, how is the problem that you wish to address resolved currently 

(state of the art)? In what ways will your solution environmentally improve existing 

solutions?  

 

Studies and research of autonomous driving are very expensive as knowledge and machinery 

are needed to carry them out. Therefore, for my solution I’ll be reusing and referring to another 

existing thesis to reduce costs. 

 

9.3 Environmental 

 

Regarding PPP, have you estimated the cost of undertaking the project (human and 

material resources)? 

 

My main tool for the project will be my own PC and the estimated environmental impact will 

depend entirely on the energy consumption of it. Minimising this will be difficult as the 

learning of ANNs is very unpredictable. 

 

 

Regarding useful life, how is the problem that you wish to address resolved currently 

(state of the art)? In what ways will your solution economically improve existing 

solutions? 

 

In my case, an environmental improvement from existing solutions will be difficult to obtain 

because other projects use more efficient and specific machines for RL. Nevertheless, my tool 

for this project will be my PC and the resource used in it will be the electricity to power it up. 

To obtain a better environmentally friendly solution I will need to be using an energy efficient 

PC and this could be achieved with the new GPUs as I cannot afford to use other specific tools 

such as supercomputers. 

 

9.4 Social 

 

Regarding PPP, what do you think undertaking the project has contributed to you 

personally? 

 

This project will help me expand my understanding of what I am capable of, deepen my 

abilities to carry out a study and develop my skills in making connections between ideas. Also, 

this project will help me to introduce into the autonomous industry, particularly, in the 

pioneering topic of driverless cars. 
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Regarding useful life, how is the problem that you wish to address resolved currently 

(state of the art)? In what ways will your solution socially improve (quality of life) 

existing? Is there a real need for the project? 

 

The main purpose of this thesis is to use CARLA for autonomous driving. As we all know, it 

is a new technology, so it is very difficult to find other theses, studies, or even small projects. 

That is why I hope my thesis promotes the development of other autonomous car projects. In 

other words, carrying out this study and making it accessible for others will encourage people 

to keep on working in this new field. 
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10. Environment Setup 

 

10.1 Prerequisites 

 
The following sections will specify all the requirements that should be fulfilled before installing 

CARLA. In this thesis the installation will be specifically for Windows the reason for this will 

be discussed later. 
 

10.1.1 Operative System 

 

CARLA is built for Windows and Linux systems but in my case, I’ll be using Windows 10 

specifically Microsoft Windows 10 Pro. This is due to some issues with the NVIDIA drivers 

on Linux. Therefore, to avoid these problems Windows was the winning option. Only a 

Windows 7 or higher (64-bit) will work for CARLA and if Linux was chosen a version of 64-

bit Ubuntu 16.04 or higher will be necessary for the correction execution of CARLA. 

 

10.1.2 GPU 

 

CARLA aims for realistic simulations, so the server needs at least a 6 GB GPU although 

CARLA developers recommend 8 GB. A dedicated GPU is also highly recommended for 

machine learning because they can perform multiple simultaneous computations which enables 

the distribution of training processes and can significantly speed machine learning operations.  

In this case, the GPU should have a CUDA® architecture of 3.5, 5.0, 6.0, 7.0, 7.5, 8.0 or higher 

to benefit from this advantage. Figure 4 shows a list of the compatible GPUs.  
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Figure 4: CUDA-Enabled GeForce and TITAN Products List. Source: NVIDIA website [16] 

 

10.1.3 Disk Space 

 

About 25GB in total will be required. Currently on CARLA 0.9.5, it needs a total amount of 

5.9 GB of space. Depending on the version for CARLA and the addons you would like to use 

this number will change. For example, CARLA’s 0.9.13 latest version with the AdditionalMaps 

addon [16] consumes a total amount of space of 8GB. All the remaining space will be occupied 

with the software dependencies. 

 

10.1.4 System Overview 

 

These are the development computer specs used during all the development and study of this 

thesis: 

 

• Operative system: Microsoft Windows 10 Pro, 64-bit (21H2 Version) 

• CPU:  Intel(R) Core (TM) i7-8750H CPU @ 2.20GHz   2.21 GHz 

• GPU: NVIDIA GeForce RTX 2060 (Laptop) 

• RAM: 16,0 GB (15,8 GB available) 

• Disk space: 250GB SDD + 1TB HDD 
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10.2 Environment Software 

 
In this section will set and install all the software that will be used during the development of 

the thesis. 

 

10.2.1 Anaconda 

 

The first thing to do is to install Anaconda. This software is a distribution of the Python and R 

programming languages for scientific computing, that aims to simplify package management 

and deployment. The distribution includes data-science packages suitable for Windows, Linux, 

and macOS. In this case we will be using the latest version of Anaconda for Windows.  

 

 
Figure 5: Anaconda Installer. Source: Own compilation. 

 

For more information about the chosen installation refer the appendix. 

 

10.2.2 Python 3.7 

 

Python is the main scripting language in this study. CARLA supports Python 2.7 and Python 3 

on Linux, and Python 3 on Windows. To correctly run CARLA, we need Python 3.7, but the 

Anaconda’s latest version has installed natively Python 3.9. This is the first issue that we can 

find in this thesis because this version has conflicts with many libraries such as Keras and 

Tensorflow. Therefore, we will need to make a new environment that will solve the issue. 

Figure 6 shows clearly how to create it in Anaconda. 
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Figure 6: Anaconda Navigator. Source: Own compilation 

 

We first select the Environments tab and click on the Create option. Then we name the 

environment, in this case its “carlaEnv” and we select the Python Package with the 3.7.13 

version. 

 

10.2.3 Visual Studio Code 

 

Visual Studio Code [17] is a source-code editor made by Microsoft for Windows, Linux and 

macOS. It has features such as support for debugging, syntax highlighting, intelligent code 

completion, snippets, code refactoring, and embedded Git. In this thesis Visual Studio Code is 

a very useful tool as it will simply and make easier all the code development. To install the 

software, we will use the Anaconda Navigator. We will search for Visual Studio Code in the 

Anaconda Home page and simple select install as shown in Figure 7. 
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Figure 7: Anaconda Navigator Home Tab. Source: Own compilation 

10.3 Environment Libraries 

 

Once we have finished with the previous two steps, we can start with the installation of the 

environment libraries. The easy management of environments is one of Anaconda’s 

advantages. First, we go to the Environments tab and select the play button on our previously 

created environment as shown in the following Figure 8. Then, we select the “Open Terminal” 

option. In this case, our newly created environment is “carlaEnv”.  

