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A B S T R A C T   

Reactive transport (RT) through heterogeneous media, may cause chemical heterogeneity if water flux is slow 
through portions of the medium. In such cases, chemical localization (i.e., the occurrence of reactions that would 
not occur in well mixed media) may develop, which is especially relevant for biochemical reactions occurring in 
biofilms. The objective of this work is to study the conditions for chemical localization. We represent the impact 
of heterogeneity by means of the non-local multirate mass transfer (MRMT) model, which views the porous 
media as consisting of one mobile and many immobile zones. A dimensional analysis of the governing equations 
shows that the problem is characterized by reaction times and the distribution of residence times in immobile 
zones, relative to transport time. To analyze the interplay between them, we simulated simple RT problems in 
multicontinuum media. Results indicate that immobile zones with residence times much smaller than transport 
can be lumped together with the mobile zone by modifying the reaction rates, which reduces computations. More 
importantly, reactions driven by species that are not present in the inflowing water but are the result of previous 
reactions will take place preferentially in immobile zones, whose residence time is comparable to or larger than 
reaction times. In fact, daughter species may take a long time and distance to build up. That is, daughter species 
will not be largest near the inflow, where parent species display largest concentrations, but further downstream 
at isolated (long residence times) immobile zones.   

1. Introduction 

Reactive transport (RT) in porous media is essential for under-
standing environmental processes, such as the fate of contaminants in 
aquifers, and for a proper design and management of remediation 
strategies, such as managed aquifer recharge (e.g., Valhondo et al., 
2020) or CO2 geological storage (e.g., Agrawal et al., 2021). Carrera 
et al. (2022) argue that the basic problem of RT is how to address the 
chemical and physical heterogeneity of natural media. 

Physical heterogeneity has received broad attention in the transport 
literature. It is well known that transport in heterogeneous porous media 
displays anomalous (non-Fickian) behavior (Kitanidis, 1988) both at 
field (Adams and Gelhar, 1992) and laboratory scales (Berkowitz and 
Scher, 2009; Levy and Berkowitz, 2003; Valocchi, 1985), displaying 
early arrivals, long tails and scale-dependent dispersion coefficients 
(Carrera, 1993). The problem is especially relevant for reactive transport 

because numerous reactions depend on local scale mixing. To overcome 
this problem, researchers have focused on small scale simulations in an 
attempt to simulate heterogeneity explicitly (e.g., Cirpka et al., 2015) or, 
even by pore scale simulations (e.g., Agrawal et al., 2021). Beyond the 
cost of such simulations, what emerges is that upscaling parameters does 
not suffice, but the transport equation may have to change and the 
advection-dispersion-reaction equation (ADRE) cannot be considered 
suitable for reactive transport (Carrera et al., 2022; Molins and Knabner, 
2019; Soler-Sagarra et al., 2022). 

Many non-local methods have been developed to address the need 
for an alternative transport equation. These include continuous time 
random walks (CTRW) (Berkowitz et al., 2006; Berkowitz and Scher, 
1998; Dentz et al., 2015, 2004), fractional advection-dispersion equa-
tions (fADE) (Benson et al., 2000; Benson and Meerschaert, 2009; 
Marseguerra and Zoia, 2008; Schumer et al., 2003a, 2003b), multirate 
mass transfer (MRMT) (Babey et al., 2017; Benson and Meerschaert, 
2009; Dentz et al., 2011; Fernandez-Garcia and Sanchez-Vila, 2015; 
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Haggerty and Gorelick, 1995; Salamon et al., 2006; Wang et al., 2005), 
multiple interacting continua (MINC) (De Dreuzy et al., 2013; Pruess 
and Narasimhan, 1985), structured interacting continua (SINC) (Babey 
et al., 2015; Rapaport et al., 2017), memory functions (Carrera et al., 
1998; Gouze et al., 2008; Haggerty et al., 2000; Willmann et al., 2008) 
and so forth. Although these methods use different approaches, they are 
essentially equivalent (Dentz and Berkowitz, 2003; Neuman and Tar-
takovsky, 2009; Silva et al., 2009). Unfortunately, their solution is often 

based on Laplace transform methods, which makes them poorly suited 
for multicomponent and/or non-linear RT. Therefore, most work on 
non-local methods deals with the behavior of breakthrough curves 
(BTCs) and conservative transport in heterogeneous porous media 
(Berkowitz and Scher, 2009; Dentz et al., 2015; Haggerty et al., 2000; 
Schumer et al., 2003b; Willmann et al., 2008). Still, MRMT, which can 
be considered the simplest paradigm of non-local transport methods, can 
be used for multicomponent RT. The medium is viewed as consisting of a 
mobile and several overlapping immobile zones. Each of these zones can 
be modeled numerically, which facilitates general RT simulation 
(Babaei and Islam, 2018; Massoudieh and Dentz, 2020; Soler-Sagarra 
et al., 2016; Willmann et al., 2010). 

Chemical heterogeneity has received a lot less attention than phys-
ical heterogeneity. Chemical heterogeneity may refer to large scale 
variability, usually known from geological understanding, or to pore 
scale variability. Portions of the porous media, grain aggregates or in-
dividual grains or portion of grains can have different mineral compo-
sitions, leading to different reaction rates and different concentrations at 
different parts of the pore space. Furthermore, pore scale variability, 
causes water fluxes to be spatially variable, which causes dispersion and 
affects solute transport. Areas with low water flux may develop chemical 
conditions different from those of high flux, which carry most of the 
water (Fig. 1). In fact, reacting surface tend to be larger in low flux than 
in high flux areas. That is, physical heterogeneity may induce chemical 
heterogeneity. Steefel et al. (2005) call microenvironments these parts 
of the domain. We term the phenomenon chemical localization to 
emphasize the local occurrence of reactions. Furthermore, heterogeneity 
can cause chemical localization, i.e., the occurrence of reactions that 
would not occur in well mixed media. 

