
FPGA Checkpointing for Scientific Computing
1st Marc Perelló Bacardit

Barcelona Supercomputing Center
Barcelona, Spain

marc.perello@bsc.es

2nd Leonardo Bautista-Gomez
Barcelona Supercomputing Center

Barcelona, Spain
leonardo.bautista@bsc.es

3rd Osman Unsal
Barcelona Supercomputing Center

Barcelona, Spain
osman.unsal@bsc.es

Abstract—The use of FPGAs in computational workloads is
becoming increasingly popular due to the flexibility of these de-
vices in comparison to ASICs, and their low power consumption
compared to GPUs and CPUs. However, scientific applications
run for long periods of time and the hardware is always subject to
failures due to either soft or hard errors. Thus, it is important to
protect these long running jobs with fault tolerance mechanisms.
Checkpoint-Restart is a popular technique in high-performance
computing that allows large scale applications to cope with
frequent failures.

In this work we approach the fault tolerance of CPU-
FPGA heterogeneous applications from a high level by using
OmpSs@FPGA environment and a multi-level checkpointing
library. We analyse the performance of several different ap-
plications and we understand what kind of overheads we can
expect from checkpointing computational workloads running on
FPGAs. Our results demonstrate overheads as low as 0.16%
and 0.66% when checkpointing very frequently, indicating that
this technique is efficient and does not add a significant amount
of overhead to the system. In addition, we showcase a proof
of concept for checkpointing partial data of the FPGA task
itself. This can prove useful for workloads in which most data
is offloaded to the FPGA memory at once and do not constantly
move all the data between the accelerator and the CPU.

Index Terms—FPGA, FTI, fault tolerance, accelerator, re-
silience, checkpointing, reliability

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are computa-
tional devices known for their energy efficiency in comparison
to instruction set architecture (ISA)-based devices like CPUs
and GPUs. However, FPGAs are also more challenging for
application development. The workload to be executed has to
be converted into a set of bits containing the information about
the configuration of its logic cells, Block RAM, etc. Originally,
this had to be done by developing the application in hardware
description languages like VHDL.

Fortunately, there are now tools like Vivado High Level
Synthesis (HLS) [1] which allow developing for such de-
vices in high level languages. Also, frameworks such as
OmpSs@FPGA [2] make it even more straightforward and
do most of the extra work needed to develop and build
FPGA applications. Because of this, heterogeneous systems
with FPGAs are becoming increasingly popular and are being
considered as accelerators for High Performance Computing
(HPC) systems.

Multiple works in the literature have demonstrated the
energy efficiency of FPGAs. For instance, a recent study
[3] evaluated the performance and energy efficiency of the
Gaxpy kernel (matrix-vector multiplication) implementation

on CPU, GPU and FPGA platforms, demonstrating that the
FPGA implementation is an order of magnitude lower in terms
of power consumption, while also being very competitive in
terms of performance.

FPGAs are ideal devices for machine learning purposes,
since they can achieve close to ASIC performance and effi-
ciency while not being stuck with a single algorithm-specific
hardware design. A Xilinx study [4] shows a comparison
between a NVidia Tesla V100 GPU and a Xilinx Virtex Ul-
trascale+ XCVU13P FPGA in terms of number of operations
per Watt. The FPGA device almost matches the efficiency of
the Tensor Cores hardware from the Tesla V100 GPU and
more than triples its standard efficiency (without Tensor Cores
acceleration), which demonstrates its energy efficiency.

On the other hand, supercomputers are continuously grow-
ing in computational complexity, power and storage resources.
Because of this, their mean time between failures (MTBF) is
becoming shorter. Therefore, fault tolerance tools are a vital
part of the HPC software stack nowadays, not only to save
time but also for substantial energy savings. Since current
supercomputers are in need of efficient fault tolerance systems
due to their sheer amount of computing units; FPGAs need
to be able to take advantage of those resilience techniques
as well. Thus, evaluating the performance of fault tolerance
schemes in HPC systems with FPGA devices is crucial for
the future of large scale supercomputers.

