Strategies for the computation of Conditional Answers *

Robert Demolombe
ONERA/CERT
2 avenue E.Belin B.P. 4025

31055 Toulouse
France

September 1990

Abstract

We consider here non-Horn Deductive Data Bases (DDB). In this con-
text there are many queries whose answer is : I don’t know. A first ap-
proach to reduce the number of such answers is to add information, like
default rules, in order to automatically generate assumptions. The second
approach, which is adopted in this paper, is to provide to the user the con-
ditions that guarantee the validity of the answer. These conditional answers
are generated by standard reasoning, and not by default reasoning.

Then the problem is the following : if T represents the DDB and q the
query, and if there is no direct answer to q, we want to produce the more
general conditions ¢ such that : T + q +— c. We present two strategies,
GASP and GALP, designed for this purpose. They are defined by meta
rules, and the meta rules can be used for a least fixpoint operator definition.
We show that the GASP strategy is always more efficient than GALP, but
the GALP strategy can be adapted in order to compute ground conditional
answers. The least fixpoint operator associated to GRALP (the strategy
adapted from GALP) computes the answer in a finite number of steps, even
if the DDB contains recursive definitions.

*This work has been partially suported by the CEC, in the context of the Basic Research
Action, called MEDLAR.

49

1 Introduction

Many works have been devoted to the standard approach of Deductive Data
Bases (DDB) [1, 12, 5, 13]. In this approach a DDB is composed of two parts :
a set of rules, the Intensional Data Base (IDB), which is a set of definite Horn
clauses, and a set of facts, the Extensional Data Base (EDB), which is a set of
ground atoms.

More recently this approach has been extended to disjunctive DDB where
the rules are not necessarily Horn clauses [8, 3, 6] , and facts may be ground
positive clauses.

In this paper we extend disjunctive DDB to the case where EDB may contain
any kind of ground clauses. But the most significant contribution is to consider
answers which are of a different type, and are called Conditional Answers. Con-
ditional answers are another way to deal with incompleteness. Indeed the usual
appraoch is to complete the DDB with some kind of meta rule like Closed World
Assumption (CWA), or Generalised Closed World Assumption (GCWA) [7], in
the context of disjunctive DDB, or default rules in the context of non-monotonic
reasoning [10]. In the Conditional Answer approach no assumption is added to
the DDB by applying some kind of default reasoning. When there is not enough
information in the DDB to answer a given query, the answer provide the less
restrictive assumptions which allow to infer the query.

Let’s consider for example the very simple DDB :

AVB«+C C

and the query : A?

In that case we cannot provide a direct answer to the query, but we can
provide the conditional answer : A «— -B. Then the user knows that A is true

under the assumption —B, and he can take himself the decision to assume -~B
or not.

It is interesting to consider two kinds of conditional answers. They are
illustrated by the next example.

50

IDB :

At — home(x) «~ Sleeping(x)

Teaching(x) « At — University(x)

At — university(x) V At —~ home(x) «— Working(x)

«— Teaching(x) A Sleeping(x)

EDB :

Working(a), -Teaching(b), Sleeping(c)

If we consider the query : At-home(x)? we can interpret the query into two
different ways : what are the conditions which guarantee that somebody is at
home, independenlty of a particular situation?, or : what are the conditions
which guarantee, for some particular individuals, that they are at home ?. In
the first case the answer is called an Intensional Conditional Answer [2], in the
second case it is called an Extensional Conditional Answer. From a technical
view point the intensional conditional answers are infered only from IDB, while

the extensional conditional answers are infered from IDB and EDB. For that
example we have :

Intensional Conditional Answer :

At — home(x) « Sleeping(x)

At — home(x) — Working(x) A =At — university(x)
At — home(x) «— Working(x) A ~Teaching(x)
These answers are fomulas F(x) such that :

IDB I At — home(x) ~ F(x)

Extensional Conditional Answer :

At — home(a) — -At — university(a)

At — home(a) — —Teaching(a)

51

At — home(b) — Working(b)
These answers are ground formulas F(a) such that :

IDB UEDB F At — home(a) « F(a)

In the next section is presented a general formal definition of conditional
answers holding for the two kinds of answers. Then we present two strategies to
compute conditional answers. We compare their relative efficiency, and we point
out the particular problem of infinite answers. In the last section we propose

a modification to one strategy to compute extensional conditional answers in a
finite number of steps.

2 General definition of Conditional Answers

We consider queries which are positive literals. This assumption does not restrict
generality. Indeed, if the query is a general formula F(x), we define a new
predicate symbol q(x), we add to the DDB the formula Q = (gq(x) « F(x))Vx,
and the query is represented by the positive literal q(x).

