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Following the deductive approach, the conceptual schema is a theory in a chosen logic
framework whose assertions reflect the relevant static and dynamic aspects of the UoD.
The problem with a flat deductive approach is the lacking of abstractions to structure
the conceptual schema. Herein, we propose the object concept as the abstraction that
allows the structuring of the dynamic aspects in the conceptual schema. Moreover, we
recognize that interaction and inheritance between objects are new mechanisms for
putting together conceptual schemata (theories).

1. Introduction

Following the deductive approach to conceptual modeling, the conceptual schema is
defined as a theory in some logic framework which provides a set of generic axioms,
valid for every conceptual schema, and a set of i'nfcrence rules. In the conceptual schema
we introduced new axioms representing the relevant knowledge about the UoD. The
deductive approach has been followed by the so called deductive database school
[Rei78,MiNi83,Rei84,GMN84,ChDe86,01i89,DIB90] and also by some researchers of
the conceptual modeling school [WMW89,FSMS90,Wie90]. The two perspectives differ
basically in the adopted logic framework. In the former, the database is defined as a first-
order logic theory. In the field of conceptual modeling, the conceptual schema is usually
seen as a collection of formulae in a temporal/deontic logic. Among the main advantages
of the deductive approach are the neat mathematical definitions, the uniform treatment of
issues like querying and constraints and the possibility of proving new assertions.

In order to make the deductive approach more effective for conceptual modeling, where a
flat deductive approach is very difficult because thousands of assertions have to be
defined and in the end the designer would have difficulty in understanding and working
with the whole conceptual schema, mechanisms for structuring theories are needed so that
we can capture the structure of the conceptual schema. On the other hand, more complex
applications, like engineering and office automation [KaLo86,BDL84], put a pressure to
have mechanisms that allow us to define the conceptual schema in an incremental way.
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Hence for adopting the deductive way of doing things, we need abstraction mechanisms
for putting theories together. Moreover, in these applications, prototyping is becoming
very useful, even at the conceptual schema level, and we would like to have the
possibility of detecting inconsistencies not only for the whole conceptual schema but also
for fragments. Due to the advances in the deductive paradigm it seems that the time has
come to go towards structured and incremental deductive conceptual modeling
approaches.

In [SeSe85,5¢Se86,5¢Se87,5e¢Se88,FiSe88,FSS88,SFS89,SFS90b], the semantic
primitives of the conceptual modeling approaches are identified as one of the adequate
mechanisms for structuring theories. In this context, the semantic primitives are theory
morphisms that allow the building of a conceptual schema (a theory) from another
conceptual schema (another theory). The complete conceptual schema is then a theory
from which we can recapture the structure of its construction. In this research,
operations, like enrichment and union, are identified for putting theories together.

However, the structuring and the incremental aims are not totally dealt with since an
emphasis was put on the static side of the UoD description. According to the 100% and
the conceptualization principles [Gri82] the dynamic and static aspects are of the same
importance. And it is well known that a lot of work is being produced in order to tackle
with dynamic aspects [Ser80,SBO85,5eSe85,01i82,RoRi82,RBL88,SaLi89, WMW89,
WiRi90].

Taking advantage of the recent effort to put the deductive and the object-oriented
paradigms together [KNN89], we discuss in this paper how the object concept can be
used to structure dynamics in a deductive-oriented way of defining the conceptual
schema. The main idea is that the conceptual schema is a collection of objects, each of
them seen as a theory in some logic framework, which can interact with each other.
Moreover, we identify the inheritance and interaction abstractions as providing new ways
of putting theories (conceptual schemata) together. We indicate how the approach can be
used in the incremental definition of conceptual schemata namely illustrating useful
assertions to be proved in order to get inconsistency-free conceptual schemata.