 

 

 
Figure 8: Anaconda Navigator Environments Tab. Source: Own compilation 
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This will open a command prompt (cmd) which has our environment loaded. To install the 

libraries needed for the correct execution of CARLA we will simply type in the following 

commands in the correct order: 

 

 

 

Step 1, installing Tensorflow 1.14. Depending on this version, all the next steps will vary. If 

you choose a more updated version other libraries such as Keras will change. 

 

conda install tensorflow-gpu==1.14 
 
 

Step 2, installing OpenCV. 

 

conda install -c conda-forge opencv 
 
 

Step 3, installing Keras. A compatible version for Tensorflow 1.14 is Keras 2.2.4. 

 
conda install keras==2.2.4 

 
 

Step 4, installing tqdm 

 

conda install tqdm 
 

With these four steps we will be ready to execute CARLA in our machine. To check for bugs, 

see the Appendix B.2 for the complete list of the installed libraries. 

 

 

 

 

10.4 CARLA 

 

Upon completion of the above.  But first we need to understand the key concept of the software. 

It is composed mainly by two things: a server which is the main program (CARLA.exe) and a 

client. The power of CARLA simulator resides in its capacity to be controlled with scripts by 

this external client. It can manipulate most of the aspects of simulation, from environment to 

duration of each episode. It can retrieve data from different sensors and send control 

instructions to the player vehicle. Now we can start with the installation of CARLA. 
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10.4.1 Getting Started 

 

To download CARLA's software go to their website. This will take us to a GitHub [18] where 

we will find all the existing versions. Here we will select version 0.9.5 as it is the one that has 

been used for all the implementation and experimentation. We save the file and once 

downloaded we can start the software execution. 

 

10.4.2 CARLA Server 

 

To run the CARLA server, we have two options. The first is to go to the location where we 

saved the file and open the directory. Inside we will find several files. Among them will be one 

called "CARLA.exe" and to run it, simply double click on it. The disadvantage of using this 

method is that it will open CARLA, specifically the server, with default options.  

 

If we want to modify these rendering options, we will have to recur to the second method of 

execution. To do this, we will open Anaconda Prompt (the Anaconda CMD) and go to the 

location of the file we downloaded earlier. After we have accessed the directory, to execute 

CARLA we could use the following command: 

 

./CarlaUE4.exe -quality-level=Epic 
 
 

In this case we have launched the server with a different quality option. The main options that 

we will be using are: 

 

 

- Quality option, it has two different levels for graphics quality. Epic quality is the default 

and it’s the most detailed. Low quality disables all post-processing and shadows. 

Depending on the GPU card used we will use either low or epic, but to improve 

performance for the neural network with the Tensorflow and Keras libraries we will be 

using low quality. 

 

./CarlaUE4.exe -quality-level=Low 
 
 
 

- Resolution option, the application window can be reshaped to any size, but a low 

resolution is recommended due to the same reason as before. 

 

./CarlaUE4.exe -windowed -resx=800 -resy=600 -quality-level=Low 
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- World option, the world map can be changed by console or by script. Typing the map 

name after the main command will work. 
 
./CarlaUE4.exe Town02 -windowed -resx=800 -resy=600 -quality-

level=Low 
 

 

10.4.3 CARLA Client 

 

The client provides a Python module for communicating with the CARLA server. In the folder 

“PythonAPI” from the downloaded file, three directories will show up with examples of scripts 

to be executed. In all of them, the client connects to the server through the default port “2000”. 

If the connection fails, code written in any of the scripts will not execute and raise an exception. 

 

To execute a client successfully you will need to run first the server and then execute the python 

script. For example, if we wanted to execute the “tutorial.py” from the “examples” directory 

we will need to navigate through with the Anaconda Prompt until we reach the following path: 

 

$\CARLA_TFG 
Run the server: 

 
./CarlaUE4.exe Town02 -windowed -resx=800 -resy=600 -quality-

level=Low 
 

Then, reach the next path: 

 

$\CARLA_TFG\PythonAPI\examples 
 
And execute the following python command: 

 

python tutorial.py 
 

With this last step done, we have achieved our first objective: to create and set up an 

environment for CARLA. Therefore, we can start the implementation and experimentation of 

the models.  
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11. Implementation 

 

In this section we will discuss all the elements that we need to implement to start with the 

experimentation. 

 

10.1 The World 

 

The first element we need to be certain about is the world. The learning of our car can be 

affected by the complexity of the world itself. Having a world that is too complicated for the 

start of the experiments could be counterproductive due to a high number of observations it 

would receive. That is why in the learning process we will start with a simple world, and 

eventually we will scale its difficulty by changing the maps. The following figure shows a 

summary about each map (see Appendix C.1 for more information). 

 
 

Town Summary 

Town 01 As Town 02, a basic town layout with all "T junctions". These are the most stable. 

Town 02 As Town 01, a basic town layout with all "T junctions". These are the most stable. 

Town 03 The most complex town with a roundabout, unevenness, a tunnel. Essentially a medley. 

Town 04 An infinite loop in a highway. 

Town 05 Squared-grid town with cross junctions and a bridge. 

Town 06 Long highways with a lane exit. 

Town 07 A rural environment with narrow roads, barely non traffic lights and barns. 

Table 8: Town descriptions. Source: Own compilation 

 

 

The candidate map that we will be using in the beginning of the experiments is shown in the 

following Figure 9. This is because it is a small square city with several crossroads and no 

roundabouts. The roundabouts are usually quite tricky for autonomous vehicles. 
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Figure 9: Top view of Town02. Source: Own compilation 

 

10.2 The Car 

 

Actors in CARLA are the elements that perform actions within the simulation, and they can 

affect other actors. They include vehicles, walkers, sensors, traffic signs, traffic lights and the 

spectator. It is crucial to have full understanding on how to operate on them. 