EDB is a set of ground formulas. IDB is a set of formulas. We consider the
theory T = IDBUEDBUQ, where all the formulas are represented in clausal form,
and each clause is Range Restricted; that is, if a variable occurs in a positive
literal in a clause, it must also occur in a negative literal of that clause. The
clauses are considered as sets of literals. Moreover we consider clauses without
functional symbols.

Conditional Answer Definition

Let q be a positive literal, the conditional answer to the query q is the set of
clauses :

{qoVc | TkqoVcandqoVcisnot atautology, and qo V c is minimal
wrt subsumption }

A clause c is minimal with regard to subsumption, in the context of T, if
there is no clause ¢’ derivable from T such that ¢’ subsumes c.

A clause ¢’ subsumes a clause c if there exists a substitution ¢ such that :
co Cec.

52

The clause c is called by Reiter and de Kleer, in [11], a minimal support for
qo. The clauses qo V ¢ satisfying these properties are called minimal implicants.

The intuitive motivations for such definition are discussed below.

Notice first that a clause qo V ¢ can be alternatively be represented by the
formula qo « —c. If qo V ¢ is a tautology ¢ contains -qo, and the clause can be
represented by the formula qo «— qo A ¢’. Since the condition is stronger than
the query itself it is out of interest.

If qo V ¢ is minimal wrt subsumption c is not a theorem, and the assumption
—c is consistent with T. Moreover —c is the less restrictive assumption. Indeed
there is no clause derivable from T, of the form : qo ~ ~c’, such that -c — ¢,
Another consequence of the minimality is that qo is not a theorem, that is, we
need some assumption to guarantee the validity of qo.

-Extended Conditional Answer Definition

With the same notations we define an extended conditional answer as the
set of clauses :

{qevec | TF qoVcand qo V c and there is no clause ¢’ such that :
T F qo V¢ and ¢’ subsumes c }

We can easily see that, for a given query, the extended conditional answer
contains the conditional answer. The only difference is that for clauses in the
extended conditional answer there is no guarantee that c is not a theorem of T;
that means ~c may be an inconsistent assumption.

The definition of extended conditional answers is introduced only for tech-
nical matters because the strategies presented in the next sections compute just
extended conditional answers. If the user want to know if some assumption
is inconsistent we can apply, in a further computation step, standard theorem
proving strategies. We does not consider that case in this work in order to
concentrate on problems which are specific to conditional answers.

3 Intuition of the two strategies

The two strategies presented in this section have been specifically designed to
compute extended conditional answers. They work as well for intensional answer

53

as for extensional answers. They are both based on two inference rules, presented
in [4], which can be defined in reference to Resolution Principle.

They are informally described here using the example of the first section. For
this description we call relevant theorem for a given query, a clause derivable
from T containing the query, or one of its instances.

The first strategy is called GASP, an abreviation for Generate As Soon as
Possible. In this strategy we try to generate relevant theorems for the initial
query by resolving one, or several, relevant theorems, previously generated, with
a given axiom.

The second strategy is called GALP, an abreviation for Generate As Late as
Possible. In this strategy axioms which are relevant for a given query are used to
generate subqueries; later the answers to these subqueries are resolved with this
axiom to generate relevant theorem for the query. The process starts with the
initial query, and recursively generates subqueries and their relevant theorems.

The theory T after transformation in clausal form give :

(1) Hx Vv =8x (2) TxV =Ux (3) UxVHxV-~Wx (4) =TxV ~Sx
(5) Wa (6) =Tb (7).Sc

where : H, U, W, T and S are repectively abreviations for : At-home, At-
university, Working, Teaching and Sleeping; for simplicity P(x) is written Px.

Queries are represented with the question mark as usual.

GASP computation :

Stepl : (8) Hx?

Step2 : (9) Hx vV -Sx (10) UxV Hx Vv -Wx

Stepd : (11) Hc (12) TxV HxV-~Wx (13) UaVv Ha

Step4 : (14) -SxVHxV -Wx (15) TaVv Ha (16) Hb v -Wb

The first relevant theorems (9) and (10), generated in Step2, are the axioms
containing the query, or one of its instances. New relevant theorems are gener-

ated by resolving (9) or (10) with an axiom. Notice that the resolved literal is
always different than the query. This property focus the derivation on relevant

54

theorems. The clause (14) should be removed because it is subsumed by (1).
GALP computation :
Stepl : (8) Hx?
Step2 : (9) Hx Vv -Sx (10) Sx? (11) UxV HxV ~Wx (12) =Ux? (13) Wx?
Stepd : (14) Sc (15) TxV =Ux (16) =Tx? (17) Wa

Step4 : (18) He (19) TxV HxV -Wx (20) TaV Ha (21) UaV Ha
(22) =Tx Vv =Sx (23) -Tb (24) Sx?

