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SUMMARY

We consider a setting where experiments of widely different costs can
be performed to obtain several properties of an entity and a reward is
obtained for confirming that the entity does satisfy a property. In that
case, it is sometimes beneficial to perform a cheap experiment in order
to obtain partial information on the desired property, if corresponding
experiment is much costlier. Our goal is to train a neural network that
can incorporate new information from experiments in order to out-
put better predictions, and then use this neural network in a planner
that will determine what sequence of experiments will maximize the
expected value. In this project, the entities will be molecules.

We introduce the concept of transposed meta-learning, which is sim-
ilar to meta-learning but instead we aim to create a model that, for
unseen inputs, can generalize to unseen tasks after seeing just a few
example tasks. We consider an architecture-based approach and an
optimization-based approach and find that the latter yields better ac-
curacy. We employ a meta-learning technique called CNGrad to meta-
train on several inputs in parallel.

In the planner, we perform tree search to find the best policy for each
set of already known properties. We consider best-first search with
several hard-coded heuristics as well as a planner inspired by Alp-
haZero with the intention that it would learn the best tree exploration
method. Out of the heuristics that we try, the best one is exploring the
combinations of experiments with the lowest total cost first. Although
the AlphaZero planner improves its performance compared to not do-
ing planning by learning, its performance is not as good as best-first
search.

This work shows the potential usefulness of incorporating new infor-
mation to obtain better predictions even if that additional information
comes at a cost, and it also provides a novel meta-learning framework
that can be used in other problems aside from this one.

Keywords: deep learning, meta-learning, planning, tree search

AMS Code: 68T05



RESUM

Considerem una situació on experiments de costos molt diferents po-
den ser realitzats per obtenir diverses propietats d’una entitat i una
recompensa és obtinguda per confirmar que la entitat satisfà una pro-
piteat. En aquest cas, de vegades és beneficiós realitzar un experi-
ment barat per obtenir informació parcial sobre la propietat desitjada,
si el corresponent experiment és més car. El nostre objectiu és en-
trenar una xarxa neuronal que pot incorporar informació nova dels
experiments per donar millors prediccions, i després utilitzar aquesta
xarxa neuronal en un planificador que determinarà quina sequència
d’experiments maximitza el valor esperat. En aquest projecte, les en-
titats seran molècules.

Introdüım el concepte de meta-aprentatge transposat, que és semblant
al meta-aprenentatge però volem crear un model que, per entrades no
vistes, pot generalitzar a tasques no vistes després de veure només
unes poques tasques d’exemple. Considerem un enfocament basat en
arquitectura i un altre en optimització i descobrim que el darrer dóna
millor precisió. Utilitzem una tècnica de meta-aprentatge anomenada
CNGrad per meta-entrenar en diverses entrades en paral·lel.

En el planificador, realitzem cerca en arbre per trobar la millor de-
cisió per cada conjunt de propietats ja conegudes. Analitzem best-first
search amb diverses heuŕıstiques i un planificador basat en AlphaZero
amb la intenció d’entrenar el millor mètode d’exploració de l’arbre.
De les heuŕıstiques que provem, la millor és explorar les combinacions
d’experiments amb el menor cost total primer. Malgrat que el planifi-
cador d’AlphaZero millora el rendiment respecte a no planificar, el seu
rendiment no és tan bo com best-first search.

Aquest treball mostra la potencial utilitat d’incorporar informació nova
per obtenir millors prediccions encara que aquesta informació addi-
cional incorri un cost, i també planteja un marc de meta-aprenentatge
nou que pot ser utilitzat en altres problemes.

Paraules clau: aprenentatge profund, meta-aprenentatge, planifi-
cació, cerca en arbre

Codi AMS: 68T05



RESUMEN

Consideramos una situación en la cual tenemos experimentos de costes
muy distintos que pueden ser realizados para obtener diversas propieda-
des de una entidad y recompensa es obtenida por confirmar que la
entidad satisface una propiedad. En este caso, a veces es beneficioso
realizar un experimento barato para obtener información parcial sobre
la propiedad deseada, si el experimento correspondiente es más caro.
Nuestro objetivo es entrenar una red neuronal que puede incorporar
información nueva de los experimentos para producir mejores predic-
ciones, y luego utilitzar esa red en un planificador que determinará
qué secuencia de experimentos maximiza el valor esperado. En este
proyecto, las entidades serán moléculas.

Introducimos el concepto de meta-aprendizaje transpuesto, que es sim-
ilar al meta-aprendizaje pero con el objetivo de crear un modelo que,
para entradas no vistas, generaliza a tareas no vistas tras ver unas
pocas tareas de ejemplo. Consideramos un enfoque basado en arquitec-
tura y otro en optimización y descubrimos que el segundo tiene mejor
precisión. Usamos una técnica de meta-aprendizaje llamada CNGrad
para meta-entrenar sobre varias entradas en paralelo.

En el planificador, realizamos búsqueda en árbol para encontrar la
mejor regla para cada conjunto de propiedades ya conocidas. Anal-
izamos best-first search con varias heuŕısticas y un planificador basado
en AlphaZero con la intención de entrenar el mejor método de explo-
ración en el árbol. De las heuŕısticas que probamos, la mejor es ex-
plorar las combinaciones de experimentos con el coste total más bajo
primero. Pese a que el planner de AlphaZero mejora su rendimiento
comparado con no planear, su rendimiento no es tan bueno como best-
first search.

Este trabajo muestra la potencial utilidad de incorporar información
nueva para obtener mejores predicciones incluso si esta información
adicional incurre un coste, y planteamos un marco de meta-learning
nuevo que puede ser utilizado en otros problemas.

Palabras clave: aprendizaje profundo, meta-aprendizaje, planificación,
búsqueda en árbol

Código AMS: 68T05
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Chapter 1

Introduction

Suppose we have an entity and an agent that can perform several experiments on

that entity. Each of these experiments comes at a cost, and the costs of these

experiments vary greatly. We obtain a reward for confirming that the entity

satisfies a particular property. If the corresponding experiment is particularly

expensive, it might be better to try one of the much cheaper experiments first to

hopefully gain some information to decide whether the expensive experiment is

worth it.

For example, suppose we have a robotic butler whose job is to prepare meals

for its owner. This butler could, for instance, choose to serve an expensive wine

in the hopes that the owner will really like it. However, before taking the risk,

it might be wise to serve a cheaper wine first to check if the owner likes wine at

all. Or maybe the butler can figure out that liking certain foods is correlated with

liking wine so maybe it tries serving one of those foods instead to gain information

about the owner’s preferences at the lowest cost.

1



1.1 Formal definition of the problem

In another scenario, imagine that a pharmaceutical company has just discov-

ered a new drug that is able to cure a certain disease, but they need to test whether

that drug is safe on humans. Doing the experiment would be very expensive, but

if successful, the profits would be large. Instead, the company might decide to

test whether the drug is safe on mice first at a much lower cost, in order to gain

information on the likelihood that the drug is safe on humans. There could be

other properties you could analyze of the drug that might give less information

about safety on humans but since the cost is even cheaper it might be worth it.

