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Abstract: The quality of the drinking water distributed through the networks has become the
main concern of most operators. This work focuses on one of the most important variables of
the drinking water distribution networks (WDN) that use disinfection, chlorine. This powerful
disinfectant must be dosed carefully in order to reduce disinfection byproducts (DBPs). The literature
demonstrates researchers’ interest in modelling chlorine decay and using several different approaches.
Nevertheless, the full-scale application of these models is far from being a reality in the supervision
of water distribution networks. This paper combines the use of validated chlorine prediction models
with an intensive study of a large amount of data and its influence on the model’s parameters. These
parameters are estimated and validated using data coming from the Supervisory Control and Data
Acquisition (SCADA) software, a full-scale water distribution system, and using off-line analytics.
The result is a powerful methodology for calibrating a chlorine decay model on-line which coherently
evolves over time along with the significant variables that influence it.

Keywords: chlorine; water distribution networks; modelling; supervision; decay model

1. Introduction

Disinfection is one of the most important steps in water treatment, as it must ensure the
microbiological safety of the water generated, not only after treatment, but also throughout
the transport process to the consumption point. Many countries use chlorine-based chem-
icals (sodium hypochlorite, chlorine dioxide, chloramines, etc.) to achieve this objective,
as they guarantee the degree of residual disinfection potential that is required by their
laws [1]. If required, booster disinfection stations are installed at different points in the
network. Their need and best location can be optimized using models and tools based
on estimates of the chlorine concentration. Chlorine concentration is precisely one of the
most relevant parameters to consider for the water distribution network (WDN) quality
management. Although chlorine ensures the absence of pathogens, it is the main cause of
the formation of disinfection byproducts (DBPs) [2]. Most of these compounds are toxic or
carcinogenic for human health and need to be controlled to ensure drinking water safety [3].
Thus, European legislation limits the concentration of some DBPs in drinking water [4].

Nowadays, given the lack of reliable and applicable models for predicting chlorine
behavior, disinfection management is not optimal in most WDNs, since it is based on
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a point-specific control as opposed to the consideration of the whole network [5]. There
are often dark points where the chlorine level may be too low, along with over-chlorination
at other points (particularly in summer), with a subsequent increase in both operating costs
and DBP concentrations.

The absence of robust models for predicting chlorine behavior in WDNs is funda-
mentally due to two aspects: (1) the complexity of modelling the hydraulics of the WDNs
and (2) the need for on-line quality data. Although authors report good results in chlorine
prediction in full-scale networks in some studies [6], the predictions become less accurate
when the environmental conditions or the water composition change from those of the
calibration. Such a situation is very common in WDNs fed with treated surface water.

Regarding the first aspect, WDNs are highly meshed and complex systems, the be-
havior of which is difficult to predict. The introduction of flow, level and pressure sensors,
and automated metering readers (AMR) for consumption has recently increased the model
accuracy [7,8]. Thus, the intense use of a large amount of hydraulic data together with
hydraulic models and numerical simulators allow prediction of residence time, which is
one of the main parameters needed for successful water quality prediction.

Regarding the second aspect, it is mandatory to obtain information on water quality
in the effluent of the drinking water treatment plant and the relevant points in the WDNs
in order to predict the behavior of chlorine. Several studies [6,9] base their decay models
on parameters that are easily measured on-line, such as temperature, pH, redox potential,
conductivity, turbidity, and chlorine concentration. Nevertheless, the calibration and
maintenance of these models for their on-line use is seldom performed.

Common models for chlorine modelling in WDNs are first-order linear differential
equations [10] such as:

dC
dt

= Kb·Cα (1)

where Kb is a constant that contains the different parameters and physicochemical phenom-
ena that may affect chlorine decay, such as natural organic matter, inorganic compounds, or
temperature [6]. More sophisticated models have also been studied, including second-order
models [11].

Furthermore, knowing the effect of the parameters influencing chlorine decay is also
important, as this will, in turn, allow the prediction of such decay and, in some cases, the
application of corrective measures to reduce its effect.

Equations of different complexity have been used to model the effect of some of these
parameters. One of the most influencing and studied parameters is temperature, which is
usually based on Arrhenius’s model [12] or other power models. Liu et al. [13] took pH
and temperature into account in their models, thus differentiating the effect of HOCl and
OCl species on pH. Similarly, Arevalo, in his doctoral dissertation [14], used a model that
considered temperature and UV254 as an indication of organic matter. In this case, two
decay constants were used, one related to chlorine decay on bulk water and one related to
chlorine decay on water close to pipe wall.