Checkpointing is the preferred software resilience mecha-
nism for scientific computing which typically features long
running applications. In this work, we propose to implement
Checkpoint-Restart (CR) for FPGA applications running on
heterogeneous systems (i.e., CPU-FPGA). For that, we adapt
a multilevel checkpoint library called Fault Tolerance Interface
(FTI) [5], in order to be able to checkpoint FPGA applications.
In addition, we implement two types of checkpoint strategies,
i) checkpointing from the host in between FPGA task execu-
tions, and ii) checkpointing inside long-running FPGA tasks.
We describe the design of both techniques and evaluate them
with multiple applications. We use the term FPGA task to
describe the portion of the application which is implemented
in the FPGA’s configurable logic.

The contributions of this paper are summarized as follows:

• Design of a CR technique capable of saving the state of
FPGA applications and restart from it.

• Implementation of a checkpointing method involving
the checkpointing of partial work of an FPGA task, as

“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.” Published version can be found at: DOI: 10.1109/IOLTS52814.2021.9486693

opposed to the standard method of checkpointing the
entire work in the main loop.

• Performance evaluation of the FTI library on a
CPU/FPGA heterogeneous system, with several applica-
tions.

The rest of this paper is organized as follows. Section II
discusses the motivation for this research. Section IV explains
the methodology used to implement checkpointing on FPGAs.
Section V shows the evaluation details and results. Section III
presents the related work. Finally, Section VI discusses the
conclusions and future work suggestions.

II. MOTIVATION

A. Energy Efficiency and Reliability in HPC
Several reports on extreme scale computing [6]–[8] have

studied the main challenges to achieve exascale computing,
and most of them agree that energy efficiency and reliability
are among the top three most pressing problems. Therefore,
exploring low-power computing devices is paramount in the
road ahead to achieve energy-efficient exascale computing.

The LEGaTO project [9] aims to address this issue by
leveraging heterogeneous systems. The main objective is to
provide a software stack which is not only developed for
high performance, but also has support for energy-efficient
computing. Fault tolerance plays an important role on this
endeavour. Since supercomputers use a lot of energy for
computational purposes, restarting a failed computation from
a checkpoint, instead of restarting from scratch, increases
dramatically the energy efficiency. Thus, clearly reliability
plays an important role in the decrease of wasted CPU hours
and therefore wasted energy.

Unfortunately, classic checkpointing is not enough. The
resilience at exascale report [10] highlights the importance of
leveraging novel storage devices, as well as developing new
interfaces and runtime libraries to optimize and delegate most
of the fault tolerance tasks that scientific applications need to
execute. Therefore, it is important to use and evaluate scalable
fault tolerance techniques and adapt those to the new low-
power heterogeneous architectures.

A recent study collected and analyzed a dataset of 44-
month failures of the China Meteorological Administration
HPC system, divided into two subsystems [11]. The study
shows that up to 50 failures can be encountered in one of
the subsystems in a single month, approaching the average of
2 failures each day. This shows that failures in HPC systems
are not rare, but instead are a daily occurrence. Since exascale
systems are going to have a lot more resources than current
HPC systems, they are expected to fail much more frequently.
Because of this, efficient checkpoint methodologies are needed
to minimize impact on performance and energy consumption.

B. Scalable Checkpointing
Given the importance of resilience for extreme scale com-

puting, there has been a large body of work on scalable fault
tolerance techniques for HPC, CR being the most popular.
However, CR has evolved through recent years in order to
overcome important bottlenecks and leverage new storage

devices. Multi-level checkpointing is today the state-of-the-art
technique for fault tolerance at large scale.

In this paper we focus on the FTI multi-level checkpoint
library. FTI provides efficient multi-level checkpointing in
large scale supercomputers. It leverages local storage plus
data replication and erasure codes to provide several levels
of reliability and performance [12]. There are a total of four
checkpoint levels: i) L1: Local checkpoint; ii) L2: Partner
copy; iii) L3: Reed-Solomon (erasure code); and iv) L4:
Parallel File System (PFS). Checkpoints can be taken either
manually (FTI Checkpoint) or periodically (FTI Snapshot).