1.1 Formal definition of the problem

We have an entity E and a set of experiments {e1, e2, ..., en} we can perform on

that entity. Each experiment ei has a cost ci and its true value ti which is a binary

result that can be either 0 or 1 and is hidden from us. One of the n experiments,

eg, is the goal experiment, and it will give us a reward Rg if we perform eg and

we get tg = 1 as the result. We define the vector k ∈ Rn as the vector of known

properties, which contains the outcomes of experiments we already performed.

ki = −1 indicates that we have not performed ei yet and as such we do not know

its true value, but if we have performed ei then ki = ti, the true value. In the

initial step, ki = −1∀i, indicating that we do not know the outcomes of any of

the experiments at the start. At each step, we can either stop, giving us a total

payout of R(k) = Rg −
∑

ki ̸=−1 ci if ki = 1 or R(k) = −
∑

ki ̸=−1 ci otherwise, or

choose one of the remaining experiments ei and learn the value of ti by paying the

2



1.1 Formal definition of the problem

cost ci.

Our goal is to create a model f that takes E and k as an input and outputs

p ∈ Rn, a probability vector where pi represents the probability of ti being 1.

Then, we will create a planner that uses the predictions of model f to create a

policy of which action to take for each k that will maximize the expected value of

the payout. In this report, we will tackle the case in which the entity is a molecule

and the each experiment determines one property of the molecule.

3



Chapter 2

Related work

When it comes to molecular property prediction, large datasets have already

been created to be used to train neural networks. In this project, we will use

the ChEMBL20 dataset Bento et al., which is a curated dataset of over 400,000

molecules and 902 properties chosen such that each property would be known for

at least 128 molecules of the dataset. This amount of data points for each task is

sufficient to train a multitask model.

Research done in Nguyen, Kreatsoulas, and Branson leverages this dataset in

order to meta-learn initializations that can be used to adapt to new tasks by seeing

just a few molecules in that task. They use the GGNN architecture from Li et al.

Cho et al., which we also use to make predictions on the molecules.

The concept of meta-learning has also been studied extensively, and different

approaches have been devised. One of the most well-known, MAML Finn, Abbeel,

and Levine, uses second-order optimization in order to find initializations that can

perform few-shot learning for unseen tasks. This framework is the basis for our

4



optimization-based approach. In Sun et al., they explore a scenario where the

training and validation samples come from different distributions, and how they

train on a single training sample to obtain better predictions for the rest. Some

meta-learning approaches change the architecture of the neural network, such as

Flennerhag et al. adding warp layers in the model and a different optimization

approach to extend meta-learning beyond just few-shot learning, or Alet et al.

proposing the idea of adding a conditional normalization layer to meta-learn mul-

tiple tasks in parallel. In Alet et al., meta-learning is used to train a tailoring

loss that aims to find a conserved quantity between frames of a video in order

to make better predictions of future frames. Datasets to test the effectiveness of

meta-learning have also been created, such as Triantafillou et al.

A lot of work has been done studying the use of neural networks in planning

as well. For example, Wu, Say, and Sanner proposes a method to use a planner

with a neural network for continuous problems instead of discrete ones. Pu, Kael-

bling, and Solar-Lezama formulates a new architecture that can incorporate new

information and use it to perform better predictions, which can be used to plan

which queries to perform next.

AlphaZero Silver et al. has been used in perfect information two-player games

to learn by playing against itself using Monte Carlo Tree Search and achieve su-

perhuman performance. This framework can be adapted to train an agent that

computes a policy in a wide variety of problems. In MuZero Schrittwieser et al.,

they change the architecture so it can learn to play games with an environment

that can affect the game. In our problem, this would correspond to the outcome

5



of an experiment not being known to us until we perform it. EfficientZero Ye et

al. expands on this framework even further to make learning more efficient. The

work in Ozair et al., also based on AlphaZero, learns how to play games when the

environment is stochastic or partially hidden.

6



Chapter 3

Modeling

3.1 Transposed meta-learning

In the classic formulation of meta-learning, we have some known tasks, and for

each of these tasks we have some known inputs and their corresponding outputs.

The goal is to learn from this dataset in such a way that if we receive a new,

unseen task, we can generalize to unseen inputs after receiving just a few example

inputs of that task. Thrun and Pratt Vilalta and Drissi Vanschoren By itself, this

framework is not suitable to our problem because in the planning stage we will

be receiving an unseen input and we will need to generalize to unseen tasks after

receiving just a few example tasks of that input. What we can do, however, is to

transpose the original formulation of meta-learning, switching the roles of inputs

and tasks. We transpose our dataset so that we have some known inputs, and for

each of these inputs we have some known tasks and their corresponding outputs.

We will be learning from this dataset such that when we receive a new, unseen

7



3.2 Gated Graph Neural Network architecture

input, we can generalize to unseen tasks after receiving just a few example tasks

of that input. This means that, in the planning stage, we will be able to update

our predictions for the remaining tasks (including the goal task) every time we

perform an experiment and obtain new information about one of the tasks of that

input. In our specific example, the inputs are molecules and the tasks are the

different properties of the molecule. This new formulation will be the basis of our

training of the models.

From a data collection perspective, it is easy to obtain data from cheap tasks

but difficult to obtain data from expensive tasks. Therefore, we will know the

cheap tasks for many inputs but the expensive tasks for only a few inputs. As

such, we can train on the inputs for which we know both the cheap tasks and the

expensive tasks by treating the cheap tasks as the few ”known” example tasks and

using them to generalize to the ”unseen” expensive tasks. The hope is that for the

rest of molecules where we do not know the expensive tasks, we can generalize to

them after only seeing the results of the cheap tasks. Therefore, this formulation

can be useful for other meta-learning problems and not just the exact one we are

tackling in this project.

3.2 Gated Graph Neural Network architecture

Each input molecule will be represented as the adjacency matrix of a graph G

with V nodes, with each node representing an atom and each edge representing a

bond between two atoms. Each atom in the input will also have a feature vector

8



3.2 Gated Graph Neural Network architecture

with F features associated with it. To make predictions, we use a variant of the

Gated Graph Neural Network Li et al. Nguyen, Kreatsoulas, and Branson, which

operates in two phases: the message passing phase and the readout phase. In the

message passing phase, each node v’s hidden representation hv at layer t will be

updated according to the hidden representation of neighboring nodes N(v) using

the following formula:

mt+1
v = Aevvh

t
v +

∑
w∈N(v)

Aevwht
w

ht+1
v = GRU(ht

v,m
t+1
v )

where Aevw ∈ RF×F is a learnable weight matrix, mv ∈ RF is the message passed

from the neighbors of v to update the hidden representation of v and GRU is the

gated recurrent unit. Cho et al. A total of 7 such layers are used in the message

passing phase, each with a different weight matrix. In the readout phase, the

feature vectors from all nodes are summed to obtain the representation of the

molecule h =
∑

v∈G hT
v . To obtain predictions for each property of the molecule,

we will add additional layers in the readout phase after obtaining the feature

representation of the molecule. In some models we will also add layers between

the input and the first message passing layer.