Hassan et al. [15] studied the specific case of organic matter adsorbed onto goethite,
which is the predominant iron oxide in pipe deposits, in order to see how effectively
the presence of organic matter increased the decay rate. Their main conclusions were:
(i) an increase in temperature causes an increase in the decay constant and therefore in the
decay rate, (ii) the pH has not been seen to greatly affect decay, (iii) a higher initial chlorine
concentration leads to a lower decay rate, (iv) a higher organic matter concentration, in gen-
eral dissolved organic matter (DOC), causes an increase in the rate of decay, (v) an increase
in the velocity of the water flow through the pipe causes an increase in the rate of decay,
and (vi) the concentration of ammonium, nitrites, iron, and manganese seems to affect the
rate of decay, causing its increase.

Chlorine decay first-order equations can also be used in software like EPANET, which
has sufficient power to simulate and predict the concentration of chlorine in the network.
EPANET is a public domain software for WDN modelling developed by the United States
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Environmental Protection Agency (US EPA). This software can perform transient simula-
tions of hydraulic behavior and water quality in pressurized pipe networks. In order to
properly model water quality and its time evolution at consumer points, it is mandatory
to have a reliable hydraulic model of the WDN. However, like any simulation software,
EPANET depends on the availability and application of continuous data into robust models.
The default built-in models have fixed calibration parameters that are not easily extrapo-
lated in most real cases. The approach some authors take to overcome these barriers is to
modify and recalibrate the default models included in the EPANET database based on the
real system data to be modelled [16].

Another important aspect when modelling chemical reactions in pipes is the different
behavior in wall and in bulk water. In the literature, bulk reactions are usually considered
first-order and wall reactions are considered zero-order. Values for the bulk reaction coeffi-
cient are usually obtained using laboratory measurements [17]. Nevertheless, changing
water characteristics in the network requires updating the model. There are a few ap-
proaches for the quality model calibration. This calibration requires a validated hydraulic
model and water quality data. This is often carried out in a well-monitored part of the
network and then generalized to the whole network [18,19].

This paper focuses on the chlorine decay process and variables that affect it, the
models for concentration prediction, and their application within WDNs in a specific
case-study. First, an on-line calibration procedure, with available data from the transport
network, is adapted to the full-scale system and performed over a long period so that the
evolution of the decay parameters can be studied. This model is used to predict the chlorine
concentration in the distribution network and validated with discrete monitoring data.
The dependence of chlorine decay on the relevant variables is also studied. Finally, this
dependence is compared with the evolution of the parameters estimated using the on-line
calibration method. The aim is to illustrate how the intense use of models and available
data can provide a better understanding of the behavior of chlorine in a WDN and, thus,
be used to support decision-making to improve water quality.

2. Materials and Methods
2.1. Case Study Network

The case study in this work is a WDN in Catalonia (Spain) (see location in Figure 1)
managed by Aigües de Manresa, who provided the network configuration information and
hydraulic and water quality data for a period of 14 months (2017–2018). The water supplied
comes from the Llobregat River and goes through a prechlorination step with sodium
hypochlorite (Apliclor Water Solutions S.L., Sant Martí Sesgueioles, Spain) or chlorine diox-
ide generated using sodium chlorite (Apliclor Water Solutions S.L., Sant Martí Sesgueioles,
Spain) and hydrochloric acid (Apliclor Water Solutions S.L., Sant Martí Sesgueioles, Spain)
(depending on the season), a sand filtration process, and a final disinfection step with
sodium hypochlorite.

Two parts of the network were used in this study: the transport network and the
district metered area (DMA). The transport network (Figure 2) consists of two water
storage tanks (T1 and T2) equipped with sensors for chlorine concentration (input of T1
(Cl1) and output of T2 (Cl2)), flowmeters (outflows from the tanks, Q1 and Q2), and water
level (H1 and H2). Water flows from T1 to T2 through a 6859 m main. T2 is a boosting station
with known sodium hypochlorite (Apliclor Water Solutions S.L., Sant Martí Sesgueioles,
Spain) addition. The geometry of the tanks (volume) and pipes (length and diameter) are
known. Water from T2 is distributed to the rest of the network (through Q2) of the DMA.