 

 
Figure 10: Tesla Model 3 model. Source: Own compilation 
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Our testing vehicle will be a Tesla Model 3 and it has several sensors that we can use as inputs 

for our training. These sensors can be divided into four main groups: 

 

 

Cameras are the first main type of sensors that we can use in or vehicle. They take a shot of 

the world from their point of view a can retrieve data in every simulation step. 

 

1. Depth camera renders the depth of the elements in the field of view in a grey-scale map. 

2. RGB camera provides clear vision of the surroundings. Looks like a normal photo of 

the scene. 

3. Semantic segmentation camera renders elements in the field of view with a specific 

colour according to their tags. 

4. Instance segmentation camera renders elements in the field of view with a specific 

colour according to their tags and a unique object ID. 

 

The next group of sensors are detectors, and they retrieve data when the object they are 

attached to registers a specific event. 

 

1. Collision detector retrieves collisions between its parent and other actors. 

2. Lane invasion detector registers when its parent crosses a lane marking. 

3. Obstacle detector detects possible obstacles ahead of its parent. 

 

The third group embraces all the other sensors. They have different functionalities such as 

navigation, measurement of physical properties and 2D/3D point maps of the scene. 

 

1. GNSS retrieves the geolocation of the sensor. 

2. IMU comprises an accelerometer, a gyroscope, and a compass. 

3. LIDAR generates a 4D point cloud with coordinates and intensity per point to model 

the surroundings. 

4. RADAR models a 2D map and points the elements in sight regarding the sensor. 

 

The last group contains all the sensors or systems created by me and used by the car. 

 

1. A waypoint system, it was developed to help the car reach the destination point by 

dividing the route into several points separated by one meter from each other. 

2. An off-road detection system, it was created to detect when the car goes out of the road. 

 

 

During training, we will be changing the sensors to obtain the best model. 
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10.3 Reinforcement Learning 

 

Reinforcement Learning is all about learning the optimal behaviour in an environment to obtain 

maximum reward with an agent. 

 

10.3.1 Introduction 

 

In RL we have two main actors: the agent and the environment, in this case CARLA, in which 

an agent is trained. To do this training possible we have three main interactions between them. 

These are the following: 

 

- State: it describes the status of the agent. This could be the current position of the car, 

the speed or even the orientation of the vehicle. 

 

- Action: it describes what can an agent do. Moving forward, pressing the brake, or 

rotating the car are different actions that can be performed. 

 

- Reward: it is the feedback on the action previously taken on a state. This could be a 

positive or negative reward. 

 

 

 

 
Figure 11: Agent-Environment Interaction Diagram. Source: Study of the implementation of an autonomous 

driving system, Marta Basquens [19] 

 

 

Maximizing the reward obtained by performing a series of actions is the main objective of the 

agent as we previously mentioned. Therefore, a proper reward system is very important as 

choosing one action or the other will be affected by it.  
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During the training process we will see two main stages: exploration and exploitation [20]. The 

exploration stage has a specific purpose, to visit states that you have not yet visited or to take 

actions you have not yet taken. When you start the first episodes you want the agent to explore 

and do some trial and error to find the actions that will return a positive reward. On the other 

hand, the exploitation stage is when you decide to use the knowledge and memory from the 

previous episode to maximise the rewards. This stage usually comes at the end of the training 

session or when you have a trained agent.  

 

The agent will require a policy to learn. The policy defines how the agent will behave at a given 

time and map from perceived states of the environment to actions to be taken when in those 

states. To store all this data the policy uses a huge table with all the information saved for each 

state. At the beginning, if the agent has not been trained before this table will be empty, in other 

words, it will have no experience. This in when the exploration stage becomes useful. After the 

agent has performed a series of steps, it will start leaning by adjusting its predicted rewards for 

specific pairs of state-actions towards the received rewards. These predicted values are known 

as Q-values and are used as feedback on how good a state is. 

 

The parameter that determines the probability of the agent performing a random action is the 

epsilon (∈). It is a real value that exists in [0, 1]. This variable introduces randomness into our 

training algorithm forcing the agent to try different actions. A high epsilon, for example,  ∈ = 

1 will result in all actions are random which means we are in the exploration stage. On the other 

hand, a lower epsilon such as ∈ = 0 will result in no random actions which means we are in the 

exploitation stage. Implementing an epsilon decay formula is very important during the training 

process. This is because we want to travel from the exploration stage to the exploitation to 

maximize learning. The formula we will be using will be the following: 

 

∈𝑛= ∈𝑛−1  × ∈𝑑𝑒𝑐𝑎𝑦 

 

We will need to set an ∈𝑑𝑒𝑐𝑎𝑦 that, when multiplied by the current epsilon, will give us the next 

epsilon value. To calculate the epsilon value in a certain number of episodes we will use the 

following formula: 

 

∈ = ∈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × ∈𝑑𝑒𝑐𝑎𝑦
𝑛  

 

Where 𝑛 is the number of episodes, ∈𝑑𝑒𝑐𝑎𝑦 the epsilon decay per episode and ∈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 the 

epsilon used at the beginning. 

 

 

Another important parameter is the discount factor (𝛾).  It is a real value that exists in [0, 1] 

and determines how the agent should care about the rewards achieved in the past, present and 

future. If 𝛾=0 the agent will focus on actions that produce an immediate reward whereas if 𝛾=1 

the agent cares on actions that will produce a high future reward due to a sequence of actions.  
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10.3.2 DQN Agent 

 

Deep Q-Network is a reinforcement learning algorithm that combines Q-Learning with deep 

neural networks to let RL work for complex, high-dimensional environments, like video games, 

or robotics. 

 

DQN uses the Bellman’s equation to solve the problem of being unable to see future rewards. 

Otherwise, only immediate rewards would be shown. The formulation of the equations is as 

follows:  

 

  

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡)  =  (1−∈) × 𝑄(𝑠𝑡 , 𝑎𝑡) ⏟      
𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

+ ∈  × (𝑟𝑡  +  γ ∗  𝑚𝑎𝑥(𝑄
𝑛𝑒𝑤(𝑠𝑡+1 , 𝑎) ) ⏟                    

𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

 

 
 

Equation 1: Bellman's equation 

 

 

Where:  

 

• Q is the accumulated reward value 

 

• t is the current state 

 

• s is a specific state 

 

• a is a specific action 

 

• ∈ is the epsilon, also known as learning rate. 