The importance of chemical localization has been widely recognized 
in the literature. The discrepancy between measured mineral dissolution 
rates in laboratory and field is attributed to heterogeneity (Li et al., 
2008). Modeling studies, sometimes combined with chemical and 
geophysical datasets, have shown the effect of heterogeneity on many 
particular systems, such as bioremediation of contaminated aquifers 
(Scheibe et al., 2006), reactive transport processes in fractures (Deng 
and Spycher, 2019) and mineral precipitation and dissolution in 

Nomenclature 

α Mass transfer rate, [T − 1] 
f(α) Probability density function of mass transfer rates 
τα ––– 1/α Residence time, [T] 
P(τα) Probability density function of residence times 
α0 Scale parameter of f(α) 
τα0 Scale parameter of P(τα) 
β Shape parameter of f(α) and P(τα) 
Γ(β) Gamma function 
cm Concentrations in the mobile zone, [ML− 3] 
cim Concentrations in the immobile zones, [ML− 3] 
ϕm Porosity of mobile zone, [-] 
ϕim Porosity of immobile zones, [-] 
q Darcy flux, [LT− 1] 
D Hydrodynamic dispersion, [L2T− 1] 
rm Sink-source term due to chemical reactions in the mobile 

zone, [ML− 3T− 1] 
rim Sink-source term in the immobile zones, [ML− 3T− 1] 
km Reaction rate constant in the mobile zone, [T − 1] 
kim(τα) Local reaction rate constant in the immobile zone with τα, 

[T − 1] 
τr ––– 1/kim(τα) Reaction time in the immobile zone with τα, [T] 
g(t) Memory function 
κ(t) Reaction rate kernel 

δ(t) Dirac delta function 
Lc Characteristic length, [L] 
tc Characteristic time, [T] 
cc Characteristic concentration, [ML− 3] 
q Modulus of q, [LT-1] 
D Longitudinal component of D, [L2T− 1] 
v = q/ϕm Mean fluid velocity in mobile zone, [LT− 1] 
cmD Dimensionless concentrations in mobile zone (cmD = cm/ 

cc), [-] 
cimD Dimensionless concentrations in immobile zones 

(cimD = cim/cc), [-] 
xD Dimensionless distance (xD = x/Lc), [-] 
tD Dimensionless time (tD = t/tc), [-] 
η Ratio of total immobile to mobile porosity (η = ϕim/ϕm), [-] 
ταD Dimensionless residence time (ταD = τα/tc), [-] 
τrD Dimensionless reaction time (τrD = τr/tc), [-] 
ce Concentration of the inflowing water, [ML− 3] 
cP

m,1 Mobile concentration in the first node for the pulse 
injection, [ML− 3] 

L Travel distance of solute, [L] 
tA Advective transport time, [T] 
ϕ = ϕm + ϕim Total porosity, [-] 
L {}(s) Laplace transform 
s Complex Laplace variable  

Fig. 1. Illustration of chemical localization: water flux tends to concentrate on 
a small fraction of the medium (blue arrows), often representing a small frac-
tion of the reacting surfaces within a possible REV (Representative Elementary 
Volume). Proper mass balance requires model concentrations to be those of the 
flowing water, while some reactions may be localized in non-flowing portions 
of the pore space. The problem is especially relevant for biochemical reactions 
that occur in biofilms (green areas), possibly under redox conditions different 
from those of the mobile water. 
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caprocks for CO2 storage (Tian et al., 2019). A clear example of chemical 
localization is presented by Luquot et al. (2016), who observed car-
bonate precipitation during injection of acidic CO2 brine into a shale 
core, which would not be possible if the acidic conditions associated to 
CO2 injection prevailed throughout the domain. Soler-Sagarra et al. 
(2016) showed that silicates weathering may cause sufficient alkalinity 
to facilitate carbonate precipitation in areas of low water flux. A similar 
situation may occur for biochemical reactions, which take place in 
biofilms. Biofilm growth generates immobile zones with limited access 
to electron acceptors, which facilitates the occurrence of reducing con-
ditions (Bellin et al., 2014). The net result is that the microbial com-
munity is heterogeneous and reactions that would only occur under 
anaerobic conditions take place despite the overall aerobic water flux. In 
analyzing this problem, Dentz et al. (2011) concluded that transport 
under physical and chemical heterogeneity cannot be upscaled sepa-
rately: upscaling reactions depends on physical heterogeneity and 
upscaling transport is affected by chemical heterogeneity. A similar 
conclusion was reached by Battiato et al. (2009). Furthermore, macro-
scale transport may be determined by microscale transport process in 
immobile zones (Gouze et al., 2008). 

The situation cannot be considered satisfactory. On the one hand, 
chemical localization is frequently observed and we conjecture that its 
importance will increase with the need to simulate biochemical RT 
(Carrera et al., 2022). Yet, it is not clear how to upscale the processes. 
What is clear is that a multicontinuum representation is needed to be 
able to host and represent different chemical environments. In fact, 
Lichtner and Kang (2007) adopted a lattice Boltzmann solution method 
with this goal. We contend that a MRMT representation can reach the 
same goal at a much lower cost. Still, the problem has never been 
analyzed formally, so that numerous questions need to be answered 
regarding the conditions for localization and when does it need to be 
modeled. 

The objective of this work is to study the conditions for localization 
of reactions in MRMT RT formulations. To do so, first, we establish the 
governing equations of reactive transport in multicontinuum media and 
deduce a dimensionless form of these equations. We then use the 
resulting model in two simple cases to analyze the conditions for 
localization. 