Stepb : (25) =Ux V ~Sx (26) ~Ub (27) Sc

Step6 : (28) ~SaV Ha (29) ~SxV HxV -Wx (30) =Tc (31) Hb vV Wb
.Step7 : (32) =Uc

Step8 : (33) Hc v ~Wc

The first generated relevant theorems are the same as in GASP. The differ-
ence is that at the Step2 the subquery (10) is generated from the relevant axiom
(1). In the same way the subqueries (12) and (13) are generated from te relevant
axiom (3). The reason is that any answer to these subqueries is a clause which
can be resolved with (9) or (11), to generate a relevant theorem for the query
(8). In the same way, at the Step3, the query (12) generates, with the axiom
(2), the subquery (16). Each axiom containing the initial query, or a subquery,
is a relevant theorem for this query or subquery, and the relevant theorems for
the generated subqueries are resolved with the axiom from which the subqueries
were generated. For example (22), which is a relevant theorem for the subquery
(16), is resolved with the axiom (2) to generate the relevant theorem (25).

Notice that (20) is generated by an hyperresolution from (3), (15) and (17).

The clauses (25), (28) and (33) should be removed because they are subsumed
by previously generated clauses.

A common feature to both strategies is to focus as far as possible on relevant
theorems. These theorems are relevant to the initial query in GASP, and are
relevant to the queries and subqueries in GALP. Both strategies are based on
Resolution Principle, and at each step at least one parent clause is an axiom.

95

They also allow hyperresolution.

4 Formal definition of the two strategies

In this section the strategies are formally defined by meta rules. These rules
express, at a meta level, the derivation control, and they are evaluated by a
straighforward method which is an incremental saturation by level. Here incre-
mental means that, when a new sentence is generated by a meta rule, at least
one of the premisses in the rule is a new sentence. It is important not to confuse
the strategy used for meta rule evaluation, and the derivation strategy, at the
object level, which is decribed by these meta rules.

Notations :

"Meta-variables :

e q, I; : literal variable; these variables are instantiated by literals at the
object level.

e -; : literal variables; these variables are instantiated by the complemen-
tary literal which instantiates I;.

e c; : clause variables; these variables are instantiated by set of literals at
the object level; this set may be empty.

® 1VI]; Vc; : denotes the set of literals : {1} U {;} Uc;.

®1VciV...Vcy Ve : denotes the set of literals : {1} Uc; U...Ucy Uco.

Meta-predicates :

e Query(l) : we have to find all the clauses derivable from T containing 1, or
an instance of 1.

e Ax(c) : cis an axiom of T.

e Th(c) : cis a theorem of T.

56

GASP Definition
(1) Query(q) A Ax(q V c) — Th(qVc)

(2) Query(q) A Th(q V], Va)A...ATh(qV1, Vcy) A Ax(-] V...alh Vo)
— Th(qVe; V... Vey Vep)

One could notice that using dots is not allowed in a formal definition. We
have used dots here because it would not be difficult to replace these rules by
more heavy recursive definitions without dots.

We define a meta theory MT containing the rules (1) and (2), the sentence
Ax(c), for each clause ¢ in T, and the sentence Query(q), where q is the literal
denoting the initial query.

The sets of sentences generated by saturation by level are denoted by :
So,- S1, ... §;

So contains all the sentences derivable in one step by the rules (1) and (2)
from MT. A sentence is derivable by a rule if there exist a rule instance whose
consequence is this sentence, and all the premisses are satisfied by MT. All
the tautologies, and all the sentences subsumed by a sentence in MT or Sp are
removed from S,. We call ASp the resulting set of derived sentences.

We define S;;; and ASi4; in function of §; and AS; in the following way.
We consider all the sentences derivable by the rules (1) and (2) from MT and §;
and we remove from this set all the tautologies and the sentences subsumed by
a sentence in MT or S;. The resulting set of sentences is called AS;4+1 . Then
Sj+1 is defined by . SH.] = Si U ASH.].

If M is any meta predicate, we say the sentence M(c’) subsumes the sentence
M(c) iff the clause c’ subsumes the clause c.

We say that the premisses of the rule (2) (a similar definition applies to rule
(1)) are satisfied by a set of sentence § iff :

o the following set of sentence is in § : Query(Q), Th(Q: VL VGy), ...,
Th(Qn V Ly V Cp), Ax(-Lj V...V -L;, V Co); where Q, Qq, Ly, Gy, ...
»Qny Ln, Cn, Cp are literals or clauses at the object level,

e there exists a more general unifier ¢ which is solution of the equations :

Q=Q1=...=Qq

57

Li=L} Ly=L} ... Ly=L.

