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Abstract

Recent advances in technology have allowed humans to interact with computers in ways
previously unimaginable. Despite significant progress, a necessary element for natural
interaction is still lacking: emotions. Emotions play an important role in human
communication and interaction, allowing people to express themselves beyond the
language domain.

The purpose of this project is to develop a multimodal system to classify emotions using
facial expressions and the voice taken from videos. For face emotion recognition, face
images and optical flow frames are used to exploit spatial and temporal information of
the videos. Regarding the voice, the model uses speech features extracted from the chunked
audio signals to predict the emotion.

The combination of the two biometrics with a score-level fusion achieves excellent
performance on the RAVDESS and the BAUM-1 datasets. However, the results remark
the importance of further investigating the preprocessing techniques applied in this work
to “normalize” the datasets to a unified format to improve the cross-dataset
performance.
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1 Introduction

In the last few decades, interest in investigating the significance of emotional intelligence
and its influence on perception and behaviour has increased. It is known that the ability
to express and control emotions is crucial, but so is the ability to understand, interpret,
and respond to the emotions of others. Researchers suggest that there are four different
levels of emotional intelligence including emotional perception, the ability to reason using
emotions, the ability to understand emotions, and the ability to manage emotions [1]. This
project focuses on the first level of understanding emotions: perceiving them accurately.
In most cases, this involves interpreting nonverbal signals such as facial expressions.

Emotion influences practically all modes of human communication, and consequently, it
can significantly change the message transmitted. Humans’ interaction is mainly based on
speech, but also through body gestures to stress a certain part of the speech and display
emotions. According to R.W. Picard, affect recognition is most likely to be accurate
when multiple modalities are combined [2]. Consequently, the new technologies are driving
toward accommodating information exchanges via the combination of natural sensory
modes of sound, sight, and touch, to use one to enhance and complement the others.
Considering this aspect, B. Reeves and C. Nass believe that the AI research topic most
likely to become widespread is multimodal context-sensitive human-computer interaction
[3].

The rise in the importance of emotions has not gone unnoticed in the Computer Science
field. Even though machines may never need all the emotional skills of humans, it is
when interacting with people that they need this ability to appear intelligent. Interacting
naturally with the user is required to achieve a truly effective human-computer intelligent
interaction (HCII). Computers’ functionality could be enhanced by being able to recognize
the users’ emotions, especially in those applications where they take a social role. For
example, in the clinical sector, recognizing people’s inability to express certain facial
expressions may help to diagnose early psychological disorders. Furthermore, synthetic
speech with emotions can sound more pleasing than a monotonous voice. It is also possible
to mention an empathic behaviour by a digital agent, that improves the user experience
especially in emotionally critical situations [4][5].

The purpose of this project is to develop a multimodal system to classify emotions using
facial expressions and voice. The final model infers the emotion expressed by people
speaking in different videos. Cropped face images, dense optical flows, and speech features
are used to feed three Convolutional Neural Networks (one per feature) whose scores are
fused to obtain the predicted emotion label.

This work is the continuation of two previous projects developed by students from La
Sapienza university. The theses written by Sara Tramonte and Alessandro Linciano have
been used as the starting point for this project. Regarding the software, one script
implemented by Sara has been used to filter the peak high-intensity frames to train the
classifiers.

The main objective of this project is to improve the cross-dataset results previously
obtained. Consequently, the solution adopted is to pre-process the frames and the audios
to make them as similar as possible between the multiple datasets used. In addition, the
number of samples is increased by applying data augmentation.
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To compare the results with those of the other works, the datasets used are RAVDESS
and BAUM-1. The final classifier should be able to recognize the emotions that these
datasets have in common (happiness, sadness, anger, fearfulness, and disgust) from the
video files.

The development of the project (i.e., video preprocessing, data augmentation, design and
adjustment of the different models used, as well as the training and testing phase) has
been carried out using high-level APIs from the TensorFlow framework. The MTCNN
framework [6] has been used to extract the cropped face image from the video frames,
whereas the Librosa framework has been employed to obtain the audio features from the
speech signal.

1.1 Work Plan

This section contains the four Work Packages in which this project is divided, the
milestones, and the Gantt diagram.

1.1.1 Work Packages

Project: Literature review WP ref: (WP1)
Major constituent: Research Sheet 1 of 1
Short description: Planned start date: 21/02/2022
Analysis of existing research which is relevant to the Planned end date: 15/03/2022
topic. Start event: 21/02/2022

End event: 15/03/2022
Internal task T1: Study the project documentation
previously done by the other students.

Deliverables:
None

Dates:
None

Internal task T2: Review the state of the art
regarding emotion recognition, focusing on facial
emotion recognition and speech emotion recognition.
Internal task T3: Download and analysis of the
datasets.

