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Abstract
View quality measures compute scores for given views and are used to determine an optimal view in viewpoint selection tasks.
Unfortunately, despite the wide adoption of these measures, they are rather based on computational quantities, such as entropy,
than human preferences. To instead tailor viewpoint measures towards humans, view quality measures need to be able to capture
human viewpoint preferences. Therefore, we introduce a large-scale crowdsourced data set, which contains 58k annotated view-
points for 3220 ModelNet40 models. Based on this data, we derive a neural view quality measure abiding to human preferences.
We further demonstrate that this view quality measure not only generalizes to models unseen during training, but also to unseen
model categories. We are thus able to predict view qualities for single images, and directly predict human preferred viewpoints
for 3D models by exploiting point-based learning technology, without requiring to generate intermediate images or sampling
the view sphere. We will detail our data collection procedure, describe the data analysis and model training and will evaluate
the predictive quality of our trained viewpoint measure on unseen models and categories. To our knowledge, this is the first deep
learning approach to predict a view quality measure solely based on human preferences.

Keywords: user studies, interaction, perceptually-based rendering, rendering

CCS Concepts: • Computing methodologies → Neural networks; Rasterization; • Human-centred computing → Empirical
studies in visualization

1. Introduction

Viewpoint selection is the task to automatically determine an opti-
mal viewpoint for a given 3D model. To support this task, several
view quality measures have been proposed [PB96, VBP*09, SS02,
VFSH01]. While these measures are based on engineered features,
such as entropy and occupancy, they do not consider human prefer-
ences. As these preferences are not solely based on a model’s geom-
etry, but also its category and probably commonly used depictions,
they are hard to capture with conventional view quality measures.
Secord et al. [SLF*11] proposed to learn human preferences from
data instead. However, they still rely on different handcrafted quality
measures, which are then used in a linear combination to compute
a goodness score for each image. Therefore, within this paper, we
propose an alternative to feature engineered view quality measures,

sebastian.hartwig@uni-ulm.de

by introducing a fully learned view quality measure based on human
viewpoint preferences.

To consider human viewpoint preferences during viewpoint se-
lection, we introduce a crowdsourced human viewpoint preference
data set, that annotates 58k views ofModelNet40models [WSK*15]
chosen from 28 categories. To make such a large scale data col-
lection feasible, we are naturally only able to collect annotations
for a subset of all possible viewpoints. Thus, in order to leverage
this sparsely annotated data, we exploit standard CNNs to recon-
struct dense view spheres, which encode human viewpoint prefer-
ences. The thus reconstructed human viewpoint preferences are then
used to train two different models for fast inference of this measure.
The first model uses CNNs to predict the view quality measure of
a single image directly, while the second uses a point cloud-based
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Figure 1: Within this paper, we present a neural view quality measure learned directly from data. (1) We collected a sparsely annotated
data set of human viewpoint preferences for 3220 different models, which enabled us to learn our view quality measure using a Siamese
architecture. This large-scale data set allowed our measure to generalize to unseen model categories. Moreover, we demonstrate two methods
for fast inference of such measure: (2) we use convolutional neural networks to predict the view quality measure of a single image and (3) we
use point convolutional neural networks to predict the best view of a model from 3D data directly.

architecture [SHVR21] to directly predict human preferred view-
points based on a 3D model. The process of data collection and
learning is illustrated in Figure 1. By using a cross validation study,
we demonstrate that our thus learned human view quality measure
does not only generalize to 3D models not seen during training, but
also to unseen model categories. Thus, the contributions made in
this paper are fourfold:

• We provide a large scale human viewpoint preference data set,
which contains annotations for 3220 3D models, available at
https://github.com/kopetri/human_viewpoint_metric.

• We propose a neural view quality measure learned from user an-
notated data, that mimics human preferences.

• We demonstrate that the proposed view quality measure general-
izes to model categories unseen during training.

• We enable fast prediction of such view quality measures from a
single image, as well as of human preferred viewpoints from 3D
models directly by using neural networks.

Within the remainder of this paper, we will first discuss the work
related to our approach in Section 2, before providing details on
crowdsourcing human viewpoint preferences in Section 3. We then
describe our view quality measure in Section 4, followed by Sec-
tions 5–7 where we describe how we learn such measure using neu-
ral networks. Finally, we address limitations of our approach in Sec-
tion 8 and conclude in Section 9.

2. Related Work

Many aspects can be of importance, when it comes to the defini-
tion of the best view for a 3D model. One could argue for aes-
thetics, information content, recognizability, or culture-bound rea-
soning. Thus, view quality measures ideally capture these aspects,
to measure the quality of a selected view of an object. Early re-
search focused on analysing primitives, e.g. number of visible tri-
angles, projected area or number of degenerated faces in orthogo-
nal projections [PB96, BDP00]. Later, more sophisticated measures
were introduced, such as viewpoint entropy [VFSH01], viewpoint
Kullback–Leibler distance [NSGP*05], viewpoint mutual informa-
tion [FSG09] or mesh saliency [LVJ05], to name only a few. In
the following, we briefly outline this field, by first discussing con-

ventional view quality measures, before reviewing those which are
learned, and those which incorporate human preferences.

Viewpoint selection. Many conventional view quality measures
try to capture the properties, which a view should have, in order to
make it relevant. Researchers have referred to the optimal proper-
ties of a view as its quality, goodness or noteworthiness. The features
that were evaluated have increased in complexity over time. Among
the dozens of papers one can find, some of them deal with geometric
features, such as counts of visible polygons or area from a certain
view [PB96, BDP00]. Other papers use information-basedmeasures
based on geometric features, such as entropy, mutual information
or Kullback–Leibler divergence etc. [VFSH01, FSG09, VFSG06,
NSGP*05, TMWS12]. Most of the techniques use brute-force ap-
proaches, which require evaluating several hundreds of views. This
is costly, since it takes several seconds to some minutes, depend-
ing on the complexity of the object, even for modern comput-
ers. The interested reader can refer to the survey by Bonaventura
et al. [BFS*18] where they describe and analyse the most common
measures applied to polygonal models.