The FTI library has been evaluated using CPU and
CPU/GPU systems [5], [13]. However, it has not been adapted
to work on CPU/FPGA heterogeneous systems. Given the
raising popularity of FPGAs for computational workloads,
knowing how such a library performs with these devices is
useful to estimate the overhead one can expect from such
fault tolerance solutions on a certain class of applications.
The aim of this work is to analyze and evaluate multi-level
checkpointing on CPU/FPGA heterogeneous systems.

It is important to highlight that the work presented in this
paper is not limited to FTI, but applicable to other multi-
level checkpointing libraries, such as SCR [14] and Veloc [15].
By analyzing the performance of FPGA applications with the
different checkpoint levels that the FTI library offers, we can
also have a reasonable approximation of what performance
other multi-level checkpointing libraries can achieve, due to
being based on similar principles. Of course, library specific
testing is needed for a more precise analysis of their behavior.

III. RELATED WORK

A. FPGA-powered HPC

The ExaNoDe project [16] develops technologies for com-
pute nodes leading towards Exascale capability. The node
comprises a multi-chip module composed of ARM-v8 cores,
low power processors, CNN accelerators, FPGAs and thermal
and power management. Their objective is to achieve energy
efficiency, scalability, heterogeneity and specialization. The
EuroEXA project [17] brings the research and technology from
other HPC projects [16], [18] and has the objective of co-
designing an exascale-capable platform with peak performance
of 400 PFLOPS with a peak power consumption of 30MW,
over four times the performance and over four times the energy
efficiency of current HPC platforms.

B. FPGA Checkpointing studies

Several checkpointing strategies have been proposed in
the literature. A tree based checkpointing architecture called
CPRTree [19] was proposed. Their approach was based on
Hardware Description Language (HDL) and consisted in
saving and restoring the state of all elements that define
the context (registers, RAM and wires). Another study [20]
evaluates the hazards of interrupting a running FPGA task
by building a context saving and restoring simulator. The
authors create several basic designs that contain most sources
of interruption hazards and simulate task interruption and
identify the hazards in each of those designs. To solve the

identified issues, the authors propose the use of Task Interrup-
tion (TI) wrappers along with a TI controller that controls their
behavior. Both approaches, rely on some low level context
saving that includes all the aspects of the FPGA tasks involved.
However, application-level checkpointing has shown that many
HPC applications need to checkpoint less than 50% of the
application state in order to recover successfully [5].

Another study [21] focuses on the usage of FPGA soft
processors in real-time applications. The proposed approach
involves scanning the configuration memory periodically to
detect and correct transient faults along with checkpointing
for fault recovery. The experiments showed that the checkpoint
frequency has a great impact on the task deadline fulfillment.
This is a known result in the HPC resilience literature, which
led to the development of the optimal checkpoint interval [22],
[23].

A minimally-invasive monitoring infrastructure for
message-passing computing systems is presented in [24]. This
infrastructure enables monitoring and has the ability to request
status, context retrieval and issuing of checkpoint/restart
commands of FPGA worker nodes. What all these studies
have in common is that they tackle the resiliency challenge
at the logic/hardware description level. Because of that, they
require the FPGA developer to use a hardware description
language as their programming framework. In this paper, we
instead tackle the problem at a high level using Vivado HLS
and OmpSs@FPGA combined with a multi-level checkpoint
library that is easy to link and use. This way, developers
programming in high-level languages such as C/C++ can
also obtain the advantages of fault tolerance and resiliency,
without the burden of implementing reliability at the hardware
description level.