The object-oriented approach that we adopt has its roots in the work going on in the
Esprit BRA IS-CORE (Information Systems: REusability and COrrectness) namely in
[SeEh90,SeFi90,SFSE89a,SFSE89b,SFS90a,SSE87] for the object concept, [EhSe§9,
ESS88,ESS89,ESS90] for the semantic fundamentals, [FiMa90a,FiMa90b,FiSe90,
FSMS90] for the calculi and [SSS90] for a model-theoretic perspective of inheritance.
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2. Motivation
Objects as Theories

As an example consider a simplified employee-department conceptual schema. The two
basic objects are of course employee and department. Adopting an incremental deductive
approach we can start by defining them as theories in the following way:

theory employee
importing data types natural,/DEPT/
events
hired(nat,nat),new-salary(nat),new-birthday,set-dept(/DEPT]) fired
attributes
name: string,
dept:/DEPT] salary,age:nas
constraints
(Cl) alwayssalary<next(salary));
(C2) alwaysagesnexyage));
(C3) always(deptenext(dept) Asalary=N)= sometimef{salary>N));
(C4) alwaysage=next(age)VVage+]l=nexi{age));
(C5) sometimef{salary=2000)
safety
(S1) always{age>18)new-dept(D))

theory department
importing data type |[EMPLOYEE|,set(/EMPLOYEE]/),natural
events
creation,set-budget(nat),new-employee(|EMPLOYEE]/),close
attributes
budget:nat,employees:set(|EMPLOYEE])
valuation
(V1) always[set-budgei(N))budget=N);
(V2) always([new-employee(E)]employees=insert(E,employees))
safety
(S1)  always{number(employees<200)} new-employee(E))

The logic framework that we use is a mixture of a temporal, a dynamic and a safety logics
over the signature of data types (note that for example /EMPLOYEE | is a data type that
corresponds to the surrogate space of the identifications of the employees), events and
attributes. The temporal logic is essentially used for expressing constraints (like
always (salary<next (salary) ) and goals (like sometimef{salary=2000)), the dynamic logic
is used for expressing effects of the events over the attributes and the safety logic allow
us to constrain the occurrence of events. For instance, the dynamic logic formula [se:-
budget(N)]budget=N informally indicates that after the occurrence of an event se:-
budget(N) the budget of the department will be N. On the other hand, the formula
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{number(employees)<200]} new-employee(E) indicates that an employee can come to the

department assuming that the previous number of employees in the department is less
than 200.

At this point of the definition of the employee-department conceptual schema we can
prove several things. For instance we can show that

employee I always((age=N)=alwaysflage>N))
meaning that from the axioms in theory employee together with the adopted logic
framework we can prove the assertion above. More interesting aspects are related to
inconsistencies. Assume that we want to enrich the theory employee with the axiom
a[wqu([ new-salary(N)]salary=salary-10)
which makes the theory employee inconsistent since we also have

always(salary<nexy(salary))

Such inconsistency of an object in isolation corresponds to the non-existence of a model
for such theory.

Note that so far the theories employee and department are independent and as a

consequence we cannot prove anything related to the relationship between the employee
and the department.

Interaction as a Mechanism for Putting Theories Together

Assume that the relationship between employee and department as is as follows:

interaction E:[EMPLOYEE|.D:/DEPT/
E.set-dept(D)=D .new-employee(E)

meaning that the two objects synchronize when the employee is enrolled in the
department. In a sense, the two events are the same but they are seen with different names
by the two objects. As a consequence of the interaction, we can define a new conceptual
schema which corresponds to putting the two objects together taking into account the
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interaction. In order to get a perspective of the desired operation, let us assume that we
introduce a new theory, interaction, where we include the event

transference(/EMPLOYEE/,/DEPT))

as well as the data types /[EMPLOYEE]/ and /DEPT]. Such theory is related to the theories
employee and department. The relationship is given by two maps (rigorously morphisms)

@) interaction - employee
& interaction - department

which, in this case, are trivial since they only state

@j(transference(E,D))=E set-dept(D)
@ (transference(E,D))=D .new-employee(E)

ie they say that the event transference is seen by the employee as set-dept and by the
department as new-employee. The result of putting the objects together taking into
account the interaction is given by aggregating (rigorously the colimit of the diagram
composed by the three objects and the two morphisms), which is described by the theory
department-employeel (acting like a community of two objects)