Learning-based methods. Recently, some techniques that make
advantage of learning algorithms have been developed. Some
techniques use such algorithms to improve over previous mea-
sures [SLF*11], or to assign scores to candidate views or pho-
tographs [KTL*17, YLLY19, ZFY20]. In the context of point cloud
recognition tasks, viewpoint feature histograms have been pro-
posed, which are used as feature descriptors [RBTH10, RWL*21],
which can be used for point cloud registration [AMB17]. In the
work of Fang et al. [FZS*20], a canonical viewpoint is predicted
by a network for point cloud classification. The ambiguity of best
viewpoint selection was addressed through a dynamic label genera-
tion strategy by Schelling et al. [SHVR21], to directly predict high
quality viewpoints, which the authors demonstrated for four view
quality measures.

Learning on image pairs. Ranking stimuli using paired compar-
isons is a long-standing technique [Thu27, KS40, Gut46, Ken48,
Mos51, BT52]. In 1927, Thurstone [Thu27] introduced the law
of comparative judgement. This seminal work introduced a sta-
tistical model to determine the user preference with respect to a
given set of stimuli. Another commonly used statistical model for
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ranking from paired comparisons is the one proposed by Bradley
and Terry [BT52]. In the last decade, several works have used these
ideas in combination with recent advances in machine learning.
Liang et al. [LG14] used an active learning approach to learn the
ranking of a set of images with respect to a human-annotated at-
tribute. However, the images were described by handcrafted features
and, as a ranking function, a simple linearmodel was used. Recently,
Zhang et al. [ZIE*18] use a neural network to assess the perceptual
similarity between images. Their method first computed the differ-
ence between features of a pre-trained network for a given image
patch as input and a corrupted version of the same patch. These dif-
ferences were used to learn to rank two corrupted patches, with re-
spect to the original image, based on human annotations. However,
none of these works used a deep neural network to learn to rank the
preferred point of view from human-annotated images.

Evaluating human preferences. Although, the selection of
viewpoints has been studied for some time, in areas such as object
recognition, there are not so many studies that have evaluated the
preferences of subjects with regard to a certain viewpoint of a syn-
thetic object. Blanz et al. [BTB99] evaluated the views users pre-
ferred to represent an object (the best possible impression of the ob-
jects shown in a screen) in two experiments. They gathered the opin-
ions of 36 and 18 users for sets of 14 and 18 models, respectively.
Later, Tarr and Kriegman evaluated the perceived similarity by pre-
senting subjects different views for a torus and a bell [TK01]. Ja-
gadeesan et al. [JLC*09] analysed the view preferences of 80 users
using Amazon Mechanical Turk. In this case, they used only CAD
models, and the experiment was run using a small set of prefixed
views of five models. Another small set of users’ preferences was
gathered by Dutagaci et al. [DCG10], where they analysed 68 mod-
els with 26 subjects. Our goal is to analyse a much wider range of
models with a larger number of users, in order to learn a human
viewpoint preference predictor, and to investigate how this general-
izes beyond model categories. To the authors’ knowledge, the most
extensive user study to date is the one by Secord et al. [SLF*11].
They used a high number of users (524) that choose among pairs
of views of 16 different, rather complex models. Their goal was to
learn a set of weights, that can be applied to previously developed
measures in order to compute the view goodness function of the in-
put images and use the Bradley–Terry model [BT52] to simulate
human preferences on viewpoint selection. On the contrary, in this
work, we aim to learn human view preferences without relying on
predefined metrics or any statistical model.

3. Sparsely Annotated Data Set

Collecting human view preferences poses several challenges. Sim-
ply asking for the subjective ‘best view’ of a model might be suf-
ficient to indicate appealing view directions, but it does not pro-
vide insights on how a user would compare two views to each other.
Furthermore, selecting the ‘best view’ is a challenging task for an
average user as it involves rotating a 3D model, a task with which
some participants might not be familiar with. Consequently, these
annotations should be handled with care, and thorough quality as-
sessments are required. In order to capture the relations between
different viewpoints, we are interested instead in how humans per-
ceive a view direction in relation to another one.

Asking a user to quantify the quality of a view direction with
respect to another is subject to high levels of ambiguity. Differ-
ent users might perceive values differently, i.e. the same numerical
value might have different meanings for different users. With these
considerations in mind and inspired by Secord et al. [SLF*11], we
design our view quality measure from data collected in a discrete
forced choice experiment. Thus, we only ask users to decide be-
tween ‘better’ or ‘worse’, effectively only assessing the order be-
tween the presented views, rather than their absolute quality.

Using such setup, we collect a large human-annotated data set that
contains sparse annotations for 3220 3D models. We favour a large
number of annotated models instead of highly dense annotations for
each of them, since neural networks have been shown to generalize
well to unseen data, and can thus fill in the missing annotations. In
the rest of this section, we describe how we generated this data set.

3.1. Online study

In order to collect annotations for our viewpoint data set, we imple-
mented a web application, enabling us to crowdsource the viewpoint
preferences via Amazon Mechanical Turk. As mentioned before, to
keep the workload low, maintain participants motivation, and there-
fore, achieve higher quality, we formulate our study as a discrete
forced choice experiment. This design choice is also in line with a
similar study by Secord et al. [SLF*11], which conducted a two-
alternative forced choice experiment. Presenting triplets to partic-
ipants, instead of tuples, increases the number of annotated tuples
per interaction of the participant from 1 to 3. Also, exposing par-
ticipants to only three stimuli does not compromise the observer’s
channel capacity [Mil56, RA11] enabling stable measurements.