In that case the instantiation of the meta variables is :
q= Qa li = LiO' ﬂli = ﬁL;O' C = Cicf
and the generated sentence is Th(qV¢; V...V, V Co)-

The equations L=L’, where L and L’ denote P(ty,...,tp) and P(t},... 1tp)s

or =P(t1,...,tp) and -P(t],... »tp), are short hands for the set of equations :
t1=t] ta=t} tp =t

The evaluation of the meta rules will be illustrated by the next example.
Let’s assume S contains the set of sentences :

Query(Pxy) Th(PazV QztV -Rzt) Th(PuvV ~Suv) Ax(SawV ~Qvb v ~Tw)
We have the equations :
Pxy = Paz = Puw Qzt = Qvb Suv = Saw
corresponding to the set of equations :
X=ay=2z2 a=uz=w z=v t=b u=a v=w
and the most general unifier is the substitution :
o ={a/x,y/z,b/t,a/u,y/v,y/w}
Then the meta variable instantiations are :
q = Pxyo = Pazo = Puvo = Pay
l; = Qzte = Qyb =l; = ~Qvbo = ~Qyb
l = =Suve = =Say -l; = Sawo = Say
¢ = {-Rzto} = {~Ryb} c2=0 co = {~Two} = {~Ty}

and the generated sentence is :

58

Th(q V1V ez Vco) = Th(Pay V =Ryb v -Ty)

Let’s consider another example, in Propositional Calculus, where S contains
the sentences :

(1) Query(P) (2) Th(PV QV ~R) (3) Th(PV -S) (4) Ax(SV -QV ~T)

We can generate the sentences :

(5) Th(P V =R V SV =T), from (1), (2) and (4),

(6) Th(P vV ~QV -T), from (1), (3) and (4),

(7) Th(P vV =R V =T), from (1), (2), (3) and (4).

In that example we can see that if several theorems (here (2) and (3)) may
be Tesolved with the same axiom (here (4)), we have to generate all the sen-
tences derivable from every subset of these theorems. Some of the resulting
sentences may be subsumed by other ones (here (7) subsumes (5)), but that is
not necessarily the case.

GALP Definition

(1) Query(q) A Ax(qV c) — Th(q V c)

For each i in [1,p] :

(2.) Query() A Ax(IV =l V...V =L V...V =l,) — Query(};)

Endfor;

(2) Query(I) ATh(1; Vei) A... ATh(ly Vca) A Ax(1V -y V...1lh Vo)
—Th(IVe V... Ven Vo)

The rules (2.i) show how subqueries are generated from a given query and an
axiom containing some instance of that query. The rule (3) show how relevant
theorems for the subqueries allow to generate a relevant theorem for the initial
query.

Notice that in the GASP strategy each generated theorem is relevant for
some subquery, but they are not necessarily relevant for the initial query.

59

It is easy to see that the interpretation we have defined for the meta rules
defining GASP and GALP provides a definition for a least fixed point operator.

5 Efficiency comparison

We can have a rough idea of the relative efficiency of one strategy with respect
to the other by comparing the number of generated sentences.

In this section we compare the two strategy in a particular case which give
an idea of how the result can be extended to the general case.

For this paticular case we consider a theory T in Propositional Calculus where
all the clauses are binary clauses with one positive literal and one negative literal,
like : AV -B. In this particular case sentences of the form : Ax(A V -B) or
Th(A V -B) are represented by : Ax(A,B) or Th(A,B), where the first argument
in Ax(x,y) and Th(x,y) represents the positive literal, and the second argument
represents the negative literal.

The meta rules defining GASP and GALP strategies can be reformulated in
that case as follows ::

GASP strategy :

(1) Query(q) A Ax(q,1) — Th(q,1)

(2) Query(q) A Th(q,1,) A Ax(l3,12) — Th(q,1)

GALP strategy :

(1) Query(l) A Ax(l,1;) — Th(i,1;)

(2) Query(1) A Ax(1,1;) — Query(l;)

(3) Query(l) A Ax(1,1;) A Th(l;,13) = Th(l,1;)

From these rules we can see that the graph of the relation Th(x,y) is the
transitive closure of the graph of the relation Ax(x,y). That is not surprising
since on one hand the sentence Ax(A,B) is repesented in the graph by the two

nodes A and B, and by an edge from B to A. On the other hand Ax(A,B) is
also a representation of the formula : A — B. Then there is a one to one

60

correspondance between the computation of the Ax(x,y) transitive closure and
the computation of the theorems of the form : A « B.

The interesting point is that GASP and GALP correspond to two quite
different strategies to compute the transitive closure of a graph. In fact we does
not have to compute the overall closure but only the edges arriving at the node
representing the query.

In the GASP strategy only edges arriving at the query node are computed.
In the GALP strategy all the edges arriving at the query node, or at one of its
predecessors, are computed.

For example, if we have in T the clauses :
Qv-A AvVv-B Bv-C Cv-D
'represented by :

Ax(Q,A) Ax(A,B) Ax(B,C) Ax(C,D)

the GASP strategy generates Th(Q,B), from Th(Q,A) and Ax(A,B), while
the GALP strategy generates Query(A) from the initial query and all the corre-
sponding relevant theorems wich are : Th(A,B), Th(A,C) and Th(A,D). None
of these sentences are computed in the GASP strategy.