 

• r is the reward associated to a specific state 

 

• 𝛾 is the discount factor 

 

The agent can use this equation to link up all the information learned resulting in a batch of 

memory that can be used for improving the efficiency of its learning. 
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10.3.3 ANN 

 

The artificial neural network used in this project is recycled from Marta’s Thesis, Study of the 

implementation of an autonomous driving system. We used Marta's model because she 

previously carried out a study in her thesis on which artificial neural network gave the best 

result. In her case, she decided to use a CNN (convolutional neural network): 

 

 

 

 
Figure 12: Structure of the Neural Network used in this project. Source: Study of the implementation of an 

autonomous driving system, Marta Basquens 

 

 

It consists of:  

 

• 3 convolutional layers with 64 neurons each + ReLU activation function which is 

used for filtering information. 

 

• 3 pooling layers performed with max average. They are used to reduce the dimensions 

of the feature maps in this case 2x2. 

 

• 3 dropouts layers following the convolutional networks to avoid overfitting. 

 

• 1 flatten layer to convert the vector to 1D. 

 

• 1 dense layer with 64 neurons. 

 

• 1 dense layer with 4 neurons (4 actions) with linear activation function. It is used to 

determine the output of neural network like yes or no. 
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10.3.4 Actions and Rewards 

 

The initial and final actions for the training cases are the following: 

 

ID Action 

1 Accelerate car with throttle 

2 Decelerate car with brake 

3 Turn right at 90º 

4 Turn left at 90º 

Table 9: Actions used by the agent. Source: Own compilation 

 

We decide to keep it up during all the thesis due to simplicity. Changing the number of actions 

would cause a modification in the structure of the artificial neural network. This change 

prevents us from continuing with the training of an experienced agent if it had previously been 

trained with a different number of actions. Furthermore, the training of the agents is very long, 

and we cannot afford to train several agents from scratch, as obtaining a result would take 

several days of training. 

 

 

The initial reward system is also recycled from Marta’s final reward system. We used her 

system as a basis since it would be our starting point to begin with. 

 

 

ID Reward Reward 

1 Collision with an object -20 points 

2 Velocity bigger or greater than 50 km/h +3 points 

3 Velocity smaller than 50 km/h -2 points 

4 More than 10 seconds without a collision +5 points 

5 No movement -8 points 

6 Short training episode -10 points 

Table 10: Initial reward system used by the agent. Source: Own compilation 
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During the training experiments we changed the reward system in several ways but concluded 

that using a formula would give us a better outcome. The formula has been inspired by the 

Learning to Drive in a Day by Kendall [21] and the Learning to Drive Smoothly in Minutes by 

Raffin [22] and is as follows: 

 

 

𝑟 (𝑣, 𝑑) =

{
 
 
 
 
 
 

 
 
 
 
 
 

 10                                                                                                     𝑜𝑛 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

−10                                                                                                    𝑜𝑛 𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑣

𝑣𝑚𝑖𝑛
 × (1 − 𝑑𝑛𝑜𝑟𝑚)  ×  𝛼𝑟𝑒𝑤                                                      𝑣 < 𝑣𝑚𝑖𝑛

1 × (1 − 𝑑𝑛𝑜𝑟𝑚)  ×  𝛼𝑟𝑒𝑤                                                            𝑣𝑚𝑖𝑛 ≤ 𝑣 <  𝑣𝑡𝑎𝑟𝑔𝑒𝑡

(1 − 
𝑣  −   𝑣𝑡𝑎𝑟𝑔𝑒𝑡

𝑣𝑚𝑎𝑥  − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡
  )  ×  (1 − 𝑑𝑛𝑜𝑟𝑚 )  × 𝛼𝑟𝑒𝑤                   𝑣 ≥ 𝑣𝑡𝑎𝑟𝑔𝑒𝑡

 

 

 

Equation 2: Multiplied centering, angle, and speed rewards formula. Source: Own compilation 

 

Where: 

 

• v is the car actual speed. 

 

• 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 is the car target speed.  

 

• 𝑣𝑚𝑎𝑥 is the car maximum speed. 

 

• 𝑣𝑚𝑖𝑛 is the car minimum speed. 

 

• d is the distance from the centre of the road. 

 

• 𝑑𝑛𝑜𝑟𝑚 is the distance from the centre of the road interpolate from1 when centred to 0 

when 3 meters from the centre. 

 

• 𝛼𝑟𝑒𝑤 is the reward obtained by the interpolation from 1 when aligned with the road to 

0 when +/- 20 degrees of road. 

 

The reward for each step has been normalize and will only return a value interpolated from 0 

when performed bad to 1 when performed excellent unless it has committed an infraction or 

reached destination. This normalization has helped the car obtained better results as now 

rewards are more stable. 
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12. Experimentation 

 

12.1 Training Model 

 

A training model is a dataset used to train a machine learning algorithm. The parameters we 

will watching throughout all the trainings are accuracy, epsilon decay, loss value, average 

reward, maximum reward, and minimum reward. The accuracy is the ratio of number of correct 

predictions to the total number of input samples. The loss value implies how well or poorly a 

certain model behaves after each iteration of optimization. Ideally, one would expect the 

reduction of loss after each episode. The other four parameters are self-explanatory. 

 

12.1.1 Training 1: Marta’s Model 

 

The first training will be done in “Town02”, and we will be using Marta’s model with the 

rewards and actions she implemented in her thesis. This test is the first approach with CARLA 

and all its environment set-up. Obviously, good results are not going to be expected in this 

iteration, only a simple replica of her final project.  

 

The ideal goal would be to teach the car to stay on the road and try to make the car able to get 

at least once from point A to point B. The agent won’t have a specific route to travel or even a 

waypoint system. In the following figure we can see the start point and the destination point. 

