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Abstract
Purpose: The stability problem for non-conservative multi-parameter dynamical system is usually associated with labor-
intensive calculations, and numerical methods do not always allow one to obtain the desired information. The presence of 
circulatory forces often leads to the so-called ”destabilization effect” of the system under the influence of small dissipative 
forces. In this regard, it seems important to develop analytical approaches that make it possible to use a simplified scheme 
for checking the stability conditions.
Methods: When obtaining and analyzing stability conditions, the algebra of polynomials and elements of mathematical 
analysis are applied. To obtain a simplified scheme for checking the stability conditions, an asymptotic method is used.
Results and Conclusion: A mechanical system with four degrees of freedom which is under the action of dissipative, poten-
tial and non-conservative potential (circulatory) forces is considered. The stability problem of friction-induced vibrations 
is studying. In the case of weak damping an analytical approach is proposed that makes it possible to simplify the analysis 
of stability conditions, which, due to the presence of many uncertain parameters, are very cumbersome. With the help of 
numerical testing, the adequacy of the results obtained for the reduced conditions and full stability conditions was estab-
lished. The results of the analysis make it possible to single out the ”advantageous” regions in the space of dimensionless 
parameters, which makes it possible to improve the design of the system to increase its reliability.

Keywords Friction-induced vibrations · Four degrees of freedom · Non-conservative potential forces · Weak damping · 
Mechanical system

Introduction

The history of research on the stability of systems with 
nonconservative positional (circulatory) forces dates back 
to Euler, who analyzed the static buckling of elastic com-
pressed rods and formulated a theory of buckling, which can 
be regarded as the first approximation in solving the stability 

problem of lightweight load-bearing structures. The problem 
was updated and attracted much attention of scientists in the 
field of structural mechanics in the second half of the last 
century, when flutter was theoretically discovered as a result 
of the action of so-called follower forces.

In 1952, Hans Ziegler investigated the flutter problem in 
aerodynamics and considered the model of a double pen-
dulum fixed at one end and loaded with a tangential load 
at the other end [1]. He discovered a phenomenon with an 
unexpected property: there is a gap between the stability 
regions in the case of vanishingly small damping com-
pared to the case when there is no damping. This problem 
attracted great attention of scientists in the field of struc-
tural mechanics in the second half of the last century, and 
numerous studies were devoted to the theoretical analysis 
of this problem [2–6]. Circulatory forces are present in 
many mechanical systems and often lead to undesirable 
effects such as self-excited vibrations in rotor dynamics 
[7, 8], friction-induced vibrations [9, 10], squeal vibration 
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in drum brakes [11, 12], flutter in aeroelastic systems [13, 
14], the Levitron system [15] and others.

A wide variety of works has been devoted to study-
ing the different aspects of this phenomena. The paper 
[16] proposed a physical explanation of the mechanism 
behind the destabilizing effect of small internal damping 
in the dynamic stability of Beck’s column. Several theo-
rems related to the stability problem of non-conservative 
linear systems were presented in a paper [17]. In paper 
[18], some paradoxical phenomena that arise in the study 
of the dynamic stability of finite-dimensional autonomous 
mechanical systems were discussed. In [6], systems with 
two neutrally stable damping levels were considered, at 
which the system firstly acquires stability and then loses it 
as the damping level increases. In [19], the Brouwer prob-
lem of a heavy particle in a rotating vessel was considered. 
This problem highlights some important effects that arise 
in the study of the dynamics of systems with dissipation-
induced instabilities. In paper [20] some optimized algo-
rithms for stability analysis of systems with circulatory 
forces were suggested.

Despite the extensive literature on the stability of 
mechanical systems with circulatory forces, the analytical 
approaches that may be applied to multi-parameter systems 
with several degrees of freedom are not well developed. 
Usually, the problem is solved using numerical analysis, 
which gives a very limited understanding on the dynamics 
of the system: in particular, research using grid search is 
ineffective due to the presence of a large number of unknown 
parameters. These unknown parameters may arise at the 
design stage, in the process of optimization the tuned param-
eters (stiffness and damping of the dynamic absorber for 
instance), unknown excitations etc. Besides, such methods 
are unreliable and too expensive in terms of computation 
time. The problem is complicated by the fact that there are 
no universal criteria for making a conclusion based on the 
general structure of the circulatory forces—a kind of analogs 
of the Kelvin—Chetaev theorems [21, 22].

Many theoretical models have been presented in the lit-
erature to describe and predict friction-induced vibrations 
[15, 23–26]. Along with the use of very simple models with 
lumped parameters, more complex finite element models 
are considered, but experimental verification turns out to 
be ambiguous. One of the main reasons for this is the high 
sensitivity of such systems to changes in parameters which 
can occur under certain conditions and that predictions can 
be sensitive to parameters that are often neglected as irrel-
evant [27, 28].

In the present paper, we consider the system with four 
degrees of freedom, which can be considered as a phenom-
enological model of multi-parameter multi-DoF system [25, 
26]. Our aim is to suggest an effective approach for ana-
lyzing stability conditions for such systems and elicit the 

mechanical parameters more important in order to enlarge 
the stability region in parameter space.

The paper is organized as follows. In the next section, 
some auxiliary notes from algebra are presented. In the 
following section, the mechanical system under study is 
described and a general form of stability conditions is given. 
The next section analyzes the case when the damping in 
joints is neglected and reduces the system of stability condi-
tions to a single inequality. Finally, in the last section these 
results are expanded for a case of a weakly damped system, 
and numerical testing is provided.

