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Abstract. The transition from onshore to offshore wind farms is
an imminent fact in the future. It supposes to face hard challenges
like difficulties to carry out offshore maintenance operations due
to increased downtime (because of several causes like continuously
bad environmental conditions) on wind farms. That is why, there
is a need to improve maintenance and monitoring practices like
those involved in condition-based area. This work proposes a
methodology based on three key points: (i) a semi-supervised model
built from a gated recurrent unit (GRU) neural network and by
using only healthy real SCADA data, (ii) propose a fault prognosis
indicator (FPI) to trigger warnings or fault alarms as such, and (iii)
detect the main bearing fault several months in advance on a faulty
wind turbine. The reported results show the excellent performance
of the GRU trained model to predict the main bearing temperature
as output by exploiting the capabilities of GRUs (recurrent-based
neural networks) to decide what information to forget or preserve
through time. In the FPI construction, the use of exponentially
weighted moving average (EWMA) helps at the results to avoid the
presence of false alarms that is very useful in any detection strategy.
Finally, the stated methodology lets to detect the main bearing fault
on a WT two months in advance at least, which contributes to
plan maintenance actions ahead of time. Furthermore, in this way,
the lifespan of this large component may be extended and wind
turbine’s uptime may increase in a significant percentage.

Key words
Wind turbine, fault prognosis, main bearing, SCADA data,

GRU neural networks.

1. Introduction
Currently, the leaders in energy production from wind

energy are China and USA. Along the last years, installed
capacity of wind energy has set two main sources: onshore

and offshore. The International Energy Agency’s (IEA) Sus-
tainable Development Scenario [1] forecasts that the installed
capacity in offshore wind generation would be increased
from 19 GW (in 2018) to 127 GW in 2040. It is clearly
expected that with an increase in wind energy generation,
the scale of operation and maintenance (O&M) costs will
increase also. Likewise, the transition from onshore wind
farms (which currently dominate the wind energy market) to
offshore wind farms will bring great challenges like facing
increased downtime and difficulties to carry maintenance
operations out.

Just to keep in mind, the National Renewable Energy
Laboratory (NREL) states that OM costs for USA’s offshore
wind energy are around 83-250 USD/kW/year [2]. On av-
erage, offshore wind turbines (WTs) have a failure rate of
10 failures per WT per year, where 17.5 % corresponds to
major repairs and 2.5 % are due to major replacements [3].
Furthermore, one of the WT larger components that faults is
the main bearing, which supports the low-speed shaft. Thus,
in short, this paragraph supposes an important need to be
neater and more proactive in WT maintenance practices to
decrease O&M costs and make this market more sustainable
through time.

Typically, WT maintenance practices are split in correc-
tive, scheduled, and condition-based. This last one is not very
common, but it has become more popular in last years, which
involves actively monitoring WT components and attempts to
forecast or detect failures in advance. Thus, it is noteworthy
that once failures are predicted, WT maintenance actions can
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be scheduled ahead of time [4].
Following those ideas, this work proposes a methodology

to early detect the main bearing fault in WTs. The methodol-
ogy is based on the use of only real SCADA data and a model
built on a gated recurrent unit (GRU) neural network. Thus,
the following paragraph intends to briefly address several
studies in the field which made a baseline to develop this
work.

In [5] by using support vector machine (SVM) classifiers
the main bearing fault is diagnosed, or as in [6] where
simultaneous multiple faults are also detected by using SVM.
However, the deployment of trained models with supervised
algorithms may be very dough since in real world the
construction of historical labeled-data is challenging and
a bit risky. On the other hand, the use of SCADA data
is supported by several works like [5], [7]. Now, delving
into deep learning, some studies have been carried out, for
instance, by using artificial neural networks (ANNs) to detect
the main bearing fault ahead of time [8].

To conclude, this work approaches some key points which
are mentioned as follows:

• The training of a semi-supervised model that is based
on only healthy data, establishing a normality model. It
avoids the likelihood of imbalance data problems when
supervised algorithms are used.

• A robust trained model that precludes the presence of
false alarms in the main bearing fault detection process.

• A sturdy fault prognosis methodology that treats the
presence of false alarms and the setup of thresholds
which let to get a warning or fault alarm depending on
the severity of the main bearing fault through time.

• The methodology predicts the main bearing fault two
months in advance at least, that lets WT operators plan
maintenance actions ahead of time.

The rest of the paper is organized as follows: Section
2 where an overview on the installed wind farm is stated
as well as a brief explanation about main bearing faults is
given. Next, Section 3 describes all about collected and used
SCADA data in this study. Likewise, the data preprocessing
is explained there. Section 4 introduces the use of a GRU
neural network to build the semi-supervised model. Then, the
computation of the fault prognosis indicator (FPI) is given
also in this section. Section 5 contains the results and its
respective discussion. Finally, the conclusions of this study
are given in Section 6.