The DMA corresponds to a residential area. The hydraulic model includes 572 nodes
and 610 pipes with a total length of 31 km, providing water to 300 consumers. Water flows
by gravity. There are two quality-sampling points where the chlorine concentration is
measured weekly. Figure 3 presents the model of this DMA visualized in EPANET. The
input tank (corresponding to T2 in Figure 2) and the two sampling points are highlighted
(S1 and S2).
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2.2. On-Line Calibration

A very well parametrized system in terms of hydraulics and chlorine concentration (at
least at two points) is required to calibrate the chlorine decay constant of a WDN. As in this
study, the transport network often fulfils this condition. Therefore, the network used for
on-line calibration in this study was the transport network shown in Figure 2. The objective
was to find the decay constants for the model that best explained the chlorine concentration
measured at the output of T2.

The chosen model was a first-order model. Higher-order models could be used
with no fundamental changes in the methodology. Equation (2) shows that the chlorine
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concentration (Cl2) at the outflow of T2 depends on the input chlorine concentration (Cl1)
and the residence time in the system (t). The solution of Equation (1) is as follows:

Cl2 = Cl1·e−Kb ·t (2)

where Kb is the decay constant and α is considered as 1.
This dependence is defined by the decay constant Kb, which was calibrated on-line

using the measurements available so that it was adapted throughout the year to the
different water characteristics and environmental conditions. Estimations were performed
on a weekly basis, since some information was only available at this frequency (chlorine
dosing in T2).

The residence time (RT) in T1 was calculated from the hydraulic information available
using (3). The weekly mean residence time at tank T1 and the pipe was calculated using
the flowmeter data (Q1) and the volume of this subsystem.

RT1 =
V1 + Vpipe

Q1
(3)

In order to estimate the mean water volume in T1, the level data of the tank (H1) and
the geometric information was used. The residence time in T2 was calculated using the
mean values of the volume obtained from the level data (H2) and the mean values of the
tank effluent (Q2), as shown in (4):

RT2 =
V2

Q2
(4)

The chlorine concentration increase due to rechlorination (Cladded) was calculated
using the added volume of chlorine divided by the mean volume of water treated:

Cladded =
∆VCl ·143∫

Q2
(5)

where ∆VCl is the volume in liters of the concentrated chlorine added weekly to the network
and 143 is the concentration of the added chlorine in g/L (value obtained from the conver-
sion of the 15% NaClO to reactive chlorine, see Section S1 in the Supplementary Material).

Finally, a decay Kb constant was calculated which explained the chlorine concentration
Cl2 at the outflow of T2 given the residence time calculated using (6)

Cl2 = Cl1·e−Kb(RT1+RRT2) + Cladded·e−KbRTT2 (6)

where Cl2 was considered equal to 0.6 ppm, which is the set point of the chlorine control sys-
tem in the boosting station. The algorithm for Kb calibration is shown in the Supplementary
Material (Section S2).

The first order decay model is the most used in the water industry. Its decay constant
includes all the dependencies related to environmental and water characteristics. Thus,
the continuous updating of this constant is the guarantee of its reliability. The limitation
of this methodology is the information required. Hydraulic information, that allows the
determination of the residence time, must be available. Multiple chlorine concentration
measurements and the exact volume of added chlorine between these measurements are
also mandatory data.

2.3. Chlorine Decay Calibration and Validation

The chlorine decay first-order model validation for the transport network was carried
out using available the on-line data of the chlorine concentration in the output of T2 consid-
ering the residence time in this tank. The data used covered the period from February 2017
to April 2018. The chlorine decay model was also validated for its use in the distribution
network in the section where chlorine concentration is monitored.



Sensors 2022, 22, 5578 6 of 14

Applying the calibrated decay model directly to the distribution network produced
poor results. This was expected, due to the difference between the transport network and
the distribution network regarding pipe size, materials, age, etc. To adjust the model, the
available data period was divided into two sets: one for training the new distribution
quality model and the remaining data for validation. There were 35 samples available in S1
and 11 samples in S2. Thus, the first 21 samples in S1 were used for the training and the
remaining ones for the validation. The algorithm used for this calibration is shown in the
Supplementary Material (Section S3).

2.4. Parametrised Chlorine Decay Model

The decay constant, determined from the available on-line data, evolved clearly
throughout 2017. The question arose if this could be due to the effect of the available vari-
ables such as temperature, the initial chlorine concentration, the cumulative precipitation,
and the turbidity at the drinking water treatment plant or not.