9



3.3 Multitask model

3.3 Multitask model

One way to obtain predictions for each property is to add a 2-layer multilayer

perceptron (MLP), followed by a sigmoid layer that takes the molecule’s hidden

representation h as an input and outputs the probabilities p of each property of

the molecule being a 1. We use the Binary Cross Entropy loss (BCE) to train all

the models we will propose, including this one.

This multitask model is unable to incorporate new information about the ex-

periments we perform in the planning phase, and as such it is only good to obtain

an initial prediction pg and perform the goal experiment if E = Rgpg − cg > 0.

In theory, this model should be enough to obtain perfectly accurate predictions

since the input is Markovian and it is possible to deduce all the properties by only

looking at the molecule. However, in practice, it is unrealistic to expect a perfectly

accurate model and as such finding a way to incorporate extra information from

the experiments can improve prediction accuracy.

Figure 3.1 Architecture of the multitask model. MP is a black box containing all
the layers of the message passing phase of the GGNN. After the MLP, a sigmoid
layer is used to clamp the probabilities to between 0 and 1.

10



3.4 Multitask model with extended input

3.4 Multitask model with extended input

A simple way of incorporating properties we already know is to include them as

part of the input. We will use the approach described in Pu, Kaelbling, and

Solar-Lezama as the implication model. In the multitask model with extended

input, we represent the known properties as a vector r ∈ R2k, where k is the

number of tasks. For each task i, if ki = 0 we set r2i = 1 and r2i+1 = 0, and

if ki = 1 we set r2i = 0 and r2i+i = 1. If ki = −1, meaning that we have not

performed experiment i yet, we set both positions of v to 0. We feed r to a 2-layer

MLP to obtain a condensed representation hr ∈ RFr , concatenate it to the feature

vector of each node which means each node will have F + Fr features, and then

feed those extended feature vectors to another 2-layer MLP to obtain new feature

vectors with only F features. These new feature vectors will be used as the input

for the message passing layers. In the planner we will not be performing many

experiments on the same molecule because the cost of doing so increases while

the information we gain from each additional experiment decreases, so to better

simulate the conditions of the planner, for each training molecule we will only

incorporate between 0 and 6 known properties from the set of cheap experiments

(chosen at random) instead of all the known ones from the ChEMBL20 dataset.

While this model is able to incorporate information from the experiments, there

are two shortcomings with it. The first one is that we need a large weight matrix

for the first MLP since there are almost a thousand properties in the dataset, but

we will be using at most 6 of them for each input. This also means that the input

will be flooded with zeros, which might make learning more difficult. The second

11



3.5 Transposed MAML

is that there is a generalization gap: since the known properties are tied to each

input molecule, this means that for new inputs the relationship between molecule

and properties has to be retrained.

Figure 3.2 Architecture of the multitask model with extended input. We feed
the vector k of known properties into an MLP before concatenating it with the
feature vector of each atom.

3.5 Transposed MAML

Instead of using an architecture-based approach like in the last section, we can

use an optimization-based approach instead to address those shortcomings. In

the classic formulation of MAML, we split tasks into a meta-training set Ttr and

a meta-validation set Tval, and each task will contain a set of training samples

Dtr
Ti

and a set of validation samples Dval
Ti

. The goal is to learn an initialization

θ0 from which we can adapt to new tasks by seeing only a few samples of that

task. Meta-training occurs in two stages: the inner loop and the outer loop. Finn,

12



3.5 Transposed MAML

Abbeel, and Levine

In the inner loop, we use the training samples Dtr
Ti
to adapt θ0 to a task Ti ∈ Ttr

by performing N gradient descent steps on a neural network f parametrized by θ

using the training samples:

θiN = θN−1 − α∇θLDtr
Ti
(fθiN−1

)

where α is the inner learning rate. We repeat this process for a batch of tasks in

Dtr
Ti

to obtain θiN , the parameters of a model f that can make predictions on new

inputs of task Ti.

In the outer loop, we learn the initialization θ0 by using the validation samples

Dval
Ti

to calculate the meta-loss, which is the sum of the losses of all the tasks in

the batch:

Lmeta(θ0) =
∑
i

LDval
Ti
(fθiN )

and then we use the meta-loss to optimize θ0 using gradient descent:

θ0 ← θ0 − β∇θL(θ0)

where β is the outer learning rate.

Meta-validation is the same process, but we use tasks Ti ∈ Tval and we do not

update θ0 after the outer loop.

However, as discussed in Section 3.1, we are using transposed meta-learning

instead of classic meta-learning, which means that Ttr and Tval will be sets of

13



3.5 Transposed MAML

molecule, and that each molecule Ti will contain a set of training properties Dtr
Ti

and a set of validation properties Dval
Ti

. We choose the training properties to be

the cheap ones and the validation properties to be the expensive ones, with the

goal that the model learns to generalize to expensive properties after only seeing

some of the cheap ones. Meta-training and meta-validation are the same as in the

classic formulation of MAML but with this transposed dataset. The architecture

used is the same as the multitask model (Section 3.3). Like in the multitask model

with extended input (Section 3.4), instead of using all the training properties in

ChEMBL20, we will randomly select between 0 and 6 of them to use for each

molecule. Since we allow the possibility of a molecule having no training proper-

ties, this means that the initialization θ0 must already provide good predictions

for the properties of the molecules, which is necessary to ensure that the first step

of the planner (i.e. before performing any of the available experiments) is correct.

We use the Python module higher in order to perform second-order optimization

that is necessary to correctly train in both loops. Grefenstette et al.

By training in this way, we hope to obtain a model that, for unseen molecules,

is able to adapt by knowing just a few properties and provide more accurate predic-

tions on the rest of properties. However, this method has one major shortcoming:

we cannot train different molecules in parallel. That is because, after the inner

loop, the parameters θiN will be different for each molecule, which requires us to

store a different model for each molecule that can only receive that particular

molecule as the input and nothing else. In classic MAML that might not be a

problem, as we might only have a few tasks, but in transposed MAML we have

14



3.6 Transposed CNGrad

tens of thousands of molecules and as such this method is far too slow.

3.6 Transposed CNGrad

In order to train on several molecules in parallel, we use the meta-learning version

of the CNGrad method described in Alet et al. Instead of updating all the param-

eters θ in the inner loop and the outer loop, we add a Conditional Normalization

(CN) layer in the architecture, which consists of a Batch Normalization (BN) layer

followed by an affine layer (parametrized by γ, β ∈ RF , where F is the number of

hidden features of the input of the CN layer). In our model, we add it before the

second fully connected layer of the MLP in the readout phase. The γ and β pa-

rameters will be different for different molecules, and in the inner loop we initialize

them to 1 and 0 respectively for all molecules. In the inner loop we only update γ

and β, while in the outer loop we update the rest of the parameters θ′. This means

that the majority of the neural network will be the same for all molecules, and

all the difference between the molecules will be captured in the CN layer. Since

the BN layer treats each molecule separately, and the affine layer only performs

element-wise operations, it is possible to compute the inner loop update of several

molecules in parallel by just making the shape of γ and β equal to B ×Fh, where

B is the meta-training batch size and Fh is the number of hidden features in each

molecule. This means that we can also compute the outer loop update in parallel,

which lets us greatly speed up the meta-training algorithm without losing much

expressiveness. We found experimentally that the performance of the model is

15



3.7 Conservation loss

better if we remove the BN layer and only add the affine layer, so our architecture

only includes the latter.