We formulate the annotation task as follows: Given a triplet of
views, the participants have to select the views they consider to be
the best and worst, respectively, amongst the presented three views.
In order to make a selection for a view, the participants have to
drag and drop the view into a corresponding box labelled ‘best’ and
‘worst’. The web interface can be seen in Figure 2.

As view preference is dependent on the context in which the im-
ages are presented, the instructions given to the participants can have
an influence on their choices. To ensure that different participants
have the same understanding of the task, we formulate the instruc-
tions stated below, following the examples given by previous user
studies [BTB99, SLF*11].

You will be presented three images. Your task is to select the
views, which are in your opinion the best and the worst views
of the presented set. There is no right or wrong.

In some cases, multiple views might be equally good or bad. In
this case, try to enforce a decision.

In this experiment, ‘best view’ corresponds to the most famil-
iar view of an object. Consider that you will show only one
view of the objects to another person, and the person should be
able to recognize the object as quickly as possible by looking at
that view.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 2: In our online study, the participant has to select the best
and worst view amongst three given views. The web interface pro-
vides a drag and drop method to make the selection. A selection can
be changed by drag and dropping another view on top of an already
selected choice. Each participant has to annotate 50 triplets.

Figure 3: This attention check is used to detect if a participant did
not understand the task or is clicking through the study. The first
view is what we consider the best view of a baseball bat.

Each participant had to label 50 triplets, which took 8min on aver-
age. We also included attention checks to detect participants that did
not understand the task or intentionally select bad views, by adding
view pair examples showing a definite best and worst view enabling
us to filter out bad responses, see Figure 3 for such a check. Data
from participants who did not pass this test were not considered in
our data set. Additionally, we ensured that each triplet of views is
labelled twice by two different participants, in order to get robust
annotations. In total, 950 participants finished the described anno-
tation task.

3.2. 3D models

For our data set, we used ModelNet40 [WSK*15], which contains
a large set of models for man-made objects spanning several cat-
egories. In total, ModelNet40 features 40 model categories, from
which we remove 12 categories, which leaves us with 28 categories.
We kept categories with more than 115models (93 training, five val-
idation, 17 testing), and removed categories (bowl, cup, curtain, per-
son, stool, tent) with an insufficient number of models. We further
excluded the categories (xbox, cone, glass box, mantel, range hood,
stairs), which exhibit similar shapes in all models. For instance, the

Figure 4: Our employed view sampling strategy, where red dots
represent sampled views from a unit sphere around a model. We first
sample a random sphere point p displayed in green. Then we gener-
ate an equilateral triangle centred around p and use triangle points
as viewpoints.

shapes in the categories xbox and cone are virtually identical. For
each category, we use 115 models summing up to 3220 models.
Lastly, we generate 18 views (six triplets) for each of these 3220
models, which yields 57,960 images in total.

3.3. View generation

To be able to collect viewpoint annotations for the given models, we
sample random positions on a unit sphere around each model. Since
we are using triplets of viewpoints for the annotation task, and to
maximize the difference of information content between views, we
sample three camera positions at once using corners of an equilat-
eral triangle (see Figure 4).We obtain these camera positions by first
sampling a random point p ∈ S2 on a unit sphere. Second, we ran-
domize the angle θ between p and the triangle points ti, i ∈ [0, 1, 2].
Third, we randomly rotate ti around p by φ. Finally, we select each
triangle point ti as eye vector for our cameras. For each camera,
we set the target vector to the centre of the model, and the up vec-
tor to the positive y-axis. We repeat this process six times for each
model, to obtain six triplets, resulting in 18 views per model. Note,
that our sparse view sampling generates 13 times fewer views per
model compared to Secord et al. [SLF*11]. For rendering, we use
perspective projection. We place a light located at the camera’s po-
sition facing the object, and we used ambient occlusion in order to
increase visible details.

3.4. Validation

To validate the crowdsourced annotations, we examined the best and
worst view agreement between participants. To do so, we count how

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 5: Agreement of human labels for our selected categories
of ModelNet40 for best viewpoints (top) and worst viewpoints (bot-
tom). As can be seen, participants agreed on both best view and
worst view in most of the cases for all categories.

often a view was labelled as best or worst, and normalize by divid-
ing by the number of participants per view. In Figure 5, we display
the thus obtained averaged agreement rate per model category for
best view selection (top) and worst view selection (bottom). As can
be seen, participants show high agreement on both best view and
worst view in most of the cases for all categories. While categories
with model shapes that are rotational invariant, e.g. bottle, flower
pot, vase, have a best view agreement rate below 80%, categories of
models with clear front and back sides show agreement rates for best
views close to 90%, e.g. bookshelf, dresser, piano, sofa. Looking at
the bottom row in Figure 5, the agreement rate for all categories is
above 80%, except for airplane, indicating a slight dispute regard-
ing airplanes seen from the bottom.

Moreover, we evaluated if the collected data were consistent
amongmodels of the same category. To evaluate this, we selected all
view directions that were selected as the best in a triplet for all mod-
els in a given category, and use a kernel density estimation (KDE) to
approximate this distribution. In order to compute KDE in a spher-
ical domain, we replace the traditional Gaussian function used in

KDE with the Von Mises–Fisher distribution [Fis53]. Figure 6 il-
lustrates the resulting density maps on the sphere for each category.
We can see that users were consistent with the annotations among
differentmodels of the same category, since each category has distri-
butions with localized areas with high density. For example, users
prefer to view objects from the category bookshelf from the front
while cars are preferred from a left or right viewpoint.

4. Modelling Human Viewpoint Preferences

The collected data set is composed of pairs of images annotated
by humans, which indicates their preference of one image over
the other. With these binary classifications for all views of a given
model, it is possible to reconstruct a quantitativemeasure of the view
preference distribution and, therefore, possible to capture the global
ranking of all views. In the following, wewill give a brief mathemat-
ical description of the reconstruction from binary classifications.