Mathematical Annex

In 1914, Lienard and Shipard proposed a criterion [29] that 
simplifies the well-known Hurwitz criterion. It reads:

The necessary and sufficient conditions for a real 
polynomial

to have all roots with negative real parts can be presented in 
one of the following forms:

Here

Conditions (2)–(5) have a certain advantage over the Hur-
witz criterion, since they contain approximately half as many 
determinant inequalities as the Hurwitz conditions. Condi-
tions (2) were presented in original paper [29], and condi-
tions (3)–(5) were proved by Gantmakher [30] and may be 
applied depending on the form of the polynomial f(z). For 
instance, if the last has the even degree, then conditions (2), 
(4) are more easy than conditions (3), (5) (there is no need 
to compute the determinants of highest degree n).

We will also use the criterion for the absence of complex 
roots in the fourth-degree polynomial.

Pokrovsky criterion [31, 32]. For a real polynomial

(1)f (z) = anz
n + an−1z

n−1 +⋯ + a1z + a0 (a0 > 0)

(2)a0 > 0, a2 > 0, a4 > 0,⋯ ,Δ1 > 0,Δ3 > 0,⋯ ,

(3)a0 > 0, a2 > 0, a4 > 0,⋯ ,Δ2 > 0,Δ4 > 0,⋯ ,

(4)a0 > 0, a1 > 0, a3 > 0,⋯ ,Δ1 > 0,Δ3 > 0,⋯ ,

(5)a0 > 0, a1 > 0, a3 > 0,⋯ ,Δ2 > 0,Δ4 > 0,⋯ .

(6)Δj = det

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a3 a5 ⋯ ⋮

a0 a2 a4 ⋯ ⋮

0 a1 a3 ⋯ ⋮

0 a0 a2 a4 ⋮

⋯ ⋱

⋯ aj

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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had four different real roots, it is necessary and sufficient to 
satisfy the inequalities

where dis(P) is discriminant of the polynomial P(z).
In the case of multiple roots, the last inequality becomes 

the equality.
The above two criteria lead to the following consequence:
Statement 1. The polynomial (7) has four different nega-

tive roots if and only if the inequalities (8) supplemented by 
inequalities

hold.

Mechanical Model and Motion Equations

The model consists of two mass blocks m1 and m2 which 
are coupled by viscoelastic spring, its damping and stiff-
ness coefficients are denoted as da and ka respectively. These 
blocks are held against three moving bands as it is shown 
in Fig. 1.

It is assumed that the belts move at a constant speed, 
and the coefficient of friction �̃� on the contacting surfaces 
is constant; for the sake of simplicity, this coefficient is 
supposed to be the same for all friction surfaces. Due 
to the pre-load applied to the system, it is assumed that 
the masses and bands are always in contact. The classi-
cal Coulomb’s law is used. In addition, it is assumed that 
the directions of the tangential frictional forces Ft do not 
change, since the relative velocities between the blocks 

(7)P(z) = c4z
4 + 4c3z

3 + 6c2z
2 + 4c1z + c0

(8)
c2
3
− c4c2 > 0, 12c4

3
− 24c4c

2

3
c2

+ 4c2
4
c3c1 + 9c2

4
c2
2
− c3

4
c0 > 0, dis(P) > 0,

(9)6c3c2c1 − c2
3
c0 − c4c

2

1
> 0, c0 > 0, c2 > 0, c4 > 0

and the belt are considered to be positive. Thus, the tan-
gential friction forces are proportional to the normal forces 
Fn , namely Ft = �̃�Fn.

The linearized equations of motion have the following 
view [25]

Here x = (x1, x2, x3, x4)
T describes the displacement vector, 

symmetric matrices M,D,K represent the mass, damping 
and structural stiffness matrices, respectively; the matrix K� 
represents the influence of frictional forces. These matrices 
have the following form

One can see that matrix K� is non-symmetric neither skew-
symmetric matrix and in terms of so-called MDGKN struc-
turing [17] may be presented in the form K𝜇 = �̃�(K + N) 
where matrix �̃�K is classified as a part of positional forces 
influence, and �̃�N represents the non-conservative positional 
or circulatory forces.

(10)Mẍ+ Dẋ+ (K + K𝝁)x = 0.

(11)

M =

⎛⎜⎜⎜⎝

m1 0 0 0

0 m1 0 0

0 0 m2 0

0 0 0 m2

⎞⎟⎟⎟⎠
,

D =

⎛⎜⎜⎜⎝

d12 + da 0 − da 0

0 d11 0 0

−da 0 d22 + da 0

0 0 0 d21

⎞⎟⎟⎟⎠
,

K =

⎛⎜⎜⎜⎝

k12 + ka 0 − ka 0

0 k11 0 0

−ka 0 k22 + ka 0

0 0 0 k21

⎞⎟⎟⎟⎠
,

K𝜇 = �̃�

⎛
⎜⎜⎜⎝

0 k11 0 0

−k12 0 0 0

0 0 0 k21
0 0 − k22 0

⎞
⎟⎟⎟⎠
.

Fig. 1  Mechanical system 
(adopted from [25])
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For the sake of simplicity, we consider the case of identi-
cal masses and two pairs of identical joints, namely

Introducing the dimensionless parameters �, p, q, �,� and 
time � according to formulas

we can write down the characteristic polynomial

Here

All coefficients of characteristic polynomial (14) are posi-
tive, and stability conditions are

where

(12)
m2 =m1 = m, k21 = k11, k22 = k12,

d21 = d12 = d22 = d11.