Figure 3.3 Architecture of the CNGrad model. In the inner loop, the output
p is compared to the training tasks and only the parameters in red are updated.
In the outer loop, the output p is compared to the validation tasks and only the
parameters in blue are updated. The CN layer is reset every time we receive a
new input.

3.7 Conservation loss

We know that P (ki = 1) = P (ki = 1|kj = 0)P (kj = 0) + P (ki = 1|kj = 1)P (kj =

1). Define the left hand side as the prior probability of ki and the right hand side

as posterior probability of ki. We do not train the model to fulfill this equality

in any the training frameworks we have discussed, which might be problematic

during the planning phase. If the posterior probability of the goal experiment after

performing experiment j is much greater than the prior probability according to

the model, the planner might decide to perform experiment j to ”increase” the

16



3.7 Conservation loss

odds of success in the goal experiment even if experiment j might give us no useful

information.

To correct this, we add a second term to the meta-loss in the outer loop which

we call the conservation loss. For each molecule Ti, in addition to Dtr
Ti

we create

two new datasets Dtr:0
Ti

and Dtr:1
Ti

by choosing a random property j (which might

not be in the dataset for that molecule) by adding the input/output pair (j, 0)

to the first new dataset and (j, 1) to the second. We compute the inner loop

three times, one for each of the three datasets for that molecule to obtain θiN , θ
i:0
N

and θi:1N . The meta-loss will be computed using θiN as usual, but we compute the

predictions p, p0 and p1 using the validation dataset Dtr
Ti

with all three resulting

models. The conservation loss will be the Kullback-Leibler divergence between p

(the prior probabilities) and (1 − pj)p
0 + pjp

1 (the posterior probabilities). This

loss is multiplied by a constant c, determined experimentally, before being added

to the meta-loss.

This additional loss function does not guarantee that the prior and posterior

probabilities of the model will match exactly, but it will make them much closer

than if we did not use the conservation loss.
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Chapter 4

Planning

4.1 Overview

In the planning phase, we will receive M (molecule), c ∈ Rn (vector containing

the cost of each experiment, with n being the number fo available experiments),

g ∈ N (the goal experiment) and R ∈ R (the reward if kg = 1) as an input.

We can use any of the models we discussed in Chapter 3 to make predictions on

M , additionally using k ∈ Rn (vector containing the outcomes of experiments we

already performed) as an input for all models except the multitask model.

To obtain the policy that maximizes E (the expected value), we will use tree

search. Each node represents a possible value of k, and the root corresponds to the

starting k (with ki = −1∀k, representing that we do not know the outcome of any

experiments yet), and each node has two children ki:0 and ki:1 for each available

experiment i at that node, the former with ki = 0 and the latter with ki = 1

(in both cases, the rest of k is the same as the parent node). Each node has one
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4.1 Overview

additional child corresponding to stopping. The stop nodes and the nodes where

kg ̸= −1 are terminal nodes, and we can compute the payout R(k) of those nodes

directly. Otherwise, we can compute the expected value of a node recursively

using the predictions of the model p for that node as such:

E(k) = max{R(k),max
i
{(1− pi)E(ki:0) + piE(ki:1)}}

R(k) would correspond to stopping at that node. Then, the policy at each node

k would be to choose the action (performing one of the experiments or stopping)

with the highest expected value.

Figure 4.1 An example of tree search. In this simplified scenario we only have 2
experiments: M which costs $20,000 but gives no reward, and H which costs $10
million but gives a reward of $100 million if the experiment results in a 1. At each
node we expand the possible actions and we compute the expected value of each
action. The action resulting in the highest expected value will be our policy for
that node, represented by the thick orange arrows.

To reduce the search space somewhat, we consider all the nodes with the same

k as being one single node with multiple parents. We can do this because the

order in which we perform the experiments leading to that k does not affect the
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4.2 Best-first search

total cost we have to pay or the future predictions of the model and costs of the

experiments. That still leaves us with 3n possible nodes if there are n available

experiments (ki can be −1, 0 or 1), and in practice we cannot explore all of these

nodes. For that reason, we need an algorithm to decide which nodes to expand

first, and every time we expand a node we update the expected value of all the

ancestors of that node. We will explore two algorithms: one using best-first search

with several heuristics the other inspired by AlphaZero. Silver et al.

4.2 Best-first search

When we expand a node, the cost of calculating predictions using our model is

the dominant factor in terms of computation time. Therefore, we must be able to

identify which child nodes are the best to explore next without knowing what the

predictions of the model look like in the child node. Despite not having access to

those predictions, we have access to the following information that could be useful

to decide which node to expand next:

• Cost of the experiment. The cost of the experiment gives us both an

upper bound of the maximum expected value (Rg −
∑

ki ̸=−1 ci) and a rough

indication of how significant an experiment needs to be to be worth perform-

ing. For example, if we could only perform one experiment, one whose cost

is 1
1000

of the goal experiment could be worth it if pg changes by 0.01 after

that experiment, while the same is not true for an experiment whose cost is

1
10

of the goal experiment. While this is not entirely true in our actual prob-
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4.2 Best-first search

lem because non-goal experiments also give us information on other non-goal

experiments we can perform, it is still an important consideration.

• Probabilities of the current node. An experiment i with pi close to
1
2
has

much higher entropy than one with pi close to 0 or 1, which roughly means

that the former gives us more information than the latter. Furthermore,

performing a non-goal experiment is only useful if its outcome would change

whether you perform the goal experiment in the end or not. Therefore, an

experiment with pi close to 1
2
gives you a sizeable chance of not performing

the goal experiment in a case where you otherwise would have but it would

have been suboptimal, greatly increasing your expected value. As pi gets

closer to 0 or to 1, the chance of ”changing your mind” decreases, making

the increase in expected value lower. Similarly, if pg is close to 1
2
it means

there is potential to increase or decrease that probability by performing

additional experiments, while a pg close to 0 or 1 means that the model does

not really need additional information and that you can stop or perform the

goal experiment, respectively.

• Changes in probabilities between the current node and its parent.

Measuring the difference between the current node’s p and the parent node’s

p gives us an idea of how useful the experiment performed by the parent

node is. If the difference is negligible, it means that the experiment we

performed did not give us much information for its price. Despite having

wasted some computing time on calculating the predictions after a fruitless
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4.2 Best-first search

experiment, we can avoid expanding further from that node and instead

explore other nodes with more impactful experiments. This metric fails in

some corner cases: for example, consider a scenario with 3 experiments where

t3 = t1 ⊕ t2, g = 3, with e1 and e2 being much cheaper than e3. In the case

where t1 = t2 =
1
2
, this metric would tell us that it is not worth it to perform

e2 after e1 despite the fact that doing so would determine the result of e3.