C. Other accelerator checkponting studies
Sudarsun Kannan et al. presented a novel approach for

CPU-GPU checkpointing [25], which addresses end-to-end
data movement from the GPU to persistent storage, in order
to tackle all aspects of the data transfer. Another study
[13] proposes the integration of GPU checkpointing in the
Fault Tolerance Interface library, using generic API calls not
dependent on the location of the data. The main difference be-
tween these GPU checkpointing techniques and our approach
on FPGA checkpointing is that we propose a technique for
checkpointing partial progress of the FPGA task while it is
currently running, as opposed to the cited GPU techniques
which rely on CPU loop iterations of GPU kernel executions
(referred in this paper as host-based checkpointing).

IV. METHODOLOGY

In this section we will explain the methodology which we
followed to implement FPGA checkpointing. The work is
separated into two different main approaches when it comes
to implementing FTI functionality: host-based checkpointing
and checkpointing of partial data from the FPGA task.

A. Host-based Checkpointing
As the name implies, this implementation approach is

completely transparent to the FPGA, and is only done from

the host side, in between FPGA tasks execution. It is the most
straightforward implementation, where the FTI annotations are
usually put in the main loop and keep track of the iteration
number and the data needed to recover the execution upon
a failure. This is the ideal method when the FPGA tasks do
not take a long time to execute. This implementation is also
most useful when the FPGA tasks are repeated several times,
in which case it gives the user enough flexibility for setting
the checkpoint frequencies.

Fig. 1: Implementation of the FPGA task for the Jacobi Solver

1) Add FTI support: The change mainly consisted in
protecting the variables necessary for the recovery of the
execution in case of failure, and adding the FTI annotations
inside the main loop to decide when it is time to perform
a checkpoint or recovery. The important data is protected by
using FTI_Protect, which will be recovered in the case of
a failed execution. Note that in addition to the main datasets,
we also need to protect the iteration number since it is crucial
to properly resume the execution.

2) Host-Based Checkpointing Task Implementation: Fig. 1
shows the C implementation of the FPGA task for a Jacobi
Solver application used for host-based checkpointing. Since in
this first approach checkpoints are performed inside the main
loop of the application, the FPGA task does not contain any
checkpoint specific logic inside.

In the implementation, the host copies all the matrix data
to DRAM and calls the FPGA task. The FPGA task gradually
copies the data from the DRAM to local variables (which are
stored in the BRAM), and performs the computation. The task
also copies the important data back to memory so that the host
can gather the results after the task has finished.

B. Checkpointing partial work of the FPGA task

The intuition of this alternate implementation is to be able
to checkpoint the progress of the FPGA task at certain points
of its execution, without the need for the FPGA task to send its
intermediate results to the host. Note that checkpointing inside
the FPGA task is not necessary for all applications, however,

this technique could prove useful when used on FPGA tasks
which run for a long time before returning the final result.

1) Adapting application to handle partial checkpointing:
Because the host is unable to access the Block RAM of the
FPGA, every data transmission or communication has to be
done through the DRAM memory. The first approach we took
was to make the FPGA task and the host synchronize and
communicate when a checkpoint is needed. That is, after a
certain amount of work the FPGA would copy the work back
to DRAM and set a flag to tell the host that data is ready to
be checkpointed.

The host would then copy the data that is relevant to host
memory and perform a FTI_Checkpoint. While the host
is copying the data and performing the checkpoint, the FPGA
waits to avoid overwriting data and leaving the checkpoint in
an inconsistent state. When the host finishes, it tells the FPGA
task to resume its execution by setting another flag in DRAM.

However, for performance objectives, it is better to avoid
synchronizations whenever possible.

Fig. 2: Data movement of the asynchronous partial checkpoint-
ing implementation

Thus, the next step was to implement a modified version of
the previous approach which does not need synchronization
between the host and the FPGA task. In this implementation,
the host checks the progress of the FPGA in DRAM while the
FPGA task is constantly running.