(13)
k12 = 𝜅k11, ka = pk11, da = qd11,𝜔1 =

�
k11

m
,

d11 = 𝜀𝜔1, t =
𝜏

𝜔1

, �̃� =
√
𝜇,

(14)P(�) = a8�
8 +⋯ + a1� + a0.

(15)

a8 = 1, a7 = 2�(2 + q), a6 = 2 + 3� + 2p

+ 6�2(1 + q), a5 = �[6 + 9�

+ 6p + q(4 + 3�) + 2�2(2 + 3q)], a4 = 1

+ 6� + 2�2 + p(4 + 3�)

+ 3�� + �2[3(2 + 3� + 2p)

+ 2q(4 + 3�)] + �4(1 + 2q),

a3 = �{2[1 + 6� + 2�2

+ p(4 + 3�) + q(1 + 3�)] + 3��(2 + q)

+ �2[2 + 3� + 2p + q(4 + 3�)]},

a2 = �(3 + 4�) + 2p(1 + 3�) + ��(3 + 4� + 3p)

+ �2[1 + 6� + 2�2 + p(4 + 3�) + 2q(1 + 3�)

+ 3��(1 + q)], a1 = �[�(3 + 4�) + 2p(1 + 3�)

+ 3�q + ��(3 + 4� + 3p + 3q)],

a0 = �[2� + 3p + �(4� + 3p) + 2�2�].

(16)Δj > 0 (j = 3, 5, 7),

(17)

Δ3 = �2{−6��(q + 2)2 + �2(q2 + 12q + 11)

+ 12�(2pq + p − q − 1)

+ 4(3p2 − 2p + 1) + 4q(6p2

− 4p + 1) + 64(q + 1)3

+ �2[6�(q + 1)(2q2 + 13q + 10)

+ 4p(18q2 + 29q + 10) + 4(4q3 + 12q2

+ 17q + 10)]}, Δ5 = �3[Δ50 + O1(�
2)],

Δ7 = �4[Δ70 + O2(�
2)].

Expressions for Δ50 and Δ70 are much more cumbersome and 
are presented in Appendix.

Stability Conditions for the Case " = 0

Even in considered particular case (12), the expression 
for Δ7 is extremely huge. For this reason, we shall use the 
asymptotic expansion on the small parameter �. First of all 
let us discuss the stability conditions for ”generative” sys-
tem (in mathematical meaning), i.e. we take � = 0. With 
such assumption the characteristic polynomial P(�) becomes 
biquartic polynomial. The system is marginally stable if 
all eigenvalues are purely imaginary, in other words, with 
respect to variable Λ = �2 this polynomial has four nega-
tive roots.1 We write the stability conditions according to 
Statement 1.

where

The inequalities (9) are satisfied for all admissible values of 
incoming parameters.

Inequalities (18)–(20) determine the region of stability 
in the space of dimensionless parameters (the region below 
the surface shown in Fig. 2). Physically, these conditions 
determine the range of safe values for friction coefficient �. 
This interval can be significantly increased with a suitable 

(18)
U1 =

1

144
[(3𝜅 + 6p − 2)2 + 8(1 − 3𝜅 + 3𝜅2) − 72𝜇𝜅] > 0,

(19)

U2 =
1

64
{(𝜅2 + 4p2)[19𝜅2 + 8p(3𝜅 − 2) + 12p2 − 24𝜅 + 8]

− 16𝜇𝜅[𝜅(3𝜅 − 1 + p) + 6p2] + 16𝜇2𝜅2} > 0

(20)
U3 =

(𝜇𝜅)2

256
[u30 + u31𝜇𝜅 + u32(𝜇𝜅)

2

+ 12u33(𝜇𝜅)
3 + 32(𝜇𝜅)4] > 0,

(21)

u30 = (�2 + 4p2)(1 − 2p + 9p2)[1 − 3� + 2�2 + p(3� − 2)]2,

u31 = 2[�(1 − 12� + 29�2 − 24�3 + 4�4) + p�(� − 1)(5 − 43�

+ 44�2 − 4�3) − p2(30 − 107� + 243�2 − 281�3 + 144�4)

+ p3(120 − 301� + 390�2 − 223�3) − 3p4(130 − 264�

+ 201�2) + 54p5(10 − 11�) − 432p6],

u32 = 1 − 30� + 109�2 − 60�3 + 4�4 − 2p(2 − 45� + 109�2

− 30�3) + p2(274 − 474� + 645�2) − 18p3(30 − 23�)

+ 1485p4, u33 = −[1 − 8� + 2�2 + 2p(4� − 1) + 33p2].

1 For simplicity, we do not consider the interior resonance case, i.e 
the presence of multiple roots.
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choice of coefficients characterizing the stiffness and 
damping of the hinge connecting the masses m1 and m2.

To analyze system of inequalities (18)–(20), we 
need first clarify some properties of the polynomials 
Uj(j = 1, 2, 3).

Lemma 1 The polynomial U2(�) has two positive roots if its 
discriminant

is non-negative.

Lemma 2 In special case

the system of inequalities (18)–(20) is inconsistent (the equi-
librium is unstable for any value of �).

Lemma 3 For any positive values of �, p the polynomial 
U3(�) has a pair of complex conjugate roots and two real 
roots. A single exception is the case p = p+ = 1 +

√
2�, in 

which there are four positive roots.

Remark 1 In fact, if p ≠ p+, p̃, then two real roots of poly-
nomial U3(�) are positive. This fact may be proven thor-
oughly using Sturm theorem or similar mathematical tools, 
although, technically, such proof is tedious enough and we 
refer here to image of 3-D surface U3(�, �, p) = 0 presented 
in Fig. 2.