Additionally, since computing the difference between p can be expensive, we

will only calculate the difference between pg instead.

With these three pieces of information at our disposal, we propose 6 different

heuristics that emphasize different factors:

• I. Total cost. Here we just explore all the nodes in order from lowest total

cost of the experiments to highest total cost, not including the cost of the

goal experiment. We already discussed that the total cost gives us an upper

bound of the expected value, so in cases where we can find a cheap policy

with a high expected value early, we will be able to immediately prune all

the nodes where R−
∑

ki ̸=−1 ci is lower than the expected value we obtained.

This advantage does not apply in cases where there is not a policy with a

high expected value, perhaps because pg was low to begin with.

• II. Upper bound of the expected value after one experiment. We

can incorporate information from pi and pg to calculate a better upper bound

of the expected value if we were only allowed to perform one experiment

before deciding whether to perform the final experiment or stopping. The
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4.2 Best-first search

best case will be when pi:0g is as low as possible and pi:1g is as high as possible,

or the other way around, since the experiment will only be useful if we stop in

the case where pg is lowest and perform the goal experiment in the case where

pg is highest. We can calculate pi:0max = min{1, pg
p0
} and pi:1max = min{1, pg

p1
},

the upper bounds of pg if ti = 0 or ti = 1 respectively, and then calculate the

expected values Ej = pj(Rgp
i:j
max − cg) −

∑
ki ̸=−1 ci and take the maximum

to get our upper bound. While this upper bound will not be accurate in the

real planner because we are allowed to perform more than one experiment,

it gives us a good indication of what experiments can be most relevant.

• III. Maximize information to cost ratio. With this heuristic we are

interested in performing experiments that can give us the most information

at the lowest price. We define information in terms of bits of entropy, and the

entropy of a Bernoulli distribution with a probability pi of having value 1 and

a probability 1−pi of having value 0 is S(pi) = −pi log pi−(1−pi) log 1− pi.

Since both the entropy of the goal experiment and the auxiliary experiment

are important, we expand the node with the highest S = S(pi)S(pg)

ci
first.

• IV. Maximize information to cost ratio, weighted by probability

We can also compute the probability P of being in a certain node after per-

forming all the experiments you need to get there. Since gaining information

is most useful in nodes with the highest probability, we expand the node with

the highest SP .

• V. Maximize information to cost ratio, weighted by relevance We
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4.2 Best-first search

can also compute ∆ = (pcurrent node
g − pparent node

g )pparent node
ki=ti

, quantifying the

”impact” of the previous experiment performed. We multiply by the prob-

ability of the previous experiment leading to the current node so that both

children of the parent node have the same ∆ regardless of pi in the parent

node. We expand the node with the highest S∆.

• VI. Combine the previous two ideas. We expand the node with the

highest SP∆.

To further prune the search space, we do not expand a node if the probability

Pk of reaching that node is less than pnode min and we do not try an experiment

if pi < pexp min or 1 − pi < pexp min. We do this to avoid wasting compute time

on nodes that are far too unlikely to be reached or experiments with results so

predictable that they are unlikely to provide useful information.

Additionally, since we are able to compute several molecules in parallel (or

in this case, the same molecule but with different known properties), instead of

expanding the node with the highest heuristic, we expand the B nodes with the

highest heuristic all at once. When we visit a node, we immediately calculate

the expected value of stopping and performing the goal experiment, and then we

calculate the heuristic for all its remaining children. All of these heuristics are

put in a priority queue so that, after all the B nodes have been expanded, we can

choose an additional batch of B nodes with the best heuristic from the priority

queue.

Since we are merging nodes with the same ki but different paths to get there

into one node, it is possible that a potential child node gets considered by multiple
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parents and has a different heuristic for each one. In this case, we put the child

node in the priority queue each time the calculated heuristic is better than the

current best, and once we extract the node from the priority queue, any subsequent

instances of that node in the priority queue will be ignored.

4.3 AlphaZero

The motivation behind this approach is that, instead of hand-crafting an algorithm

to expand the tree most effectively, we train a neural network to do it for us

4.3.1 Policy and value network

In AlphaZero, a deep neural network is trained from self-play that takes a board

position s as an input and returns a policy vector q ∈ Ra (where a represents the

number of available actions in position s) and a scalar value v ∈ R. The policy

vector indicates the probability of the agent to perform each move, while the value

indicates the probability of winning in that position. However, for our problem

we will need a different architecture and definitions. Our neural network will take

M , c ∈ Rn, k ∈ Rn, g ∈ N and p ∈ Rn as an input, representing the state of the

current node, and it will return a policy vector q ∈ Rn+1, with qi indicating the

probability of performing experiment i and qn+1 representing the probability of

stopping, and a scalar value v ∈ R indicating the expected value of that node.

Since our input is more complex than the traditional board state, we will

create a new architecture to calculate q and v. We start with the message passing
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4.3 AlphaZero

network discussed in Section 3.1 that will take M as an input and return the

molecule hidden features h ∈ RF , but now it is not enough to feed them into a

single MLP since we need to calculate two different variables now and we need

to incorporate the rest of the information from the board state. What we will

do is create an embedding for each available experiment using c, k, and p. We

discretize c into C different buckets that are logarithmically spaced, and each

of those buckets will be assigned a trainable embedding hc ∈ RFc . Each value

of ki ∈ {−1, 0, 1} is also assigned a trainable embedding hk ∈ RFk . Finally, we

assign each experiment a unique trainable embedding hi ∈ RFe and we concatenate

those three embeddings along with pi repeated Fp times to form a task embedding

Hi ∈ RFc+Fk+Fe+Fp . We calculate v by concatenating h and Hg and feeding it

as an input to a 2-layer MLP followed by a hyperbolic tangent function, and we

calculate q by concatenating h, Hg and Hi for each experiment ei to form a full

task embedding ∈ RF+2(Fc+Fk+Fe+Fp) and we feed each of these task embeddings

to a 2-layer MLP. We also assign a trainable embedding Hs ∈ RFc+Fk+Fe+Fp to the

action of stopping and we also feed it to the 2-layer MLP, obtaining n+ 1 values.

We apply the softmax function to these values to obtain the policy vector q.
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4.3 AlphaZero

Figure 4.2 Policy and value neural network architecture for the molecule problem.
We construct the representation of a task ti using ki, ci, pi and the index i, and we
concatenate each ti with h and g (the representation of the goal task) to obtain
the task vector. We use h and g to calculate the value, and we use the task vectors
to calculate the policy.

4.3.2 Monte Carlo Tree Search

The basis of self-play in the AlphaZero algorithm is Monte Carlo Tree Search

(MCTS). In order to improve the neural network’s predictions of the policy and

value, we use those predictions as part of the MCTS algorithm in order to generate

new games with better play than the neural network alone would be able to man-

age. Each game is initialized with the initial board state and a blank MCTS tree.