Let f : D → R be a function, defined on a finite setD. In the con-
text of this work, D ⊂ S2 are the sampled viewpoints on the view
sphere, and f is the (unknown) distribution of human view prefer-
ence for a given model. For each point v ∈ D, we define the count
of v as

count(v) := |{x ∈ D : f (x) < f (v)}|, (1)

where f (x) < f (v) indicates that the user prefers view v over x.
We define the reconstruction f* of f as:

f ∗ : D → R

f ∗(v) := count(v)

|D\{v}| . (2)

This reconstruction can be understood as a normalized counter of
how many times a view direction was selected over other view di-
rections in the set. Thus, this reconstruction serves as a quantitative
view quality measure, that can be used to compare different views
of a given 3D model:

Figure 6: Collected per-category view preference. For each category, we select all view directions, which were labelled best in a triplet and
use a kernel density estimation on the sphere to approximate this distribution. Yellow regions indicate view directions highly favoured by
humans. The resulting distributions indicate that, on the data collected, there is consistency among objects from the same category.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 7: The architecture of our viewpoint selector consists of a
feature encoder and decoder for classification. The input to the net-
work are two images, which are fed successively into the encoder,
resulting in two latent vectors of size 128. The decoder concate-
nates both latent vectors before further processing and outputting a
binary prediction.

Proposition 1. The reconstruction f* preserves the order induced
by f on the points in D, i.e.

f (v1) < f (v2) ⇔ f ∗(v1) < f ∗(v2), ∀v1, v2 ∈ D. (3)

Proof to this proposition and further insights are provided in Ap-
pendix A.

5. View Quality Measure Learning

Computing our measure will require evaluating Equation (1) for all
elements in the setD. However, asking a user to annotate all possible
pairs of view directions for a given model is not practical. In this
paper, we propose to learn Equation (1) from sparse data instead.

5.1. Architecture

Our model follows a Siamese architecture similar to the one
proposed in the one-shot classification framework of Koch
et al. [KZS15]. We consider two images as input, which are gen-
erated from the two view directions we aim to compare, v1 and v2.
These images are then processed by two image encoders, which
have shared parameters, resulting in two latent vectors describing
a compressed representation of the two input images. The image
encoder is a CNN composed of four feature transformation blocks
with increasing feature size: 16, 32, 64, 128 and a down sampling
factor of 2. Each block is a stack of three layers: convolution, batch
normalization and ReLU activation. After the last layer, we append
a global average pooling layer, which outputs a latent vector for
each image. For our experiments, we use an image resolution of
256 × 256$, and a latent vector with size 128 (see Table B.3 in the
appendix for a comparison of different sizes). The two latent rep-
resentations are then concatenated and processed by a multi-layer
perceptron (MLP) with three hidden layers with 256, 128, 32 fea-
tures each. The last layer applies a sigmoid activation function to
output the probability of f (v1) < f (v2). Based on these probabili-
ties, we can then estimate f*. Figure 7 provides an illustration of the
used architecture. Note that if ourmodel is trainedwith random view

directions, we can estimate f* for a 3D shape by sampling directions
in the sphere, D, at any resolution.

Previous work has suggested statistical models to predict the
probability of f (v1) < f (v2) from the goodness of each in-
put [BT52]. This model was used by Secord et al. [SLF*11] to
learn the goodness function with a linear model. The Bradley–Terry
model [BT52] models the variance in the annotations as variance
in the goodness score, and solve it with maximum likelihood es-
timation (MLE). We favour instead a model that directly predicts
this probability with a deep neural network and models the vari-
ance directly from data using binary cross-entropy, an optimization
comparable to MLE. Further, neural networks are able to generalize
by exploiting information present in the input images, which prob-
abilistic models do not account for.

5.2. Training

We train our viewpoint selector using the Adam optimizer [KB14]
for 200 epochs and a batch size of 16, using a learning rate of 0.001,
reducing it by a factor of 0.1 if the validation loss did not improve for
5 epochs. We use binary cross-entropy as our loss function. We reg-
ularize our model by using a dropout probability of 0.5 [HSK*12] in
the last MLP, and further add Gaussian noise to the ground truth la-
bels with a standard deviation of 0.2, preventing label from flipping
and clamping the label to be in range [0,1].

5.3. Evaluation

In this section, we describe the experiments conducted to evaluate
our Siamese network.

5.3.1. Learning the view quality measure

In this experiment, we evaluated the performance of our network on
predicting the human view preference for a given pair of images.

Data set.We use the data described in Section 3 to train themodel
that mimics human view preferences. First, we select only those
triplets in which two users agreed on their annotation. Then, we gen-
erate three pairs of annotated images from each triplet for training.
Lastly, we divide the resulting images in three different sets: train-
ing, validation and testing. We make sure that in each split, we have
models from all categories, but images from one model are present
in only one of the three sets. The training set is composed of 60,462
image pairs, the validation set is composed of 3576 pairs and the
test set contains 9978 image pairs. We call this data set filtered.
To further augment the data during training, we apply random ro-
tations in the range of [−90, 90] degrees. The network learns to be
invariant to rotations around the camera’s eye vector, which is only
possible since we fixed the camera’s up vector. In a scenario with
arbitrary camera up vector, this data augmentation strategy would
be problematic to rank viewpoints. However, disabling random ro-
tations results in worse performance, see Section 5.3.1. Since our
model is not equivariant to the order of the input images in each
pair, we also randomly invert the order of the images in a pair and
its corresponding label during training.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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S. Hartwig et al. / Learning Human Viewpoint Preferences from Sparsely Annotated Models 459

Figure 8: Performance results of our Siamese model to predict the binary classification for the image pairs in our test set. We evaluate three
different training methodologies: Filtered, where we train with image pairs in which users agreed in the annotation; Unfiltered, where we
train with all training data from our data set and 6-fold, where the model did not see the respective categories during training.