The figure 1 shows the Ax(x,y) relation graph and the Th(x,y) relation graph
edges computed by GASP. The figure 2 shows the edges computed by GALP.

- = ey owy
~
Y
- - — ~
‘.- - -~ -

-

~ ~ ~
q — A « B ~« C ~ D

”"-~~~\

Figure 1: Theorems computed by GASP strategy

Figure 2: Theorems computed by GALP strategy

From this very simple example we can understand that GALP always gener-
ates more sentences than GASP. Let’s consider now a theory T defining a graph
for the relation Ax(x,y) which is a tree, where each node has exaclty k prede-
cessors and the tree has n levels. In that case, when k is fixed and n grows, the

61

number of edges computed by GASP is of the order of 2k® while the number of
edges computed by GALP is of the order of nk®; the ratio is n/2, and is inde-
pendent of k; moreover in most applications n is less than or equal to 5. These
results give a quantitative idea of how much GALP is less efficient than GASP.

A natural conclusion would be to drop GALP strategy. However the con-
clusion is not so obvious if we consider the issue of theories containing recursive
definitions, in the sense defined by Henshen and Naqvi in [9].

Let’s consider the very standard example of the ancestors. If we have in T
the clauses :

L(x,y) V ~Ancestor(x,y) Ancestor(x,y) V -~Father(x, y)
Ancestor(x,y) V ~Ancestor(x,z) V =Father(z, y)

If we ask the query : L(x,y)? the conditional answer will contain an infinite
number of clauses, even if subsumed clauses are eliminated. Indeed we will get
all the formulas of the form :

L(x,y)V-Ancestor(x, z;)V ~Father(z;, ;1) V. . .V-Father(z;,2;)V -Father(z,,y)

The problem of having infinite answers is independent of the strategy. There
are several possible approach to solve the problem, the first one is to find a
finite repesentation for this infinite set, the second one is to cut the answer
computation according to some appropriate criterium, and the third one is to
consider a more restrictive definition of conditional answers leading to finite
answers.

We have investigated the third approach restricting conditional answers to
extensional conditional answers. In that case, since we does not have functional
symbol, the number of distinct ground literals is finite, and the number of ground
clauses is also finite. Nevertheless it is not obvious to design a strategy generating
ground clauses which does not generate also infinite sets of non ground clauses.

We shall see in the next section how the GALP strategy can be adapted for
this purpose. The basic idea is to delay theorems generations until we are sure
to be able to generate a “ground proof tree”: i.e. a proof tree where all the
clauses, except some axioms, are ground clauses.

That is the reason why the GALP strategy should not be droped without
more investigations.

62

6 Strategy for Extensional Conditional Answers

The strategy adapted from GALP is first informally presented with examples.

Let’s consider the theory T :

(1) Sxy V-Pxy V-P'xy (2) PxyV-QxzV-Rzy (3) P'xyV ~Q'xtV ~R'ty
(4) Qad (5) R'ed

If the query is : Sxy? we can derive the ground answer (8) with the following
proof :

(2) (4) = (6) PayV -Rdy
(3) (5) = (7) P'xbV -Q’xc
(1) (6) (7) = (8) SabV -~Rdb V =Q’ac

However this proof is not a ground proof as defined before, since (6) and (7)
are not ground. Moreover we can easily check there is no possility to generate
a ground proof tree because (4) (resp. (5)) can be resolved only with (2) (resp.

(3)), and any resolvent from (1), (2) and (3) is not ground because the parent
clauses does not contain constants.

That example shows that to adapt GALP we have in some particular cases
to infer from a clause some particular instantiation of that clause. Remember
that in any strategy based on Resolution Principle we cannot infer a clause
only by instantiating some variables. For example we cannot directly infer :
Pab V =Qac V -Rcb from (2) Pxy V -Qxz V -Rzy.

Nevertheless if we want to be able to generate only ground proof trees we need
this kind of inference if we want to generate only ground proof trees, as shows
the previous example, but we have to carefully apply this kind of instantiation.
We have to apply it only when we have a reason to support it. The reason
adopted in the adapted version of GALP is to allow to instantiate an axiom
with some constants only when we know that these constants will instantiate
corresponding variables in further inferences in the proof.

The problem now is to define a method to discover which variables will be
instantiated without generating a complete proof tree. For this purpose we

analyse how resolved literals allow to propagate the constants.

This analysis can be desribed with the same example.

63

First we generate all the queries and subqueries. That is informally repre-
sented by :

Sxy? and (1) = Pxy? and P’xy?
Pxy? and (2) = Qxz? and Rzy?
P’xy? and (3) = Q’xt? and R’ty?

