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Abstract: An enhanced filter for floating Doppler wind lidar motion correction is presented. The filter
relies on an unscented Kalman filter prototype for floating-lidar motion correction without access
to the internal line-of-sight measurements of the lidar. In the present work, we implement a new
architecture based on two cooperative estimation filters and study the impact of different wind and
initial scan phase models on the filter performance in the coastal environment of Barcelona. Two
model combinations are considered: (i) a basic random walk model for both the wind turbulence and
the initial scan phase and (ii) an auto-regressive model for wind turbulence along with a uniform
circular motion model for the scan phase. The filter motion-correction performance using each of the
above models was evaluated with reference to a fixed lidar in different wind and motion scenarios
(low- and high-frequency turbulence cases) recorded during a 25-day campaign at “Pont del Petroli”,
Barcelona, by clustered statistical analysis. The auto-regressive wind model and the uniform circular
motion phase model permitted the filter to overcome divergence in all wind and motion scenarios.
The statistical indicators comparing both instruments showed overall improvement. The mean
deviation increased from 1.62% (without motion correction) to −0.07% (with motion correction),
while the root-mean-square error decreased from 1.87% to 0.58%, and the determination coefficient
(R2) improved from 0.90 to 0.96.

Keywords: floating Doppler wind lidar; apparent turbulence; motion compensation; Kalman filter;
auto-regressive model; random walk; clustering; power spectral density

1. Introduction

In the context of onshore wind energy, meteorological masts (metmasts) are the tradi-
tional instrument used for the assessment of future wind farms’ locations, as well as wind
monitoring for wind-turbine operation purposes. However, in the case of offshore wind
farms, as they are installed farther offshore and into deeper water regions, the deployment
of metmasts planted on the seabed may be too expensive or even not feasible [1,2]. Offshore
wind energy is one of the most expensive sources of energy, having the second highest
levelized cost of energy (LCOE, 2020) after concentrating solar power, with LCOE values of
0.084 USD/kWh and 0.108 USD/kWh, respectively [3,4]. Therefore, there is a need for cost
reduction in the wind energy industry. In recent decades, Doppler wind lidars (DWLs) have
proved themselves as a cost-effective solution and have been considered as a replacement
for costlier metmasts [5,6]. When placed over floating platforms or buoys, DWLs are able to
assess the offshore atmosphere in a flexible way, since they can be re-deployed at multiple
locations and cover large areas [5].

The floating DWLs’ (FDWLs) main goal is to accurately assess the wind resource at
specific (usually remote) offshore locations in order to study the viability of future offshore
wind farm projects. Towards this purpose, they need to integrate in the same device an
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energy generating system, a data-logging system, a communications system, and a lidar
motional attitude measurement system along with the DWL [7]. These needs were satisfied
according to the wind industry requirements, following a roadmap for the commercial
acceptance of floating LIDAR technology [8], and guides for the best practices for their
application [9].

Nowadays, FDWLs are accepted in the wind energy industry as the de-facto instru-
ment for offshore wind resource assessment, reaching a commercial stage [8]. Multiple
measurement campaigns have demonstrated their capability to measure in a robust way
the mean horizontal wind speed (HWS) and wind direction (WD) after yaw correction,
at a 10-min level [10–14]. Recently, FDWLs have been used to measure incoming wind
fields before contacting wind turbines in order to reduce loads and oscillations on their
blades. Particularly, they are being considered for assisted stabilization control systems of
floating wind turbine generators [15]. This requires an accurate track of the instantaneous
wind vector by FDWLs. However, waves induce 6-degree-of-freedom (DoF) motion on
the FDWL. FDWL motion affects DWL measurements [16], inducing an error in the lidar-
retrieved wind vector and adding variance to the lidar measurements in comparison to
fixed lidars. Therefore, it is essential to estimate the motion-free true wind vector, i.e., to
take wave-induced motion out of the raw (motion-corrupted) measured wind. This is often
called deconvolution and is usually carried out by means of adaptive filters such as the
Kalman filter.

When measuring wind turbulence intensity (TI), FDWLs measure higher TI due to
the wave-induced variance addition [14,17]. TI, defined as the ratio of the HWS standard
deviation to the mean HWS, is one of the most relevant parameters to be measured in wind
energy due to its relevance on wind turbine operation and power production [18,19]. For
instance, wind turbine models need to predict power production in varying atmosphere
environments [20]. Moreover, erroneous TI values in the site assessment phase may result
in over-designed wind turbines, which would increase the wind farm project cost [21].

Multiple studies have so far addressed the impact and correction of motion-induced
measurement errors using floating lidars [14,16,21–29]. Thus, the works of Wolken-Möhlmann
et al. [22] and Gottschall et al. [27] are representative of the first studies on the simulation
and offshore tests of lidars on floating platforms. Schlipf et al. [29] demonstrated the
potentialities of theoretically modeling a lidar system in order to reconstruct the wind field
from corrupted lidar measurements. Regarding the ZephIR lidar, Pitter et al. [23] studied
its performance when mounted on buoys or wind turbines and proved that the 10-min
averaged wind speed recorded by ZephIRs is very resilient to motion. It was also found
that angular motion is the main error source. The study of Bischoff et al. [26] addressed
the motion compensation of FDWLs by means of a wind field reconstruction method
and demonstrated that the quality of horizontal wind measurements can be improved if
the lidar attitude is known. Tiana-Alsina et al. [16] presented a mechanical approach by
deploying the ZephIR-300 lidar on a cardanic frame. This method was able to compensate
for most of the rotational motion but not for the translational one. However, mechanical
resonance was a risk to be minimized and the cardarnic method increased the hardware
costs of the instrument.

More recently, Gutiérrez-Antuñano et al. [24] presented an adaptive averaging window
technique to filter out the motion-induced errors on HWS measurements. The window
length has to be comparable to the tilting period of the lidar (roll and pitch motion only).
Unfortunately, this method requires the lidar wind-vector sampling frequency to be higher
(approximately by a factor 2) than the wave motion frequency, which is not always the case.
In 2020, Kelberlau et al. [21] proposed a signal processing approach, in which the 6-DoF
motion of the FDWL were taken into account to correct for the motion-induced error at a
Line-of-Sight (LoS) level. The algorithm demonstrated itself able to take the motion out
in multiple wind and sea scenarios in a coastal environment but it requires access to the
high-frequency internal LoS measurements of the lidar. The latter is usually undisclosed
information for most commercial continuous-wave lidars.



Remote Sens. 2022, 14, 4704 3 of 23

Recently, an FDWL motion-correction method for a focusable continuous-wave lidar
based on the unscented Kalman filter (UKF) was presented in [25]. Without having access to
the lidar internal LoS measurements, the UKF recursively estimates on the run the motion-
corrected wind vector by considering the lidar 6 DoF motion and emulating the FDWL
measurement process. The method demonstrated to be able to correct FDWL measurements
for motion-induced additive TI. Thus, when comparing the FDWL to a reference fixed lidar,
the apparent TI was reduced from −1.70% (without correction) to 0.29% (with correction).
However, moderate TI differences between the two lidars remained, which manifested with
a coefficient of determination of 0.93. Moreover, this first UKF prototype overcompensates
the TI, which we hypothesize is caused by the assumptions of oversimplified random
process models of the random walk (RW) type for both the wind and initial scan phase. The
flaws of these models demonstrate prominently in high wind turbulence or transitioning
scenarios, which may often cause filter divergence [30]. Therefore, it is sensible to assume
that refined wind and lidar initial scan phase models are to enhance filter tracking and
reduce divergence.