The idea behind this new approach is the following: if the
FPGA task has started computing the data for checkpoint i,
the data for checkpoint i-1 is ready to be copied. In order
to have a secure way to copy data without risking overrides,
some structures will need to be replicated. An asynchronous
double buffering strategy in the DRAM suffices, as shown in
Fig. 2. Given that checkpoint intervals are always much larger
than the checkpoint cost (otherwise the overhead will be too
high), a double buffering is enough to avoid data overwrites.
By using Young [22] and Daly [23] formula to obtain the
optimal checkpoint period with a reasonable MTBF (e.g., 12
hours for petascale supercomputers), it results in a much larger
checkpoint interval than checkpoint cost, often over an order
of magnitude. An order of magnitude is enough even under
scenarios of CPU scheduling variance, cache/memory latency
and CPU/FPGA communication.

2) Partial work Checkpointing Task Implementation: As
can be seen in Fig. 3, the implementation of the FPGA task for
the checkpointing of partial work adds the required extra logic
to handle the checkpointing and the recovery of the FPGA task
progress. If param[0] is found to be bigger than zero, it means
that the FPGA task is resuming from an execution failure. In
that case, it recovers the local error and the block iteration and

continues the computation from there. Otherwise, it is assumed
to be a normal execution and the FPGA task starts from the
beginning. The recovered matrices are already given to the
FPGA task by the host, and so does not require additional
logic. Unlike in the previous version, the local error needs to
be copied to memory periodically to tell the host that there is
a new checkpoint procedure available. Since the host has to
be actively waiting for changes in memory, a taskwait pragma
does not suffice as a way to know that the task has finished,
and so param[1] is used instead.

Fig. 3: Adaptation of the FPGA task to support partial work
checkpointing

Additional code in the host is needed to receive the data
from the FPGA task. When the host detects a change in the
checkpoint number in DRAM, it proceeds to copy the nec-
essary data that the FTI library needs. The FTI_Snapshot
function is then called, which performs a checkpoint if deemed
necessary.

V. EVALUATION

A. Environment

1) Hardware & Libraries: We performed the experiments
on a cluster of 4 Xilinx Zynq-7000 SoC nodes. Each node
is composed of a 32bit 2-core ARM processor with 1GB of
DDR3 memory with an integrated Xilinx FPGA device. The
FPGA device has the following specifications [26]:

• Logic Cells: 85K
• Block RAM: 4.9Mb
• DSP Slices: 220
• Maximum I/O Pins: 200
We used version 2.2.0 of OmpSs@FPGA environment,

along with Vivado Tools 2017.3 for the synthesis and gen-
eration of the FPGA bitstream. The FTI version used was
1.4.1.

2) Applications: In this section we explain the applications
that were used for our evaluation.

i) K-means clustering [27]: iterative algorithm that assigns
n observations into k clusters, k being a fixed parameter. The
procedure is the following:

• k initial means are generated
• k clusters are generated from the observations based on

the nearest mean
• The centroid of each cluster becomes the new mean
• Process is repeated until it converges
ii) Jacobi Solver for heat equation: consists in an iterative

propagation of the heat represented as a 2D matrix. For every
iteration, the average of the 4 neighbor positions (up, down,
left, right) is assigned to every position (excluding the matrix
borders). The algorithms stops when reaching a small enough
gradient or when reaching a maximum number of iterations.

iii) YUV Filter: consists in applying a YUV based filter to
an image given as input. The steps are the following:

• Convert RGB image to YUV format
• Apply YUV filter to image
• Convert image back to RGB format
• Perform these steps a fixed amount of times

B. Host-Based Checkpointing

1) K-Means: Two versions of the application were evalu-
ated, the first using a ramdisk as the location for the checkpoint
and the second one using a drive mounted by the Network File
System (NFS). These experiments are situated on the oppo-
site sides of the performance versus fault coverage tradeoff
space. Taking the checkpoint to ramdisk is fast and thus high
performance but since ramdisk is volatile on-device memory,
this option does not provide fault coverage for FPGA node
faults, but rather just for detected unrecoverable faults such as
a double bit flip on the SECDED ECC implementations that
are found in modern FPGAs. On the other hand, taking the
checkpoint to NFS is slower but provides coverage for FPGA
node faults. In both versions, the application performs a single
checkpoint at approximately the middle of the execution. Each
version is executed a total of 20 times, and we evaluate the
overhead against the non-FTI execution.