2. Wind Farm Overview and Main Bearing
Fault

The wind farm is composed by 18 WTs and each one is
characterized by a diameter of 101 m and a nominal power of
2.3 MW. In Figure 1 can be seen the principal components
of a WT. Among the characteristics of this kind of WTs,
they have 3 blades, a cut-in wind speed of 3 m/s, a cut-off
wind speed of 12 m/s, and a rated wind speed of 12 m/s. For
purpose of this study, the component to be highlighted is the
main bearing, which is a double-spherical roller type. This

Fig. 1: Main components of a WT. Adapted from [9].

Table I. Bearing failure modes based on the ISO 15243
standard.

Failure mode Classification

Fatigue Subsurface-initiated fatigue
Surface-initiated fatigue

Wear Abrasive wear
Adhesive wear

Corrosion
Moisture corrosion
Fretting corrosion
False brinelling

Electrical erosion Excessive current erosion
Current leakage erosion

Plastic deformation Overload
Indentations

Fracture and cracking
Forced fracture
Fatigue fracture

Thermal cracking

sort of bearings is suitable for applications where high loads
and very low speeds occur. Furthermore, these bearings are
designed to withstand loads with variable direction and low
friction that involves a longer lifespan and minor energy loss.

Elements of machines like shafts need to rotate and require
additional components to comply to this function, and so
the bearings take relevance. Bearings normally are integrated
by four elements: a cage, an inner race, an outer race, and
a rolling. Evidently, these components are always under
mechanical stress by different forces like frictional, impact,
inertial, or centrifugal. Specifically on a WT, the main
bearing supports the main shaft, both are large components.
The Swedish bearing and seal manufacturing company called
SKF has classified the different bearing failure modes based
on the ISO 15243 standard. Table I shows a summary of
the failure modes for this component. Additionally, in [8] it
is explained with detail each bearing failure mode including
some illustrative pictures.

In a nutshell, all bearing failures present a starting point
from which a series of anomalous behavior begins. This
behavior can be monitored looking at changes in main bear-
ing or shaft temperatures, output power, vibrations, pressure,
etc. A notable symptom may be the heat release, that is
why this study aims to predict the main bearing fault some
months in advance. This early alert may help to give suitable
maintenance and avoid that the component seriously fails in
the future.
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3. Real SCADA Data Preprocessing

For the scope of the study, two WTs were selected, one
is healthy and the other is faulty (i.e., there was a main
bearing fault occurred on June 11, 2018). The data gathered
samples (rated each 10 min) from January 1 in 2015 up to
December 31 in 2018. As it is known, SCADA data normally
contain measurements associated to different sections like
environmental, electrical, temperature, hydraulic, and con-
trol. The data are naturally acquired with a frequency of 1
Hz, however, these are averaged and stored with a period
time of 10 min, so the mean, maximum, minimum, and
standard deviation for most of the variables are computed
and registered.

The basis of the study is using only the variables with their
mean values. Furthermore, as the component under analysis
is the main bearing, the closest variables to this element
were taken into account to join an exogenous variable
corresponding to the wind speed. Next, the selected variables
are shown:

• wtc MainBTmp mean: the mean main bearing temper-
ature, in ◦C.

• wtc GenBeTm mean: the mean generator bearing tem-
perature, in ◦C.

• wtc GeOilTmp mean: the mean gearbox oil tempera-
ture, in ◦C.

• wtc PrWindSp mean: the mean primary wind speed, in
m/s.

Besides the SCADA data, information on maintenance and
repair actions is essential since it lets to locate the failure
type, start and end dates for the work orders, affected subsys-
tems, and actions performed. To summarize, this information
characterizes if a WT is healthy or not, i.e., if any records
about the failure are registered or not.

A. Deseasonalizing and Data Imputation

As above-mentioned, three of the selected variables are
temperatures. The data run throughout the years and the
seasonality is present since if in the middle of a year the
weather is hot and in the another middle the weather is cold
the temperatures are not obviously the same and this behavior
is replicated each year. Then, the ambient temperature is
subtracted from all variables related to temperature to avoid
this problem [10].

Real data is normally noisy, thus, data imputation tech-
niques are needed to face this problem. The more basic
strategies like filling missing values with the mean, median,
or mode are not suitable in this case since they introduce a
bias in the data. More advanced techniques are recommended
since they offer a better treatment of missing values based
on data surround-trends. Thus, the Piecewise Cubic Hermite
Interpolating Polynomial is proposed [8], which guarantees
to maintain the data shape and its monotonicity. As at the
beginning or final of the dataset there may be NaN values,
these are filled with their closest value.