In the present work, we study the impact of different wind and phase model combi-
nations on the motion-correction capabilities of the filter as well as the impact of different
near-shore sea and atmospheric scenarios on the filter performance. The novelty of the
enhanced filter lies in the expected superior wind-tracking capabilities of the filter, particu-
larly in high-frequency turbulence regimes and in the operation of the filter without having
access to the lidar internal LoS measurements.

This paper is structured as follows: In Section 2, Section 2.1 presents the “Pont del
Petroli” near-shore experimental campaign, and Section 2.2 reviews motion correction using
the UKF [25], presents the enhanced wind and scan initial-phase models and formulates
the new motion-correction filter using two cooperative filters (the so-called “dual UKF”).
Next, Section 3 discusses the motion-compensation performance of the new filter in two
different case examples and evaluates global statistics for the whole campaign. Eventually,
Section 4 gives concluding remarks.

2. Materials and Methods

Next, in Section 2.1, the instruments and experimental set-up at “Pont del Petroli” are
presented. In Section 2.2, the motion-correction UKF is reviewed and different wind and initial
scan phase models are explored and compared. Eventually, the enhanced motion-correction
UKF using two cooperative filters is formulated.

2.1. Materials

NEPTUNE proof-of-concept buoy. The floating lidar system was especially conceived for
offshore wind measurements. The lidar was mounted on a cardanic frame, intended for
mechanical motion compensation. Apart from the lidar, this proof-of-concept buoy hosted
two inertial measurement units (IMUs) to measure the lidar and buoy motion. The first
IMU, the “lidar IMU”, was mounted on the cardanic frame, and the second one, the “buoy
IMU”, was mounted on the buoy’s bottom. These IMUs measured the six DoF motion
(i.e., roll, pitch, yaw, surge, sway and heave) of both the lidar and the buoy at a 10 Hz
sampling frequency. The 50-Hz line-of-sight attitude data was interpolated using the 10-Hz
IMU data. According to the Nyquist sampling theorem [31], the sampling frequency of
the IMUs must be greater than twice the motion’s highest frequency in order to perfectly
recover the original analog motion signal from the discrete values produced by sampling.
Assuming wave periods longer than 2 s (i.e., wave frequencies smaller or equal than 0.5 Hz),
the 10 Hz IMU sampling frequency exceeds the Nyquist wave frequency limit (1 Hz) by a
factor 10.

ZephIR 300 lidar. ZephIR 300 is a focusable continuous-wave DWL. The lidar uses
a rotating prism to deflect the emitted laser beam (Figure 1) and create a scanning cone
of 30-degree width from the zenith. The prism rotates with uniform circular motion at a
rate of one rotation per second (360 degs/s). The lidar uses the velocity–azimuth display
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(VAD) algorithm [32] to retrieve the wind vector from the 50 line-of-sight (LoS) velocity
measurements in a scan (i.e., at a rate of 50 samples/s). By refocusing, the lidar is able
to sequentially measure at a set of user-defined heights. However, this is performed at
the expense of reducing the sounding time resolution at a given height by a factor greater
than the number of sounding heights, because dead times are needed to refocus from one
height to another. When the lidar measures at a single height (no refocusing) the wind
vector is retrieved with a nearly uniform resolution of 1 s (1 scan/s). This was the preferred
option in this study, and a fixed height of 100 m was used. The ZephIR 300 also provides a
series of internal parameters for data-quality control. These parameters include rain flags,
backscattering and spatial variation (SV), among others. SV indicates the quality of the VAD
fitting, which is a proxy of the spatial uniformity of the wind field during the lidar scan,
which, in turn, is directly related to the TI [24]).

Figure 1. Geometry of the NEPTUNE FDWL proof-of-concept buoy. Inset shows the lidar rotating
prism used for deflection of the laser beam.

Dataset. Specifically, the dataset comprised (i) wind measurements from the reference
fixed DWL sited at PdP pier, (ii) wind measurements from the FDWL, (iii) fixed DWL and
FDWL buoy internal parameters for data-quality control and (iv) 6 DoF motion measure-
ments obtained by the “lidar IMU” and the “buoy IMU”. HWS values were measured
by the fixed reference lidar and ranged from 1.2 to 14.4 m/s, whereas TI values ranged
from 0.90% to 24.89%. According to the manufacturer’s specifications [23], lidar HWS
measurement records lower than 2 m/s were considered unreliable; therefore, records with
10 min mean HWS lower than 2 m/s were filtered out.

2.2. Methods

Recently, the authors presented a robust adaptive UKF for FDWL motion compensa-
tion [25]. The filter takes advantage of the knowledge of the floating lidar buoy dynamics
and the VAD algorithm to estimate the sought-after motion-corrected wind vector.

2.2.1. Motion-Correction UKF Review

The UKF estimates the hidden state vector (xxxk), which is formed by the “true” wind vec-
tor (UUUk), i.e., motion-free, and the lidar initial scan phase (θ0,k) (hereafter, the “initial phase”)
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given by the measurement vector (zzzk), which is the lidar-measured motion-corrupted wind
vector. The state vector is formulated as follows:

xxxk =
[
UUUT

k θ0,k
]T , (1)

where UUUk is the wind vector defined by the HWS, WD and vertical wind speed (VWS)
components at discrete time tk (sampling period, T ' 1 s):

UUUk = [HWS, WD, VWS]T . (2)

The FDWL measurement vector is written as follows:

zzzk =
[
HWSFDWL

k WDFDWL
k VWSFDWL

k
]T , (3)

where HWSFDWL
k , WDFDWL

k and VWSFDWL
k are the motion-corrupted HWS, WD and

VWS measured by the FDWL at time tk.
The filter relies on two steps to estimate the state vector, the prediction step and the

innovation step.
The prediction step is defined by the following set of equations:

xxxk|k−1 = f (xxxk−1|k−1) + vvvk (4)

zzzk|k−1 = h(xxxk|k−1, MMM) + nnnk, (5)

where sub-indexes n|m denote the estimate at step n based on information up to step m.
Equation (4) is the prediction equation in which the predicted or “future” state vector

(xxxk|k−1) is related to the previous estimate (xxxk−1|k−1) by means of a state-transition function
f (·). Function f (·) merges the wind and initial-phase RW models, f RW

UUU (·) and f RW
θ0

(·),
respectively, into a single body. vvvk is the so-called process-noise vector or state-vector
“driving” noise, which is assumed to be a zero-mean Gaussian with covariance QQQk. In plain
words, vvvk is the “random jump step” used by both the wind and initial phase RW models.
In a state-space representation [30] (see Section 2.2.5), functions f RW

UUU (·) and f RW
θ0

(·) both
are identity matrix III, and the prediction equation takes the following form:

xxxk|k−1 = III · xxxk−1|k−1 + vvvk. (6)

On the other hand, Equation (5) is the measurement equation, which relates the
predicted state vector (xxxk|k−1) to the predicted measurement vector (zzzk|k−1) through mea-
surement function h(·) and measurement noise nnnk. The measurement function h(·) takes as
input xxxk|k−1 and matrix MMM. MMM denotes the 50 × 6-dimension block-vector describing the
6-DoF motion for each of the 50 LoS measurements in a lidar scan. The IMU-measured
motion time series at 10 Hz sampling rate is interpolated to 50 Hz in order to match the LoS
measurements. Function h(·) simulates the FDWL motion-corrupted wind vector (UUUFDWL).
h(·) is defined as the function composition (so-called chain calculus):

h(·) = hVAD(·) ◦ htrans(·) ◦ hrot(·), (7)

where hrot(·) is the function modeling the rotational motion influence on each of the 50 LoSs
of the lidar conical scan. The inputs to hrot(·) are the IMU-measured lidar rotation attitude
(roll, pitch and yaw) at each LoS and sampling time tn during the conical scan (50 LoS/scan,
equivalently, 50 Hz sampling rate) and the initial phase, θ0. The hrot(·) output is the set of
estimated motion-corrupted lidar pointing directions denoted as r̂rrn, n = 1, · · · , 50 in the
global North–East–Down (NED) frame of reference.