theory department-employeel
importing data types natural,/DEPT/,|JEMPLOYEE/,set(/EMPLOYEE/)
events
hired(nat,nat),new-salary(nat),new-birthday,set-budget(nat),
transference(/EMPLOYEE/,/DEPT)) fired creation,close
attributes
employees:set(|[EMPLOYEE(),dept:/DEPT| budget,salary,age:nat,name string
constraints
(Cl) alwayssalary<nexi(salary));
(C2) alwaystagesnexi{age));
(C3)  always(deptznext{dept) Asalary=N)=ssometimef{salary>N));
(C4) alwaysage=nexi{age)Vage+1=nextage));
(CS) sometimeflsalary=2000)

safety
(S1)  alwayd{age2]8 Anumber(employees)<200})transference(E,D))
valuation

(V1)  always[set-budget(N)]budget=N);
(V2) always([transference(E,D)]employees=insert(E,employees))

and two theory morphisms

@;:employee - department-employeel
¢>:department - department-employeel
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such that

@] (E.set-dept(D))= transference(E,D)
@2(D.new-employee(E))= transference(E,D)

according to the following diagram

employee

interaction department-employeel

department

Note that the event transference is more constrained than the corresponding event in both
employee and department when considered in isolation. It can only take place if age=>18
(which comes from employee) and number(employees)<200 (which comes from
department).

The theory morphisms ¢, and ¢, are more complex since they are not only changes of
vocabulary. We want them to provide a safe import mechanism in the sense that we want
to identify in it the sub-theories employee and department, ie an employee in department-
employee is still an employee and a department in department-employee is still a
department. Namely, we want the assertions for the isolated employee and department to
be assertions when they are in the community department-employeel , that the events of
departament do not change the values of the attributes of employee and vice-versa.

When the objects interact the inconsistency problem that we can get is not with the
attributes, since they are not involved, but with the events. As an example, assume that in
in object obj; we can prove for an event e;

obj1 F sometimef{ after(e}))

Assume that we define the following interaction:

interaction obj,,obj, e=¢, , ¢'=¢,
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and that we have the following safety axioms

{sometimep( after(e}’))} e;
{ sometimep( after(ey))} e,

Let obj be the object that results from putting obj; and obj, together taking into account
the interaction. Let e, e’ be the events in obj that correspond in obj; to ¢; and e;’ and in
obj; to e; and e;". Note that the events e and e’ cannot happen in obj and as a
consequence we cannot prove the assertion above.

Inheritance as a Mechanism for Putting Theories Together

Assume now that we define the relationship between employee and department through
inheritance in the following way:

theory department-employee2
inheriting employee into department

As a consequence of such inheritance, we can define a new conceptual schema which
corresponds to putting the objects employee and department together taking into account
the inheritance. The result is the theory departmént-employee2, containing all the axioms
of employee, department plus the map (morphism)

@: employee - department-employee2

as a formula, see below, in department-employee2. Hence, it makes sense to say whether
or not such a formula is satisfied. Note that if we add the axiom

always([set-budget(N)]salary=salary+100)

we do not have the desired relationship between employee and department since the
formula above is no longer an assertion in department-employee2. The intuitive idea is
that we have the event set-budget(N) of department changing the attribute salary of
employee. This would mean that employee is not an object (informally a collection of
attributes and all the events that can change the attributes).
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3. Logical and Categorial -Setting

The main concepts to be introduced are the theory (an object) and the theory morphism
for putting theories together. Intuitively, a theory is a signature (a vocabulary) and a set of
assertions whereas a theory morphism is a map between theories. A logic framework
must be adopted in order to write assertions and a category must be defined in order to
have theory morphisms and the possibility of putting objects together.

Definition 3.1  Object signature Zy;

An object signature Zy,; is a quadruple (SU{e},OP,EVT,ATT) where
» Sis a set of data sorts and {e} is a single set with an event sort e;
+ OPis a S*xS-indexed family of sets of operation symbols;
» EVT is a S*x{e}-indexed family of sets of event symbols;
* ATT is a S*xS-indexed family of sets of attribute symbols. m]

Example:
In the theory employee we have
nat €S, new-salary(nat) € EVTyy ¢, salary € AT, O

We must be able to interpret the symbols in the signature. For this purpose we introduce
the concept of model.