 

 
Figure 13: First route in Town02. Source: Own compilation 
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Training Conditions: 

 

Training Settings 

Total Training Time 2h 39m 42s Episodes 1000 

Town Town02 Seconds Per 

Episode 

9.58 

Actions Action 1: Accelerate car with throttle 

Action 2: Turn left at 90º 

Action 3: Turn right at 90º 

Action 4: Decelerate car with brake 

Rewards Reward 1: Collision: -20 points  

Reward 2: Velocity > 50 km/h: +3 point 

Reward 3: Velocity < 50 km/h: -3 point 

Reward 4: > 10 seconds without collision: +5 points 

Reward 5: No movement: -8 points 

Reward 6: Short training episode (<= 10 seconds): -10 

Sensors Used Semantic Segmentation camera 

Collision detection sensor 

Table 11: Settings for training 1. Source: Own compilation 

 
Results 

 
Thanks to Tensorboard we can extract a series of graphs that we can use to obtain some 

benefits. (To see all the graphs generated see Appendix D). 

 
 

 
Figure 14: Maximum and Average Reward from Training 1. Source: Own compilation 
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Discussion 

 

The graphs show that during the training session, the maximum and average reward had an 

upward trend. This is a good sign as it shows that the car is learning something and trying to 

maximise this reward. The problem is that when we look at the learning episodes themselves, 

we realise that the car is driving but is not aware that it must get to a particular place. Moreover, 

it does not consider the directions of the lane, the car simply decides to stay on the road.  

 

From this experiment we can draw the following conclusion, the agent needs a waypoint system 

and a new reward system. 
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12.1.2 Training 2: New Model with Waypoint System 

 

For this training it was decided to implement a new reward system as the previous one did not 

consider anything about reaching a desired destination. In addition, a new waypoint system 

was created which consists of dividing a trip from point A to point B into small one-metre 

sections. The actions remained the same.  

 

 

 
Figure 15: Route in Town02 for Training 2. Source: Own compilation 

 

 

Training Conditions: 

 

Training Settings 

Total Training Time 4h 17m 15s Episodes 1500 

Town Town02 Seconds Per 

Episode 

10.29 

Actions Action 1: Accelerate car with throttle 

Action 2: Turn left at 90º 

Action 3: Turn right at 90º 

Action 4: Decelerate car with brake 



52 

 

 

Training Settings 

Rewards Reward 1: Collision: -20 points  

Reward 2: Arrived at Destination: +20 points 

Reward 3: If distance to destination increases: -5 

Reward 4: If distance to destination increases: +5 

Reward 5: Short training episode (<= 20 seconds): -10  

Sensors Used Semantic Segmentation camera 

Collision detection sensor 

Waypoint system  

Table 12: Settings for training 2. Source: Own compilation 

 

Results  

 

 
Figure 16: Maximum and Average Reward from Training 2. Source: Own compilation 

 

Discussion 

 

In this training we can see a great improvement in the episodes. Now we can see a big upward 

trend in the graph of the average reward and in the maximum reward. This indicates that the 

car itself is learning to get better rewards. At this point, the car has a very simple waypoint 

system, at each step the system returns the number of meters between the car and the 

destination. If the distance is reduced, a reward is given and if it is increased, a penalty is given. 

We will probably have to change this waypoint system as it is correct for straights but for more 

complex routes can be a problem. 

 

Also, the car has learnt to accelerate earlier as it has realised that if it goes in a straight line 

faster it gets a higher score. One problem we have found is that the car is not able to realise 

when it leaves the track. It only focuses on reducing the distance from the destination point and 

sometimes takes forbidden paths. 
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12.1.3 Training 3: Waypoint System + Off-Road Detection System 

 

For this training session we have kept the same waypoint system, although we have said that it 

is still quite simple, and decided to add a new sensor, the off-road detection system. Now the 

car will know when it goes off-road. 

 

The number of episodes was increased to 4000 as we wanted to give the car more training time. 

One of the biggest problems we encountered is the number of episodes and the training time. 

CARLA is a high demanding software, and my computer can't run two agents at the same time 

or even run it at a higher speed as the computer cannot handle the requirements. The reward 

system and actions remain the same. 

 

Training Conditions 

 

Training Settings 

Total Training Time 9h 25m 20s Episodes 4000 

Town Town02 Seconds Per 

Episode 

8.48 

Actions Action 1: Accelerate car with throttle 

Action 2: Turn left at 90º 

Action 3: Turn right at 90º 

Action 4: Decelerate car with brake 

Rewards Reward 1: Collision: -20 points  

Reward 2: Arrived at destination: +20 points 

Reward 3: If distance to destination increases: -5 

Reward 4: If distance to destination increases: +5 

Reward 5: Short training episode (<= 20 seconds): -10 

Sensors Used Semantic Segmentation camera 

Collision detection sensor 

Waypoint system 

Off-Road detection system 

Table 13: Settings for training 3. Source: Own compilation 
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Results 

 
Figure 17: Accuracy and Loss for Training 3. Source: Own compilation 

 

 

Discussion 

 

This time we decided to focus mainly on the parameters of accuracy and loss. During training, 

the tracking of the rewards was not saved correctly, and the rewards were only stored for 

episodes 0, 2000 and 4000. We decided not to repeat the training as it would be almost 10 hours 

wasted and you can always learn from your mistakes. In this case, this error made us look more 

closely at other parameters. The accuracy of the model was quite low, normally, a good model 

should be around 0.7. Also, the loss value was behaving incorrectly, as it should reduce as the 

episodes go by. Therefore, we concluded that we were not getting it right with the new 

modifications. We still decided to test how the car would look on a new route to confirm that 

this was indeed the problem.  
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12.1.4 Training 4: New Route 

 

This training had to be repeated because during the first one the laptop shut down due to 

temperature problems. I had run about 1000 episodes. From then on, we started to be more 

careful with the training sessions and the ventilation of the laptop itself was improved.  

 

The only difference in this training is that we changed the route of the car as you can see in the 

following figure. The car is facing its first turn. 