(22)
dis2 =

1

64
[17�4 + 4�2(15p2 + 2p − 1)

− 48p2�(p − 1) + 32p2(3p2 + 2p − 1)]

(23)p = p̃ ≜
2𝜅2 − 3𝜅 + 1

2 − 3𝜅
, 𝜅 ≠

2

3

Consider now three resultants for each pair of polyno-
mials Uj(�) (j = 1, 2, 3). The corresponding expressions are 
given by the following formulas

(expressions for two others are presented in Appendix). The 
equality of each resultant to zero may be interpreted geomet-
rically as part of the line belonging to the first quadrant of 
the parametrical plane �p (the curve of fourth order and two 
curves of eighth order). These curves are shown in Fig. 3.

Let us take a look at Fig. 3a. Inside each of the open 
domains Ia, IIa, IIIa the hierarchy of values of the roots 
�1,�31,�32 is preserved. Indeed, let us assume the con-
trary—let, for instance, within the domain Ia exist two points 
M1 and M2 with different hierarchies. Then there exists a path 
M1M2 which belongs to this domain, and at some point M3 of 
this path we have relation rez13 = 0, because rez13(�, p) is the 
continuous function on its arguments. However, this equality 
may happen only on the boundary of the domain, and point 
M3 does not belong to this boundary. The same argumen-
tation is valid also for domains IIa and IIIa. Now, taking 
arbitrary points at each of the domains we can reveal the 
corresponding hierarchy. Namely, we have 𝜇31 < 𝜇1 < 𝜇32 
in the domains Ia, IIIa and 𝜇31 < 𝜇32 < 𝜇1 in the domain IIa. 
With the similar reasoning we have the following results for 
Fig. 3b, c: 𝜇32 < 𝜇21 in domain IIb; 𝜇31 < 𝜇21 < 𝜇32 < 𝜇22 
in domain IIIb; 𝜇1 < 𝜇21 in the domain IIc; 𝜇21 < 𝜇1 < 𝜇22 
in the domain IIIc and 𝜇1 < 𝜇21 in the domain IVc. (In the 
domains Ib, Ic the expression dis2(�, p) is negative.) Now, 
bringing together these results, we can make a conclusion 
about hierarchy of all six roots of polynomials Uj(�) with 
the aim to find the solution of system (18)–(20). Results are 
presented in Table 1 and Fig. 4.

Let’s take a look at the situation in zone 4 for example. 
Remind, that inequality U1 > 0 is equivalent to restriction 
𝜇 < 𝜇1. The inequality U2 > 0 is equivalent to condition 
� ∈ (0,�21)U(�22, 0) if dis2(𝜅, p) > 02 and is fulfilled other-
wise. Finally, the inequality U3 > 0 is equivalent to condi-
tion � ∈ (0,�31)U(�32,+∞). Hence, in zone 4 in order to 
satisfy all three inequalities (18)–(20) we have restriction 
𝜇 < 𝜇1. But on subinterval [�21,�1) the second inequality is 
broken, and on subinterval [�31,�21) the third inequality is 
not valid. At the same time, all three inequalities are fulfilled 
if � ∈ (0,�31). In the same manner one can see that in all 
other zones we also have this limitation on �. In other words, 
system (18)–(20) is equivalent to a single inequality 𝜇 < 𝜇31.

res12 = 17�4 + 4�2(15p2 + 4p − 1)

+ 48�p2(1 − p) + 32p2(3p2 + 2p − 1)

Fig. 2  The 3-D surface U3(�, �, p) = 0

2 If dis2 = 0, then, as it follows from Fig.  3b, the multiple root of 
U2(�) exceed the value �1. Thus, if the inequality U1 > 0 is true, this 
fact implies the fulfilment of inequality U2 > 0.
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Numerical Testing and Discussion

Now let us consider the case when the weak damping in the 
joints between the masses is present. Let us turn to the con-
dition Δ7 > 0. For small values of � , its sign is determined 
by the sign of the expression Δ70, which for q = 0 coincides 
with the sign of U3(�). As one can see from Fig. 5, the fulfill-
ment of condition Δ7 > 0 entails the fulfillment of two other 
conditions (16) In addition, numerical experiments show 

that varying the parameter q within a fairly wide range has 
a rather weak effect on the boundary of permissible values 
of � (Fig. 6). Thereby, we shall give our conclusion based on 
the analysis of inequality (20) and thereafter shall verify its 
correspondence to the stability conditions (16).

Let us set a task of finding the optimal values for stiff-
ness ratios �, p and damping ratio q which allow to maxi-
mize the range of dimensionless parameter �.3 We shall use 
the asymptotical expansion for Δ7 on �, and as a first step 
we consider the generating case, i.e. stability conditions for 
� = 0 which are governed by value �31(�, p). Remind that 
this is the least root of the quartic polynomial U3(�). Actu-
ally, it can be written in explicit form using, for instance, 
Ferrari’s method, but this way is completely impractical, 
because the resulting expressions are extremely bulky (and 
strongly irrational), and there is a negligible chance to 
extract some information from their analysis. For this reason, 
we consider �31 as implicit function U3(�, �, p) = 0. At the 
moment, we cannot separate the least root of this equation, 

Fig. 3  Partition of the parametric plane �p by curves res
js
= 0, j, s = 1, 2, 3, j < s. The dash lines correspond to instability case p = p̃