This suggested the idea of analyzing the variables that influence chlorine decay in
order to generate an empirical model based on the available independent variables. The
availability of considerable data (temporal and spatial) implies dealing with large amounts
of data, multiple variables, and experimental noise, which hinders the direct extraction of
valuable information.

Principal component analysis (PCA) is a multivariate statistical technique that allows
the description of the data according to the variance [20]. This method transforms data in
noncorrelated new variables by linear transformation, decreasing the data dimensions. New
data description is more condensed and can describe patterns that are hard to identify in
multivariable datasets. PCA has already been used to determine the physical and chemical
parameters influencing chlorine decay [21]. Therefore, for being a powerful, reliable, and
globally accepted tool when dealing with big data, PCA was selected to extract the main
trends, patterns, and correlations among the variables (dimensions) [11].

Based on the PCA results, the chlorine decay constant was modelled using the available
variables and a potential multiparametric model (7).

Kb = K·Parameter1a·Parameter2b·Parameter3c· . . . (7)

Specifically, a power model (8) and an Arrhenius model (9) [12] where calibrated using
experimental data (temperature in 2017) and Kb obtained from the on-line calibration using
the least square error fitting method implemented in the “Solver” function in Excel.

Kb = Kpower· Ta (8)

Kb = A·exp(−Ea/RT) (9)

where, Kpower, a, and A are constants, Ea is the activation energy (Jmol−1), R is the universal
gas constant, and T is the temperature. Finally, the parametrized chlorine decay model was
compared with that obtained in the on-line calibration to assess its coherence throughout
the year.

3. Results and Discussion
3.1. On-Line Calibration

The decay constants Kb obtained are presented in Figure 4. In the upper graphic, the
weekly evolution between February 2017 and April 2018, can be observed. A different icon
was used for the data of each trimester to clearly identify the season of the year. In the
lower graphic obtained, Kb are grouped by month to observe how this parameter evolves
throughout the year (some months include estimations of both years). It seems clear that
there may be a seasonal variation related to temperature.
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3.2. Chlorine Decay Validation

The calibrated model was applied to the peak episodes observed at the output of T2
due to the rechlorination and mixing effect. The dataset used in this validation was not used
for the estimation. The dataset for calibration consisted of the mean values corresponding
to the stationary state. Figure 5 shows the chlorine concentration data and the model
prediction. It can be observed how this high-frequency dynamic is adjusted with the model
obtained with the mean values. For this prediction, Kb evolves weekly.
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For the distribution network simulation, a relation between the transport Kb, estimated
by on-line calibration, with the distribution Kb

* was obtained by adjusting the concentration
in the training set of chlorine sampling. This relation was applied to the entire period and
the predicted concentration was compared with the measurements for the validation set of
samples. A total of 40 days were simulated. The decay constant for both the bulk and wall
were fitted using the first 21 samples of the chlorine concentration in S1. These are the first
samples of upper graphic in Figure 6.
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The result was that both decay constants minimize the error when the original Kb
obtained in the transport system was divided by 2, as if the calibrated effect was distributed
in the two phenomena (K*

b,bulk = K*
b,wall = Kb/2). The results obtained are compared

with the available experimental data in Figure 6. The mean absolute percentage error was
16% for S1 (including calibration and validation samples) while it was 17% using only
validation samples. Therefore, not significantly different deviations were obtained for the
calibration and the validation steps. Graphically, the fit may seem poor; however, the
concentration is lower in S2 than in S1 both in prediction and measurements, and the mean
values in both sampling points are coherent between the prediction and measurements.
One aspect that may justify part of the mismatching is that the exact hour of the day of the
manual measurements was not available and, therefore, each experimental data may not
be in its exact position. This difficulty could be overcome with on-line chlorine sensors
instead of manual analysis. Figure 7 presents the measured chlorine concentration at the
source (T2) and the chlorine prediction in the two sampling points (S1 and S2). The chlorine
concentration decreases with the residence time, since the concentration in S2 is lower than
in S1, and both are lower than in T2.