Table 1: Performance results of our best network, Secord et al. [SLF*11]
and several common view quality measures, which are not based on human
preferences. Performance is averaged over all predictions.

Accuracy AUC AUPR

Ours Unfiltered 79.9% 0.796 0.847
Secord* [SLF*11] 76.7% 0.767 0.825
Secord [SLF*11] 73.4% 0.734 0.800
Above [GRMS01] 69.7% 0.697 0.773
Viewpoint Entropy [VFSH01] 68.4% 0.684 0.763
Surface Visibility [PB96] 63.1% 0.631 0.723
Kullback-Leibler [NSGP*05] 62.1% 0.621 0.716
Silhouette Length [HS97] 59.2% 0.592 0.694
Projected Area [PB96] 52.1% 0.521 0.641
Max Depth [SS02] 50.7% 0.507 0.630
Mutual Information [FSG09] 43.8% 0.438 0.578

*Using optimized weights on unfiltered.
For each metric, we highlight the method performing best.

Results. To measure the performance of the model, we compute
three measures: binary accuracy (Acc.), area under the receiver op-
erating characteristic curve (AUC) and area under the precision-
recall curve (AUPR). We evaluated the metrics on each pair of im-
ages in the test set in the two possible permutations. In Figure 8
(red), we report the resulting values for all metrics and categories.
Results show that our model can mimic human preference with high
accuracy. For categories such as bottle, dresser or table, the model is
able to achieve high values in all metrics. On the other hand, other
categories are more difficult to predict, such as airplane or moni-
tor. Table 1 presents the averaged performance over all predictions,
where we compare our method against existing visual metrics and
the data-driven approach of Secord et al. [SLF*11], which combines
existing view quality measures in order to approximate human pref-
erences. We use the original weights presented in the paper, denoted
as Secord, in Table 1, and the optimized weights in our training

data set, denoted as Secord*. Figure 9 illustrates the reconstructed
view quality measure for one model of each category from our test
set. Models are rendered from the viewpoint with the highest value
based on our measure, which is also indicated by a red dot in the
view quality distribution. In the supplementary material, we also
provide the predicted view quality distribution for all the models in
our data set. Looking at symmetric shapes like car or table, one can
see equal predictions for both, left and right sides. Rotation symmet-
ric shapes like lamp, bottle and vase show arbitrary good viewpoints
around the equator.

5.3.2. Ambiguous annotations

As human annotations are subject to ambiguity, we also investigated
how robust our model is to ambiguous image pairs.

Data set. In our previous experiment, we filtered the data for
those triplets in which two users agreed with their annotations. In
this experiment instead, we generate a training/validation set, which
is composed of all collected data without filtering. Note that even if
the users did not agree in the annotation of the complete triplet, they
can still agree on some resulting pairs generated from the triplet. The
resulting data set, Unfiltered, is composed of 92,364 pairs of im-
ages for training, 5700 image pairs for validation, and, as before,
9978 image pairs for testing.

Results. We train the same model as in the previous experiment
on this new data set. Figure 8 (green) illustrates the results for all
metrics and each category. We can see that there is only a small
change in performance for most of the categories. Moreover, Table 2
also presents the averaged performance over all predictions, where
the model achieves an accuracy of 79.9%, an AUC of 0.796 and a
AUPR of 0.847. When we disable random rotations during training,
the accuracy drops to 78.9%. These results indicate that our model
is robust to ambiguities on the human annotations and also benefits
from the additional training data.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14613 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [13/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



460 S. Hartwig et al. / Learning Human Viewpoint Preferences from Sparsely Annotated Models

Figure 9: Visualization of the learned human view quality measure for one model per category. In the upper row, we show the best view for
each model sampled from our view quality measure. In the row below, we show the corresponding learned viewpoint distribution, which was
reconstructed from our viewpoint selector. The red dot indicates the best viewpoint.

Table 2: Performance comparison of our Siamese model for the three data
sets.

Accuracy AUC AUPR

Ours Unfiltered 79.9% 0.796 0.847
Ours Filtered 79.7% 0.800 0.850
Ours 6-fold 76.2% 0.765 0.824

Table 3: For our 6-fold cross validation experiment, we randomly split 28
categories into subsets of five categories. Note that for Subset 6, we ran-
domly chose two additional categories to add up to five categories. For each
subset, we train a network with the absence of images of the respective cat-
egories. During test time for each classifier, we measure performance for
each individual category, which has been left out during training.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6

Chair Bathtub Airplane Bottle Bed Dresser
Monitor Bench Bookshelf Keyboard Car Guitar
Sink Dresser Door Laptop Desk Plant
Tent Night stand Flower pot Sofa Lamp Sink
TV stand Radio Piano Vase Toilet Table

5.3.3. Generalization to unseen categories

Figure 6 indicates that there is consistency on the view preference
for models of the same category. Therefore, measuring the ability of
our model to generalize to unseen categories is of key importance
to measure the validity of our measure.

Data set. For this experiment, we use a 6-fold cross validation
on the 28 categories to evaluate the model. Table 3 illustrates the
category types that are left out during training in each fold. We refer
to this data set as 6-Fold.

Results. We train the same model as in the previous experiments
on the new data set. Figure 8 (blue) presents the resulting metrics
for each of the categories. For most of the categories, training with

Figure 10: Generalization of our viewpoint selection network,
which has been trained on ModelNet40. On the left, we show the
selected best view and corresponding view quality from Secord
et al. [SLF*11], respectively. On the right, we demonstrate our
learned view quality measure. Red dots represent the best viewpoint,
which is displayed above. This demonstrates the generalization of
our viewpoint selector to novel categories: dragon and heptoroid.

this new data set translates only into a slight drop in performance.
For other categories, such as bottle or vase, the drop in performance
is large but still in a good range. When we look at the averaged
performance over all predictions in Table 2, we can also see a small
drop in performance for all metrics.