2. Methodology 

We model reactive transport in heterogeneous porous medium using 
the MRMT approach (Haggerty and Gorelick, 1995). Every point 
(representative elementary volume) is viewed as consisting of a mobile 
zone and a distribution of immobile zones characterized by their resi-
dence times. Each immobile zone exchanges solute mass with the mobile 
zone proportionally to the mass transfer rate, α [T − 1] (a complete 
description of variables employed in this paper is given in the 

Nomenclature). Therefore, it is natural to characterize this distribution 
by a probability density function (pdf) of mass transfer rates, f(α) (see 
Fig. 2 left). To facilitate comparison to other non-local methods, we also 
characterize immobile zones by the distribution, P(τα), of residence 
times, τα ––– 1/α [T] (Haggerty et al., 2004) (see Fig. 2 right). P(τα) is 
given by (Dentz et al., 2015, 2011; Dentz and Berkowitz, 2003) 

P(τα) = τ− 2
α f (α) =

τβα0

Γ(β)
1
τβ+1
α
e−

τα0
τα (1)  

where β is the shape parameter, τα0 is the scale parameter, and Γ(β) is the 
Gamma function. The residence time probability P(τα)dτα is the immo-
bile zones frequency with residence times in the interval [τα,τα + dτα]. 
Obviously, it satisfies the condition 

∫∞
0 P(τα)dτα = 1. 

2.1. Governing equations 

The transport of any reactive species in a medium that consists of a 
mobile continuum and multiple immobile continua can be expressed as 
(Dentz et al., 2011; Donado et al., 2009; Willmann et al., 2010) 

ϕm
∂cm
∂t = Lt[cm] − ϕim

∫∞

0

1
τα
P(τα)[cm(x, t) − cim(x, τα, t)]dτα + ϕmrm (2)  

where Lt[cm] = − [q ⋅ ∇cm] +∇ ⋅ [ϕmD ⋅ ∇cm] is the transport operator 
that describes advection and dispersion, q [LT− 1] is Darcy flux, D 
[L2T− 1] is the hydrodynamic dispersion tensor; ϕm [-] and ϕim [-] are the 
porosities of mobile and immobile zones, which denote the volume 
fraction of mobile pore and immobile pore water over the bulk volume, 
respectively; cm [ML− 3] and cim [ML− 3] are concentrations in the mobile 
and immobile zone, which are expressed as mass per unit volume of 
mobile and immobile water, respectively; rm [ML− 3T− 1] is the sink- 
source term due to chemical reactions in the mobile zone and corre-
sponds to the mass removed by reactions in the mobile zone per unit 
volume of mobile water per unit time. It should be noted that Eq. (2) 
remains valid for sorbing solutes, in which case ϕm and ϕim are the 
storage capacity (porosity times local retardation coefficient) of mobile 
and immobile zones, respectively. 

Mass balance in each immobile zone is given by 

∂cim(x, τα, t)
∂t =

1
τα

[cm(x, t) − cim(x, τα, t)] + rim(x, τα, t) (3)  

where rim [ML− 3T− 1] is the reactions sink-source term in the immobile 
zone with residence time τα, which corresponds to the mass removed by 
reactions in the immobile zone per unit volume of immobile water per 
unit time. 

Mass exchange between mobile and immobile zones is modeled by a 
first-order mass transfer term, represented by the continuous variable τα 

Fig. 2. Pdf of mass exchange rates, α (Gamma distibution), and residence times, τα, plotted in log-log scale for several values of τα0 and β = 1/2. Note that the 
maximum of the latter is around τα0 (the mode is τα0/(β + 1) and the expected value τα0/(1 − β)). Its slope at large τα is β + 1. 
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and characterized by a distribution density function P(τα) for the 
immobile zones. Thus, the total mass exchange is the weighted sum over 
all immobile zones as expressed in the integral term of Eq. (2). Inte-
grating Eq. (3) with weight P(τα) over τα, multiplying by ϕim, and 
substituting it into Eq. (2), yields the total solute mass balance, 

ϕm
∂cm(x, t)
∂t + ϕim

∫∞

0

P(τα)
∂cim(x, τα, t)

∂t dτα = Lt[cm(x, t)] + r(x, t) (4)  

in which, r is the total reaction rate (now per unit volume of bulk porous 
medium) that integrates reactions in both mobile and immobile zones, i. 
e., 

r(x, t) = ϕmrm(x, t) + ϕim
∫∞

0

P(τα)rim(x, τα, t)dτα (5)  

If the reaction follows first-order kinetics, the reaction rate in the mobile 
zone will be 

rm(x, t) = − kmcm(x, t) (6)  

where km [T − 1] is the reaction rate constant. Similarly, the local reac-
tion rate in the τα immobile zone becomes 

rim(x, τα, t) = − kim(τα)cim(x, τα, t) (7)  

where kim(τα) [T − 1] is the local reaction rate constant. The reaction 
time, τr ––– 1/kim(τα) [T], is assumed to depend on the immobile zone. 
This dependence should be understood as indicating that, as suggested 
by Fig. 1, different reactions with different reaction rates may occur in 
different immobile zones. 