Similarly, htrans(·) is the function modeling the translational motion influence on
the LoSs. The htrans(·) inputs are the IMU-measured lidar translational velocity (surge,
sway and heave) at discrete time tk, the predicted (i.e., motion-compensated) state-vector
wind, UUU, and the set of motion-corrupted LoSs (r̂rrn, n = 1, · · · , 50) computed from the
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above-mentioned hrot(·). The function output is the set of the 50 motion-corrupted velocity
measurements along the respective LoSs (vvvLoS,n, n = 1, · · · , 50) during the DWL scan.

Conceptually, composite function htrans(·) ◦ hrot(·) describing the motion model is also
of application to floating wind turbine generators, as it can be embedded in the design of
closed-loop stabilization systems [33–35].

Finally, function hVAD(·) takes these 50 motion-corrupted LoS velocities (vvvLoS) and
computes motion-corrupted wind vector UUUFDWL by means of the VAD algorithm.

The innovation step is the step at which the filter corrects the a priori estimation of state
vector xxxk|k−1 with the actual measurement information at time tk:

xxxk|k = xxxk|k−1 +KKKk(zzzk − zzzk|k−1), (8)

where zzzk is the FDWL wind-vector measurement, and KKKk is the Kalman gain. The latter
relates the measurement prediction error, ∆zzz = zzzk − zzzk|k−1, to the state-vector prediction
error, ∆xxx = xxxk|k − xxxk|k−1, as KKKk ' ∆xxx/∆zzz.

Estimation of noise-covariance matrices. At each recursive step, the UKF estimates the
process-noise and measurement-noise covariance matrices (QQQk = E[vvvkvvvT

k ] and RRRk = E[nnnknnnT
k ],

respectively, where E is the expectancy operator). The covariance matrices are adaptively
updated via forgetting factors λ and δ:

Q̂QQk = (1− λ)Q̂QQk−1 + λvvvkvvvT
k (9)

R̂RRk = (1− δ)R̂RRk−1 + δnnnknnnT
k . (10)

Refer to Appendix A for details.

2.2.2. Enhanced Wind Models: The Auto-Regressive Approach

In this section, we aim to revisit the basic RW wind model of Equation (6) for the
improved estimation of the wind process spectrum by the UKF. To this end, different
models are presented and compared in terms of their power spectral density (PSD) with
reference to the fixed lidar. The PSD indicates the signal power distribution as a function of
the frequency [36].

Random walk (Equation (6)) models the state-vector wind component, UUUk (Equation (1)),
at discrete time tk as the superposition of the measured wind vector, UUUk−1, at previous time
tk−1 plus a stochastic term εk:

UUUk = UUUk−1 + εk. (11)

Alternatively, we propose a low computationally demanding, straightforward wind
model based on an auto-regressive (AR) process of order P, AR(P). In this model, the mea-
sured wind vector, UUUk, at each time tk is a linear combination of its P previous values (i.e., at
time instants tk−1, . . . , tk−P) plus a stochastic term modeling an imperfectly predictable
term. The AR(P) model is formulated as follows:

UUUk =
[
wwwHWST ·HWSHWSHWSk wwwWDT ·WDWDWDk wwwVWST ·VWSVWSVWSk

]T
+ εk, (12)

where UUUk is the 3× 1-dimension wind vector at time tk (Equation (2)); HWSHWSHWSk, WDWDWDk and
VWSVWSVWSk are the P × 1-dimension vectors denoting the measured HWS, WD and VWS at
previous times tk−1, . . . , tk−P. εk is zero-mean white noise with constant variance σ2

ε . wwwx,
x = HWS, WD, VWS are the P× 1-dimension vectors containing the AR(P) model coeffi-
cients for the HWS, WD and VWS wind components, respectively:

www =
[
wwwHWST wwwWDT wwwVWST

]T
. (13)

The AR-process PSD is computed by means of the Yule–Walker equations [36].
The accuracy of the AR wind model depends on the process order as discussed next:
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Thus, in Figure 2, we compared the PSD of four different 10 min HWS time series
measured by the fixed lidar with the estimated PSDs using different random process models.
Two high- and two low-frequency wind scenarios (panels (a,b) and (c,d), respectively)
characterized by low and high HWSs ((a,c) and (b,d), respectively) were chosen. It can be
observed that the RW model was not able to follow all the spectral details of the measured
PSD in high frequency scenarios. At low frequencies ( f ≈ 0 Hz), RW was biased up to
4 dBs. In addition, RW was not able to follow the second lobe of the lidar-measured PSDs
at f ≈ 0.05 Hz. On the other hand, the RW matched quite well the reference PSD in
low frequency scenarios irrespective of the HWS chosen. Regarding the AR models, they
emulated more accurately the PSD in high frequency scenarios in comparison to the RW
model. Moreover, it is evident that the higher the process order was, the better the model
capability to equal the measured PSD was. The AR process order P was determined on
the basis of the lowest order, ensuring a difference lower than 3 dB between the secondary
lobes of the measured and emulated PSDs in high-frequency scenarios (Figure 2a,b). By
experiment, the AR process order P = 10 was found.
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]
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HWS = 11.57 m/s
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RW

AR(5)

AR(10)

AR(20)

Figure 2. Comparison between the HWS PSD measured by the fixed lidar (PdP campaign; Barcelona;
10 min HWS time series) and the PSDs estimated from a set of different RW and AR random process
models (see legend). Panels (a,b): high-frequency wind scenarios (19 June 2013, 17:10 LT; and 28 June
2013, 12:40 LT, respectively). Panels (c,d): low-frequency wind scenarios (24 June 2013, 12:30 LT, and 22
June 2013, 12:10 LT, respectively).

2.2.3. Lidar-Scan Initial-Phase Model

The UKF lidar motion-correction algorithm by Salcedo-Bosch et al. [25] assumes the
oversimplification that initial phase θ0 is a random variable with uniform distribution over
0–360 deg, and that there are independent phases from one conical scan to the next [14]. An
RW model was considered for the initial phase:

θ0,k = θ0,k−1 + εk, (14)

where θ0,k and θ0,k−1 are the initial phases at discrete times tk and tk−1, respectively, and εk
is a random variable with uniform distribution over [0, 360] deg.
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Alternatively, here, we propose a phase model based on the kinematics of the DWL
rotating prism used to implement the scanning mechanism (Section 2.1 and Figure 1, inset)
that breaks this independence assumption. Because the prism has uniform circular motion
(UCM) at a rate of 360 deg/s, if the initial phase is known at a given time instant, it can be
known elsewhere in time. The UCM initial-phase model can be formulated as follows:

θ0,k = θ0,k−1 + 360× ∆tk, (15)

where θ0,k and θ0,k−1 are the initial phases (in degrees) at discrete times tk and tk−1, respec-
tively, and ∆tk is the time lag between tk and tk−1. Experimentally, there is a small time
lapse between consecutive lidar scans as well as a variability in this time lapse, which can
be caused by CPU internal processes or the re-focusing of the lidar at different heights.
This leads to observed initial phases, θ0, with apparent uniform distribution between 0 and
360 deg.