Further, we compute view quality distributions on the sphere for
two common models in computer graphics, the Stanford dragon
and the heptoroid, using Equation (2) and our Siamese model. In
Figure 10, we compare our learned view quality measure against
the best model of Secord et al. [SLF*11], which approximates
human preferences specifically collected for these models. Note
that these models are out of the domain for our training data, as
they are animals or abstract models, in contrast to the man-made
objects of ModelNet40 used for training. The method of Secord
et al. [SLF*11] selects the right side of the models as best view,
whereas our method favours the left side. Despite these differences,
our measure generates similar distribution as the ones published by
Secord et al. [SLF*11].

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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6. View Quality Measure Inference

Evaluating our quality measure can be computationally expensive
since it requires evaluating Equation (1) for all views in a finite set,
generating a quadratic cost with respect to the number of sampled
views. In order to reduce this cost, we propose to train a convo-
lutional neural network to predict the value of the reconstructed f*,
Equation (2), directly from a single image.With this setup, our mea-
sure can be approximated in milliseconds for a single image without
comparing it to any other view direction.

6.1. Architecture

For our CNN encoder, we used the same architecture as in our
Siamese model, followed by a two-layer MLP with 64 and 32 hid-
den neurons each. The final prediction is processed by a sigmoid
function to transform the prediction into the range [0, 1].

6.2. Training

We train ourmodel using theAdam optimizer [KB14] for 15 epochs,
and a batch size of 32, using a learning rate of 0.005, reducing it
by factor 0.1 after 10 and 15 epochs. We regularize our model by
using weight decay with a factor of 0.001. As a loss function, we
use binary cross-entropy loss for this regression problem, since it
avoids gradients becoming zero due to the last sigmoid layer.

6.3. Evaluation

In this section, we measure the accuracy of our regression model.

Data set. For this data set, we use the same models from Mod-
elNet40 as used in our user study. We reconstruct the view quality
measure for each model as follows. For a given model, we sam-
ple 1000 view directions on a Fibonacci sphere around the model,
which yields uniformly distributed viewpoints. Next, we generate
image pairs for all combinations C = (1000

2

)
to select two images

from the sampled views. Finally, we reconstruct the view quality
measure using Equation (2) and our Siamese model.

We create three different splits of the data: training, validation
and test, containing 2.5 M, 168 K and 476 K images each. Note that
images from the same model are all contained in the same set. To
further augment the training data, we use random rotations of 90◦

and add Gaussian noise to the images with a standard deviation of
0.002.

Results. We measure the performance of the model with mean
squared error (MSE) and coefficient of determination (R2), for
which our regression model achieved a performance of 0.02 and
0.71, respectively. We further analysed the model by plotting the
predicted values versus viewpoint quality values in Figure 11. We
see that most of the points are close to a perfect regression model,
indicated by the diagonal line.

Figure 11: Viewpoint quality values versus predictions of our re-
gression model. We can see that most of our predictions are close to
the viewpoint quality values, close to the diagonal line, indicating a
perfect regression model.

7. Best View Prediction

In many applications, the user is only interested in obtaining the best
view from which to inspect a 3D model. This setup will require to
evaluate our view quality measure for all views in a finite set, which
can be computationally demanding. Recent research has proposed to
learn the best view of a 3D model directly from 3D data [SHVR21]
according to four established handcrafted view quality measures.
This method uses point convolutional neural networks [HRV*18]
to analyse the 3D structure of a model, and to predict the best view
for the different view quality measures. In this paper, we employ the
same architecture as Schelling et al. [SHVR21] to predict the best
view direction for a 3D model based on our proposed view qual-
ity measure instead of the handcrafted quality measures used in the
paper. This enables us to perform a prediction within milliseconds.

7.1. Architecture

We use the same architecture as the one proposed by Schelling
et al. [SHVR21]. The shape encoder uses four point convolution lay-
ers [HRV*18] with increasing receptive fields [0.05, 0.2, 0.3,

√
3]

and number of features [128,256,1024,2048]. The resulting latent
vector is then processed by an MLP with two hidden layers and
1024 and 256 features, in order to predict the best view.

7.2. Training

We train our model to predict the best view for models of all 28
categories at the same time. For the loss, we use the one proposed
by Schelling et al. [SHVR21], where the ground truth label used
in each step is computed based on the prediction of the network.
This loss uses two methods to generate the ground truth label, multi
labels and Gaussian labels, that are applied at different stages of the
training. This procedure avoids inconsistencies during training, due
to symmetries in the view quality distribution for similar models.
We use an Adam optimizer [KB14] with batch size of 8 and learning
rate of 0.001, which is multiplied by 0.75 every 200 epoch. We train
for a total of 3000 epochs and switch from multi labels to Gaussian
labels after 1500.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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462 S. Hartwig et al. / Learning Human Viewpoint Preferences from Sparsely Annotated Models

Figure 12: Normalized view quality of the predicted viewpoints
per category of the viewpoint prediction network of Schelling
et al. [SHVR21] trained on our learned human view quality mea-
sure.

7.3. Evaluation

In this section, we evaluate if our measure can be learned by the best
view predictor of Schelling et al. [SHVR21] directly from 3D mod-
els.

Data set. To train this model, we used the 3D models and view
quality measures described in Section 6.3. Moreover, we use 4096
points sampled on the surface of the objects as also done in the
PointNet paper [QYSG17], to represent the 3D shape of each ob-
ject. We divide the data in three data splits: training, validation and
testing, where each set contains 2576, 322 and 322 3D models, re-
spectively.