By inserting Eq. (7) into Eq. (3), then solving Eq. (3), we obtain the 
concentration in the immobile zone of τα as a function of mobile con-
centration history 

cim(x, τα, t) = cim(x, τα, t= 0)e
−

[

1
τα+

1
τr

]

t
+

∫t

0

φ(t − t
′

)cm(x, t
′

)dt
′ (8)  

where φ(t) is given by 

φ(t) =
1
τα
e
−

[

1
τα+

1
τr

]

t
(9)  

Assuming that the initial concentration in the immobile zones is zero (i. 
e., cim(x,τα,t = 0) = 0), then by substituting Eq. (8) into Eq. (2) and 
rearranging terms, we obtain the total solute mass balance, as a sole 
function of cm 

ϕm
∂cm(x, t)
∂t + ϕim

∂
∂t

∫t

0

g(t − t′ )cm(x, t
′

)dt
′

= Lt[cm(x, t)] −
∫t

0

κ(t − t′ )cm(x, t
′

)dt
′ (10)  

where the memory function (Carrera et al., 1998; Haggerty et al., 2000) 
and reaction rate kernel (Dentz et al., 2011) are given by 

g(t) =
∫∞

0

P(τα)φ(t)dτα (11)  

and 

κ(t) = ϕm(x)
1
τr,m

δ(t) + ϕim(x)
∫∞

0

1
τr
P(τα)φ(t)dτα (12)  

respectively, in which δ(t) is the Dirac delta function. The memory 
function can be viewed as the rate of change of concentration in the 
immobile zone that is caused by a unit change of concentration in the 
mobile zone at initial time t = 0. In the presence of reactions, the 
memory function not only incorporates the distribution of local mass 
transfer rates but also the distribution of local reaction rates. Similarly, 
the reaction rate kernel represents the local reactions in immobile zones: 
it integrates the reactions in both mobile and immobile zones, and ac-
counts for the mass transfer between mobile and immobile zones. 

Although the memory function is mainly controlled by the distri-
bution of residence times in immobile zones, it is also affected by the 
local reaction times in immobile zones through φ(t) (Eq. (9)). Likewise, 
the reaction rate kernel is mainly controlled by the chemical reactions, 
but it is also affected by the distribution of residence times in immobile 
zones. Clearly, the governing equations of reactive transport under 
physical and chemical heterogeneity (10), (11) and (12) are controlled 
by the distribution of residence times and reaction times in immobile 
zones simultaneously. The physical and chemical heterogeneities 
interact with each other, and together they govern reactive transport 
(Dentz et al., 2011). 

2.2. Dimensionless formulations 

We write the dimensionless form of Eqs. (10), (11)) and (12) using 
the definitions of Carrera et al. (2022), which allows us to avoid the need 
for a Peclet Number, so that all characteristic variables will be those 
describing the immobile zones distribution and reaction rates. Thus, we 
define the characteristic length 

Lc =
ϕmD
q

(13)  

where q is the modulus of q and D is any norm of D (here its longitudinal 
component). And, the characteristic transport time 

tc =
Lc
v
=
ϕ2
mD
q2 (14)  

Note that in 1D, the characteristic length equals the longitudinal dis-
persivity αL if molecular diffusion is neglected in the mobile zone, 
because dispersion becomes D = αLv, where v = q/ϕm is the mean fluid 
velocity in the mobile zone. Using these definitions to write all variables 
in dimensionless form (i.e., tD = t/tc, ταD = τα/tc, xD = x/Lc, cmD = cm/cc, 
etc.) and defining η = ϕim/ϕm (see the nomenclature table at the end for 
the definition of all variables) and substituting them into Eq. (10), leads 
after some tedious but conventional algebra to the dimensionless form of 
the governing equations 

∂cmD
∂tD

+ η ∂
∂tD

∫tD

0

g
(
tD − t

′

D

)
cmD

(
t
′

D

)
dt

′

D

= − ∇DcmD +∇2
DcmD −

∫tD

0

κ
(
tD − t

′

D

)
cmD

(
t
′

D

)
dt

′

D

(15) 

Note that in this dimensionless formulations, the physical and 
chemical heterogeneity are represented by the distribution of residence 
and reaction times (relative to the characteristic transport time tc), and 
they are reflected simultaneously in the memory function and reaction 
rate kernel. 

Obviously, in the situation where the characteristic length Lc and the 
dimensionless ratio of porosity of immobile zone to porosity of mobile 
zone η are invariable, the solution of Eq. (15) is governed by two 
characteristic dimensionless times, the dimensionless residence time ταD 
(and its distribution) and the dimensionless reaction time τrD in immo-
bile zones. 

The solution of governing Eq. (15) in Laplace domain is expressed as 
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Advances in Water Resources 167 (2022) 104286

5

L {cmD}(s) = exp
[xD

2

(
1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4[s[1 + ηL {g}(s)] + L {κ}(s)]

√ )]
(16)  

where L {⋅}(s) represents the Laplace transform of a function. The 
Laplace transform of the memory function and reaction rate kernel are 
defined as 

L {g}(s) =
∫∞

0

P(ταD)L {φ}(s)dταD (17)  

and 

L {κ}(s) =
1

τr,mD
+ η

∫∞

0

1
τrD

P(ταD)L {φ}(s)dταD (18)  

in which, the Laplace transform of φ(tD) is given by 

L {φ}(s) =
1
ταD

ταD+τrD
ταDτrD + s

(19)  

If we substitute s for s[1+ηL {g}(s)] + L {κ}(s) in Eq. (16), then Eq. (16) 
becomes the solution of the transport equation in homogeneous media. 
Obviously, the retardation of localized physical heterogeneity on 
transport is reflected in the term sηL {g}(s), and the decay of localized 
chemical heterogeneity on reactive species is shown in the term 
L {κ}(s). 