Figure 3 shows the initial-phase time series, θ0,k, for the UCM model in response to
the time-lag series, ∆tk. The resulting initial-phase distribution is also shown. The time-lag
series was generated from one hour of lidar-recorded timestamps. The initial phase at
start time t0 = 0 s was θ0,0 = 180 deg. In Figure 3b, it can be observed that the time lag,
∆tk, usually departed from the nominal '1 s scan time (baseline), with noticeable lag
dropouts approximately every 15 s being caused by the lidar internal CPU interruptions.
The initial-phase time series shown in Figure 3a tentatively demonstrated uniform random
behavior over [0, 360) degs. The uniform distribution was corroborated in the 30 deg bin
histogram in Figure 3c.

Figure 3. The UCM initial-phase model (19 June 2013; 17:10–17:20 LT; PdP campaign). (a) Initial-phase
time series, θ0,k (sub-segment 17:10:08–17:11:35 LT). (b) Time-lag time series, ∆tk. Baseline (dashed
line) indicates the 1 s nominal lidar scan time. (c) Histogram plot of the initial phase (panel (a)).

2.2.4. Dual UKF Estimation

We propose a dual UKF approach consisting of two unscented Kalman filters working
cooperatively: the main filter (UKF1), which estimates the wind vector (Equation (12)) and
initial phase, and the auxiliary filter (UKF2), which estimates the weight vector (Equation (13)).
The motivation behind this is the non-stationarity of wind fields. Although, in theory, the
wind process is usually considered stationary over short-term intervals ('15 min [37]), in
practice, it is non-stationary and is dependent on the atmospheric conditions. Therefore,
weight vector www, which describes the AR model coefficients, is an unknown set of random
variables that needs to be continuously estimated at each discrete time tk along with state
vector xxxk.

As illustrated in Figure 4, the weight vector estimated at time tk−1 by UKF2, wwwk−1|k−1,
is used by UKF1 to estimate the wind vector at the prediction step. Similarly, the wind-
vector and initial-phase estimates at tk−1, denoted as UUUk−1|k−1 and θ0,k−1|k−1, respectively,
which are part of the state-vector xxxk−1|k−1 estimated by UKF1, are used to estimate the
weight vector at the UKF2 innovation step. Both filters use the motion-corrupted wind
vectors retrieved by the FDWL (UUUFDWL

k ) at both the prediction and innovation steps, and
the IMU-measured FDWL attitude (6 DoFs) at the prediction step. The formulation of the
two filters is detailed in the subsections below.



Remote Sens. 2022, 14, 4704 9 of 23

Figure 4. The dual UKF approach. (Red box) Main filter (UKF1) used to estimate the motion-free
wind vector (UUUk, i.e., the “true” wind vector at time tk) and initial phase θ0,k. (Blue box) Auxiliary
filter (UKF2) used to estimate the weight vector defining the AR wind model. (Green Box) FDWL
block. Green arrows depict that both filters assimilate FDWL 6 DoF motion information from the
buoy IMUs as well as the motion-corrupted FDWL wind retrievals, UUUFDWL

k . The black arrows depict
the exchange of information between filters UKF1 and UKF2.

2.2.5. Main UKF

The main filter, UKF1, exhibits great similarities with the former motion-correction filter
designed by Salcedo-Bosch et al. [25] (refer to Section 2.2.1). Similar to such implementation,
UKF1 aims to estimate the wind vector and initial phase from motion-corrupted wind data;
however, this is achieved using enhanced models in the version here shown. Thus, UKF1
uses the AR(P) model instead of RW for the wind process and the UCM model instead of
RW for the initial phase.

In order to formulate UKF1, the previous equation for the state vector (Equation (1)) is
reformulated by including the P past wind-vector estimations relative to times from tk−P
to tk−1:

xxxk =
[
UUUT

k UUUT
k−1 . . . UUUT

k−P θ0,k
]T . (16)

The state-transition function of the main filter, f UKF1(·), is composed of AR wind-
model state-transition function f AR

UUU (·) and UCM initial-phase state-transition function
f UCM
θ0

(·):

f UKF1(wwwk−1|k−1, xxxk−1|k−1) =

[
f AR
UUU (wwwk−1|k−1,UUUk−1|k−1 . . . UUUk−P|k−P)

f UCM
θ0

(θ0,k−1|k−1)

]
, (17)
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where wwwk−1|k−1 is the current “a posteriori” estimate of the weight vector by UKF2, and
f AR
UUU (·) and f UCM

θ0
(·) are written in state-space formulation upon the models of Equation (13)

and Equation (15), respectively. Explicitly:

f AR
UUU (www,UUUk−1|k−1, . . . ,UUUk−P|k−P) =




wwwHWST ·HWSHWSHWSk−1|k−1

wwwWDT ·WDWDWDk−1|k−1

wwwVWST ·VWSVWSVWSk−1|k−1



III


UUUk−1|k−1
UUUk−2|k−2

...
UUUk−P+1|k−P+1




, (18)

and:
f UCM
θ0

(θ0,k−1|k−1) =
[
θ0,k−1|k−1 + 360× ∆tk

]
. (19)

In Equations (18) and (19) above, the state-space formulation provides a convenient
way to rewrite the simple random process description of Equations (13) and (15) into the
vector forms of Equations (18) and (19), respectively. The advantage of this state-space
representation is that it allows the AR wind model and UCM initial-phase model to be
easily integrated into filter Equation (4) through state-transition function f (·) = f UKF1.

Measurement vector zzzUKF1
k and measurement function hUKF1(·) are identical to the

UKF filter described in Section 2.2.1 with measurement function h(·) defined by Equation (7).

2.2.6. Auxiliary UKF

The auxiliary filter, UKF2, aims to estimate AR wind-model weight vector www. Therefore,
the state-vector is vector wwwk to be estimated, formed by the HWS, WD and VWS as AR
process coefficients of P-th order:

wwwk =
[
wwwHWS

k
T wwwWD

k
T wwwVWS

k
T
]T

. (20)

Because it is assumed that random step changes in any of the weights occur with equal
probability and are independent of each other, the state-transition model is considered as
random walk [38]. It is formulated as follows:

f UKF 2(wwwk−1|k−1) = III ·wwwk−1|k−1. (21)

Similar to UKF1, the UKF2 observation vector is FDWL-measured wind vector UUUDWL
k .

In expanded form:

zzzUKF 2
k =

[
HWSFDWL WDFDWL VWSFDWL]T , (22)

where HWSFDWL, WDFDWL and VWSFDWL are the FDWL-measured (i.e., motion-corrupted)
HWS, WD and VWS, respectively.

The UKF2 measurement function, hUKF2(·), relates the “a priori” estimation of weight
vector wwwk|k−1 to the motion-corrupted measurement vector zzzUKF2

k . To perform the above, the
P previous motion-corrected wind vectors estimated by UKF1 (UUUk−1|k−1, . . . ,UUUk−P−1|k−P−1)
must be propagated to the AR wind model via function f AR

UUU (·)) and weights wwwk|k−1 in
order to predict motion-corrected or “true” wind vector UUUk at present time tk. Then, the
predicted wind vector is transformed by UKF1 lidar measurement function hUKF1(·) to
predict measured motion-corrupted wind vector UUUFDWL in the recursive loop of the filter.
These steps can be written as follows:

hUKF2(wwwk|k−1,UUUk−1|k−1) = hUKF1( f AR
UUU (wwwk|k−1,UUUk−1|k−1)). (23)
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Note that, for short, hUKF1(·) = h(·) in Equation (7), Section 2.2.1.
Concerning filter initialization, both the main and auxiliary filters use a rough estimate

of the motion-corrected wind-vector time series computed using the window averaging
technique [24]. The initial weight vector, www0, is derived by fitting an AR model to the
rough motion-corrected time series. The process-noise covariance initial matrices are
derived as the mean squared error between the observations and the predictions by the
fitted AR model. Measurement-noise covariance matrices are initialized from the rough
motion-corrected time series as in [25].