Results. We measure performance with the normalized view
quality measure, which ranges from 0 to 1 for each model, as it is
normalized based on the minimum and maximum value among all
views for a single model. The trained model is able to predict view-
points with an average normalized viewpoint quality of 0.88. We
report per-category results in Figure 12. Looking at individual cat-
egory accuracy, only four categories (flower pot, lamp, plant, vase)
have a value lower than 0.8, indicating that the method can learn the
best view direction in our view quality measure directly from the 3D
shape of a model. Note, that for rotational symmetric models, the
best views are in a narrow region close to the equator. That means
that a small variation of the latitude in the view prediction translates
in a bigger error in our metric than for other shapes, where the best
view region has a more uniform shape.

Finally, we provide a qualitative comparison between the best
view predicted by Schelling et al. [SHVR21] trained on our hu-
man viewpoint measure and, four handcrafted measures used by
the original paper. In Figure 13, we display viewpoints, which were
selected by Schelling et al. [SHVR21], conditioned to our human
viewpoint measure in the first column, visibility ratio [PB96], view-
point entropy [VFSH01], viewpoint Kullback–Leibler [NSGP*05]
and viewpoint mutual information [FSG09] in the other columns.
We can see that the best view predictor trained on our human view-
point measure provides robust viewpoint selections for different
types of models, while handcrafted viewpoint measures select view-
points with high levels of occlusions, making it difficult to identify
the individual objects.

Figure 13: Visualization of the best viewpoint selected by the net-
work from Schelling et al. [SHVR21] for different view quality mea-
sures. For columns from left to right, we show the best viewpoint for
our human-based measure, visibility ratio, viewpoint entropy, view-
point Kullback–Leibler and viewpoint mutual information.

8. Limitations

Our method is not free of limitations. The generalization ability of
CNNs enabled us to learn the human view preference from data
directly. However, this technology is susceptible to variations of
the input data. This makes our models dependent on the render-
ing algorithm used during training. However, generalization to out-
of-distribution rendering algorithms could be introduced with style
transfer techniques.

Moreover, our method does not consider the context of such vi-
sualizations. Different tasks will select different views as good, e.g.
a 3D modelling software will require a good overview of the model
while a volume rendered image in the context of medical visualiza-
tion will favour views where relevant information is shown. There-
fore, context-aware view quality measures should be further inves-
tigated by collecting adequate data sets. Lastly, in our experiments,
we consider the up vector of the camera fixed. Although, recent
work has suggested learning the up vector of a model [KTL*17],
further experiments are needed to investigate the effect of arbitrary
camera rotations on the human preference.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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9. Conclusion

Within this paper, we have shown how viewpoint preference of hu-
mans can be simulated with modern deep learning techniques. We
collected a large-scale data set using Amazon Mechanical Turk to
crowdsource viewpoint annotations. This data set enabled us to de-
sign a neural view quality measure based on human preferences that
is able to simulate human preference with high accuracy. Moreover,
we evaluated our learned measure with respect to ambiguous an-
notations in the human-annotated data, which showed that our tech-
nique benefits from additional training data while being robust to the
ambiguities at the same time. Lastly, we evaluate the generalization
ability of our model to unseenmodel categories, which resulted only
in a small drop in performance. Furthermore, we provide two meth-
ods for fast inference of our measure. The first method estimates the
view quality measure of an image directly by using convolutional
neural networks. The second method uses point convolutional neu-
ral networks, to predict the view direction with the best view qual-
ity value from a 3D model directly. In the future, we would like to
investigate the correlation of human quality measures, as the one
proposed in this paper, with the performance of neural networks on
different downstream tasks.
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APPENDIX A: PROOFS

In this section, we show that it is possible to reconstruct a function
f on a finite set D solely from information about the binary classifi-
cations f (v1) < f (v2), v1, v2 ∈ D, up to composition with a strictly
monotonically increasing function. First, let us recall Prop. 1 from
Section 4.

PropositionA.1. This reconstruction f* preserves the order induced
by f on the points in D, i.e.

f (v1) < f (v2) ⇔ f ∗(v1) < f ∗(v2), ∀v1, v2 ∈ D. (3)

Proof. We show both directions subsequently.

‘ ⇒’:

Let v1, v2 ∈ D with f (v1) < f (v2).
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Then

{x ∈ D : f (x) < f (v1)} ⊂ {x ∈ D : f (x) < f (v2)}
as

f (x) < f (v1) ⇒ f (x) < f (v2).

By the definitions (2) and (1) it follows that

count(v1) < count(v2) ⇒ f ∗(v1) < f ∗(v2).

‘ ⇐ ’:

Let v1, v2 ∈ D with f ∗(v1) < f ∗(v2).

Assume that f (v1) > f (v2), then the first part of the proof implies
f ∗(v1) > f ∗(v2), which is a contradiction.

Further, assume f (v1) = f (v2), then apparently count(v1) =
count(v2) and thus f ∗(v1) = f ∗(v2) by definition (2), which is also
a contradiction.

Thus f (v1) < f (v2). �

Corollary A.1. The reconstruction f* of f satisfies

f ∗ = g ◦ f , (A.1)

for a strictly monotonically increasing function g : R → R.

Proof. Let I be the image of f, i.e. I := { f (v) : v ∈ D}.
Further, let D+ ⊂ D , s.t. f |D+ : D+ → I is bijective.

Then f |D+ is invertible on D+, i.e. ∃ f−1 : I → D+.

Then the function g, defined as

g : I → R

g(x) := f ∗ ◦ f−1(x),

satisfies f ∗ = g ◦ f .

It is left to show that g is strictly monotonically increasing on I.
Let x1, x2 ∈ I with x1 < x2. As x1, x2 ∈ I there exist v1, v2 ∈ D+

s.t. x1 = f (v1), x2 = f (v2).

From Prop. A.1, Equation (3), we can infer f ∗(v1) < f ∗(v2).
Then

g(x1) = f ∗( f−1(x1)) = f ∗(v1)

< f ∗(v2) = f ∗( f−1(x2))

= g(x2).

�

This is also the best possible reconstruction from binary classifi-
cations, as is clarified below.