Definition 3.2 Zobj-Model M for the object signature Z,

A Eobj-modcl M is a triple (BI',9) where
e ‘Bis a SU{e}-indexed family of sets called carriers of the sorts;
+ TI'is a subset of $e° whose elements are called life cycles;
e disa S*X(SU{c})-indexed family of maps

sls

S
[Fo[2 AN B I~ B | IN 3,
where H, ¢ =OPg o SUEVT

]] J<sy...sp>€ S*,re SU (e}

sl...sn.eUATrsl...sn.s o

Example:

AZem ‘employee™ -model Memployee is the following
Bpar=NN,, Bipepmi=N..
‘B.=(hired(i j),new-salary(i),new-birthday,set-dept(i) fired,ij € N, }
I'={n=<hired(i,j),new-salary(n).set-dept(m) fired>,i,jm,ne N, }
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Vpa(salary)m)={$:$(1)=i, $(2)=n,(3)=n,$(4)=n,f()=undefinedi>5)
O

Before introducing the formulae we must start by introducing the terms of data and event
sort.

Definition 3.3  Sets of terms

Let X be a S-indexed set of variables. T(X) is a SU {e }-indexed family of sets of terms
defined inductively as follows:

* every variable xe X is a term of data sort s

» if ge EVTsl,...,sn,e and t;e Ts,(X), i=1,...,n then g(ty,...,t)e Te(X)

 if oe OPsl.....sn,s and t;e Ty,(X), i=1,...,n then o(ty,...,ty)e To(X)

» if ae ATTSI'.__’sn’s and tje Tsi(X), i=1,...,n then a(ty,...,ty))e T(X)

o if te Ty(X) and ue T¢(X) then [u]te Ty(X)

¢ if te Ty(X) then nex(t)e Ty(X) O
Example:
next(salary),budget € Ty 5,(X)
set-budget(N) € T¢(X)
[set-budget(N)]budget € Ty,,,(X) a

We will consider B.=({g(ty,....tp).g€ EVTy, . speti€ Tg(X),i=1,...,n} as the carrier for
the event symbols. We must now define the interpretation of the terms.

Definition 3.4  Non-deterministic interpretations of terms

Assume that M is a Zopj-model, X is a S-indexed family of variables of data sort, p is an
assignment, ie a S-indexed family of maps ps:Xs—)Zgs and Q the set of all assignments.
The interpretation [ of the terms is a SU (e }-indexed family of maps

L:T(X)>[Q~ [T~ [N, - 23

such that
o L)(P)M)K)= py(x)
* Let
F=0, s H(YM)(F),....Fy) Fi={$i:#iK)e L, (t)(p)M)(K)}
Then '
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Kty ta))(P)M)(K)
= {§(k):§eF} if F is defined
= undefined if F is undefined
« I([ulne)n)(k)
= IOPE)M)(k+1)  if nge Lu)(p)(n)k)
= undefined otherwise
* Iy(next(1))(P)M)(k)=L()(P)(M)(k+1)
where
xe X, ke N,, n is the k-element of 1
t;€ Tsi(X), i=1,...,n, te T¢(X), ue T¢(X)

ce OP S1rees sn.sUEVTsl,...,sn.cUATrsl ..... Sp»S

$1,--8,S€ S, re SU{e} ]

Note that the terms are interpreted as sets of values in the carrier set of the respective sort.

Example:

Lya(next(salary))(p)M)(0)= I (salary)(p)(m)(1)={i}

Lyai(next(salary))(p)(M)(1)= Iya(salary)(p)(M)(2)={n)

Lia(next(salary))(p)(n)(2)= La(salary)(p)(n)(3)={n}
Lha(next(salary))(p)M)(3)=Ina(salary)(p)(M)(4)={n}

Lha(next(salary))(p)(M)(D)= Ina(salary)(p)(M)(i+1)=undefinedi>4 0

Definition 3.5 Formulae

The set of formulae F(X) over an object signature Zy, is defined inductively as follows:
o if t1,te Tg(X) then ty=ty, t;<ty, t;>t; are formulae;

if ue T¢(X) then after(u) is a formula;

if © is a formula then sometimep(T), sometimef{T), [u]T, next(T) are formulae;

if © and O are formulae then =T, TV O are also formulae;