 

 

 
Figure 18: Route in Town07 for Training 4. Source: Own compilation 

 

 

Training Conditions 

 

Training Settings 

Total Training Time 4h 57m 39s Episodes 2000 

Town Town02 Seconds Per 

Episode 

8.93 

Actions Action 1: Accelerate car with throttle 

Action 2: Turn left at 90º 

Action 3: Turn right at 90º 

Action 4: Decelerate car with brake 
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Training Settings 

Rewards Reward 1: Collision: -20 points  

Reward 2: Arrived at destination: +20 points 

Reward 3: If distance to destination increases: -5 

Reward 4: If distance to destination increases: +5 

Reward 5: Short training episode (<= 20 seconds): -10 

Sensors Used Semantic Segmentation camera 

Collision detection sensor 

Waypoint system 

Off-Road detection system 

Table 14: Settings for training 4. Source: Own compilation 

 

 

 

Results 

 

 
 

Figure 19: Accuracy and Average Reward from Training 4. Source: Own compilation 

 

 

 

 

Discussion 

 

In this case we will focus on the accuracy and average reward charts. The accuracy graph shows 

some peaks of 0.7 of accuracy at the end of the training and a drop in the average reward which 

may suggest the change in the accuracy.  

 

Nevertheless, these rewards were not giving us good results so we will change the reward 

system again in the next training and implement a new advanced waypoint system to force the 

car to get the curve right. 
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12.1.5 Training 5: New Reward System + New Waypoint System 

 

In this training we added a new reward and waypoint system. For the first system we decided 

to implement a new formula, the multiplied centering angle and speed rewards formula (see 

Section 10.3.4). It will only return a value between 0 and 1 unless an infraction was committed, 

or the destination was reached. This normalisation of the rewards allows us to obtain more 

stable results.   

 

For the new waypoint system, we decided to divide the desired route into small waypoints of 

one meter each. This is because in old training sessions the car only focused on getting to the 

destination as fast as possible. This meant that the car would always try to go in a straight line 

and not follow the road’s path. 

 

 

 
Figure 20: Route in Town02 for Training 5. Source: Own compilation 

 

Training Conditions 

 

Training Settings 

Total Training Time 2h 21m 22s Episodes 1000 

Town Town02 Seconds Per 

Episode 

8.48s 
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Training Settings 

Actions Action 1: Accelerate car with throttle 

Action 2: Turn left at 90º 

Action 3: Turn right at 90º 

Action 4: Decelerate car with brake 

Rewards Reward 1: Infraction: -10 points 

Reward 2: Reached destination: 10 points 

Reward 3: Multiplied centering angle and speed rewards 

formula 

Sensors Used Semantic Segmentation camera 

Collision detection sensor 

Waypoint system 

Off-Road detection system 

Table 15: Settings for training 5. Source: Own compilation 

 

Results 

 

 
Figure 21: Minimum and Maximum Reward from Training 5. Source: Own compilation 

 

Discussion 

 

With this new reward and waypoint system we see how the car starts to improve in the episodes 

and especially in the last few episodes it seems to start driving better. If we focus on the 

minimum reward graph, we can see that there is an upward trend. But in the maximum reward 

graph we have a downward trend. 

 

One of the infringement conditions was to stay more than 5 seconds with the car stopped, this 

was a problem because to reset the environment in each episode, sometimes it took about 4 

seconds and therefore if the car remained 1 second more stopped the agent detected it as an 

error. This had to be changed as it often didn't give the agent time to start the car.   
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12.1.6 Training 6: Update in Rewards 

 

In this training we decided to change one of the infringement conditions as previously 

mentioned. A total of 4000 episodes were performed and all condition settings remained the 

same. 

 

Training Conditions 

 

Training Settings 

Total Training Time 7h 09m 31s Episodes 4000 

Town Town02 Seconds Per 

Episode 

6.44 

Actions Action 1: Accelerate car with throttle 

Action 2: Turn left at 90º 

Action 3: Turn right at 90º 

Action 4: Decelerate car with brake 

Rewards Reward 1: Infraction (modified): -10 points 

Reward 2: Reached destination: 10 points 

Reward 3: Multiplied centering angle and speed rewards 

formula 

Sensors Used Semantic Segmentation camera 

Collision detection sensor 

Waypoint system 

Off-Road detection system 

Table 16: Settings for training 6. Source: Own compilation 

 

Results 

 

 
Figure 22: Epsilon Decay from Training 6. Source: Own compilation 
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Discussion 

 

In this training I spent a lot of time carefully analysing the actions that the car was taking, since 

throughout the training, many actions seemed random to me. That is why after several episodes 

of analysis I concluded that the car still took many random actions due to the epsilon parameter.  

 

This parameter oversees determining with what probability an action will be random. During 

all the previous tests, the epsilon did not go below 0.4 in the last episodes. In other words, the 

car took 40% of random actions. Obviously, this was a problem as this parameter had not been 

considered due to inexperience and could be the cause of these inaccurate results. 

 

Despite all this, the car presented a curious behaviour. When arriving at the turn, the car braked 

drastically as it had learned to slow down in the turns. 
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12.1.7 Training 7: Epsilon Decay New Policy 

 

For this training we have decided to focus on the epsilon parameter and implement a decay 

formula as it will allow us to switch from the exploration stage to the exploitation stage. A total 

of 2000 episodes were performed while maintaining the navigation and reward system. 

 

Training Conditions 

 

Training Settings 

Total Training Time 3h 43m 16s Episodes 2000 

Town Town02 Seconds Per 

Episode 

6.70 

Actions Action 1: Accelerate car with throttle 

Action 2: Turn left at 90º 

Action 3: Turn right at 90º 

Action 4: Decelerate car with brake 

Rewards Reward 1: Infraction (modified): -10 points 

Reward 2: Reached destination: 10 points 

Reward 3: Multiplied centering angle and speed rewards 

formula 

Sensors Used Semantic Segmentation camera 

Collision detection sensor 

Waypoint system 

Off-Road detection system 

Table 17: Settings for training 7. Source: Own compilation 

 

 

Results 

 

 
Figure 23: Epsilon decay and Maximum Reward from Training 7. Source: Own compilation 
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Discussion 

 

In the results we can see how the epsilon drops to values lower than 0.05. This means that we 

have correctly implemented the epsilon decay formula and in the last episodes the car uses 

what it has learned to try to obtain the maximum score. 