2.3. Steady state analytical solution 

A steady state solution is possible for the continuous injection (or 
cumulative concentration of the pulse injection). The relevant output for 
the chemical localization problem is the ratio between the species con-
centrations in immobile and mobile zone, given by 

∫∞

0

cimD(xD, ταD, tD)dtD

/∫∞

0

cmD(xD, tD)dtD = L {φ}(s)|s=0 (20)  

as can be obtained from the Laplace transform of Eqs. (8) and Eq. (9). 
The concentration in the immobile zone is the weighted integral of 

concentrations in all immobile zones, which is defined as 

cimD(xD, tD) =
∫∞

0

P(ταD)cim(xD, ταD, tD)dταD (21)  

From Eq. (8), we can obtain that 

cimD(xD, tD) =
∫tD

0

g
(
tD − t

′

D

)
cm
(
xD, t

′

D

)
dt

′

D (22)  

Then, the ratio between the cumulative concentrations in the immobile 
and mobile zone becomes 

∫∞

0

cimD(xD, tD)dtD/
∫∞

0

cmD(xD, tD)dtD = L {g}(s)|s=0 (23)  

3. Numerical models 

We have built several numerical models to study chemical localiza-
tion in physical and chemical heterogeneous media. The models have 
been calculated by the code RT_MRMT_DSA (Wang et al., 2022), which 
is an object-oriented FORTRAN2003 code based on finite element 
method (FEM) and capable of simulating reactive transport in multi-
continuum media with MRMT. Species transport and reactions are 
solved simultaneously by using the Direct Substitution Approach (DSA), 
based on the Newton-Raphson method (Saaltink et al., 2001; Yeh and 
Tripathi, 1989). 

Fig. 3. Mobile (solid lines) and average immobile concentrations (dash lines) versus time (left column) at xD = 100Lc in response to a pulse injection (left top row) 
and to a continuous injection (actually, cumulative concentration) (left bottom row) for transport of a conservative species in a medium with a gamma distribution of 
residence times in immobile zones with β = 1/2, τα0D = 102, 101, 100, and 10− 1. The BTC peaks at the mobile advective time (tAD = 100, red arrow) for slow exchange 
(i.e., large τα0D), but at the full porosity advective time (tAD = 400, orange arrow) when exchange is fast, which also reduces the time it takes for immobile zones to 
equilibrate with inflow water. Cumulative concentration profile (colored, right column) versus dimensionless distance and dimensionless residence times (pdf with 
β = 1/2 and τα0D = 10− 1) at tD = 300. The white dash line indicates the immobile zone whose residence time equals the travel time tD. Note that immobile con-
centrations tend to mobile concentrations for ταD < tD. 
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All the models are one-dimensional with ϕm = 0.1 [-], ϕim = 0.3 [-], 
αL = 1 [L], q = 1 [LT− 1]. Thus, we have Lc = 1 [L], tc = 0.1 [T], η = 3. The 
length of the domain L = 100Lc, and the simulated time T = 104tc. The 
mesh size Δx = 1 (i.e., ΔxD = Lc), and the time interval Δt = 0.1 (i.e., 
ΔtD = 10tc). 

At the inlet, we set a Cauchy boundary condition 

D∇cm(0, t)⋅n = q[ce − cm(0, t)], q⋅n < 0
ce = δ(t) (24)  

where ce is the concentration of the inflowing water. The outlet is an 
open boundary condition  

D∇cm(L, t)⋅n = 0, q⋅n ≥ 0 (25)  

wheren is a unit vector which is normal to the boundary, and ⋅ represents 
the inner product operator. 

Initial concentrations are set to zero in both mobile and immobile 
zones, that is cm(x,0) = cim(x,τα,0) = 0 [ML− 3], except for the first mobile 
node that has initial concentration cm,1 = 1 [ML-3]. This simulates a 
pulse injection. 

In addition, we calculate the cumulative concentration 
∫ t

0 cdt for both 
mobile and immobile zones, which is equivalent to a continuous injec-
tion, simulated through a Cauchy boundary condition at the inlet (Eq. 
(24)) with an inflow concentration, ce = cm,1Δxϕm/2q = 0.05. 

We simulate three cases: a no reaction system (conservative trans-
port), a single reaction system and a sequential reaction system. Unless 
specified otherwise, models use the same gamma distribution of resi-
dence times with β = 1/2 and τα0D = 10. 

In the single reaction system, only one hypothetical reaction A → B 
occurs, following a first-order rate law with rk1 = k1cA. Thus, the 
degradation of species A follows rA = − k1cA, and the formation of species 
B, rB = k1cA. In the sequential reaction system, a second hypothetical 
reaction B → C is added, also with first-order kinetics, rk2 = k2cB. Thus, 
the degradation of species A follows rA = − k1cA, the formation and 
degradation of species B, rB = k1cA − k2cB, and the formation of species 
C, rC = k2cB. These are simple linear rate laws. In more realistic models 
rate laws may be more complex (Carrera et al., 2022). Also, the reaction 
rate coefficient can be different for each immobile (e.g., immobile zones 
with long residence times may tend to display more reducing conditions 
when simulating biochemical reactions). Eq. (7) expresses this depen-
dence by writing kim(τα). Nevertheless, this study focuses on the locali-
zation of chemical reactions. Therefore, to facilitate comprehension we 
used simple reactions with constant rate coefficients (kim(τα) ––– kim), 
although our code can handle more complicated reactions with variable 
rate coefficients. 

4. Results and discussions 

We discuss the results for conservative transport (Section 4.1), which 
provides the basis for understanding chemical localization in single 
(Section 4.2), and sequential (Section 4.3) reaction systems. 

4.1. No reaction system 

The impact of MRMT on conservative transport is well-known (e.g., 
Haggerty and Gorelick, 1995). We summarize here its main features to 
facilitate understanding the reactive case. Fig. 3 displays concentrations 
in both mobile and immobile zones in log scale for a pulse injection, and 
arithmetic scale for continuous injection. The log-log scale is usually 
preferred for tracer test analysis, because it emphasizes tailing. The late 
time slope of the pulse BTC is that of the memory function plus 1 (e.g., 
Haggerty et al., 2000). Therefore, by analyzing the BTC of conservative 
tracers, modelers can gain insight into the distribution of immobile 
zones. Still, solute remains in the immobile zones far longer, diffusing 
slowly back to the mobile zone. The effect of tailing is somewhat less 
dramatic for a continuous injection (cumulative concentration of a 

pulse). The breakthrough curve approaches asymptotically the input 
concentration (ce) with the bulk of solute arising at tA. 