2.2.7. Model Intercomparison Methodology

In order to assess the motion-correction performance of the improved wind and
initial-phase models presented in Sections 2.2.2 and 2.2.3, two model combinations were
considered (Table 1):

• (1) Basic model: Both the wind process and initial phase are modeled as RWs;
• (2) Enhanced model: The wind process is modeled as an AR process (order P = 10)

and the initial phase as UCM (see Section 2.2.3).

Table 1. Basic and enhanced model combinations studied to assess the motion-correction filter per-
formance.

Model
Combinations Wind Model Initial-Phase Model Dual UKF

Basic RW (Equation (4)) RW (Equation (11)) No
Enhanced AR (Equation (18)) UCM (Equation (19)) Yes

For each of the model combinations above, the motion-correction performance was an-
alyzed in terms of TI and its mean deviation with reference to the fixed lidar. The statistical
descriptors below were considered.

(a) Floating-lidar TI measurements with and without correction (TI f loat.−corr. and TI f loat.,
respectively) were compared against fixed-DWL TI measurements (TI f ixed), which were
used as reference. Model comparisons were carried out considering different motion
scenarios clustered as a function of (i) mean WD, (ii) mean HWS and (iii) FDWL mean tilt.
The mean tilt was computed from 10 min roll and pitch-tilt measurements [39]:

Tilt =
∑N

n=1

√
roll(tn)

2 + pitch(tn)
2

N
, (24)

where N = 6000 is the number of samples in a 10 min interval, and ∆tn = 100 ms is the
IMU sampling time increment (10 Hz sampling frequency).

(b) The mean deviation (MD) of the FDWL motion-corrected TI with reference to the
fixed lidar was computed as follows:

MD =
1
N

N

∑
n=1

(TIn
f loat.−corr. − TIn

f ixed), (25)

where N is the number of measurements in each HWS cluster.

3. Results and Discussion

In this section, the performance of the enhanced motion-correction UKF is studied.
First, two case examples are presented under low- and high-frequency turbulent regimes.
Second, the performance of the basic and enhanced filters in terms of TI estimation is com-
pared under different motion and wind scenarios. Third, the motion-correction accuracy
achieved by both filters is examined through numerical analysis. Finally, the limitations of
the enhanced filter are presented and discussed.



Remote Sens. 2022, 14, 4704 12 of 23

3.1. Case Examples

Two case examples are presented next to illustrate the comparative performance
between the basic and enhanced models of Section 2.2.2 and Section 2.2.3, respectively,
under two different turbulent regimes: (i) low-frequency turbulence (Figure 5) and (ii) high-
frequency turbulence (Figure 6). These figures compare the 10 min motion-corrected HWS
time series and related spectra when using the basic and enhanced models with reference
to the fixed lidar and the uncorrected FDWL. The error bars depicted are indicative of
the uncertainty in the HWS estimations. The HWS uncertainty is computed as the square
root of the main diagonal first element of the a posteriori error covariance matrix PPPxx

k
(Algorithm A1, step 3 in Appendix A). The PPPxx

k main diagonal is the a posteriori state-noise
error variance vector associated with the state vector (see Equation (1)), so that its first
element (Equation (2)) corresponds to the HWS error [40]. A similar approach was followed
by Araújo et al. [41] to assess the Kalman filter error on the estimation of the atmospheric
boundary layer height.

Figure 5. Case example #1: Low-frequency turbulence scenario (PdP campaign; 22 June 2013; 12:10
LT). HWS time-series measured during PdP campaign by the fixed lidar and the FDWL with motion
correction considering the basic and enhanced models combinations. (a) Time-series comparison
between the basic and enhanced floating-lidar motion-correction models with reference to the fixed
lidar. (b) Related PSDs.

The first case is shown in Figure 5. The weak turbulence of the wind in Figure 5a
was evidenced by the fixed-lidar time series, showing an approximately constant HWS
(HWS ≈ 6 m/s) along with slow speed variations (notice that the Y-axis scale only spans
1.5 m/s). In the PSD plot of Figure 5b, the prominent low-frequency behavior of the
turbulence was associated with a primary-to-secondary lobe level (PSLL) as high as 29 dB.
The primary lobe, which concentrates most of the wind energy, was close to 0 Hz and
peaked at 4 dBs, while the secondary lobe, which assimilates rapid turbulent variations, lay
at 0.08 Hz and peaked at −25 dBs.

In Figure 5a, both the basic and the enhanced model combinations enabled the fil-
ter to motion-correct the corrupted FDWL measurements and to acceptably track the
fixed-lidar HWS reference. This is re-encountered in Figure 5b, with similar spectra be-
tween the enhanced and the basic models, albeit with the remark that the enhanced
models overestimated the high-frequency components above 0.1 Hz. Moreover, both
model combinations were able to correctly estimate the true wind TI (figure not shown)
as TI f loat.−corr. = 2.77% (basic) and 2.87% (enhanced), which were nearly identical to the
reference TI, TI f ixed = 2.76%.
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Figure 6. Case example #2: High-frequency turbulence scenario (PdP; 28 June 2013; 12:40 LT).
Same legend as in Figure 5. Note the larger Y-axis limits in panel (a) to accommodate much higher
HWS variations.(b) Related PSDs.

However, the error bars evidence that HWS estimates from the basic filter have very
high uncertainties as compared to the enhanced filter. This is due to the improved wind and
initial phase models used, providing more accurate a priori estimation of the wind vector.

The second case is shown in Figure 6. In Figure 6a, the reference HWS time series
measured by the fixed lidar demonstrated rapid and more intense variations, including
sudden wind gusts lasting between 20 and 30 s. These fast HWS variations manifested
in the PSD of Figure 6b as a much lower PSLL than that in Figure 5b. The PSLL was only
7 dB (the main lobe around 0 Hz (low frequencies) was at '4 dB, and the secondary lobe at
'−3 dB lay between 0.03 and 0.05 Hz (high frequencies)).

From the temporal series plots, it arises that the motion-correction filter was not
able to follow the HWS peaks when using the basic model combination. These peaks
were treated by the filter as if they were noise; therefore, such turbulent situations led to
biased estimations. In contrast, the enhanced combination permitted the filter to track
the wind gusts. Based on the error bars shown in Figures 5 and 6, it emerges that in a
fast-changing wind scenario, the enhanced-filter uncertainties in the HWS estimates remain
small and attain similar values to those attributable to low-frequency scenarios. The PSD
demonstrated that the basic model combination (blue trace) underestimated all frequency
components higher than approximately 0.02 Hz by about '8 dB (blue trace versus black
trace). On the contrary, the enhanced combination permitted the filter to reasonably follow
the high-frequency wind components up to 0.1 Hz. The numerical estimation yielded
TI f loat.−corr. = 1.17% (basic), and 2.08% (enhanced) as compared with TI f ixed = 2.07%. It
is important to highlight that higher AR-model orders (for example, P = 20 and P = 30)
yielded biased estimations of both the PSD and TI due to the much longer convergence
time required by the filter. Therefore, in a fast-changing wind scenario, such as the one in
Figure 6, the filter may not be able to converge.