 

In fact, in this training we can start to see some promising results as the car stays in the lane 

and is starting to make a turn correctly. It is possible that due to the sharp angle of the turn the 

car is not learning how to go through it properly. It is worth highlighting that on iterations close 

to 1500 there is a drastic drop in rewards. This includes minimum reward, maximum reward, 

and average reward. This may have been due to the laptop having a performance failure. 
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12.1.8 Training 8: New Map 

 

In this training we decided to change the map since one of the conclusions we reached in the 

previous training was that sharp turns can confuse the car. The new route to complete the car 

was simpler (Figure 24). We also decided to increase the number of episodes as we were getting 

closer to the optimal configurations, and we wanted to see a longer training. Therefore, we set 

a total of 10000 episodes. 

 

 
Figure 24: New Route from Town07. Source: Own compilation 

 

Training Conditions 

 

Training Settings 

Total Training Time 23h 25m 00s Episodes 10000 

Town Town07 Seconds Per 

Episode 

8.34 

Actions Action 1: Accelerate car with throttle 

Action 2: Turn left at 90º 

Action 3: Turn right at 90º 

Action 4: Decelerate car with brake 

Rewards Reward 1: Infraction (modified): -10 points 

Reward 2: Reached destination: 10 points 
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Training Settings 

Reward 3: Multiplied centering angle and speed rewards 

formula 

Sensors Used Semantic Segmentation camera 

Collision detection sensor 

Waypoint system 

Off-Road detection system 

Table 18: Settings for training 8. Source: Own compilation 

Results 

 
Figure 25: Graphs obtained from the Training 8. Source: Own compilation 
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Discussion 

 

In this training we will comment all the graphs since it is the last one. First, the accuracy is 

increasing along all the episodes. This is a good sign because we are approaching a decent 

model. The epsilon decreases properly, it reaches values lower than 0.1 and therefore the car 

uses what it has learned. The loss explodes at the beginning but then stabilizes which gives us 

to understand that the model used is working well. The average reward increases over the 

episodes, this is because the car starts to learn the route and cannot improve any more. The 

maximum reward remains stable throughout the iterations. Finally, the minimum reward is 

increasing as the episodes go by.  Overall, the results of this model are good, but if we focus 

on the practical part, the car has been able to learn the route. This is a great victory since we 

have completed the main objective of this thesis: that the car can complete a route given a start 

and end point. With this training completed we decided to move on to the testing model as the 

settings will no longer be changed.   
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12.2 Testing Model 

Model testing is referred to as the process where the performance of a fully trained model is 

evaluated on a testing set. In this case, we will be using the model from the last training. Our 

prediction is that due to the few training episodes we may see some correct driving behaviour. 

 

12.2.1 Testing 1: Town02 Sharp Turn 

 

For the first test we decided to go back to the Town02 map and try a very tight corner that we 

had previously failed to turn.  

 

 
Figure 26: Town02 New Route. Source: Own compilation 

 

 

 

We ran several episodes with the Training 8 model for this test. First, we did a test with the 

discount factor at 0.95 and another one with the value of 0.35. We wanted to see how the agent 

would behave if we changed this parameter. The results can be seen in Figure 15. 
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Maximum reward 

 

 
                                        Episodes 

Minimum reward  

 

 
                                           Episodes 

 

Average reward 

 

 
                                        Episodes 

 

 

Legend: 

 

 --------    : Test A (𝛾 = 0.35) 

---------    : Test B (𝛾 = 0.95) 

 

 

 

Figure 27: Comparison of rewards with different discount factor. Source: Own compilation 

 

 

 

During the test, the car stayed on the road, but when it reached the turn, it failed to cross it. 

This is since the car did not know how to drive through the sharp curve. Not having any 

previous experience made it impossible for the car to drive through it correctly. However, in 

this test we concluded that the discount factor at 0.95 gave us better results as it was not looking 

for immediate reward. It is also worth noting that we had to stop the testing of Test A because 

it was taking more than 15 hours for only 3000 episodes, meanwhile Test B managed to finish 

the 5000 episodes in 8 hours. 
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12.2.2 Testing 2: Town07 Longest Route 

 

This is the last test of the thesis. We switched back to map of Town07 and decided to make a 

new route. On this route there are different types of curves to see how the car handles itself. 

 

 

 
Figure 28: New Route on Town07. Source: Own compilation 

 

 

In this testing the car managed to complete 80% of the route. My guess is that the car did not 

know how to interpret the crossroads and therefore was not able to finish it.  

 

If we look at the rewards in Figure 18, we can see from the very beginning the results were 

quite good. This is due to the previous learning from other occasions. Even though he had 

experience he was not able to get 100% of the route completed.  
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Figure 29: Rewards from Testing 2. Source: Own compilation 
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13. Conclusions and Future Work 

 

13.1 Conclusions 

 

In the early stages it was difficult to think that we would be able to do sufficient research on a 

topic like autonomous driving. In addition, inexperience, limited time, scarce resources, and 

constrained computational power meant that a good result would be rather challenging. 

Nevertheless, it was decided to go ahead. 

 

As commented on the goals of the thesis, the main objective of this project is to make an 

autonomous car learn how to drive any given route. To accomplish this objective, it had to be 

divided into two parts: to set a base on autonomous driving with CARLA by creating and 

setting up an environment for CARLA and to teach an artificial intelligence how to drive a car 

with a Deep Q-Network algorithm. 

 

This first objective was successfully achieved by creating a tutorial that explained how to 

replicate the development environment. The second objective was also attained as the agent 

was able to follow an established route while respecting basic traffic signs. This was thanks to 

the implementation of the waypoint and reward systems which contributed to the resolution of 

the problem.  

 

Although these specific objectives have been met there is still continuity and a wide range of 

improvement.  

 

13.2 Future Work 

 

One of the advantages of this field is that there is always room for improvement in every aspect. 

In the following list you can find a couple of ideas on how our work can be broadened or 

improved: 

 

• Supporting an installation tutorial for Linux or other operating systems can increase 

accessibility and encourage the creation of more projects in the CARLA simulation 

software. 

 

• Using other machine learning technologies and techniques such as the Proximal Policy 

Optimizations instead of the Deep Q-Network algorithm would be interested to study 

in comparison. 
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• Changing the epsilon decay equation with an epsilon greedy strategy to improve the 

exploration-exploitation stages. 