The input used for the execution was 43000 points of 1024
dimensions each, stored in a file (173MB). The variables to
be protected by FTI were the centroids, the labels, the current
iteration, the current error and the error of the previous itera-
tion. Taking this in consideration, the size of a L1 checkpoint
is 0.20MB per process.

The average execution time of the ramdisk and NFS ver-
sions were 13.71 and 14.45 seconds respectively. Considering
that the average execution time of the non-FTI version was
13.59 seconds, the ramdisk and NFS version had an overhead
of 0.78% and 6.28% respectively. As expected, the overhead of
writing the checkpoint in a ramdisk is much lower than when
using a NFS drive. The FTI library having 4 levels of check-
pointing can help mitigate different levels of performance and
resilience. Note that these overheads are very low despite the
short execution time of the application.

2) Jacobi Solver: For the Jacobi solver, we analysed the
performance of the FTI library using checkpoint levels 2, 3 and
4 in separate experiments. For each experiment, we executed
the application with FTI functionality for a total of 20 times.
After the executions, we took the averages of each one and
compared it to the execution of the application without FTI
support. We interleaved the order of the executions to account
for possible system slowdown over time. For this application,
we set a precision limit of 0.005 and a maximum number of
35000 iterations, which made the executions run for almost
10 minutes each.

As mentioned previously, this application makes use of
the FTI_Snapshot functionality instead of using a manual
checkpoint. We set an interval of 5 minutes of the desired
checkpoint level in each experiment in the FTI configuration
file, while disabling the rest. According to Young [22] and
Daly [23] formula, a checkpoint period of 5 minutes is the
optimal checkpoint interval for a checkpoint cost of 1 second
and a MTBF of 12 hours, which is a realistic MTBF for
petascale supercomputers. In this case, the FTI library had
to protect the iteration counter and both g and h matrices.
The total size of a checkpoint is 0.26MB per process for
this problem size. The results of the experiments are shown
in Fig. 4. The lines represent the average execution time
of each version. Note that Fig.4 and Fig.5 have the Y axis
zoomed in, in order to emphasize the differences between
each version. We observe that, on average, the overhead of
FTI_Snapshot with the L4 checkpoint in this application
is 0.16%.

The experiment with the L2 checkpoint, also known as
partner copy, still shows a very low overhead of 0.25%. While
the L2 checkpoint seems to have slightly higher overhead than
L4, it is expected because of the extra communication and I/O
usage from saving an extra checkpoint copy on another node.

As with the previous experiments, we can observe a slightly
higher overhead of 0.32% by using the L3 checkpoint. This
level of checkpointing consists in the generation and commu-
nication of Reed-Solomon erasure codes in order to tolerate
failures in multiple nodes, so the slight overhead increase is
due to the extra computational workload from the nodes and
the increased communication needed for the computation. In
this case we only use 4 nodes, so there is not much difference
between writing in local storage vs the NFS. However, at large
scale with many nodes writing at the same time, it is advisable
to checkpoint in local storage (L1) instead of a NFS. All 3
experiments show very low overheads in comparison to the
original application. Thus, we think this technique is a viable
option for host-based checkpointing in FPGA applications.

3) YUV Filter: Just like with the previous application, the
YUV filter was executed 20 times with FTI and another 5
times without FTI. The FTI_Snapshot configuration was
also the same as the previous application. For this application,
we set it to a total of 80000 iterations in order to have a long
enough execution time. We set the L4 checkpoint interval to
5 minutes and disabled the rest of the checkpoint levels. The
FTI library protected the iteration counter and the image data
(in which the filters are applied). The total size of a checkpoint

5 10 15 20

506

508

510

E
x
ec
u
ti
on

T
im

e(
s)

non FTI
FTI − L2
FTI − L3
FTI − L4

Fig. 4: Performance comparison of Ja-
cobi Solver FTI implementation using
L2/L3/L4 checkpoints

5 10 15 20
558

560

562

564

566

568

E
x
ec
u
ti
on

T
im

e(
s)

FTI − L4
non FTI

Fig. 5: Performance comparison of
YUV Filter with and without FTI sup-
port

5 10 15 20
0

200

400

600

800

1,000

E
x
ec
u
ti
on

T
im

e(
s)

FTI
non FTI

Fig. 6: Performance comparison of Ja-
cobi Solver implementation with par-
tial FPGA task checkpointing

is 0.16MB per process. The results are shown in Fig. 5. We
can observe an overhead of 0.66% by using FTI_Snapshot
and performing the L4 checkpoint. This is still a very low
overhead.