Table 1  Hierarchy of roots of the polynomials U
j
(p) depending on 

values �, p

Zone Ref. to Fig. 3 Hierarchy of the roots

1 Ia, Ib, Ic 𝜇31 < 𝜇1 < 𝜇32

2 Ia, IIb, IIc 𝜇31 < 𝜇1 < 𝜇32 < 𝜇21

3 Ia, IIIb, IIc 𝜇31 < 𝜇1 < 𝜇21 < 𝜇32 < 𝜇22

4 Ia, IIIb, IIIc 𝜇31 < 𝜇21 < 𝜇1 < 𝜇32 < 𝜇22

5 IIa, IIIb, IIIc 𝜇31 < 𝜇21 < 𝜇32 < 𝜇1 < 𝜇22

6 IIIa, IIIb, IIIc 𝜇31 < 𝜇21 < 𝜇1 < 𝜇32 < 𝜇22

7 IIIa, IIIb, IVc 𝜇31 < 𝜇1 < 𝜇21 < 𝜇32 < 𝜇22

3 Such a choice is explained by the fact that friction coefficient �̃� 
is generally considered as one of the most important parameters in 
brake systems.
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but we can consider a general problem of extremum for this 
implicit function with respect to variable �. Thus, we can 
find all points (�, p) satisfying relations

and then verify which of them correspond to the root �31.

The possibility of a direct finding the solutions of system 
(24) is questionable because of high degrees of incoming 
polynomials. From the other side, the necessary conditions 
for system equalities (24) be consistent are the equalities 
to zero two pairs of resultants of these three polynomials. 
Both resultants taken on variable �� = �� are huge enough 
(polynomial of 28th order on variables �, p ), but allow the 
factorization with the following multipliers

(24)
�U3

��
= 0,

�U3

�p
= 0, U3 = 0

and only two last of them may be equal to zero (both are 
present in the decomposition of resultants). According to 
Lemma 2, if (3� − 2)p + 2�2 − 3� + 1 = 0, then the motion 
is unstable (flutter instability), hereby this case may be 
excluded from further consideration. Finally, we have two 
candidates for extremum p = 1 ±

√
2�.

Generally, now we have to calculate the second derivatives 
in order to check if the found stationary points of implicit func-
tion U3(�, �, p) = 0 are extremum points for �31. However, 
taking into account results of Lemma 3, we can straight away 
take the variations of the values p = 1 ±

√
2� which are can-

didates for extremum points and analyze the behaviour of the 
function U3(�) in the vicinity of each point. Namely, substituting 
p = 1 −

√
2� + �p, and seeking the value of � in the form of 

power series �(0) + �1�p +⋯ , we have the following expansion

Here

(25)

p2 > 0, (3𝜅2 + 2)2 > 0, 9p2 − 2p + 1 > 0,

𝜓1(𝜅, p)
3 > 0, (3𝜅 − 2)p + 2𝜅2 − 3𝜅 + 1, [2𝜅2 − (p − 1)2]2,

(26)
U3 =

2321 − 204
√
2

8
[2303�2 − 64(34

√
2 − 3)�+

+ 16(68 − 3
√
2)]2�4(�

(1), �)�2
p
+ O(�3

p
).

(27)

�(0) =
3 − 2

√
2

4�
(9�2 − 8

√
2� + 4), �4 = �2(�(1))2

+

�
3
√
2

4
− 1

�
�(17� − 8

√
2)�(1)

−

√
2

8
(99 − 70

√
2)(3� + 2)2.

Fig. 4  Zones which specify the hierarchy of the roots �
js
. The dash lines correspond to instability case p = p̃

Fig. 5  Schematic view of surfaces Δ3 = 0 (green), Δ5 = 0 (red), 
Δ7 = 0 (blue)
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Two first multipliers in formula (26) are positive, hence we 
have condition �4 = 0 which defines two values for �(1). Tak-
ing into account that (99 − 70

√
2) = 1∕(99 + 70

√
2) > 0, 

one can see that these values have opposite signs. If 𝛿p > 0, 
then negative root of �4 corresponds to �31, and positive root 
corresponds to �32 (as �31 ≤ �32 according to our nomencla-
ture). In case 𝛿p < 0 the correspondence is on the contrary.

The key moment here is that point p = 1 −
√
2� is not 

the point of extremum, because both branches B1
�
, B2

�
 of 

the curve U3(�, p) = 0 are monotonic in the vicinity of this 
point. Moreover, there are no other points of extremum, 
thus these branches are monotonic for any value of p 
(Fig. 7). Thereby, the curve � = �31 is composed of two 
semi-branches—semi-branch B1

�
 for p ≤ 1 −

√
2� and 

semi-branch B2
�
 for p > 1 −

√
2𝜅, and the maximal pos-

sible value for �31 is defined according to formula (27).

Remark 2 There is no need to do such verification for point 
p = 1 +

√
2�, because, according to Lemma 3, this case is 

related to the roots �33,�34 which are complex everywhere 
except this point (the imaginary part turns to zero here). The 
branches B1

�
, B2

�
 are still monotonic (Fig. 8d–f).

Expression for �(0) from formula (27) has a minimum 
at � = 2∕3, , respectively, taking into account the constraint 
𝜅 <

√
2∕2, we see that the limit value for � increases with 

decreasing value of �. Due to the design features of the sys-
tem, the value for � has some lower constraint � ≥ �0 ( � 
cannot be ”too” small), therefore, the optimal choice will 
be � = �0, p = p− = 1 −

√
2�0. On the other hand, if the 

parameter p is ”moderately tunable”, that is, due to the fea-
tures of design may take values from some limited range 
[p1, p2] which does not contain point p−, then, the optimal 
choice depends on whether the value of � exceed 

√
2∕2 or 

not. If 𝜅 <
√
2∕2 and p− < p1, then values which are close 

to p1 are preferable—the line � = �31(p) decreases slowly 
(Fig. 8). If p− > p2, p1 > pQ, then the value p = p2 is our 
choice. If p1 < pQ < p2 < p−, then quantities �31(p1) and 
�31(p2) should be compared.