For slow exchange (large τα0D), most of the solute mass pulse flows in 
the mobile region, so that the peak arrival time coincides with the 
advective time (red arrow in Fig. 3). Fast exchange (shorter τα0D) allows 
equilibrating concentration in the mobile and immobile zones, so that 
the medium behaves as if the whole porosity was mobile. It is important 
to notice the above separation between fast and slow is relative to the 
advective transport time (tAm = Lϕm/q, where L is the travel distance of 
solute). If tA ≫ τα, the immobile region becomes accessible to the solute 
and the actual travel time reflects the total porosity (tAT = Lϕ/q, where 
ϕ = ϕm + ϕim is the total porosity). This effect is similar to retardation, 
and it is frequently stated that the impact of immobile zones is to retard 
the solute (e.g., Haggerty and Gorelick, 1995). In fact, the peak arrival 
for the τα0D = 10− 1 BTC in Fig. 3 (orange arrow) is retarded by a factor of 
4, which reflects that ϕm + ϕim equals 4ϕm. Note, however, that (1) this 
kind of retardation has nothing to do with adsorption or any other 
partitioning process (in fact, ϕs in our equations can be viewed as 
retention capacities for sorbing solutes), and (2) the apparent retarda-
tion associated to diffusion in immobile zones will be distance and flux 
dependent. 

This kind of observations may explain why non-local models are less 
popular in unconsolidated, granular, aquifers than in fractured media. 
Fractured media with diffusion lengths of the order of meters will 
display residence times of the order tD = L2/D = (10m)2/10− 10m2/ 
s≅ 1012s≅ 3.105years. That is, diffusion is never exhausted. Diffusion 
lengths in porous media are less than 1 cm, so that residence times in 
immobile zones will be of the order of tD = (10− 2m)

2
/10− 10m2/s =

106s ∼ 4 months. This time may be relevant for tracer tests, where 
travel time is of a few days, but is too short for natural groundwater flow. 
Support for this kind of observations is provided by Guimerà and Carrera 
(2000). They observed that the “advective porosity” (i.e. the porosity 
derived from the peak arrival time) calculated from a broad collection of 
tracer tests in fractured rocks correlates with the peak arrival time. This 
implies that the apparent mobile porosity increases when the flow rate is 
reduced, which we take as indicative of fast immobile regions equili-
brating with truly mobile zones. Increasing the travel time causes an 
increasing fraction of immobile regions to equilibrate with mobile 
zones, thus becoming effectively mobile. 

Further insight into the behavior of conservative solutes can be 
gained from Fig. 3 (right), which displays the immobile concentration 
(color scale) versus distance and immobile residence time for tD = 300. 
The figure might be considered somewhat misleading in that the vertical 
axis refers to immobile porosity associated to small residence times 
(recall pdf of immobile zones for a gamma distribution, Fig. 2) and not 
distance to the mobile zone. However, as shown in Fig. 3 the concen-
tration in immobile regions is independent of their volumetric fraction. 
What Fig. 3 (right) shows is that concentrations in the immobile zones 
with short residence times (from ταD = 10− 2 to 101, much shorter than 
the dimensionless travel time of 300) are identical to concentrations in 
the mobile zone. On the other hand, concentration is negligible in the 
immobile zones whose residence time is much larger than travel time, 
for ταD higher than 103 the concentration in the immobile zones is 0 even 
at the shorter distances. This might suggest that slow immobile regions 
might be neglected, whereas fast immobile regions might be lumped 
with the mobile domain. While this may be appropriate for inert tracers, 
it may not be suitable for reacting tracers because reactivity is usually 
higher in the immobile regions, certainly in the case of biofilms (Kone 
et al., 2014; Seifert and Engesgaard, 2007; Taylor and Jaffé, 1990), 
which motivates our work. 

4.2. Single reaction system 

In this case we consider two solutes, A and B, A is the only solute 
present in the inflow water while B is produced by the degradation of A. 
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Concentrations of the two species in mobile and immobile zones for a 
pulse and a continuous injection are shown in Fig. 4 for several reaction 
times higher than the mean residence time. The situation is now more 
complicated than in the conservative transport case because three sets of 
characteristic times are involved (residence times in immobile zones, 
reaction times, and advective transport time). The first immediate 
observation, is that maximum concentrations of species A are reduced 
when the reaction rate is increased (i.e., when the characteristic reaction 
time is reduced). Note that BTC concentrations of A become negligible 
when reaction time is much smaller than transport time (i.e., for case of 

τrD = 102, when transport time tD > 103, that means τrD ≪ tD, species A is 
almost reduced and cannot be detected). 

The behavior of the distribution of concentrations in the immobile 
regions may be less intuitive (see Fig. 5). Concentration of the parent 
species, A, is negligible in immobile zones with residence time much 
larger than the reaction time (ταD ≫ τrD), because the solute diffusing 
into these zones is degraded before a significant concentration can build 
up. It is also negligible in zones where residence time is much larger than 
the simulation time (tD) because almost no solute has diffused into these 
regions yet. On the other extreme, concentration in fast immobile 

Fig. 4. Mobile (solid lines) and average immobile (dash lines) concentrations of species A (left column) and B (right column) versus time at xD = 100Lc in response to 
a pulse input (up row) and to a continuous injection (bottom row) for transport in a medium with a gamma distribution of residence times in immobile zones with 
β = 1/2, and τα0D = 10. Reaction times are uniformly distributed in immobile zones with τrD = ∞, 104, 103 and 102. Species B is absent when no reaction oc-
curs (τrD = ∞). 