C. Partial FPGA Task Checkpointing

1) Jacobi Solver: We ran the FTI version of the Jacobi
Solver that checkpoints partial work of the FPGA task a total
of 20 times, the same as the previous versions. In Fig. 6 we
compare the original application with no FTI, versus this new
version where the checkpoint is taken during the FPGA task
execution. In this case, we can see an overhead of 14.82% by
using this approach of FPGA checkpointing in comparison to
the original non-FTI application.

While the overhead in this case is certainly larger than
the host-based approach, it is worth pointing out that this
application is not well suited to benefit from this method of
checkpointing due to its FPGA task having short execution
time. If the FPGA task finishes in a short period of time, it has
enough granularity to benefit from host-based checkpointing
instead, with lower overhead. A better application for evalu-
ating this method would be one with an FPGA task that takes
significantly longer to give a final result, so that a host-based
checkpoint implementation does not have enough granularity
to be effective. Moreover, despite non being a good candidate
for partial task checkpointing, the overhead is still under 15%.

D. Resource overhead

In order to measure the impact of our implementations
in the utilization of FPGA resources, we used Vivado to
extract the resource usage of the 4 different components of the
FPGA logic (BRAM, DSP, FF and LUT). We also measured
the DRAM used by checking the size of all the function
parameters, since we stored all the parameters in this memory.

The comparison of Jacobi Solver implementation without
FTI and with partial checkpointing is shown in Table I. We
did not include the Host-Based version since it uses the exact
same design as the non-FTI. The Partial Checkpointing imple-
mentation requires extra logic for the recovery and copying of
partial progress to the FPGA memory, so we can see overheads
of 15.38% and 13.45% on LUT and FF usage respectively.
In terms of BRAM, however, there is a low overhead of

TABLE I: Resource utilization comparison of Jacobi Solver

Resource non-FTI Partial Chkp. FTI
DSP 18(8.18%) 18(8.18%)
LUT 10454(19.65%) 12062(22.67%)
FF 13717(12.89%) 15562(14.63%)

BRAM 50(35.71%) 51(36.43%)
DRAM 1057052 B 1057112 B

2.00% due to not having the need to store more variables.
In our particular case, our DRAM usage was not severely
impacted by our implementation because we only needed to
replicate the error variable. However, note that DRAM usage
can experience up to a 2x overhead in a worst case scenario
where all the parameters are in risk of being overwritten and
need to be replicated.

VI. CONCLUSION

Host-based checkpointing with the FTI library provides an
efficient way to give reliability to CPU/FPGA applications.
The FTI Snapshot functionality has been observed to have
very low overhead even checkpointing at high frequency.
Although our evaluation of the checkpointing of partial work
turned out to have a higher overhead than the host-based
checkpointing strategy, the application used was not fit for this
kind of checkpointing given the short execution time of the
FPGA tasks. As future work, this research could be comple-
mented by a more extensive analysis of the checkpointing of
partial work with other applications that benefit from that type
of checkpointing, in order to evaluate the overhead in a more
beneficial scenario. The paper could be further complemented
by exploring the use of different on-chip memory hierarchies
in larger FPGAs, such as UltraRAM on UltraScale+ Xilinx
devices, to improve checkpointing performance.

VII. ACKNOWLEDGEMENTS

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme
under projects EuroEXA (grant agreement nº 754337) and
eProcessor (grant agreement nº 956702).