The axiom (4) provides an answer to the query Qxz? which instantiates x
with a, and z with d; that is represented by Qad t. In the same way Qad T and
the axiom (2) instantiate x with a in answers to Pxy?; that is represented by
Pay 1. Then informally we have :

Qxz? and(4) = Qad 1
Qad T and (2) = Pay 1
R’ty? and (5) = R’cb 1
R’cb 1 and (3) = P'xb 1

Now we notice that any clause containing Pay, or one of its instances, in-
stantiates x with a in ~P’xy when it is resolved with (1). Then, in every clause
containing P’xy which is resolved with (1) and a clause containing Pay, the vari-
able x can be instantiated with a before the resolution. In particular (2) can
be instantiated with a/x before (2) is involved in the resolution with (1). The
fact that x can be instantiated with a in P’xy is represented by P’ay |. Then
informally we have :

Pay T and (1) = Play |
P’xb 1 and (1) = Pxb |

Pxb | and (4) and (2) = (6’) Pab vV ~Rda
P’ay | and (5) and (3) = (7’) P'ab V ~Q’ac

Finally we have :

(1) (6) (7) = (8) SabV =Rdb V ~Q’ac

The next example shows that when constants are propagated “down”, we

have to keep trace of the inference which allows to instantiate variables with
these constants.

Let’s consider a theory T with the clauses :

64

(1) Pxv-QxV-Rx (2)PxV-SxV-Rx (3) Rxv-Tx (4) Qa
If the initial query is Px?, with the same notations, we have :

Px? and (1) = Qx? and Rx?

Px? and (2) = Sx? and Rx?

Rx? and(3) = Tx?

Qx? and (4) = Qa1

Qatand (1) = Ra|

Ra | and (3) = (3) RaV -Ta

(3’) and (4) and (1) = (5) PaVv -Ta
(3’) and (2) = (6) PaV =SaV -Ta

In fact there is no reason supporting the derivation of (6) because the resol-
vent of (2) and (3) is (7) Px V =Sx V ~Tx which cannot be resolved with Qa.
Then there is no proof allowing to instantiate x with a in (7). To avoid this
truble we have to memorize that Ra | is generated in the context of an infer-
ence involving (1) and Qa 1, and we have to prevent the use of (3’) in another
inference context. If we denote the inference context in which constants can be
propagated down by : (1,Qa 1) we have :

Px? and (1) = Qx? and Rx?

Px? and (2) = Sx? and Rx?

Rx? and(3) = Tx?

Qx? and (4) = Qat

Qatand (1) = Ra|(1,Qat)

Ra |(1,Qa 1) and (3) = (3') RaV -Ta(1,Qa 1)
(3’) and (4) and (1) = (5) PaVv -Ta

Where (3') Ra vV <Ta(1,Qa 1) means that the clause (3’) can be involved

only in resolutions of the type : (1,Qa 1) . This information prevents (3’) to be
resolved with (2).

We consider that two literals 1 1 (resp. 1 |) and I’ 1 (resp. I’ |) which differ
only by the name of variables are equivalent. Therefore the process stops after a

finite number of steps even if we have recursive definitions because only ground
theorems are generated.

The adapted GALP version is called GRALP (“GR” is for ground). For its
definition we have to add new notations to those introduced in section 4.

65

Notations :

IQuery(l) : 1 is the initial query.
Query(l) : 1is a subquery.

Up(l) : the constants in 1 are in the query, or are transmitted from the

answers to some subqueries to the answer to the query; it was previously
denoted by 1 1.

Dni(l,(inf)) (read Down(l,(inference))) : the constants in 1 result of the
unification of the other literals in the inference “inf”, and can be used to
instantiate axioms containing a literal more general than l.

Dn(l) : same definition as Dni; the only difference is that the inference in
which 1 is intantiated is not explicited; it was previously denoted by 1 |.

(inf)=(e, Dn(l)/io, Up(-l)/ir, ..., Up(=lp)/ip) : “inf” is an inference
where @ is the name of an axiom of the form : 1 VI; V... V1., and 1is
unifiable with I{ , 1, is unifiable with f , ...1, is unifiable with I;,. To have
simpler notations sometimes we shall assume : ip =0 i; =1 ... ip = p.
That give the notation :

(inf)=(e, Dn(l), Up(-l), ..., Up(-lp))

Th(c,(inf)) : c is a theorem which can be used only in an inference of type
“inf”,

Comp(inf) : if Th(c,(inf)) is used in a particular inference inf’ involving
an axiom and some other theorems, Comp(inf) checks that this axiom
and these theorems are compatible with the conditions expressed by inf;
i.e. the axiom must be a, some of the resolved literals in the theorems
involved in inf’ must be instances of -ly,... ,-lp, and the inference inf’
must be dependent on a query which is an instance of 1.

® Ax(@ : ¢): cis an axiom called a.

e GAx(a: c): cis a ground instance of the axiom a.