To decide what action to play from each position, we perform a fixed number N of

MCTS iterations. Each MCTS iteration generates a path in the MCTS tree that

starts with the node containing the current board and ends either in a terminal

state or in a node we never visited before. In the first case, we can calculate the

outcome of the game directly using the rules of the game. In the second case, we
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4.3 AlphaZero

call the neural network to return the policy and value for that node. In both cases,

the value of the last visited node in the path (calculated from a terminal state or

from the neural network) is used to update the estimate of the actual value of all

the nodes in that path.

At each node s, MCTS chooses an action a according to two terms: Q, the

exploitation factor, and U , the exploration factor. Let N(s, a) be the number of

times that action a has been selected at node s, and q(s, a) the probability of

selecting action a at node s according to the policy vector q. Then, U(s, a) is

calculated as follows:

U(s, a) = cpuct
q(s, a)

1 +N(s, a)

where cpuct is a constant that is determined experimentally and controls the rate

of exploration of the agent. A higher cpuct increases exploration while a lower cpuct

increases exploitation. U gives a higher priority to actions that have been explored

less often than the policy would otherwise suggest.

On the other hand, Q(s, a) is equal to the average value of the iterations that

chose action a at node s, or 0 if MCTS has never chosen that action at that node.

The value of an iteration is that of its leaf node, and the value of that node is either

the outcome of the game for a terminal node, or the neural network prediction

for non-terminal nodes. Q gives a higher priority to actions that we already know

result in the highest chance of winning.

At each node, MCTS chooses the action with the highest Q+U . After all the N

iterations are complete, MCTS will choose the action a at the root with the highest

visit count N(s, a), the chosen move is played, the turn passes to the opponent,
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and the whole process is repeated again to decide the next move. The MCTS tree

used to decide what move to play is maintained after each move, leading to more

accurate information in the future without having to perform additional MCTS

iterations. Once the game is finished, the moves that were actually played in the

game get used as training samples for that epoch. In those training samples, the

target policy at node s will be determined by the relative N(s, a) counts while the

target value will be the final outcome of the game.

Figure 4.3 An example of three consecutive MCTS iterations. In iteration (a),
we explore the node on the left, which we have never seen before, and compute
the value which is 0.9. Therefore, the root’s Q is updated to 0.9. In iteration
(b), we explore the node on the left again, so we continue and hit a node we have
never seen before. Its value is 0.6 which means all the nodes on its path get their
Q updated accordingly. Iteration (c) is analogous to (b). Note that after each
iteration, the Q of the root is the average of all the values computed at the leaves.
Image taken from “Monte Carlo Tree Search (MCTS) in AlphaGo Zero”.

AlphaZero is generally used in two-player games where both players are com-

peting against one another, and the neural network plays actions for both players.

After choosing an action in a node, the resulting child node will be the opponent’s

move, and as such MCTS will choose the best move for the opponent, and the

current player alternates on each subsequent node. However, this formulation does
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not work for our problem because there is only one agent trying to maximize the

expected value. We can consider that the other player in the ”game” is nature

deciding which outcome each experiment has, but this other player is not trying to

win or anything. It instead can be considered as being purely random. Therefore,

it is not correct to use the MCTS algorithm outlined in this section without any

modifications, as it assumes that both players are playing to win.

Instead, what we do is to only have nodes in the tree for the first player (the

agent trying to maximize the expected value) in the same way as the heuristic

tree search, with each node representing a possible vector of known properties k.

Whenever MCTS chooses to perform an experiment i, we use the CNGrad model

discussed in Section 3.6 to calculate the predicted probability of ti = 1 and we

use that probability to randomly choose a value for ki. The only exception is if

we perform the goal experiment, as there will be no further nodes to explore. In

that case, we use pg to calculate the expected value of the node and back up that

value. Since we are trying to train the planner to generate the policy to the highest

expected value, we never give the neural network access to the actual outcomes of

the experiments. Instead, we simulate them using the CNGrad model since that

is the closest equivalent to planning with heuristics using the predictions of the

CNGrad model, which is what we did in the previous section.

Unlike in the heuristic sample, in the MCTS version the cost of making predic-

tions using the neural network is vastly dominated by the cost of making MCTS

iterations. However, these iterations are easy to parallelize using multiple CPUs,

as each iteration will only contribute to either 0 or 1 inputs to the neural network
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and we can batch those inputs. What we do is play many games concurrently on

each CPU. We do one iteration for each game, figure out which queries we need to

make to the neural network for each iteration, make a batch with all the queries

and feed them to the neural network. By using many CPUs in parallel, we can

generate many games to use as training samples using only a single GPU.
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Chapter 5

Experiments

5.1 Dataset

In the ChEMBL20 dataset, we have 456903 molecules and 902 tasks that are known

for at least 128 molecules in the dataset. In order to perform meta-learning, we will

randomly split the tasks into training and validation, and we will randomly split

the molecules into meta-training, meta-validation and planning. For a molecule to

stay in our final dataset, we require knowing at least 3 training properties and 1

validation property. With these restrictions, we are left with 113072 meta-training

molecules, 37846 meta-validation molecules and 37288 planning molecules.

The meta-training and meta-validation molecules will be used in the training

stage, while the planning molecules will be used to test the performance of the

planner. We will also reuse the meta-validation set to train the AlphaZero plan-

ner. We can do this as none of our meta-learning formulations actually use the

meta-validation set to update the model, so we can use the information to train
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5.2 Model training

something else while still having a fresh dataset (the planning set) on which to

test the performance of the planner.

5.2 Model training

The learning curves for each of the models we trained are shown in Figures 5.1, 5.2

and 5.3 respectively. We did not train the MAML model since, as we discussed,

it is very slow to train due to its inability to batch several molecules. Here it

is worth noting that there is a noticeable gap between training and validation

in the multitask with extended input model that does not exist in the other two

models, despite the accuracy being higher than the multitask model. This might be

because the extended input model receives more information during training than

the bare multitask model, but is not able to learn from it as well as the CNGrad

model, which does not have such a pronounced gap. However, we notice that in the

CNGrad model, the training accuracies are lower than the validation accuracies.

This is because the model has no additional information to use to predict the

training properties, but when it is time to predict the validation properties, it has

already learned from the training properties, leading to better predictions.
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Figure 5.1 Accuracy over time of the multitask model.

Figure 5.2 Accuracy over time of the multitask with extended input model.
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Figure 5.3 Accuracy over time of the CNGrad model.

The (meta-)validation accuracy of each of the models we trained is shown in

Table 5.1. Comparing multitask to multitask with extended input, the latter per-

forms slightly worse if we give it no known properties, but its accuracy jumps

over that of the multitask model as soon as we incorporate even one property.

This means it has the potential to outperform the multitask model in the planner.

However, the CNGrad model is the clear winner in terms of accuracy with any

number of known properties in the training dataset, indicating that it is the best

method we have tried to incorporate information from additional known proper-

ties. It may seem strange that CNGrad is able to outperform the multitask model

even when they are given the exact same input with no known properties, but we

must keep in mind that the meta-learning models (which include CNGrad) train

using more data than the bare multitask model (in the form of additional known

properties in the input) which means that it can learn some additional information
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that the multitask model simply cannot infer.