REFERENCES

[1] “Vivado high-level synthesis,” www.xilinx.com/hls.
[2] J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-

González, C. Álvarez, X. Martorell, E. Ayguadé, and J. Labarta,
“Application acceleration on fpgas with ompss@fpga,” in International
Conference on Field-Programmable Technology, FPT 2018, Naha,
Okinawa, Japan, December 10-14, 2018. IEEE, 2018, pp. 70–77.
[Online]. Available: https://doi.org/10.1109/FPT.2018.00021

[3] S. Kestur, J. D. Davis, and O. Williams, “Blas comparison on fpga, cpu
and gpu,” in 2010 IEEE computer society annual symposium on VLSI.
IEEE, 2010, pp. 288–293.

[4] “Xilinx all programmable devices: A supe-
rior platform for compute-intensive systems,”
https://www.xilinx.com/support/documentation/white papers/wp492-
compute-intensive-sys.pdf.

[5] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “Fti: high performance fault tolerance
interface for hybrid systems,” in Proceedings of 2011 international
conference for high performance computing, networking, storage and
analysis, 2011, pp. 1–32.

[6] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller et al., “Exascale
computing study: Technology challenges in achieving exascale systems,”
Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

[7] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in International Conference on High Performance Comput-
ing for Computational Science. Springer, 2010, pp. 1–25.

[8] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to
the” new normal”’for computer architecture,” Computing in Science &
Engineering, vol. 15, no. 6, pp. 16–26, 2013.

[9] “Legato: Low energy toolset for heterogeneous computing,”
https://legato-project.eu/.

[10] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129–173, 2014.

[11] X. Chen and J. Sun, “Study and analysis of the high performance com-
puting failures in china meteorological field,” in Journal of Geoscience
and Environment Protection, vol. 5, no. 12. SCIRP, 2017, pp. 28–40.

[12] “Components — legato,” https://legato-project.eu/software/components.
[13] K. Parasyris, K. Keller, L. Bautista-Gomez, and O. Unsal, “Check-

point restart support for heterogeneous hpc applications,” in 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID). IEEE, 2020, pp. 242–251.

[14] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in SC’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2010, pp. 1–11.

[15] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“Veloc: Towards high performance adaptive asynchronous checkpointing
at large scale,” in 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2019, pp. 911–920.

[16] “European exascale processor memory node design,” https://exanode.eu/.
[17] “Innovative and scalable fpga-based system for extreme scale,”

https://euroexa.eu/.
[18] “European exascale system interconnect and storage,” https://exanest.eu/.
[19] H. G. Vu, S. Kajkamhaeng, S. Takamaeda-Yamazaki, and Y. Nakashima,

“Cprtree: A tree-based checkpointing architecture for heterogeneous
fpga computing,” in 2016 Fourth International Symposium on Comput-
ing and Networking (CANDAR). IEEE, 2016, pp. 57–66.

[20] S. Attia and V. Betz, “Feel free to interrupt: Safe task stopping to
enable fpga checkpointing and context switching,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 13, no. 1, pp.
1–27, 2020.

[21] A. Sari, M. Psarakis, and D. Gizopoulos, “Combining checkpointing and
scrubbing in fpga-based real-time systems,” in 2013 IEEE 31st VLSI Test
Symposium (VTS). IEEE, 2013, pp. 1–6.

[22] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACM, vol. 17, no. 9, pp. 530–531,
1974.

[23] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future generation computer systems, vol. 22, no. 3,
pp. 303–312, 2006.

[24] A. G. Schmidt, B. Huang, R. Sass, and M. French, “Checkpoint/restart
and beyond: Resilient high performance computing with fpgas,” in 2011
IEEE 19th Annual International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 2011, pp. 162–169.

[25] S. Kannan, N. Farooqui, A. Gavrilovska, and K. Schwan, “Hete-
rocheckpoint: Efficient checkpointing for accelerator-based systems,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014, pp. 738–743.

[26] “Xilinx zynq-7000 soc zc702 evaluation kit,”
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html.

[27] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA, 1967, pp. 281–297.