In case � ≥
√
2∕2 the choice is more evident, because the 

function � = �31(p) is monotonic, thus values from the right 
side of interval [p1, p2] are likely to apply (Fig. 8f). Of course, 
it is necessary to take into account, that this is true for values of 
� which are not close to the value 2/3,  because in the vicinity 

Fig. 6  Affinity of the surfaces U3 = 0 (blue) and Δ7 = 0 (green): a � = 0.03, q = 0.02; b � = 0.03, q = 1; c � = 0.01, q = 0.5; d � = 0.1, q = 0.5
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of this point the threshold for � is drastically lower compara-
tively to values � ≥ 2 (Fig. 8d, e).

Thus, to increase the range of permissible values for fric-
tion coefficient �̃�, we can offer two options for the structure 
of the matrix K ∶ (a) the stiffness of the hinges 12, 22 (Fig. 1) 
is 3–5 times less than the stiffness of the hinges 11, 21, and 
the stiffness in the joint between the masses is approximately 
equal to the last one ( p ≈ 1 ); (b) ”reverse” distribution—the 
stiffness of the hinges 12, 22 (Fig. 1) is 3–5 times higher than 
the stiffness of the hinges 11, 21, and p ≥ 1 ). At the same time, 
choosing the values for � from interval ≈ [0.7, 1.3] is a bad 
choice, because the threshold for � is about ten times lower.

Conclusions

The article considers the stability problem for a multi-
parameter mechanical system with four degrees of freedom, 
considered earlier in works [25, 26]. On the basis of the 
algebraic Lienard–Shipard criterion, stability conditions are 

obtained and analyzed. In the case of weak damping, these 
conditions can be significantly simplified, which makes it 
possible to give recommendations about convenient and 
inconvenient system configurations. In particular, the ratios 
between the components of the stiffness matrix are indi-
cated, which make it possible to significantly expand the 
range of permissible values for friction coefficient �̃�.

As numerical calculations show, the moderate varia-
tion of the damping ratio q has little effect on the maxi-
mum allowable value of the parameter �. At the same 
time, the weakening of the friction coefficient in the 
joint between the masses increases the rate of damp-
ing of system oscillations. For instance, at q = 1 the 
maximum Lyapunov exponent in dimensionless time is 
−0.0123 (� = 0.2, p = 1,� = 0.4), and at q = 0.1 it is equal 
to −0.0147, i.e. the damping rate is 20 percent higher. In 
this regard, the future work will be related to the assess-
ment of the Lyapunov exponents of the system (10) and 
the study of the influence the structure of the matrix D on 
the rate of damping of system oscillations.

Fig. 7  Intersections of surfaces U3 = 0 and Δ7 = 0 with planes � = 0.3 for different values of parameters
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Appendix A

P r o o f  o f  L e m m a  1  N o t e ,  t h a t  e x p r e s s i o n 
19�2 + 24(p − 1)� + 12p2 − 16p + 8 is positive for any 
positive values of parameters �, p. Indeed, this function of 
two variables has absolute minimum 8

27
 at � =

4

7
, p =

2

21
. 

Therefore, if dis2 ≥ 0, both roots of polynomial U2(�) has 
the same signs. However, if the expression

is positive, then dis2 is negative. This fact may be proven 
by finding the maximal value of function dis2(�, p) in the 
domain 𝜅 > 0, p > 0, u21(𝜅, p) > 0. However, it is easier to 
write down the resultant of polynomials dis2, u21 (either on 
variable � or p ). Such resultant on variable � reads

which is strictly positive, because the expression in paren-
thesis has only complex roots

This means that boundaries of two domains have no 
intersection. Taking into account that the closure of the 

(a1)u21 = −
1

4
�[�(3� − 1 + p) + 6p2]

p2(32700p6 − 20680p5 + 14688p4

− 4652p3 + 1543p2 − 228p + 38),

1

327
(38 ±

√
38i),

1

10
(1 ± 3i)(multiple roots).

set S1 = {(𝜅, p) ∶ u21 < 0} has common point (0, 0) with 
the closure of the set S2 = {(𝜅, p) ∶ dis2 < 0}, we con-
clude that one of these sets is the subset of another one. 
To determine which one is smaller, let us take the point 
belonging to the boundary of one of these sets. We take 
�S1, because it determines the part of ellipse (more simple 
then curve of fourth order �S2 ). For instance, let it be point 
M1(0.1, 0.1). Calculating the corresponding value for dis2, 
we have −0.2275 < 0. In addition, along the line segment 
� = p, p ∈ (0, 0.1) the sign of u21 is opposite to the sign of 
expression p(3p − 1 + p) + 6p2 = 10p2 − 1 < 0. As a conse-
quence, the boundary of set S1 as well as the set itself belong 
to the closure of the set S2.   ◻

Eventually, if the polynomial U2(�) has real roots 𝜇21 < 𝜇22, 
then the coefficient u21 is negative, hence both these roots 
are positive.

It is obvious, that in the domain dis2 < 0 the condition 
(19) is fulfilled for any values of the parameter �.