3.2. Global Statistics

To complete the analysis, the performance of the motion-correction model combina-
tions mentioned above (Section 2.2.7) was studied by comparing the 10 min TI measured
by the FDWL (before and after motion correction) with reference to the fixed lidar under
different wind and motion conditions. In total, 1786 data records (from 6 to 30 June 2013)
from the PdP experimental campaign were used. The statistical database was filtered out
for outliers according to the quality assurance criteria described in detail in [25]. In brief,
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the removed outliers encompassed rain-flagged data, HWS measurement values outside
the 1–80 m/s range, SV values higher than 0.2 and backscattering coefficients smaller
than 0.02.

The 10-min mean HWS and WD measured by the FDWL without motion compensa-
tion matched almost ideally the measurements of the reference fixed lidar as expected from
previous studies [11,21,24,42]. Regarding the mean HWS, when regressing FDWL HWS
data onto fixed-lidar HWS for the whole campaign, the coefficient of the determination (R2)
was 0.997, linear regression (LR) slope was 0.99 and LR offset was 0.06 m/s. Regarding the
mean WD, the coefficient of determination was 0.990, LR slope 0.98 and LR offset 0.41 deg.
These values are compliant with the key performance indicators defined by the Carbon
Trust Offshore Wind Accelerator [8]. The same indicators were obtained after motion
correction with both the basic and the enhanced filters.

Figure 7 shows the performance of the motion-correction model combinations men-
tioned above in Section 2.2.7, studied by comparing the TI measured by the fixed lidar and
by the FDWL (before and after motion correction) under different wind and motion condi-
tions. The input statistical variables of the study or clustering variables were WD, HWS and
buoy tilt angle, and the output ones were mean TI, MD and FDWL translational velocity.

In Figure 7a,c,d, it can be observed that the measured FDWL TI, TI f loat, was higher
than the fixed-lidar reference TI, TI f ixed, for all the clustering variables and range of values
because of the additive turbulence caused by wave motion [14,17,21]. In Figure 7c, the
difference between TI f loat and TI f ixed increased with the HWS, because higher wind speeds
cause higher wave motion [43]. In Figure 7d, the difference between TI f loat. and TI f ixed
increased in with the increase in tilt and FDWL translational velocity.

Regarding Figure 7a (where TI measurements were clustered in 60 deg wide bins), the
TI increased between 240 and 360 deg, which was due to winds coming from the urban area
(see Figure 7b). The higher roughness of the urban terrain was also responsible for larger
spatial and temporal variations in the wind field, which resulted in higher turbulence. The
opposite was true for winds coming from the sea (WDs between 0 and 240 deg) because of
the lower roughness of the sea surface [44]. It is known that lower roughness is directly
related to higher wind speeds [45]. Thus, the mean HWS measured by the fixed DWL
(gray trace) demonstrated peak values of 6.3 and 5.9 m/s for winds following the coast line
(WDs between 60 and 120 deg and between 180 and 240 deg, respectively). In contrast,
turbulent winds blowing from land (WDs between 240 and 360 deg) translated into lower
HWS values of 5.2 and 4.4 m/s.

Figure 7c depicts the TI as a function of the mean HWS. HWSs were clustered into
2 m/s bins and speeds higher than 9 m/s were merged into a single bin (“>9” label)
on account of the low number of samples available. When considering the reference TI
measured by the fixed lidar, TI f ixed, it decreased with the increase in the HWS. A suitable
explanation for that is that at low HWSs, turbulence is mainly caused by thermal gradients
(thermal turbulence) [46], which smooth out with the increase in wind speeds [21,47,48].
In addition, it usually occurs that the TI measured offshore tends to stabilize and even
increment at high HWS values due to the increased sea roughness induced by higher
waves [45,47,49]. However, this latter effect was not observed (Figure 7c) possibly because
of the interfering effect caused by winds blowing from land (see Figure 7b).

In Figure 7d, the TI is shown as a function of the FDWL tilt angle in 0.5 deg wide
bins. Values higher than 3 deg were merged into a single bin (“>3” label). The reference
TI, TI f ixed, exhibited high values at low tilt angles (<1 deg) and decreased with a virtually
constant slope up to a 2.5 deg tilt. We hypothesize that this reduction in TI was associated
with higher HWSs that progressively smoothed out the thermal turbulence. In the last
section of the curve, above 2.5 deg tilt, it is likely that higher HWSs made sea-surface
roughness, rather than thermals, the dominant source of turbulence, and that this caused
the small increase in TI in the plot.
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Figure 7. Motion correction performance as a function of different wind and wave-motion conditions
clustered by (a) WD, (c) HWS and (d) tilt. Panels (a,c,d): (Red trace with dots) Fixed-lidar mean
TI. (Green trace with diamonds) FDWL mean TI before motion correction. (Blue trace with circles)
FDWL mean TI after motion correction using the basic model combination. (Black trace with plus
signs) Same as blue trace but for the enhanced model combination. Dispersion bars represent the
1-σ dispersion of the data in each bin ('68% percentile). Panel (a): (Gray trace with triangles, read
on the right Y-axis) Fixed-lidar mean HWS. Panel (d): (Purple) trace with diamonds, read on the
right Y-axis) FDWL mean translational velocity. (e,f) Error bar analysis: TI Mean deviation bar charts
(Equation (25), in absolute value) binned by HWS and tilt angle, respectively. Blue and black bars
stand for the basic and the enhanced model combinations, respectively. Values above the bars indicate
the number of samples in each bin. Panel (b): PdP campaign wind rose.

Overall, both the basic and the enhanced model combinations demonstrated a high
level of motion correction, as shown in all Figure 7 panels, with TI f loat.−corr. matching
almost ideally the reference TI, TI f ixed. On one hand, the basic model combination demon-
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strated a small over-correction of TI f loat, which exhibited mean TI f loat.−corr. values below
the reference TI, TI f ixed, in almost all ranges of values. This is in accordance with previous
results [25]. On the other hand, the enhanced model combination demonstrated that the
FDWL motion-corrected the TI, TI f loat.−corr., to be virtually identical to that of the fixed
lidar, TI f ixed. In the bar charts of Figure 7e,f, it can be clearly observed that the enhanced
model combination yielded much lower MDs than the basic model for both binning vari-
ables and ranges of values. A limiting point arises in Figure 7a for winds coming from the
urban area (WDs between 240 and 360 deg). For these WDs, the high spatial variability
observed may invalidate the assumption of uniform wind during the DWL scan, which
would not hold true for the motion-correction filter and would lead to filter divergence.

3.3. Numerical Analyses

Using numerical analyses, we compared the raw FDWL TI, TI f loat., and the corrected
one by the different models, TI f loat.−corr., with the fixed-lidar reference TI, TI f ixed. The de-
scriptive indicators used to quantitatively assess the statistical deviation between any two
datasets were (i) the mean deviation (MD; defined in Equation (25)), (ii) the root-mean-
squared error (RMSE), (iii) the coefficient of determination (R2) and (iv) the slope and
offset term of the linear regression (LR).