* if C is a formula and ue T(X) then {T}u is a formula. 0O

Example:
always(salary<next(salary)) is a formula where
always(salary<nexysalary))=

alwaysf{salary<next(salary)) Asalary<nexy(salary) Aalwaysp(salary<nexi(salary))
alwaysf{salary<next(salary))= —(sometimef{ ~(salary<nexi(salary)))
alwaysp(salary<nexi(salary))= —( sometimep( ~(salary<next(salary))) ]
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Definition 3.6  Non-deterministic satisfaction of formulae

Assume that M is a model for a signature Zopj- M satisfies the formula

* =ty in ke IN,, t;,tre T(X), if for every pe Q, nel’
It(P)M)(K)=L(t)(P)M)(k)={b} where be By

* t1<ty inkeN,, t},tre Ty(X), if for every pe Q, nel
max(I(t))(p)(M)(k))<min( I(tx)(p)(n)(k))

* 1> inkelN,, t),the Ty(X), if for every pe Q, nel
min( [(t; )(P)M)(K))>max( (1) (p)(M)(K)

* after(u) in ke N, *, ue T(X), if for every pe Q, nel’
Mi1€ L@(P)M)(k-1)

o sometimep(T) in ke IN,*, T is a formula, if for every peQ, neT there is
i<k, i€ IN,, such that M satisfies G in i

* sometimef{G) in ke IN,, T is a formula, if for every pe Q, neT there is
i>k, ie IN,, such that M satisfies © in i

* [u]T inkeIN,, ue To(X), T is a formula,
if M satisfies T in k+1 providing that e L (u)(p)(M)(k), for every pe Q,ne"

* next(C)inkelN,, Tisa formula,
if M satisfies T in k+1

* -G inkelN, T is a formula,
if M does not satisfy C in k

* TvO inkelN,, G, O are formulae,
if M satisfies either © or  ink

* {CluinkeN,*, ue To(X), T is a formula, for every peQ, nel
if nge I (w)(p)(N)(k) then M satisfies C in k-1.

We denote by Mk T the satisfaction of T by M.

Example:  Consistency of aluways(salary<nexy(salary)n
[new-salary(N)]salary=salary-10)

Let M be a model for the signature Zop;- Let salary € Ty(X), pe Q, neT.

Assume that Iy(salary)(p)(n)=§

(1) M satisfies afways(salary<next(salary) A
[new-salary(N)]salary=salary-10) iff for every ke N,
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(ii)

(i)

(iv)

v)

(vi)

M satisfies salary<next(salary) in k
and M satisfies [new-salary(N)]salary=salary-10 ink

M satisfies salary<next(salary) in k

iff M satisfies (salary<nexi(salary) Vsalary=nexy(salary)) in k
iff M satisfies either salary< nexy(salary)

or salary=next(salary) in k

M satisfies salary<mnext(salary) in k iff
max(§(k))<min(f(k+1)) *)

M satisfies [new-salary(N)]salary=salary-10 in k iff

I([new-salary(N)]salary)(p)(M)(k)=I(salary-10)(p)(m)(k) iff

I(salary)(p)(M)(k+1)=Iy(salary(p)(M)(k)-10 (**)
if nge Io(new-salary(N))(p)(M)(k)

M satisfies always(salary<next(salary) A[new-salary(N)]salary=salary-10)

assuming that nye I(new-salary(N))(p)(n)(k)

Taking into account (**) we have that (*) becomes $(k)<(f(k+1) (¥¥¥)
Consider k=1 in (**). We have §(2)=§(1)-10 (k)
Combining (***) and (****) for k=1 we have §(1)<§¢(1)-10
which is impossible.

In a similar way we can prove a similar result for the satisfaction of
salary=next(salary) in k.

Hence there is at least one model that does
not satisfy
always(salary< next(salary) A[new-salary(N)]salary=salary-10).

Definition 3.7 Object

An object obj is a pair (zobj’ ‘F) where

Z,pj is an object signature

e Fis a set of formulae
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Definition 3.8 Consistency.