 

• Adding a HUD to the car as it will look better during the training session. It could show 

the reward obtained at that moment, the total distance travelled, the deviation between 

the car itself and the centre of the road and other important information. 
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A. Appendix 

A.1 Summary of the Tasks (First Version) 
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A.2 Gantt Chart (First Version) 
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B. Appendix 

B.1 Anaconda Installation Guide 

Step 1 

 

 
 

Step 2 
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Step 3 

 

 
 

 

Step 4 
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Step 5 
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B.2 Library List  

# packages in environment at C:\Users\Enri\anaconda3\envs\carlaEnv: 
# 
# Name                    Version                   Build  Channel 
_tflow_select             2.1.0                       gpu 
absl-py                   0.15.0             pyhd3eb1b0_0 
astor                     0.8.1            py37haa95532_0 
blas                      1.0                         mkl 
ca-certificates           2022.4.26            haa95532_0 
cached-property           1.5.2                      py_0 
certifi                   2022.5.18.1      py37haa95532_0 
colorama                  0.4.4              pyhd3eb1b0_0 
cudatoolkit               10.0.130                      0 
cudnn                     7.6.5                cuda10.0_0 
dataclasses               0.8                pyh6d0b6a4_7 
freeglut                  3.2.2                h0e60522_1    conda-forge 
freetype                  2.10.4               h546665d_1    conda-forge 
gast                      0.5.3              pyhd3eb1b0_0 
grpcio                    1.42.0           py37hc60d5dd_0 
h5py                      3.6.0            py37h3de5c98_0 
hdf5                      1.10.6               h7ebc959_0 
icc_rt                    2019.0.0             h0cc432a_1 
icu                       69.1                 h0e60522_0    conda-forge 
importlib-metadata        4.11.3           py37haa95532_0 
intel-openmp              2021.4.0          haa95532_3556 
jasper                    2.0.33               h77af90b_0    conda-forge 
jpeg                      9e                   h8ffe710_1    conda-forge 
keras                     2.2.4                         0 
keras-applications        1.0.8                      py_1 
keras-base                2.2.4                    py37_0 
keras-preprocessing       1.1.2              pyhd3eb1b0_0 
lerc                      3.0                  h0e60522_0    conda-forge 
libblas                   3.9.0           1_h8933c1f_netlib    conda-forge 
libcblas                  3.9.0           5_hd5c7e75_netlib    conda-forge 
libclang                  13.0.1          default_h81446c8_0    conda-forge 
libdeflate                1.10                 h8ffe710_0    conda-forge 
liblapack                 3.9.0           5_hd5c7e75_netlib    conda-forge 
liblapacke                3.9.0           5_hd5c7e75_netlib    conda-forge 
libopencv                 4.5.5            py37h5f7ba43_9    conda-forge 
libpng                    1.6.37               h1d00b33_2    conda-forge 
libprotobuf               3.20.1               h23ce68f_0 
libtiff                   4.3.0                hc4061b1_4    conda-forge 
libwebp-base              1.2.2                h8ffe710_1    conda-forge 
libzlib                   1.2.12               h8ffe710_0    conda-forge 
lz4-c                     1.9.3                h8ffe710_1    conda-forge 
m2w64-gcc-libgfortran     5.3.0                         6    conda-forge 
m2w64-gcc-libs            5.3.0                         7    conda-forge 
m2w64-gcc-libs-core       5.3.0                         7    conda-forge 
m2w64-gmp                 6.1.0                         2    conda-forge 
m2w64-libwinpthread-git   5.0.0.4634.697f757               2    conda-forge 
markdown                  3.3.4            py37haa95532_0 
mkl                       2021.4.0           haa95532_640 
mkl-service               2.4.0            py37h2bbff1b_0 
mkl_fft                   1.3.1            py37h277e83a_0 
mkl_random                1.2.2            py37hf11a4ad_0 
msys2-conda-epoch         20160418                      1    conda-forge 
numpy                     1.21.5           py37h7a0a035_2 
numpy-base                1.21.5           py37hca35cd5_2 
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opencv                    4.5.5            py37h03978a9_9    conda-forge 
openssl                   1.1.1o               h2bbff1b_0 
pip                       21.2.4           py37haa95532_0 
protobuf                  3.20.1           py37hd77b12b_0 
py-opencv                 4.5.5            py37h90c5f73_9    conda-forge 
pyreadline                2.1                      py37_1 
python                    3.7.13               h6244533_0 
python_abi                3.7                     2_cp37m    conda-forge 
pyyaml                    6.0              py37h2bbff1b_1 
qt                        5.12.9               h556501e_6    conda-forge 
scipy                     1.7.3            py37h0a974cb_0 
setuptools                61.2.0           py37haa95532_0 
six                       1.16.0             pyhd3eb1b0_1 
sqlite                    3.38.3               h2bbff1b_0 
tensorboard               1.14.0           py37he3c9ec2_0 
tensorflow                1.14.0          gpu_py37h5512b17_0 
tensorflow-base           1.14.0          gpu_py37h55fc52a_0 
tensorflow-estimator      1.14.0                     py_0 
tensorflow-gpu            1.14.0               h0d30ee6_0 
termcolor                 1.1.0            py37haa95532_1 
tqdm                      4.64.0           py37haa95532_0 
typing_extensions         4.1.1              pyh06a4308_0 
vc                        14.2                 h21ff451_1 
vs2015_runtime            14.27.29016          h5e58377_2 
werkzeug                  2.0.3              pyhd3eb1b0_0 
wheel                     0.37.1             pyhd3eb1b0_0 
wincertstore              0.2              py37haa95532_2 
wrapt                     1.13.3           py37h2bbff1b_2 
xz                        5.2.5                h62dcd97_1    conda-forge 
yaml                      0.2.5                he774522_0 
zipp                      3.8.0            py37haa95532_0 
zlib                      1.2.12               h8ffe710_0    conda-forge 
zstd                      1.5.2                h6255e5f_1    conda-forge 
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C. Appendix 

C.1 Towns 
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D. Appendix 

D.1 Training Case 1 
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D.2 Training Case 2 
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D.3 Training Case 3 
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D.4 Training Case 4 
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D.5 Training Case 5 
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D.6 Training Case 6 
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D.7 Training Case 7 
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D.8 Training Case 8 
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