Table 2 shows the descriptive indicators obtained for the correlation variables and the
model combinations indicated. The superior performance of the enhanced model with
respect to the basic model and, in turn, that of the basic model with respect to the motion-
uncorrected case are evident. Thus, without motion correction, the floating vs. fixed lidar
TI data attained an R2 value of 0.90, an RMSE of 1.87% and an MD of 1.62%. In addition,
the LR was the poorest (y = 0.96x + 0.02). Using the basic model, the motion-correction
filter improved the correlation to R2 = 0.93, RMSE = 0.81% and MD = −0.32%. Still, the
filter demonstrated its flaws in the form of an overcompensated TI. This was evidenced
by a negative MD (MD = −0.32%), which was approximately one-fifth of the bias for the
uncorrected case (MD = 1.62%) in absolute value. Finally, the enhanced model attained
almost ideal indicators: R2 = 0.96, RMSE = 0.58% and MD = −0.07%. The latter indicator
represents an '80% reduction in MD as compared with the basic model.

Table 2. Statistical indicators comparing the 10 min fixed-lidar to floating-lidar TI (with and without
motion compensation) using the “basic” and the “enhanced” models of Table 1.

Uncorrected Corrected (Basic) Corrected (Enhanced)

Correlated TI f loat. vs. TI f ixed TI f loat.−corr. vs. TI f ixed TI f loat.−corr. vs. TI f ixedvariables

R2 0.90 0.93 0.96
RMSE 1.87% 0.81% 0.58%

MD 1.62% −0.32% −0.07%
Slope 0.96 0.97 0.99
Offset 1.81 × 10−2 1.70 × 10−3 7.41 × 10−4

The improved motion correction achieved by the enhanced model as compared with
the basic model is shown in Figure 8 in terms of TI. Thus, the motion-corrected FDWL data
points using the enhanced model (Figure 8b, blue points), (TI f ixed, TI f loat.−corr.), became
less scattered than the uncorrected ones (Figure 8a,b, black points), (TI f ixed, TI f loat.), and
less scattered than the points corrected using the basic model (Figure 8a, red points). This
reduction in scattering was best evidenced by the narrower minor axes in the associated
standard-deviation ellipses. The major and minor axis directions of the ellipses are the
eigenvectors of the data covariance matrix. The lengths of the semi-major and -minor axes
are computed as the square root of the associated eigenvalues.
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Figure 8. Comparison between the motion-corrected floating-lidar TI (basic and enhanced models)
and the fixed-lidar TI. (a) Basic model of Table 1 and (b) enhanced model. (Black dot-dashed line, both
panels) Linear regression TI f loat. (uncorrected) on TI f ixed. (Red dot-dashed line, panel (a)) Linear
regression TI f loat.−corr. on TI f ixed for the basic model. (Blue dot-dashed line, panel (b)) Linear
regression TI f loat.−corr. on TI f ixed for the enhanced model. The minor axes of the ellipses delimit the
population spread outside of the linear-regression line (see text).

When comparing the correction performance of the enhanced filter with previously
published results in the state-of-the-art filter, the filter outperformed other methods [14,24]
because of the demonstrated wind tracking capabilities under the different turbulent regimes
(Figures 5a and 6b) and convergence in all motion scenarios. Without having access to the
lidar internal LoS measurements, the enhanced filter attains similar correction accuracy as
the motion compensation algorithm by Kelberlau et al. [21] under similar wave (tilt < 3 deg)
and wind conditions (HWS < 10 m/s). Yet, the outstanding feature of the UKF is that it is
able to operate in a stand-alone run-time fashion, i.e., with no need to synchronize with the
lidar measurement timestamps for data post-processing.

3.4. Method Limitations

First, the results demonstrated in this study are limited to the ZephIR-300 FDWL
sounding at a single height. The single-height configuration was chosen in this study
for its simplicity when assessing the comparative filter performance between the “basic”
and the “enhanced” models. However, a typical configuration for this type of lidar is
multiple-height sounding. Under this configuration, the filter has less information available
from each individual measurement height because the observation time is divided into
the number of sounding heights. The latter is due to the ZephIR lidar measuring the
wind at multiple heights by following a sequential pattern. Therefore, filter performance
(which was computed from the one-to-one correspondence between the motion-corrected
measurements and the ones from the reference fixed lidar in Figure 8) is expected to degrade
with an increasing number of sounding heights. See [50] for an in-depth discussion. A
consequence of this poorer performance is that the enhanced filter will continue to be
able to take the motion out “on average” over time but losing the fine detail of the wind
time series.
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Second, it is important to highlight that, in contrast to anemometers, continuous-wave
focusable lidars measure a temporally- and spatially-averaged version of the wind vector.
They assume a uniform wind flow during the lidar scan when retrieving the wind vector by
means of the VAD algorithm. Therefore, in the turbulent conditions prevailing in the interfer-
ence created by wind turbines (e.g., induction effect in the inflow and disturbance in the
wake [51]), DWLs cannot provide valid measurements of the wind field [52]. Under these
circumstances, the proposed AR and RW wind models are no longer valid for modeling
such high turbulent flows, which may lead to filter divergence.

Finally, regarding filter convergence, the enhanced filter demonstrate itself able to
successfully correct the corrupted wind measurements under all motional conditions in the
mild near-shore scenario of the PdP campaign (FDWL mean translational velociy lower
than 0.5 m/s, mean tilt amplitude lower than 3 deg and wave periods longer than 3 s).
Provided correct measurement of the FDWL motion attitude by the IMUs (see Nyquist
criterion and sampling requirements in Section 2.1), which was always the case, the filter
was at all times able to compensate for the motion-corrupted wind. Therefore, rougher
conditions such as those occurring in open seas (higher tilt amplitudes about 5 deg and
wave periods longer than 2 s [39]) or the hydrodynamics associated with floating offshore
wind turbines [53] are not expected to affect the filter performance.

Although future research is to give further insight into harsher sea-wave and wind
conditions, preliminary limits of filter convergence were analyzed via simulation. FDWL
measurements were simulated from turbulent wind fields generated using the Mann
model [54]. The filter was found to be reliable under these extreme motional conditions:
mean tilt > 15 deg and mean translational velocity > 2 m/s, provided that correct mea-
surements of the FDWL attitude were input from the IMUs (see Nyquist criterion and
sampling requirements in Section 2.1). On the other hand, the filter was unable to track
highly turbulent wind fields with TIs higher than '30%.

4. Conclusions

Enhanced wind and lidar initial scan phase models for the FDWL motion-correction
UKF filter [25] are presented. The novelty of the enhanced filter relies on the superior
wind-tracking capabilities of the filter at a 10-min level under different turbulent regimes
without having access to the lidar internal LoS measurements, nor to the lidar measurement
timestamps for filter synchronization. The new UKF combines an AR wind model with
a UCM initial-phase model, which supersedes the basic RW used for both the wind and
initial-phase models in the previous filter. In addition, the state-space reformulation of the
UKF along with an implementation based on a dual filter enables the fine removal of the
motion-induced TI as well as straightforward processing to be achieved.

Regarding the wind model, it is shown that while the former RW model can follow
only up to the first lobe of the wind spectrum, an AR model of order 10 can reproduce high-
frequency wind fluctuations up to 0.1 Hz. According to our experiments, the improvement
was higher with the increase in the order of the AR process.

With respect to the lidar-scan model, the rotation of the wedge prism used for laser-
beam steering is modeled assuming a uniform circular model. Our results demonstrate
that this model clearly outperformed the RW model previously used, which inaccurately
assumed a random uniform distribution of the initial phase.