Fig. 5. Cumulative concentration profiles versus dimensionless distance and dimensionless residence times for species A (left) and B (right) at tD = 300 (top), and 
10000 (bottom) after continuous injection of A in a medium with a gamma distribution of residence times in immobile zones with β = 1/2, τα0D = 10. Reaction A→B 
occurs with a characteristic time τrD = 102. The white solid lines indicate immobile zones whose residence times equals the reaction time, ταD = τrD, and the white 
dash lines denote immobile zones whose residence times approximate the simulation time, ταD = tD. 
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regions is virtually equal to the mobile concentration, which suggests 
that these regions could be lumped with the mobile regions. 

More interesting is the behavior of daughter species B, which is 
washed away from the mobile zone and fast immobile zones before it 
becomes significant. As a result, B concentrations are dominant in 
immobile zones whose residence time lies between the reaction time and 
the simulation time; Solute A has arrived at immobile zones with resi-
dence time shorter than tD. At those immobile zones with residence time 
higher than reaction time, A has been transformed into B. This is the 
fundamental point to demonstrate that B has become localized in certain 
immobile zones, which motivates this work and is further analyzed for 
the case of sequential reactions. 

4.3. Sequential reaction system 

The sequential reaction case becomes increasingly complicated by 
the multiplicity of times involved. Therefore, we start by considering the 
steady state solution to the sequential reaction system for a generic 
immobile region that exchanges mass with the mobile zone. The gov-
erning equations are 

0 = α(cmA − cA) − k1cA
0 = α(cmB − cB) + k1cA − k2cB
0 = α(cmC − cC) + k2cB

(26)  

where we have dropped the dependence on xD,tD and ταD for simplicity 
and because it is self-evident (i.e., cA = cim,A(xD,ταD,tD), cmA = cmA(xD,tD), 
etc.). From Eq. (26), we can obtain the analytical solution of each species 
at steady state, as a function of the mobile concentrations: 

cA =
αcmA

(α+ k1)

cB =
αcmB + k1cA
(α+ k2)

cC =
αcmC + k2cB

α

(27)  

These expressions become clearer when the concentrations of daughter 
products in the mobile zone can be neglected (i.e., near the input, 
assuming they are absent in the inflow, and that the advective flux is 
large) Assuming cmB = cmC = 0 in Eq. (27), we get 

Fig. 6. Steady state concentrations of species A (blue), B (orange), and C (yellow) as a function of residence time in immobile zones, τα[T], assuming that mobile 
concentrations of B and C are zero. The first reaction time, τr1 [T], for A→B transformation equals 10 (solid) and 1 (dash). The reaction time, τr2 [T], for B→C reaction 
is 100 (left) and 1 (right). The corresponding reaction times are indicated by arrows. 

Fig. 7. Breakthrough curves of species A, B and C at L = 100Lc with one 
immobile (color lines) zone for τr1D = τr2D = 103. The black solid line represents 
results with a mobile zone with ϕm = 0.1 [-] and no reaction (in which case 
species B and C are never formed). The black dotted lines represent results with 
a mobile zone with ϕm = 0.4 [-] and τr1,mD = τr2,mD = 1333 (i.e., k1, 

m = k2,m = 0.0075). 
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cA
cmA

=
α

(α+ k1)

cB
cmA

=
αk1

(α+ k1)(α+ k2)

cC
cmA

=
k1k2

(α+ k1)(α+ k2)

(28) 

Fig. 6 displays the steady state concentrations of species A, B and C in 
immobile zones versus residence time (τα = 1/α). Note that the sum of 
concentrations A, B and C equals one, which is the concentration of A in 
the inflow. This reflects the fact that this sum is conservative, because 
rA + rB + rC = − k1cA + k1cA − k2cB + k2cB = 0 and the fact that at steady 
state the concentration of a conservative species in any immobile zone 
equals the mobile concentration. As can be observed, species A (blue), 
which is the only species present in the mobile zone, dominates immo-
bile zones with residence times much smaller than the reaction time of 
the first reaction (say τα < τr1/10). Therefore, immobile zones with 
residence times significantly lower than the first reaction characteristic 
time can effectively be considered as mobile. Species B (orange) domi-
nates immobile zones with residence times between the two reaction 
times when τr1 < τr2 , but its concentration is negligible when τr1 > τr2 (i. 
e., when its decay is faster than its production). Species C (yellow) 
dominates those immobile zones with residence times larger than the 
reaction time of the second reaction (τα > τr2 = 1/k2). Thus, when the 
second reaction is also fast (right graph of Fig. 6), the concentration of 
the intermediate species (B) becomes small, and the two reactions could 
probably be lumped and species B neglected (provided it does not affect 
other reactions). 

Results for the full transport case (A→B and B→C) are summarized in 
Fig. 7 and Fig. 8. Fig. 7 displays the BTCs for the transport conditions of 
Fig. 3 and Fig. 4, but only one immobile region to better isolate the effect 
of residence time. As in Fig. 7, when the exchange is slow, the BTC of 
species A (green and purple BTCs for τα0D = 104 and 103, respectively) 
overlaps with that of a conservative solute in the mobile zone (black 
line), except at the tail. The concentrations of B and C are very small 
(note the vertical axis). 

The case of short residence times is also illustrative. The corre-
sponding BTC (blue line) is virtually identical to the BTC (dotted black 
line) where all the porosity has been lumped as mobile. Obviously, the 
immobile zone reactions must be accounted for in this mobile (the 
effective reaction rate is derived in the Appendix A). That is, immobile 
regions with short residence time (compared to transport and reaction 
times, i.e., ταD ≪ tD, and ταD ≪ τrD) can be lumped and treated as mobile. 
The effective reaction rate in the case of Fig. 7 turns out to be, 
kam = kimϕim/(ϕim + ϕm) (see Appendix A). 