Proof of Lemma 2 To prove the statement of the Lemma 2 it 
is sufficient to show that fulfillment of the condition U1 > 0 
leads to inequality U3 < 0. Since parameter p is positive, 
possible values for � are limited by intervals (0, 1/2) and 
(2/3, 1). Substituting relation (a1) into expressions for U1,U3 
and introducing an auxiliary parameter �1 = ��(2 − 3�)2 
we have

Fig. 8  Different kinds of formation the curve � = �31
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Condition U10 > 0 is valid if and only if �1 ∈ (0,�10) where

So far as U30(0) < 0, it is sufficient to show that polynomial 
U30(�1) has no roots on this interval. Let us consider first the 
expression for discriminant of U30(�1) which is polynomial 
of 24 order on � and may be given in the following form

The polynomial �2(�) has two pairs of complex conjugate 
roots, thus takes positive values only, as well as two first 
multipliers in right-hand side of formula (a3) (since p > 0, 
then � ≠ 0.5, 1 according to formula (a1)). The polynomial 
�1(�) has single positive root � ≈ 0.6864, and this is a single 
value for � when the discriminant is equal to zero. However, 
for this value the roots of U30(�1) are 0.0111, 0.0703, 0.0922 
and the least of them exceed the value �10 ≈ 0.0070 (remind 
that 𝜇1 < 𝜇10 is the necessary condition of stability).

Now  c o m p o s i n g  t h e  S t u r m  p o ly n o m i a l s 
P0(�1), P1(�1), P2(�1), P3 = dis(U30), and substituting sub-
sequently values 0 and �10 we have the expressions which 
determine the signs of polynomials Pj. These expressions 
are presented in Appendix and lead to the following com-
binations of signs: (− + ?−) for �1 = 0 and (− + ??−) for 
�1 = �10. Here symbols ? and ?? mean either plus or minus 
depending on the exact value of �. Nevertheless, in spite of 
exact value for the signs ?, ??− plus, minus or zero, we have 
two changes of the sign in both combinations. Hence, there 
are no roots of polynomial U30(�1) in interval (0,�10), and 
the system of inequalities U10 > 0, U30 > 0 is inconsistent.  
 ◻

Proof of Lemma 3. Let us calculate the discriminant4 of 
the quartic polynomial U3(�). The direct expression itself is 
bulky enough, but it allows the following factorization

(a2)

U10 =
1

8
(25�4 − 60�3 + 56�2 − 24� + 4 − 8�1),

U30 = 32�3

1
− 12�2

1
(102�4 − 376�3 + 444�2

− 208� + 33) + 3�1(11376�
8−

− 59520�7 + 137648�6 − 183624�5

+ 154483�4 − 83916�3 + 28742�2−

− 5676� + 495) − 4(6�2 − 8� + 3)3(5�2 − 6� + 2)3.

�10 =
1

8
(25�4 − 60�3 + 56�2 − 24� + 4).

(a3)

dis(U30) = − (� − 1)2(2� − 1)2�2

1
(�)�3

2
(�), �1(�)

= 14�4 − 24�3 + 12�2 − 1,

�2(�) = 196�4 − 476�3 + 457�2 − 206� + 37.

(4)dis(U3) = −p2[2�2 − (p − 1)2]2�3

3
(�, p),

where

Function (a2) does not have any extremum, because the sys-
tem ��3∕�� = 0, ��3∕�� = 0 is inconsistent. Indeed, the 
resultant of these partial derivatives may be presented in 
the form

and is positive (thereby, not equal to zero), because the 
polynomial of ninth order has four pairs of complex con-
jugate roots and one negative root. Thus, if the expres-
sions in brackets in formula (a4) is not equal to zero, then 
dis(U3) < 0, and the statement of the Lemma takes place.

Now, suppose that p = 1 ±
√
2�. Substituting

into expression for U3, we can directly find the roots. There 
is a double positive root

and a pair of complex conjugate roots

In the particular case p = p+(�) ≜ 1 +
√
2 there are four 

positive roots

(the last root is of multiplicity two).

�3 = 8�6 + 36�5(1 − p)

+ 6�4(93p2 − 22p + 11) − 9�3(135p3 − 149p2+

+ 21p − 7) + 3�2(2439p4 − 804p3

+ 446p2 − 44p + 11)−

− 9�(1089p5 − 1221p4 + 202p3 − 74p2 + 5p − 1)+

+ 35964p6 − 6642p5 + 3825p4

− 512p3 + 138p2 − 6p + 1.

(� + 1)2(2� + 1)2(1538793207�9 + 4223446200�8

+ 3947948235�7 + 1054641888�6

− 344293764�5 − 86587520�4

+ 68767104�3 + 3530752�2 − 5116416� + 884736),

p = p−(𝜅) ≜ 1 −
√
2𝜅 > 0

3 − 2
√
2

4�
(9�2 − 8

√
2� + 4)

1 +
√

2
�

{

(1 +
√

2)
[

3(2 −
√

2)�2 − 2
√

2� + 1
]

± 21∕4�(1 −
√

2�)�
}

.