As far as filter implementation is concerned, the dual UKF combines two filters
working cooperatively (Figure 4): the main filter (UKF1), which is the motion-correction
filter itself, and the auxiliary filter (UKF2), which estimates the AR wind-model coefficients.
The main filter estimates the true wind-vector (HWS, WD and VWS) and the initial scan
phase given the AR coefficients estimated by the auxiliary filter, i.e., the IMU-measured
6 DoF motion of the floating lidar and the lidar-measured wind. The prediction step aims
at estimating the true wind vector and initial phase prior to the assimilation of the present-
time motion-corrupted wind. The innovation step aims at matching the present-time
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floating-lidar-measured wind vector to the filter-predicted motion-corrupted wind at each
recursive cycle of the filter.

The dual-UKF motion-correction performance was validated over the 6–30 June 2013
intensive observation period during the PdP campaign in different wind and motional
scenarios using big-data clustering. The enhanced model combination proved itself as
the best candidate to address the FDWL motion compensation in all wind and motional
scenarios and statistically demonstrated a virtually ideal correction. With reference to
the 10 min fixed-lidar data, the MD improved from 1.62% (floating lidar without motion
correction) to−0.07% (with correction), while R2 increased from 0.90 to 0.96, and the RMSE
improved from 1.87% to 0.58%. Though the superior performance of the enhanced model
as compared with the basic one is undeniable, the basic model also provided convergent
results and acceptable indicators to correct the FDWL motion in most cases. At a finer level
of detail, the enhanced model permitted the over-compensation issue of the basic model
to be overcome thanks to its capability to track the high-frequency spectral fluctuations
of wind turbulence (Figures 5 and 6). The latter proves the enhanced filter as a better
candidate for the measurement of incoming wind disturbances in floating wind turbine
control. Feasibility and convergence of the enhanced filter is discussed in Section 3.4.

All in all, this study demonstrates the importance of the accurate modeling of the wind
turbulence spectrum, initial scan phase and motion dynamics for the successful removal of
motion-induced turbulence in floating-lidar measurements. However, the filter was tested
over experimental data measured under mild environmental conditions (Mediterranean
shore). Future research is to extend this study to harsher scenarios. Furthermore, a
better experimental set-up, having both the reference and the floating lidars beside each
other, could help minimize wind-direction-induced errors when computing performance
statistics. Finally, the filter needs to be tested with FDWLs configured to measure the wind
at multiple heights.
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Abbreviations
The following abbreviations are used in this manuscript:

AR Auto-regressive
DoF Degrees of freedom
DOAJ Directory of open access journals
DWL Doppler wind lidar
FDWL Floating Doppler wind lidar
HWS Horizontal wind speed
IMU Inertial measurement unit
LD Linear dichroism
LoS Line of sight
NED North–east–down
metmast Meteorological mast
MDPI Multidisciplinary Digital Publishing Institute
PdP Pont del Petroli
PSD Power spectral density
PSLL Primary-to-secondary lobe level
RW Random walk
SV Spatial variation
TI Turbulence intensity
TLA Three-letter acronym
UCM Uniform circular motion
UKF Unscented Kalman filter
UKF1 Main filter
UKF2 Auxiliary filter
VAD Velocity–azimuth display
VWS Vertical wind speed
WD Wind direction

Appendix A. UKF Summary

Here, we briefly summarize the foundations of the UKF as given in [55]. The reader is
asked to refer to this reference for extensive details and programming tips.

The unscented Kalman filter is a Kalman filter variety for highly non-linear systems.
The UKF approximates the state-vector distribution by means of the unscented transform
(UT). The UT is a methodology to approximate the statistics of a random variable that
experiences a non-linear transformation. To this end, a minimum set of sample points χ
(so-called sigma-points) representative of random variable’s mean xxx and covariance PPPxx is
selected. This set of sigma-points is selected as follows:

χ =
[
xxx xxx±

√
N + PPPxx

]
, (A1)

where N is the dimension of vector xxx. Therefore, a set of 2N + 1 points is selected, and χ
has N × (2N + 1) dimensions.

Then, the sigma-points are propagated through non-linear function f (·) (Equation (4)),
and a new set of transformed sigma-points ZZZ is obtained. This is formulated as follows:

ZZZ = f (χχχ). (A2)

The new set of sigma-points is representative of the transformed random variable
zzz statistics (up to the third order for Gaussian variables). In order to approximate the zzz
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random variable mean, zzz, and covariance, PPPzz, a weighted average of the sigma-points is
carried out, as follows:

zzz '
2N

∑
i=0

Wm
i ZZZi, (A3)

PPPzz '
2N

∑
i=0

Wc
i [ZZZ

i − zzz][ZZZi − zzz]T , (A4)

where ZZZi is the i-th sigma-point, and Wc
i and Wm

i are the weights defined as follows:

Wc
0 = Wm

0 =
λ

N + λ
, (A5)

Wc
i = Wm

i =
1

2(N + λ)
. (A6)

where λ is a design parameter and is usually set to N − 3 for Gaussian distributions.
The UKF makes use of the UT to carry out the prediction and innovation steps of the

Kalman filter recursive algorithm. The UKF algorithm is almost identical to the one used in
the plain Kalman filter; however, the f (·) and h(·) (Equation (4)) transformations are carried
out by means of the UT. Algorithm A1 below, summarizes the UKF recursive algorithm
steps. xxx0 is the initial-state vector; x̂xx0 is the expected initial-state vector; L is the state-vector
dimension; and PPP, QQQ and RRR are the estimation-error, process-noise and measurement-noise
covariance matrices. These matrices are adaptively updated (see Equation (10).

Algorithm A1 UKF algorithm [55].
1: Initialize:

x̂xx0 = E[xxx0]

P̂PP
xx
0 = E[(xxx0 − x̂xx0)(xxx0 − x̂xx0)

T ]
2: Calculate Sigma-points:

χχχk−1 =
[
x̂xxk−1 x̂xxk−1 ±

√
L + P̂PP

xx
k−1

]
3: Prediction step (estimate xxxk based on prior information):

Propagate χχχk−1 through state-transition function:
χχχk|k−1 = f (χχχk−1)
Obtain xxxk χχχk|k−1 mean and covariance:
xxxk|k−1 = ∑2N

i=0 Wm
i χχχi

k|k−1

PPPxx
k|k−1 = ∑2N

i=0 Wc
i [χχχ

i
k|k−1 − xxxk|k−1][χχχ

i
k|k−1 − xxxk|k−1]

T +QQQk

Propagate χχχk|k−1 through measurement function:
ZZZk|k−1 = h(χχχk|k−1)
Obtain ZZZk|k−1 mean and covariance:
zzzk|k−1 = ∑2N

i=0 Wm
i ZZZi

k|k−1

PPPzz
k|k−1 = ∑2N

i=0 Wc
i [ZZZ

i
k|k−1 − zzzk|k−1][ZZZi

k|k−1 − zzzk|k−1]
T + RRRk

4: Innovation step (improve xxxk estimate with measurement zzzk information):
Obtain Kalman gain:
PPPxz

k|k−1 = ∑2N
i=0 Wc

i [χχχ
i
k|k−1 − xxxk|k−1][ZZZi

k|k−1 − zzzk|k−1]
T

KKKk = PPPxz
k|k−1(PPP

zz
k|k−1)

−1

Use measurement zzzk to improve estimates x̂xxk and P̂PP
xx
k :

x̂xxk = xxxk|k−1 +KKKk(zzzk − zzzk|k−1)

P̂PP
xx
k = PPPxx

k|k−1 −KKKkPPPzz
k|k−1(KKKk)

T

5: Recursion step:
x̂xxk−1 = x̂xxk

P̂PP
xx
k−1 = P̂PP

xx
k

Return back to step 2.
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