The most significant observation from the point of view of chemical 
localization derives from Fig. 8, which displays immobile regions con-
centrations as a function of space and residence time. This figure makes 
it clear that C concentrations are only relevant in immobile zones with 
residence times comparable to reaction times, regardless of the transport 
time. Therefore, the three sets of times (transport time, reaction time, 
and residence times) are relevant when deciding the appropriate dis-
cretization of residence times. Note that this result is consistent with that 
of Fig. 6. The second reaction tends to become localized in zones where 
the residence time is greater than the first reaction time, and the final 
daughter species, C, tends to concentrate in zones where the residence 

Fig. 8. Cumulative concentration profiles versus dimensionless distance and dimensionless residence times for species A (left), B (middle) and C (right) for 
τr1D = τr2D = 103 at tD = 50, 200, 500, 2000 and 10000 from top to bottom. The medium is characterized by immobile zones of which the residence time follows a 
gamma distribution with β = 1/2, τα0D = 10. 
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time is greater than the second reaction time. 

5. Conclusion

Several conclusions can be drawn from the modeling results pre-
sented in this work  

1) Some reactions may occur in immobile regions that would not occur
if the entire medium was mobile. This is not surprising when the
mineral composition is different in each immobile zone, as was dis-
cussed by Soler-Segarra et al. (2016). What we show here is that,
independently of the reactivity of mobile and immobile zones, the
interplay between residence times and reaction times may cause
some reactions to take place solely in the immobile zone. This will
occur whenever residence time is larger than or comparable to re-
action time, and both are much longer than the transport time. It
goes without saying that immobile zone reactions will be enhanced if
reactivity in immobile zones is higher than in the mobile zone. This is
the case for biofilms, where microbial mediated degradation re-
actions concentrate.

2) Regardless of reaction rates, concentrations in the fast immobile
zones (i.e., zones where τα ≪ tD = Lϕ/q) will tend to equilibrate with
mobile concentrations. Therefore, little is gained by representing
them explicitly in a model. All fast exchange immobile zones can be
lumped into the mobile zone, provided that the reaction rates are
modified by the porosity ratio. In general, the corrected reaction rate
will depend on both the actual immobile reaction rate and the resi-
dence time distribution in immobile zones. But this latter depen-
dence becomes negligible when residence time is much smaller than
the reaction time.

3) Similarly, very slow immobile zones (τα ≫ tD) can be ignored because
little mass will diffuse into them. Note that this conclusion is more
relevant for laboratory experiments or short tracer tests, where
transport times are moderate. Under natural conditions, transport
time can be very long (many years), so that most immobile zones are
indeed accessible.

4) The time and space required for secondary species and reactions to
build up may be large. This finding runs contrary to the frequent
view of searching for metabolites and secondary species near the
sources of parent species. Instead, they may tend to concentrate in
isolated zones (i.e., with long residence times) at a distance from the
source.
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Appendix A 

The objective of this appendix is to find an effective reaction rate in the mobile zone for cases when residence time in the immobile zone is much 
smaller than the reaction time. Such fast exchanging immobile zones can be lumped in the mobile zone, but their reactions also need to be included in 
the mobile zone. To this end, we consider a simplified steady state mass balance in the mobile zone, where the advection and dispersion terms are 
substituted by w(cex − cm), where w is the flow rate per unit volume of medium that enters the mobile zone with concentration cex (and leaves with 
concentration cm). Under steady-state conditions, mass balance reads: 

ϕm
dcm
dt

= w(cex − cm) −
∑Nim

j
ϕjimα

j
im
[
cm − cjim

]
− ϕmλmcm = 0 (A1)  

whereϕm [-] and ϕj
im [-] are the retention capacities of mobile and j immobile zone, respectively; cm [ML− 3] and cj

im [ML− 3] are concentrations in the 
mobile and immobile zone, which are expressed as mass per unit volume of mobile and immobile water, respectively; αj

im [T − 1] is the mass exchange 
rate between mobile and jth immobile zone; λm[ML− 3T− 1] is the rate constant for degradation reactions in the mobile zone and corresponds to the 
mass removed by reactions in the mobile zone per unit volume of mobile water per unit time. 

Mass balance in each immobile zone is given by 

dcjim
dt

= αjim
[
cm − cjim

]
− λjimc

j
im = 0 (A2)  

Solving Eq. (A2) for cj
im, yields 

cjim =
αjimcm

αjim + λjim
(A3)  

Substituting cj
im into Eq. (A1) and solving for cm yields 
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cm =
w

w+
∑Nim

j
ϕjimα

j
imλ

j
im

αjim+λ
j
im

+ ϕmλm
cex (A4) 

This equation can also be used for the case in which all (in general a subset of) immobile zones are lumped into the mobile zone, which we denote 
with subscript am (all mobile) 

cam =
w

w+ ϕamλam
cex (A5)  

Comparing Eqs. (A4) and Eq. (A5), it is clear that the solutions are identical if 

ϕamλam =
∑Nim

j

ϕjimα
j
imλ

j
im

αjim + λjim
+ ϕmλm (A6)  

Recalling that ϕj
im = pjϕim and that ϕam = ϕim + ϕm, gives 

λam =
ϕim

ϕim + ϕm

∑Nim

j

pjαjimλ
j
im

αjim + λjim
+

ϕim
ϕim + ϕm

λm (A7)  

In the case discussed in the text, λm = 0, αj
im≫λj

im, and all λj
im = λim, so that 

∑

j
pj = 1 and 

λam =
ϕimλim
ϕim + ϕm

(A8)  
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