66

GRALP Definition

(1) IQuery(1) — Dni(l, (#))

(2) IQuery(1) — Query(1)

For each i in [1,n] :

(3.) Query(1) A Ax(e: 1V V...V V... V],) = Query(-l;)

Endfor;

(4) Query(1) A Ax(a : 1V c) — Up(l)

(5) Query(l) AUp(=l1) A ... AUp(=l)) A Ax(e: 1V V... V], V) — Up(l)
‘For each j in [p+1,n] :

(64) Dai(L, (inf))AUp(=11)A. . AUD(=l)AAX(a : IVIyV. . .VIpV...VEV. . V)
— Dni(-l}, (e, Dn(1), Up(ly), ..., Up(ln)))

Endfor;
(7) Dni(l, (inf)) A GAx(a : 1V ¢) — Th(l V ¢, (inf))

(8) Dni(l, (inf)) AGAx(a : 1V]; V.. . V1, Vc)ATh(-]; Vey, (inf)) AComp(infy)A
.+« ATh(=ly V ¢g, (infy)) A Comp(inf,) = Th(IVe; V... Ven Ve, (inf))

where, if we have Comp(inf;) = Comp(a : Dn(l), Up(2L,),. .. , Up(-l;,))
where for each i; we have i; in [1,n], Comp(inf;) is satisfied by a set of sentences

S iff there is in S sentences unifiable with the following sentences :

Dni(l, (inf)) Ax(a:lVL V...Vl Vc)
Th(-} V ¢;, (a : Dn(1), Up(-L;,), ..., Up(-ly,)))

and for each j in [1,q] :

Th("lij \ cij) (infij))

67

Comments on the GRALP Definition :

o Rules (1) and (2) : we have particular rules for the initial query because
the constants in the initial query can be propagated down without any
constraints about some particular inference.

o Rule (4) : if the literal 1 in the axiom 1V ¢ contains some constants, these

constants will be propagated if the axiom is resolved with another clause
on the literal 1. Example :

From : Query(Pxy) and Ax(a : Paz V ~Rz), the rule (4) allows to generate
Up(Pay).

e Rule (5) : if clauses containing literals like —; are resolved with the axiom,
some constants in the -l;s will be propagated into 1. Example :

From : Query(Sxy) and Ax(8 : Sxy V-PxzV =Qzy) and Up(Pay), the rule
(5) allows to generate Up(Say).

e Rule (6.i) : constants which are propagated down by a subquery 1, and
constants which are propagated up by clauses containing -l;, are trans-
mitted to the other literals by the unification process and are propagated
down via the literals ljs. In that rule we may have p=(0. Example :

From : Dni(Sat,(inf)) and Ax(y : Sxy V ~Vxz V =Vzy) and Up(Vbu), the
rule (6.i) allows to generate : Dni(Vab,(y, Dn(Sat)/1, Up(Vbu)/3)) and
Dni(Vaz,(y, Dn(Sat)/1)). Here Up(Vbu)/3 imposes the condition that any
inference of type (v, Dn(Sat)/1, Up(Vbu)/3)) must involve a clause con-
taining an instance of Vbu, for example the clause Vbc vV Tbc, and that
this instance has to be resolved with third literal in v, that is = Vzy.

® Rule (7) : the inference inf which has allowed to generate Dni(l,(inf)) is
transmitted to the generated ground theorem 1V c. Then this theorem can
be only involved in inferences of type inf. Example :

From : Dni(Vaz,(v,Dn(Sat)/1)) and Ax(6 : VxdV ~Ux), the rule (7) allows
to generate : Th(Vad v -Ua, (y,Dn(Sat)/1)).

The premise GAx(a :1V ¢) in the rule means that there must bein S a
sentence Ax(a : 1’V ¢’) such that, after unification with o, (I' V ¢')o is a
ground clause.

® Rule (8) : all the premises of the form Comp(inf;) check that the clauses
-l; V ¢; are involved in an appropriate inference. Example :
From : Dni(Sxy, #) Ax(a :Sxy V -pxy V =P'xy)
Th(Pab v -Rda, (a,Dni(Sxy)/1, Up(P’xb)/3))
Comp(a, Dni(Sxy)/1, Up(P’'xb)/3)

68

Th(P'ab vV =Q’ac, (a,Dni(Sxy)/1, Up(Pay)/2)
Comp(a, Dni(Sxy)/1, Up(Pay)/2)
the rule (8) allows to infer Th(Sab vV =Rdb V ~Q’ac,).