B. Data Split

To success in the construction of a machine learning
model, data split is the basis. Data are normally split in three
subsets: training, validation, and testing. In this case, only the
healthy data is employed to train and validate the model since
the goal is building a normality model. Likewise, regarding to
the seasonality problem, the training and validation datasets
must cover at least one full year. With the trained model, the
testing dataset (it contains data of the main bearing fault) is
employed instead to examine the performance of the model.

To be detailed, the SCADA data are split as follows:
• Training: from January 2015 to September 2017

(144576 samples).
• Validation: from October 2017 to December 2017

(13248 samples).
• Testing: full year 2018 (52560 samples).

C. Data Normalization

As the data integrate many different variables, as these
come from different sources, their orders of magnitude vary.
On a machine learning model in general it is suitable that
all variables work under the same scale since it avoids some
variables add more weight and cause imbalance. In this
manuscript, the data are normalized employing the min-max
strategy that scales the values in a range from 0 to 1, without
losing proportionality [11].

4. Fault Detection Methodology
This section addresses two key parts: the construction of

the normality model based on a GRU neural network and a
fault prognosis indicator (FPI) to trigger alarms in advance
due to the main bearing fault evolution in time.

A. GRU Proposed Architecture

A GRU neural network is employed in this study to build
the normality model. Despite the intention of this subsection
is not extensively delve into GRUs, a brief explanation is
given and an overall justification on why these are used
instead of LSTMs, RNNs, or ANNs is given also.

GRUs have two gates: update and reset. In short, these two
vectors decide what information should be passed or not to
the output. The key point is that they are trained to retain
long-term information without washing it through time and
remove information which is irrelevant for the forecasting,
see [11], [12], [13], [14].

RNNs are the most basic architectures that pay attention
to the past for predicting the future. However, they have
the serious vanishing gradient problem. Based on that, they
may not be appropriate to work on this study. On the other
hand, compared to LSTMs [15], GRUs only have two gating
signals, whereas LSTMs have three. Thus, GRUs have fewer
parameters and lower computational cost.

In prognosis models, learning how past data samples affect
the future data samples is crucial. Nevertheless, understand-
ing the nature of ANNs, they do not consider previous data
to predict future data, thus, neither these neural networks are
not suitable to address the goal of the study. In a nutshell,
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Table II. Setup of the GRU hyperparameters.

Hyperparameter Value
Number of hidden layers 1
Number of neurons in the hidden state 128
Epoch size 50
Batch size 128
Initial learning rate 0.001
Loss function MSE

with this brief discussion, GRUs demonstrate to be the most
appropriate to deal with the needs of the work.

The GRU proposed is based on a many-to-one structure,
where the output is the main bearing temperature while
the inputs are the other variables are: generator bearing
temperature, gearbox oil temperature, and the primary wind
speed. The inputs are given in a sequence of 144 samples,
considering a window length of 24 hours (1 sample/10-min
x 144 10-min/day = 144 samples/day).

All deep learning models require a set of hyperparameters
for tuning and improving the performance according to the
data. A GRU is not the exception, and in Table II are shown
the hyperparameters configured. Each one is very important
and is selected after proving several values until reaching a
good performance.

B. How is the FPI structured?

A typical FPI is based on a threshold, i.e. depending on
the setup of the threshold, if the residual exceeds it or not
an alarm is triggered. In this study specifically, the residual
is defined as the absolute difference between the real main
bearing temperature (T ) and the predicted by the GRU model
(T̂ ). Nevertheless, if this raw residual is used, a large number
of false positives would be generated, thus it is necessary to
early avoid this problem.

If there is a truly abnormal behavior a notable number
of continuous raw residuals have to exceed the threshold,
thus, by applying a strategy to condense or average the
raw residuals through time, the persistence of the abnormal
behavior will remain notable. In this work particularly, a
technique based on moving average (MA) [16] is used to
smooth the trend of the raw residuals.

The basic MA may produce cyclic and trend-like plots,
regardless if the original data are themselves independent
shuffle events with a stationary mean [17]. To deal with
that, the exponentially weighted MA (EWMA) appears. This
technique assigns less weights as the data get older. In short,
the EWMA is expressed as follows:

EWMA = T̂t + λ(Tt − T̂t), (1)

where T̂t is the predicted value at time t, Tt is the
measured real SCADA value at time t, and λ is a parameter
(0 < λ < 1) that defines the memory depth of the EWMA.
This parameter is empirically selected using its relation to the
span (s ≥ 1) [18]. Equation 2 shows how these parameters
are related:

λ =
2

s+ 1
. (2)

After dealing with the possible problems of the raw
residuals, it is essential to introduce the concept of the used
threshold. This is a limit to monitor if the residual is within
normal (healthy) behavior or not. For that, the residuals of
tested training-validation-data are used. Likewise, the mean
(µ) and the standard deviation (σ) are employed to build the
threshold’s equation (Equation 3) applied to those residuals.

threshold = µ+ κσ, (3)

where κ is a weight that states the threshold value. In this
study, two κ-values are used, as one defines a warning alarm
and the other one a fault alarm as such.