Model Accuracy 0 known 1 known 2 known
Multitask .868 ± .003
Extended input .878 ± .003 .860 ± .007 .875 ± .007 .879 ± .007
CNGrad .920 ± .003 .909 ± .003 .915 ± .003 .919 ± .003

Model 3 known 4 known 5 known 6 known
Extended input .879 ± .007 .887 ± .007 .890 ± .007 .890 ± .007
CNGrad .923 ± .003 .925 ± .003 .926 ± .003 .926 ± .003

Table 5.1: Validation (or meta-validation validation) accuracies for the models we
trained. In models that incorporate meta-learning, we also include the accuracy
when the training dataset contains a certain number of samples, from 0 to 6. The
95% confidence intervals are also shown.

5.3 Planning

In order to test the performance of the planner over the planning molecules, we

need to assign a cost to each experiment we can perform on the molecule. How-

ever, this information is not possible for us to find, as pharmaceutical companies

typically keep that information hidden. Mercado Therefore, we will assign costs

to the experiments arbitrarily, but keeping in mind that the training properties

are the properties that are easy to measure and thus cheap, while the validation

properties are the ones we are interested in generalizing to because they are hard

to measure and thus expensive.

In order to test the generated policy with real data, we will restrict the set

of experiments we can perform only to those that are present in the dataset for

that molecule. We number those experiments from 0 to n − 1, with the training

properties taking the lowest numbers and the validation properties taking the

highest numbers. The goal property will always be n − 1. Note that this goal
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property will be different from molecule to molecule, as different molecules have

different known properties in the dataset. We choose parameters R, the reward

for performing the goal experiment and getting 1 as a result, and cmax, the cost

of the most expensive experiment (which will be the goal experiment). In our

tests, R = 2000 and cmax = 1000. These parameters make the goal experiment

worth it if pg >
1
2
and not worth it otherwise, and therefore checking whether the

planner has made the right decision can be seen as an equivalent to calculating

the accuracy. Experiment i will be assigned a cost ci = cmax
i

n−1 . This means that

training properties will cost less to discover than validation properties, which is

the cost distribution we wanted.

For the heuristic-based planners, we will expand 8 batches of nodes, with each

batch containing up to 128 nodes, giving us the possibility to explore a total of

1024 nodes. Given that the full tree contains 3n nodes, and there can be over

n = 100 available experiments for a molecule, the nodes we are able to explore

will only be a tiny minority of the total amount, which will test the heuristics’

capability to explore the most promising nodes quickly. To prune the tree further,

we choose pnode min = 0.001 and pexp min = 0.02, which prevents us from expanding

nodes that are too unlikely to be reached or experiments that are too unlikely to

give us new information, respectively. In the AlphaZero-inspired model, we will

perform 250 MCTS iterations for each action.

With those parameters, we use a planner and a trained model to obtain a

policy that tells us which action to take first, and which actions to take next

depending on the results of previous experiments. Once we have the policy, we
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can calculate what the actual result of applying that policy would be by using

the real data in the ChEMBL20 dataset to simulate what would happen at each

step, and find out the actual payout of that policy. The results can be found in

Table 5.2. Additionally, since we are updating the heuristics-based planner live

every time we explore a new node, we can calculate what the policy, and therefore

expected value and payout, at each time step would be. This information is shown

for the CNGrad model in Figures 5.4 and 5.5, respectively.

Model No planning Heuristic I Heuristic II Heuristic III
Multitask 260.16
Extended input 258.07 ± 2.60 265.68 ± 2.57 263.38 ± 2.53 264.49 ± 2.53
CNGrad 261.77 ± 2.42 269.39 ± 2.42 269.01 ± 2.41 268.86 ± 2.41
Always -283.42 ± 6.29

Model Heuristic IV Heuristic V Heuristic VI AlphaZero
Extended input 264.74 ± 2.53 264.02 ± 2.54 264.38 ± 2.53
CNGrad 268.85 ± 2.41 268.92 ± 2.41 268.86 ± 2.41 262.49 ± 5.37

Table 5.2: Average payout per molecule of the planner for each combination of pre-
dicting model and planning algorithm when R = 2000 and cmax = 1000. The row
labeled ”Always” represents the average payout if our policy is to always perform
the goal experiment. The column labeled ”No planning” represents the average
payout of only using the model to decide whether to perform the goal experiment
or stop (we are not allowed to perform other experiments in this case). The 95%
confidence intervals to test the hypothesis that the performance is different from
the bare multitask model is shown.
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Figure 5.4 Average expected value per molecule as a function of how long the
planner is allowed to run for the different heuristics using the CNGrad model.
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Figure 5.5 Average payout per molecule over as a function of how long the
planner is allowed to run for the different heuristics using the CNGrad model.

Just as we expected from the validation accuracies with 0 known properties,

extended input without planning performs slightly worse than multitask, but CN-

Grad without planning performs slightly better, although neither of these are sta-

tistically significant results. What is statistically significant, however, is that the

meta-learning approaches we devised outperform the multitask model by incorpo-

rating information from the experiments we perform. Both methods outperform

the multitask model, but CNGrad outperforms extended input by a statistically

significant margin. One thing that is important to keep in mind is that most

molecules will already be predicted with a high confidence by the model and as

such the planner will not help. The planner only helps in the minority of molecules
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for which the model does not have such a clear prediction for the molecule and

additional information might be useful.

Comparing different planning methods instead of predictive models yields re-

sults that are perhaps a bit more surprising. In particular, heuristic I (always

expand the nodes with the lowest total cost first) outperforms the other, more

intricate heuristics. The difference is not statistically significant, but it can be

noticed by looking at the graphs. There are two reasons why heuristic I might be

the best. The first reason is that it is the only heuristic that only uses information

that we 100% know is true: the costs of the experiments. The probabilities of

each outcome are just predictions by the model and there is a chance that they

are wrong, which would cause the heuristic to expand the wrong nodes and hurt

performance. Therefore, this might indicate that in planning problems like these

it is better to only rely on information that must be true instead of relying on

predictions that might not always be accurate. The second reason is that it is the

only heuristic that takes into account the entire path it took to get to the current

node. For instance, in heuristics III and IV we only look at the entropy of the

experiments in the current node, and the expected value for these two approaches

rises substantially slower in the early stages of planning, as evidenced by Figure

5.4. This might be because these approaches might spend a lot of time expanding

the same experiment in many different nodes that might have high entropy but

not be relevant. Including the ∆ term from heuristics V and VI seems to address

this problem, as the expected value rises as quickly as heuristics I and II in the

early stages. Furthermore, given that heuristics III and IV perform very similarly,
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as well as V and VI, we can deduce that taking into account or not the probability

of being in the current node does not impact the performance of the planner.