The premise Comp(a, Dni(Sxy)/1, Up(P’xb)/3) means that the inference
must involve a theorem where the resolved literal is an instance of P’xb,
and this literal must be resolved upon the third literal P’xy in a.

e Inference type and inference instance : in general inf refers to an inference
type. For example inf=(v, Dn(Sat)/1, Up(Vbu)/3)) represents an inference
type. An inference instance of this type is any inference where a v instance
obtained by unification of Sat and its first literal is resolved with a set of
clauses such that one of them contains an instance of Vbu which is resolved
with the third literal of 4. For example the inference involving the clauses

Say V-VazVv-Vzy VbcVTbe VabV Tab
where the resolvent is : Sac vV Tab VvV Tbc.

e Subsumed sentences : here we have to change the definition of subsumed
sentences. The reason is that, if we have Up(Pabx) and Up(Payz) we don’t
have to remove Up(Pabx) because it carries an information not derivable
from Up(Payz). However Up(Pabx) and Up(Pabz) carry the same infor-

mation and we. can remove one of them. It is the same for Dn(abx) and
Dn(ayz).

In the new definition we say Up(l) (resp. Dn(l)) subsumes Up(l’) (resp.
Dn(l’)) iff 1is equal to I’, up to a variable renamimg. We say inf subsumes
inf’ iff inf is equal to inf’, up to a variable renaming. We say Th(c,(inf))
subsumes Th(c’(inf’)) iff inf subsumes inf’ and ¢ subsumes ¢’ in the usual
sense. We say IQuery(l) (resp. Query(l)) subsumes IQuery(l’) (resp.
Query(1’)) iff 1 subsumes 1’ in the usual sense.

A least fixed point operator can be associated to GRALP like for GALP.
It is easy to check that the least fixed point is computed after a finite number
of steps. That is because in the generated sentences of the form Th(c,(inf))
c is always a ground clause, and because the literals which are arguments of
the predicates Up, Dn, Dni, Query and IQuery are in a finite number (up to a
variable renaming).

69

7 Conclusion

We have presented two strategies to generate the conditions which allow to know
the answer to a query in the context of a non-Horn Deductive Data Base. The
basic idea is to focus as far as possible the derivation process on clauses which
are relevant for the query.

We have shown that the GASP strategy is always more efficient than the
GALP strategy. A least fixpoint operator can be associated to both strategies.
This computation technique prevents to repeat several times the computation of
the answer to the same query or subquery. That is a significant advantage with
respect to computation techniques “a la Prolog”.

In the case of recursive definitions the answer may be infinite. However if we
restrict the answer to ground clauses the answer is finite because we don’t have
functional symbols. For this particular case we have designed the GRALP strat-
egy, an adaptation of GALP to produce only ground clauses. The associated
least fixpoint operator always compute the answer in a finite number of steps.
However at this time we have no result about the completeness of GRALP strat-
egy because we have no formal definition of an extensional conditional answers.
That needs more investigations, and the GRALP definition must be considered
as a work in progress.

It should also be clear that the definition of these strategies has to be con-
sidered as a general framework for further refinements. Indeed there are many
open choices to implement these strategies, and, depending on these choices, the
performances can be strongly improved.

References

[1] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive
query processing strategies. In Proc. ACM PODS, 1986.

[2] L. Cholvy and R. Demolombe. Querying a rule base. In Proc. of 1st Int.
Conf. on Ezpert Database Systems, 1986.

[3] R. Demolombe. An efficient evaluation strategy for Non-Horn Deductive
Data Bases. In IFIP Congress’89. Elsevier, 1989.

[4] R. Demolombe and L. Fari nas del Cerro. Two Inference Rule for Hypothesis
Generation. Technical report, ONERA-CERT, 1990.

70

[5] E. Lozinskii. Evaluating queries in deductive databases by generating. In
Proc of ITCAI 1985.

[6] E. Lozinskii. Computing facts in non-horn deductive systems. In Proc of
VLDB, 1988.

[7] J. Minker. On indefinite databases and the closed world assumption. In
Proc. of 6th Conference on Automated Reasoning, 1982.

[8] 7. Minker and A. Rajasekar. Procedural interpretation of non-horn logic
programs. In Proc. Conference on Automated Deduction, 1988.

[9] S. Naqvi and L. Henshen. Recursive query answering with non-horn clauses.
In Proc. Conference on Automated Deduction, 1988.

(10] R. Reiter. Nonmonotonic reasoning. In Annual Reviews of Computer Sci-
ence, 2, 1987.

[11] R. Reiter and de Kleer. Foundations of assumption-based truth maintenance
‘system. In AAAI-87, 1987.

(12] J. Rohmer, R. Lescoeur, and J-M. Kerisit. The alexander method : a
technique for the processing of recursive axioms in deductive databases.
New Generation Computing, Vol. 4(Num. 3), 1986.

[13] L. Vieille. Recursive axioms in deductive databases : the query-sub-query
approach. In L.Kerschberg, editor, Proc. 1st Int. Conf. on Ezpert Database
Systems. Benjamin/Cummings Pub. Comp., 1987.

(B!