Finally, Figure 8 shows the network nodes colored by their chlorine concentration:
green, black, or red, depending on whether their concentration is too low, acceptable, or too
high, respectively. In fact, no red points exist in this area and period. Such a representation
is very useful in order for the network operator to make decisions. Nodes in this figure
correspond to those in Figure 3 and are presented with north at the top.
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Results from the PCA applied to the decay constant (K_Cl_decay) determined in the
distribution network and other data available (temperature as Tavg_C, initial chlorine
concentration as Initial_Cl, cumulative precipitation as Cumulative_Prec, and turbidity at
the drinking water treatment plant) are shown in Figure 9.
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In this case, dimension one was related to the temperature, and dimension two was
related to the initial chlorine concentration. Therefore, the decay constant was closely
related to the temperature. Figure 10 shows the variables that had the most influence on
dimension five, which were again the temperature and the chlorine decay, demonstrating
the clear strong relation of the temperature on the decay constant.
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Thus, it was concluded that the variable that had a higher effect on the decay constant
was temperature. It was observed that the variables turbidity, precipitation, and initial
chlorine did not excessively improve the fit between the decay constants of the model
and the decay constants obtained. Therefore, only the temperature was used, since the
effort required to obtain values for the rest of the parameters did not compensate the
improvement of the model adjustment.

Experimental data from 2017 and Kb obtained with the on-line calibration were
used to calibrate the parameters of the two equations, an Arrhenius model (8) and
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a power model (9), to predict the temperature effect on the decay constant. The following
Equations (10) and (11) show the results obtained.

Kb = 5.477·10−8·T1.524
(

s−1
)

(10)

Kb = 3950·exp(−49873/RT)
(

s−1
)

(11)

The fit obtained using the Arrhenius model and the power model were similar, al-
though the Arrhenius one was slightly better. The Arrhenius model also determines the
activation energy (J/mol), which is the minimum energy that the system needs for the reac-
tion to take place. The ratio Ea/R obtained in this study was 5999 K, which is in accordance
with other authors. For example, Courtis et al. [22] estimated 5388 K and 6701 K for two
different water distribution systems, Powell et al. [23] obtained a range between 7500 and
9600 K, and Hua et al. [12] obtained a range between 8203 and 8727 K, depending on the
type of water. The variability of the values for this ratio suggests that this is a water-specific
parameter that might depend significantly on the natural organic matter composition [24].

Figure 11 shows the fit of the two models to data from 2017, and Figure 12 their
forecast for the first days of 2018. In these figures, K Chlorine is the chlorine decay constant
determined previously, K power the constant determined following the potential model,
and K Arrhenius the constant obtained from the Arrhenius model. As it can be seen,
the Arrhenius model provides good predictions while using only the temperature as
an input parameter.
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4. Conclusions

The literature review shows that only the simplest models of chlorine decay are applied
to water distribution networks where the hydraulic behavior is complex enough. Even
so, these models are seldom used due to the lack of proper calibration. In this paper, the
performance of a decay model was evaluated when the parameters were calibrated using
state-of-the-art techniques.

The calibration was first carried out in the transport network, where the on-line data
allowed an on-line calibration. The relation between the decay constant in the transport
and distribution networks used analytical data and, thus, it could not be done on-line.

The prediction error in the validation data was 17% and quite similar to the error
obtained for the training set (16%), which meant that there was no overfitting. The decay
constant obtained changed during the year following the assumed dependence of the
chlorine decay on the temperature. This result suggested the possibility of using available
data for predicting this decay constant.

The principal component analysis determined that the temperature was the parameter
with higher effect on the decay of chlorine. The chlorine decay constant was obtained using
temperature as an independent variable. The obtained constants were compared with the
data-driven model obtained in the on-line calibration, showing a high correlation. While
the dominant dependence on the temperature is not a novelty, it is important to ensure this
unique dependency, as it guarantees that other characteristics of the water source will not
be relevant. This has been studied throughout one year, and the results obtained by both
models are coherent.

This procedure could also be applied to other quality parameters, such as disinfection
byproduct concentrations, which are currently under investigation by the authors. The
variables analyzed for chlorine decay estimation are being studied for the trihalomethanes
formation prediction.

The final aim of this study is to increase knowledge within the network in order to
enable decision-making processes regarding chlorine dosing (quantity and frequency) both
in the disinfection process and the boosting stations, in addition to identifying whether
other control systems are required to ensure the continuous good quality of supplied water
to the final user at a minimum cost.
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constant; Table S2: Pseudocode to estimate the chlorine decay constant in the distribution network.
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