Proposition A.2. Let f1, f2 : D → R be two functions, s.t. f2 =
g ◦ f1 for a strictly monotonically increasing function g : R → R.

Then the two functions f1 and f2 := g ◦ f1 yield the same binary
classifications, i.e.

f1(v1) < f1(v2) ⇔ f1(v1) < f2(v2).

Proof. The strict monotonicity of g directly implies that

∀v1, v2 ∈ D : f1(v1) < f1(v2) ⇔ g( f1(v1) < g( f1(v2))

⇔ f2(v1) < f2(v2).

�

APPENDIX B: ABLATION STUDIES

In this section, we describe the ablation studies we carry out to
validate our design decisions:

Handcrafted versus neural features. To evaluate the improve-
ments introduced by the neural feature extraction module, i.e. the
convolutional neural network, we substituted the features computed
by this module with a list of different handcrafted view quality mea-
sures as in Secord et al. [SLF*11]. The rest of the Siamese network
remains the same, the features of both images are concatenated and
processed by the MLP, which predicts the final probability. The re-
sults of the experiments are presented in Table B.1, where we can
see that, as expected, neural features always achieve better perfor-
mance than handcrafted view quality measures.

Data set sparsity. In our data set, we annotated each model with
18 views. However, previous work has favoured the number of an-
notated views per model instead of a large variety of different anno-
tated models, using 240 images per model instead [SLF*11]. There-
fore, in this experiment, we evaluate which setup allows for a better
generalization of our neural network, large number of models anno-
tated with a few images or few models more densely annotated. We
selected five categories from ModelNet40, airplane, chair, flower
pot, sofa, toilet, and selected sevenmodels for each. For eachmodel,
we rendered 240 images, resulting in a total of 8400 images, and
collected human preferences as described in Section 3. We call this
new data set Dense. Moreover, we created another data set with
comparable number of images, by selecting 93 models for each of
the five categories from our original data set, resulting in a total of
8370 images. We call this new data set Sparse. We train our model

Table B.1: Performance comparison between handcrafted versus neural
viewpoint features. We also compare how the final probability is computed,
with a goodness score in the Bradley and Terry model [BT52] versus us-
ing a neural network. The results indicate a better performance for neural
extracted features in combination with a neural network to rank viewpoints.

Features Ranking Acc. AUC AUPR

Neural Neural 79.9% 0.796 0.847
Neural Goodness Score 78.7% 0.787 0.840
Handcrafted Neural 77.8% 0.778 0.834
Handcrafted Goodness Score 76.7% 0.767 0.825

For each metric, we highlight the method performing best.
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Table B.2: Effect of the sparsity of annotations on the prediction ability
of our model. A large number of models annotated with only a few images
yields a higher generalization ability of our model than fewer models more
densely annotated.

#models #images
Data set cat. total model total Acc. AUC AUPR

Sparse 93 465 18 8370 75.6% 0.760 0.820
Dense 7 35 240 8400 74.4% 0.750 0.812

For each metric, we highlight the method performing best.

Table B.3: Performance comparison using different sizes for the latent code
in our viewpoint selection network.

Size Acc.

64 78.5%
128 79.9%
256 78.8%

For each metric, we highlight the method performing best.

with both data sets and compare the performance of our network.
We can see in Table B.2 that the model trained with the Sparse data
set achieves higher accuracy on all metrics, confirming that the neu-
ral network generalizes better with numerous different models even
if the annotations are highly sparse.

Probability computation. Previous work [SLF*11] has sug-
gested computing a goodness of score from the image features that
can be used in the Bradley and Terry model [BT52] to compute the
final probability of f (x) < f (v). We use instead a neural network
that takes both feature vectors and predicts the final probability. In
this ablation study, we compare both methods with neural and hand-
crafted image features. Results are presented in Table B.1, where
we can see that our neural probability predictor always achieves
higher accuracy than the goodness score approach used by Secord
et al. [SLF*11].

Features size. In this experiment, we evaluate the effect of the
feature vector size in the final accuracy of themodel.We train differ-
ent models with feature vector sizes of 64, 128 and 256. We can see
in Table B.3 that a feature vector size of 128 results in the higher ac-
curacy.

Performance statistics. In a last experiment, we measure the
variance in performance of our model over several training runs.
Therefore, we average the scores of 10 models optimized using

Table B.4: We averaged the performance of our models over 10 training
runs and report the mean and standard deviation of all metrics.

Data set Acc. AUC AUPR

Unfiltered 79.9% ± 0.004 0.796 ± 0.004 0.847 ± 0.003
Filtered 79.7% ± 0.010 0.800 ± 0.010 0.850 ± 0.008

Figure C.1: Comparison between handcrafted quality measures
and their similarity to our human based quality measure on the best
view prediction task.

identical hyperparameters. In Table B.4, we show the averaged re-
sults for models trained on the unfiltered and filtered data set,
reporting themean and standard deviation of the correspondingmet-
ric.

APPENDIX C: QUANTITATIVE RESULTS ON THE BEST
VIEW PREDICTION TASK

In Section 7.3, we showed qualitative comparison results between
our human-based and four handcrafted view quality measures. In
this section, we quantitatively evaluate how handcrafted view qual-
ity measures perform using our view quality metric as ground truth.
First, as an upper bound, we measure how the network of Schelling
et al. [SHVR21] performs when it is trained with our view qual-
ity measure. For each predicted viewpoint, we compute the nearest
neighbour to one of the 1000 sampled points in the sphere and com-
pute the mean accuracy per category: airplane 92%, bench 87%,
bottle 86%, car 94%, chair 89%, sofa 95%, table 92% and
toilet 84%.

To evaluate the handcrafted view quality measures, we use the
same procedure, but we train the network of Schelling et al.
[SHVR21] using the different handcrafted measures instead. In Fig-
ure C.1, the results show strong differences between view quality
measure and category.
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