Finally, Figure 2 summarizes in a flowchart all steps
discussed in the data-preprocessing section and those related
to the fault prognosis methodology.

5. Results and Discussion
This section begins showing the residuals based on the

absolute difference (Figure 3) for the two WTs considered in
this study, where WT1 is healthy and WT2 is faulty. Recall
that the tag ”healthy” supposes that in WT1’s test-dataset
there is no any presence of the main bearing fault while the
tag ”faulty” suggests in WT2’s test-dataset there is presence
of the main bearing fault, in this case, occurred on June 11,
2018. Figure 3 (a) and (b) reports the residuals for the train
and test datasets of WT1 while Figure 3 (c) and (d) reports
the same but for WT2.

Looking at WT1’s residuals, it is clear that they do not
exceed 0.12 against the WT2’s residuals, where the limit is
set in 0.20. Furthermore, it is clearly visible that before the
main bearing fault there is an abnormal trend of the residuals
suggesting something is happening some months in advance.
After the main bearing is changed, the residuals are lower,
which indicates all revert back to normal.

As can be seen in Figure 3 the residuals show a lot of peaks
which many times generate false alarms. In the last section,
it was introduced the use of the EWMA as a technique to
reduce false alarms and extract the trend of the data as a
function of persistence through time. The most important
factor - to carry the EWMA out - defined as s and called
”spans” indicates the memory depth of the EWMA. Several
values of span were proven to measure the performance
of the EWMA on the residuals’ processing. Among the
considered spans are: s = 144 (one day), s = 1008 (one
week), and s = 2016 (two weeks). In this work, the results
on s = 2016 are reported, since they demonstrated being
more robust to false alarms. Additionally, even when the
EMWA’s memory-depth is based on two weeks, the abnormal
trend because of the main bearing fault is very visible and
persistent through time, i.e., several months in advance.

After computing the EMWA, the definition of the thresh-
old is stated. As it was explained in last section, the purpose
of these thresholds is working as a warning and a fault alarm
as such. Recall that in Equation 3 the value of κ establishes
how the threshold varies, thus, in this case, two values are
proposed: 12 and 15. Likewise, the results showed that with
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Fig. 2: Flowchart of the proposed methodology where the first phase involves all the related to data preprocessing and
training of GRU. Next, the second phase takes place after getting the output from the GRU trained-model.

(a) (b)

(c) (d)

Fig. 3: Residuals based on the absolute difference, |T − T̂ |, for both WT1 and WT2. (a) and (b) are computed on the train
dataset while (c) and (d) are computed on the test dataset.

these values together with the EWMA computation build a
robust framework to avoid the false alarms and be effective
in the detection and prognosis of the main bearing fault on
any WT.

Figure 4 finally shows the results for WT1 and WT2. As
it was alerted, there are two thresholds: one set in µ+ 12σ
(green dotted line) that defines the warnings and the other
one set in µ + 15σ (red dotted line) that indicates a fault

alarm. For WT1, at any moment the residuals exceed the
thresholds which reports there is no any indication of the
main bearing fault. On the other hand, for WT2 it is clear that
residuals exceed both thresholds in the first week in April,
2018. Recalling that the main bearing fault occurred on June
11, 2018, the prognosis is done two months in advance at
least.
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Fig. 4: FPI methodology applied on the processed residuals
with the EWMA. The green dotted-line indicates a warning,
while the red dotted-line indicates a fault alarm as such.

6. Conclusions
By using a GRU neural network and just employing real

SCADA data an early fault detection methodology is pro-
posed and developed in this work. The model is constructed
from scratch, only with healthy data, i.e., establishing a
normality (normal behavior) model. The results are reported
on two WTs, one being healthy and the other one being
faulty. Through the fault prognosis methodology, the results
demonstrate that the model is robust and does not generate
false alarms while the fault prognosis is effectively done
two months in advance at least. In other words, the fault
prognosis methodology shows that on the healthy WT none
of the two thresholds (warning and fault) are exceeded. On
the other hand, on the faulty WT both threshold are exceeded
which clearly indicates there is an abnormal behavior.

Thus, this early prognosis clearly offers a strategy for
WTs’ operators to plan ahead for repairs and maintenance
orders, decreasing the downtime of WTs when these finally
fault and corrective maintenance is mandatory. Instead of
that, the intention is increasing the uptime of the WTs
as much as possible and extend the lifespan of the WTs’
components.
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