An object obj=(Zop;, ) is consistent if for each model M we have

MET forevery Ce F O
Example:
employee is a consistent object O

We now must introduce the concept of morphism between theories so that we can define
the mechanisms for inheritance and interaction. The morphism that we use is similar to
the one presented in [FiMa90a] but based on another model concept. We start by defining
what is an object signature morphism.

Definition 3.9 Signature morphism

An object signature morphism G:Z',obj—)}:obj' is a pair (o) where
* a:SU{e}->S'U{e};
* PBisaS*x(SU{e))-indexed family of maps Hg,  spr—Hs. s . Where
I'Isl...sn.r=OP sl...sn.sUEVTsl...sn.eUATTsl...sn.s’
Hy syr= OP's1-...sn-,r-UEVT's1-...sn-,r-UATT's1-...sn-,r- such that
B(c)=c', ce Hg,..s,rand c'e H'a(sl),...,a(sn).a(r) 0

Definition 3.10 Morphism between objects

Let obj and obj’ be objects. A morphism 6:0bj —0bj’ exists between the objects obj
and obj’ iff there is a signature morphism from the signature of obj into the signature of
obj’ and for every model of obj’ there is a model for obj such that:

Bobj,s=Bobj'.s for se S

Bobj,e= obj',elEVTsl...sn.er

where EVT, s o'={g(by,....b):bie Bobjsipi=1>--mEEEVTy o )
Lobi=Tobj't Bovj,e
ﬁobj.sl...sn,s(c)('nobj)(Flv---’Fn)(k)=ﬂobj',sl...sn,s(c)(nobj')(F 15--sFn) (k)
where M op=Ngp; Bovj.e

ce OP 0bj,S14....80,8 UEVTobj,sl....,sn.e U ATTopjs,,....s0.5. u]
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Example:
A Zjepartment-employee2-M0d€l Mgepanment-employee2 i the following
Bha=N., BipepT=N.. BEmpLOYEE=N., gsct(lEMPLOYEEI)=2N°
ﬂdepamem _employec2.6= {hired(ij),new-salary(n),new-birthday,set-dept(m) fired,
creation,set-budget(p),new-employee(q),close,i,j,n,m,p,qge N, }
I-‘department-employee2=[ndeparlment—employe<32=
<creation,hired(i j),new-salary(n),set-dept(m),set-budget(p) fired>)
such that Ngeparment-employee2=<N0M1:N2:N3.M4.N5>
ﬂdepamnent—employeezﬂal(sal ary)(n dcpartment-employee2)=
($:$(2)=1,§ 3)=n,§(4)=n*1.1,§(5)=n*1.3,§ (i)=undefinedi>6)
There is a morphism
6:Memployee ~ Mdepartment-employee2
since in particular
I~employee= {T‘employee=
. <hired(i,j),new-salary(n),set-dept(m) fired>}
such that Nepp1oyee=<N1:M2,M3.N5>
ﬂemployee,nat(s alary) (nemployee) (k)=
ﬁdeparlment—employee%nat(salary)(ndepanment-employee2)(k)

Note that when we take the restriction we get the model Mempioyee-

In other words, we can say that the model Mgepartment-employee2 Of department-employee2

Example:
The putting together of employee and department through the interaction is
(department-employeel
¢1:employee - department-employeel ¢, :department - department-employeel )=
pushout ., (91 :interaction - employee,d;:interaction - department)
" The putting together of employee and department through the inheritance is
(department-employee2 ,¢p:.employee - department-employee2)

4. Conclusions

The object concept is introduced as the abstraction that allows the structuring of dynamics
in deductive conceptual modeling. Hence the conceptual schema is described as a

collection of objects (theories) that can interact through events. In each object
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(corresponding to the objects in the UoD) we include the relevant events and attributes, as
well as formulae stating constraints on the values of the attributes, effects of the events
upon the attributes and constraints upon the occurrence of the events. For this purpose,
we use a logic framework which is a mixture between a temporal logic, a dynamic logic

and a safety logic. Examples of assertions that can be proved are presented namely the
ones related to the inconsistency of an object in isolation.

Sharing of events and inheritance are recognized as mechanisms for putting theories
together and are explained through colimits in a category of objects. Again examples are

presented of inconsistency problems with the objects when considered in the community.
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