(
√
2 − 1)

�

�√
2(3 − 25∕4)�2 − 25∕4(1 + 21∕4 − 23∕4)� +

√
2 − 1

�

(
√
2 − 1)

�

�√
2(3 + 25∕4)�2 − 25∕4(1 − 21∕4 + 23∕4)� +

√
2 − 1

�

(3 + 2
√
2)

4�

�
9�2 + 8

√
2� + 4

�

4 Here and further while analyzing the signs of polynomial, the posi-
tive numerical multipliers may be omitted.
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Appendix B

(1) Expressions for Δ50,Δ70 ∶

 where 

(2) Verification the signs for Sturm polynomials in Lemma 2. 
For �1 = 0 : p0(�) = −(6�2 − 8� + 3)3(5�2 − 6� + 2)3, 
p1(�) = 11376�8 − 59520�2 + 137648�6 − 183624�5

+ 154483�4− 
−83916𝜅3 + 28742𝜅2 − 5676𝜅 + 495 > 0  (has  no 

Δ50 = −3(q + 2)3(��)3 + �502(��)
2 + �501�� + �500,

�502 = (q + 2){�2(12q2 + 45q + 37) − 6�[q2

+ (1 − p)(4q + 3)] + 2[q(42p2 − 4p + 1) + 39p2 − 2p + 1]},

�501 = −6�4(q + 1)(q2 + 7q + 8) + 2�3[(1 − p)(33q2 + 74q

+ 37) + 4q(q2 + q − 1)] − 3�2[q3 + 4q2(8p2 − 6p + 3)

+ q(120p2 − 48p + 23) + 4(16p2 − 6p + 3)] + 4�[q2(20p2

− 4p + 1) − 2q(48p3 − 46p2 + 3p − 1) − 48p3

+ (1 − p)(48p2 − 2p + 1)] − 12p2[2q2 + q(24p2 − 24p + 11)

+ 6(2p2 − 2p + 1)],

�500 = 2[(q + 1)2�2 + 4p2(2q + 1)][2�2 − 3(1 − p)� + 1 − 2p]2,

Δ70 = (��)2[�704(��)4 +⋯ + �701(��) + �700],

�704 = 2(q + 2)4, �703 = −(q + 2)2{6�2(q + 1) − 4�[q2

+ 6(q + 1)(1 − p)] + 3(q + 1)(33p2 − 2p + 1)},

�702 = 4�4(q + 1)2 + 12�3(p − 1)(q + 1)(q2 + 5q + 5)

+ �2[2q4 + 4q3(45p2 − 10p + 8) + q2(819p2 − 254p + 141)

+ (2q + 1)(645p2 − 218p + 109)] + 6�[−q3(9p2 − 2p + 1)

+ q2(45p3 − 72p2 + 17p − 6) + (2q + 1)(69p3 − 79p2 + 15p

− 5)] + 16p2q3 + q2(1296p4 − 540p3 + 274p2 − 4p + 1)

+ (2q + 1)(1485p4 − 540p3 + 274p2 − 4p + 1),

�701 = 8�5(1 − p)(q + 1)2 − 6�4[q3(9p2 − 2p + 1)

+ 3q2(19p2 − 6p + 3) + 8(2q + 1)(6p2 − 2p + 1)]

+ 2�3[4q3(9p2 − 2p + 1) − 3q2(63p3 − 99p2 + 31p − 11)

− (2q + 1)(223p3 − 281p2 + 87p − 29)] − 3�2[q3(9p2

− 2p + 1) + q2(234p4 − 180p3 + 131p2 − 34p + 9)

+ 2(2q + 1)(201p4 − 130p3 + 81p2 − 16p + 4)] + 2�[q2(9p2

− 2p + 1)(36p2 − 4p + 1) − 2(2q + 1))(p − 1)(594p4 − 198p3

+ 103p2 − 4p + 1)] − 12p2[2q2(9p2 − 2p + 1)

+ (2q + 1)(72q4 − 90p3 + 65p2 − 20p + 5)],

�700 = (9p2 − 2p + 1){4�6(q + 1)2 + 12�5(p − 1)(q + 1)2

+ �4[(q + 1)2(9p2 − 26p + 13) + 16p2(2q + 1)]

+ 6�3(p − 1)[(q + 1)2(1 − 2p) + 8p2(2q + 1)] + �2[q2(2p − 1)2

+ (2q + 1)(36p4 − 104p3 + 56p2 − 4p + 1)]

− 24�p2(2q + 1)(p − 1)(2p − 1) + 4p2(2q + 1)(2p − 1)2}.

real roots). The polynomial p2(�) is of 12th order 
on �, has four different real roots (thus, may be posi-
tive, negative or takes zero value). For �1 = �10 : 
p0(�) = −(� − 1)2(5�2 − 6� + 2)2(7889�6 − 30086�5+ 
+49511𝜅4 − 44956𝜅3 + 23738𝜅2 − 6908𝜅 + 866) < 0 
(the polynomial of 6th order has no real 
roots).p1(�) = 18277�8 − 91000�7 + 202952�6 − 264480�5

+ 219980�4 − 119424�3+ 
+41276𝜅2 − 8296𝜅 + 742 > 0, because all roots are 
complex. The polynomial p2(�) is of 11th order on �, 
has five different real roots other then roots of p2(�, 0).

(3) Resultants for pairs of polynomials Uj(��).
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res13 = −605�8 + 1320�7(p − 1) − �6(21945p2 − 626p

+ 313) + 72�5(p − 1)(381p2 + 38p − 19)
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+ 144�3(p − 1)(225p4 + 576p3 − 292p2 + 4p − 1)

− 32�2(49626p6 + 32130p5 − 16641p4 + 488p3 − 12p2

− 66p + 11) − 64�(p − 1)(3p + 1)(5p − 1)(21p2 − 2p + 1)

× (57p2 − 2p + 1) − 32(35073p8 − 95472p7 + 66096p6

− 19320p5 + 6046p4 − 752p3 + 144p2 − 8p + 1),

res23 = −2888�8 + 7296�7(p − 1) − 2�6(32313p2 − 7762p
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