Table 1: WP1 Literature review

Project: System development WP ref: (WP2)
Major constituent: Software Sheet 1 of 1
Short description: Planned start date: 15/03/2022
Processing of the multimedia files to extract features, Planned end date: 15/04/2022
and design and train the models. Start event: 15/03/2022

End event: 15/04/2022
Internal task T1: Process the dataset videos to extract
the frames and the audio files.

Deliverables:
None

Dates:
None

Internal task T2: Design the Deep Learning models.
Internal task T3: Training of the models.

Table 2: WP2 System development
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Project: Results validation WP ref: (WP3)
Major constituent: Simulation and Software Sheet 1 of 1
Short description: Planned start date: 15/04/2022
Evaluation of the performance of the models and Planned end date: 06/06/2022
application of improvements to enhance the results. Start event: 15/04/2022

End event: 13/06/2022
Internal task T1: Analysis of the results. Deliverables: Dates:
Internal task T2: Retrain the models with the
proposed improvements.

Result analysis
report

24/05/2022

Table 3: WP3 Results validation

Project: Documentation WP ref: (WP4)
Major constituent: Documentation Sheet 1 of 1
Short description: Planned start date: 06/06/2022
Prepare the thesis documentation. Planned end date: 02/07/2022

Start event: 15/04/2022
End event: 13/06/2022

Internal task T1: Write the thesis documentation. Deliverables: Dates:
Internal task T2: Prepare the oral defence of the
thesis.

Project
documentation

02/07/2022

Table 4: WP4 Documentation

1.1.2 Milestones

WP# Task# Short title Milestone / deliverable
1 2 Review the state of the art regarding

emotion recognition, focusing on facial
emotion recognition and speech emotion
recognition

Summary of the
information

2 1 Process the dataset videos to extract the
frames and the audio files

Save the cropped face
images and audio files

2 3 Training of the models Trained models
3 1 Analysis of the results Result analysis report
4 1 Write the thesis documentation Thesis document
4 2 Prepare the oral defence of the thesis Oral presentation

Table 5: Milestones
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1.1.3 Gantt Diagram

Now

Phases of the Project
February. March April May June July

WP1
100% completeT1

100% completeT2
100% completeT3

WP2
100% completeT1

100% completeT2
100% completeT3

WP3
100% completeT1

100% completeT2
WP4

100% completeT1
100% completeT2

Figure 1: Gantt diagram of the project

1.2 Deviations and incidences

During the development of the project, there has not been any incidence that may have
caused a delay in the different work packages. However, there has been an underestimation
of both the time required to train the models and the number of retraining attempts. The
main reason is that the computation capacity of the computer used was insufficient to deal
with data augmentation. Therefore, the task regarding the improvement of the models
and the retraining phase took more days than expected.
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2 State of the art of the technology used or applied

in this thesis:

The rising evidence of the importance of emotions in the interaction between humans has
led to an increase in interest in researchers to develop automatic ways for computers to
recognize emotional expressions as a goal toward achieving human-computer intelligent
interaction. This chapter summarizes the research done on emotion recognition during the
last few years that has mostly inspired this work. In addition, the model used to extract
the faces from the video frames is described.

2.1 Face Emotion Recognition (FER)

Paul Ekman and his colleagues have been studying human face expressions extensively
since the early 1970s [7]. They discovered evidence that facial expressions are universal.
They looked at facial expressions in various cultures, including preliterate cultures, and
came up with similarities in how people express and recognize emotions on their faces.
Despite these similarities, it cannot be ignored the fact that each culture has its own
nuances and singularities.

The extraction of the face region and the following landmark detection is necessary for
many facial emotion recognition approaches. Some of them apply the Facial Action
Coding System (FACS), which uses Units of Action (AU) derived from facial landmarks
to represent emotions. An Action Unit could be to ”raise the upper lid” or to “raise de
chicks”. An expression is defined by the activation of many AUs. Being able to
appropriately detect AUs is a relevant step since it allows you to assess the level of
emotion activation. See for example Yu and Zhang [8], who unveiled its Facial
Expression Recognition technology that uses Convolutional Neural Networks to
recognize facial expressions.

Figure 2: Deep Belief Network (DBN) architecture [9]
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Apart from taking advantage of the spatial information provided by static features
(images), Mase introduced optical flow to use the temporal information [9]. S. Zhang, X.
Pan, Y. Cui, X. Zhao and L. Liu constructed a fusion network built with a Deep Belief
Network (DBN) to take full advantage of a 2-stream CNN, demonstrating its
effectiveness in capturing spatiotemporal information [10]. Figure 2 shows the model
architecture presented in the study, which serves as the basis for the model proposed in
this work.

2.1.1 MTCNN for face detection

MTCNN stands for Multi-task Cascaded Convolutional Networks, which was created as
a solution for both face detection and face alignment. The method entails three stages
of convolutional networks that can detect faces and landmarks. Landmarks consist of the
coordinates of some key points allocated around the eyebrows, eyes, nose, mouth, and
jaw.