The results of the planning stage also highlight the importance of the conser-

vation loss, discussed in Section 3.7. When we tried to generate policies with a

model that was not trained with conservation loss, we would frequently get poli-

cies like the one shown in 5.6. If the model predicts that the posterior probability

is higher than the prior, it will choose to perform additional experiments in order

to exploit the increased posterior probability to increase the expected value. The

greater the difference between the posterior and the prior, the more expensive

the experiments it might prescribe will be, and the more complex the erroneous

subtrees can become. To test the effectiveness of the conservation loss, we took a

sample of 250 planning molecules and took note of all the differences between the

posterior and the prior (called ∆) and their magnitudes. The results are shown in

Figure 5.7. While it is not possible to perfectly train the model to always output

perfectly consistent predictions, we show that it is possible to greatly reduce the

magnitude of the differences, which means that it is much harder for the plan-

ner to find an experiment that can ”exploit” this difference. It is worth noting

that absurd policies like the one shown in 5.6 still happen when using a model

trained with a conservation loss, albeit much less frequently and involving fewer

and cheaper experiments. To further mitigate the issue, after we generate the

policy, we inspect all its subtrees and prune all the subtrees for which all of its

leaves lead to the same final action (stopping or performing the goal experiment).
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5.3 Planning

Figure 5.6 Example of a policy generated by the CNGrad model trained with-
out a conservation loss term. The arrows represent the probabilities of landing
on each child node after performing the experiment prescribed by the policy, and
the bolded arrow represents the actual outcomes according to the dataset. This
means that in reality we would perform a total of three unnecessary experiments,
wasting 4.62 units of payout. Due to the posterior probabilities of the goal being
higher than the prior probabilities, the policy tells us to perform additional ex-
periments that according to the model will increase the expected value, but we
know that cannot be true since we will perform the goal experiment no matter
what outcomes we get. This means that the optimal policy would be to perform
the goal experiment directly and avoid paying the cost of the other unnecessary
experiments.

Training the neural network that predicts policy and value in AlphaZero is
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5.3 Planning

(a) Differences between prior and poste-
rior on 250 sample molecules using a model
trained without a conservation loss.

(b) Differences between prior and poste-
rior on 250 sample molecules using a model
trained with a conservation loss.

Figure 5.7 By comparing the two histograms, we can deduce that, despite the
amount of times we obtain an inconsistent prediction between prior and posterior
is more or less the same, the magnitude of the difference is greatly reduced. With-
out a conservation loss, most differences fall in the 1-10% range which is quite
substantial, as it can allow for unnecessary experiments totaling up to a tenth of
the maximum reward. However, with a conservation loss, most differences fall in
the 0.1-1% range, a full order of magnitude lower, which greatly limits the maxi-
mum cost, and therefore potential amount, of unnecessary experiments.

computationally expensive, and randomly selecting inputs will not be enough be-

cause, as we discussed earlier in this section, the CNGrad model will already have

high-confidence predictions for the molecule and will not need planning. There-

fore, we construct a special dataset from the meta-validation set that primarily

contains molecules with properties for which the CNGrad model predicts a prob-

ability between 0.2 and 0.8. We also include 3% of the properties with predictions

outside of this range so that the AlphaZero model can also learn when to directly

perform the goal experiment or stop. The training curves of this method can be

seen in Figures 5.8 and 5.9
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5.3 Planning

Figure 5.8 Policy loss of the AlphaZero neural network at each epoch

Figure 5.9 Value loss of the AlphaZero neural network at each epoch.

We observe that the model trains the value quite quickly, but that might be

because it is easy to predict, as the CNGrad model predictions are part of the
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5.3 Planning

input and it is easy to predict high values for high-probability goals and low

values for low-probability goals. The loss curve for the policy trends downward

too. However, the AlphaZero model fails to improve on the CNGrad model without

planning or even the multitask model by a statistically significant margin.
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Chapter 6

Conclusions

In this project, we posed a problem in which we have an entity on which we can

perform several experiments, each one with a cost, and one of them, the goal

experiment, will give us a large reward if successful, and our goal is to choose a

policy of experiments to perform in order to maximize the expected value. We

introduced the transposed meta-learning framework. In traditional meta-learning,

for unseen tasks, we want to generalize to unseen inputs after seeing a few sample

inputs, but in transposed meta-learning, we switch the roles of task and input so

that for unseen inputs, we want to generalize to unseen tasks after seeing a few

sample tasks.

We used previous research to propose two models that take advantage of meta-

learning to learn from new information: one that is architecture based and one

that is optimization based. We determined that the optimization based method

obtained the best validation accuracy, and we used the CNGrad technique to

be able to meta-learn several tasks (or, in the case of transposed meta-learning,

inputs) in parallel and with the same expressiveness as meta-learning techniques

that update the entire model.
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We created a planner that would use the trained models to create policies for

new, unseen molecules determining which experiments depending on the outcome

of previous experiments. We used best-first search to explore the different combi-

nations of experiments we can perform, and we tried several heuristics to decide

which nodes to explore first. We discovered that, in this particular problem, the

best heuristic is to simply visit the nodes in order from the lowest total cost of

the experiments to the highest, and we concluded that the reason for that is that

the total cost is the only piece of information that we have that is guaranteed to

be accurate and not dependent on the predictions of a model that might be inac-

curate for certain inputs. Additionally, the total cost captures information about

the entire tree of possibilities instead of just the current node we are visiting or

only the nodes in its vicinity.

We also tried to modify the AlphaZero algorithm to create a neural network

that could learn what the best way to traverse the tree is instead of having to

hard-code the heuristics ourselves, but the results were worse than with the hand-

crafted heuristics and we conclude that additional work is needed to create a model

that learns the best way to traverse the tree.
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Chapter 7

Future work

An important piece of information we are missing in our project are the real-world

costs of performing each experiment. We have already discussed how pharmaceu-

tical keep this information hidden, but there might be some other way to estimate

the costs or at least simulate a more realistic distribution of costs. In any case,

having this information would greatly help the project in having more real-world

applicability.

One shortcoming of our work is that we have not been able to obtain sat-

isfactory results with the AlphaZero model, but the results we obtained are at

least somewhat promising because the model did learn enough to outperform the

CNGrad model without planning, even if not by a statistically significant margin

or to the same extent as the hard-coded best-first search did. Perhaps additional

computation time is needed to make the approach work, or perhaps a different

architecture or training method is needed to obtain better performance, but in

any case it is clear that more work needs to be done in that area. There might

also be a different method that is more suitable to automatically learn the best

method of planning in this particular problem.
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Lastly, the problem we posed can be applied to any type of entity from which

we can obtain information at a certain cost, not just molecules and molecular

properties. In particular, it would be interesting to apply the approaches we have

devised on problems that require deeper planning, as we have already showed

that knowing 6 properties for a molecule is about as much extra information as

we will need, and it will most likely be less than that (for most inputs it is 0).

Even a somewhat artificial problem might help test the limits of our approach. For

example, consider the problem of image classification where we receive handwritten

digits from the MNIST dataset and we must predict what digit that is, but the

entire image is hidden from us and instead we must pay a certain cost to see each

pixel. This problem would be solved in the same way as the problem with the

molecules we formulated, but it would require deeper planning as knowing just a

handful of pixels will likely not be enough to discern the digit in the image.
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