MTCNN is proposed in the paper [6] to use multi-task learning to integrate both tasks
(recognition and alignment). It uses a shallow CNN in the first stage to quickly generate
candidate windows. It refines the recommended candidate windows in the second stage
using a more complex CNN. Finally, in the third step, it employs a third CNN to refine
the result and output face landmark positions.

Figure 3 shows the pipeline of the cascaded framework that includes the three-staged
multi-task deep convolutional networks.

Figure 3: Three-staged multi-task deep convolutional networks [6]
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The process of extracting the face starts by resizing the frame to different scales to build
an image pyramid, which is the input of the following three-staged cascaded network.

Stage 1: The Proposal Network (P-Net) consists of a fully convolutional network (FCN).
The difference between a CNN and a FCN is that the second network does not use a dense
layer as part of the architecture. Candidate windows and their bounding box regression
vectors are obtained using this Proposal Network.

Stage 2: The Refine Network receives all candidates from the P-Net. The R-Net
decreases the number of candidates, performs calibration with bounding box regression,
and merges overlapping candidates using non-maximum suppression (NMS). The R-Net
outputs whether the input is a face or not, a 4-element vector which is the bounding box
for the face, and a 10-element vector for facial landmark localization.

Stage 3: This step is similar to the second stage, but the Output Network’s goal is to
describe the face in greater detail and output the positions of the five facial landmarks
for the eyes, nose, and mouth.

2.2 Speech Emotion Recognition (SER)

In speech emotion recognition challenges, traditional machine learning algorithms such
as hidden Markov models (HMMs), support vector machines (SVMs), and decision
tree-based methods have been used [11]. Researchers have recently developed several
neural network-based architectures to increase speech emotion recognition performance.
Deep neural networks (DNNs) were first used by Han et al. to extract high-level
characteristics from raw audio data in a study that proved their effectiveness in voice
emotion identification [12].

More complex neural-based architectures have been proposed as deep learning
approaches have progressed. The information collected from raw audio signals utilizing
spectrograms or audio features such as Mel-frequency cepstral coefficients (MFCCs) and
low-level descriptors (LLDs) is used to train CNN-based models [13].

2.3 Multimodal Emotion Recognition

Two approaches have been considered for multimodal emotion analysis: feature level
fusion and score level fusion. The first refers to the feature union from different
recognition systems, and it allows to take advantage of the biometrics synchronism. The
other approach combines the scores obtained from each of the classifiers.

For the first approach, Ronghe proposes a hybrid CNN-RNN architecture [14] (see
Figure 4). First, the model is trained to categorize images into one of seven emotions.
The videos are preprocessed and turned into a sequence of feature vectors, which are
then used to train an SVM model. Then, a Multilayer Perceptron models the correlation
between features of the emotions from the images and speech. The RNN is fed with the
extra parameters to classify the emotional reaction to each video frame.
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Figure 4: Scheme of the hybrid CNN-RNN model proposed by Ronghe et al. [14]

Regarding the second approach, it has studied the possibility of combining face and
voice by employing two independent models connected by a late fusion strategy [15]. As
Figure 5 shows below, the architecture proposed consists of two systems: the speech
emotion recognizer and the facial emotion recognizer. The speech emotion recognizer
uses two transfer learning approaches to avoid having to train a CNN from scratch,
which would require a large quantity of data. Feature extraction and fine-tuning are the
methods used.

Figure 5: Multimodal approach with score fusion [15]
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2.4 Model performance metrics

Several metrics and graphical techniques are used to assess the performance of a model
in a classification problem.

A confusion matrix represents the performance of a supervised learning method. A
problem with n classes requires a n x n confusion matrix with the rows representing the
actual class and the columns representing the class predicted by the model. Figure 6 is
an example of a confusion matrix for multi-class classification [16].

Figure 6: Confusion matrix for multi-class classification [16]

In general, the confusion matrix provides four types of classification results (each of them
coded by a different colour in Figure 6) for a particular class k:

� True Positives (TP): Both predicted and actual classes are class k.

� True Negatives (TN): Both predicted and actual classes are not class k.

� False Positives (FP): Predicted class is class k, but the actual class is not.

� False Negatives (FN): Predicted class is not k, but the actual class is.

From the confusion matrix, it is possible to measure several metrics. The ones used in
this work are precision, recall, and F1-score.

Precision is the percentage that the model correctly predicts positive when making a
decision (see Equation 1).

Precision =
TP

TP + FP
(1)

Recall, also known as sensitivity, is the percentage of positives correctly identified out of
all the existing positives (see Equation 2).

Recall =
TP

TP + FN
(2)
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Accuracy, as defined in Equation 3, is the total number of correct predictions made over
the total number of predictions. This metric is useful only when classes are equally
distributed on the classification. An alternative metric used in imbalanced datasets is
F1-score. The F1-score can be interpreted as a harmonic mean of the precision and
recall (see Equation 4).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1− score = 2× Precision×Recall

Precision+Recall
(4)

A different approach to analysing the results of a model is using the Receiver Operating
Characteristic (ROC) curve. The ROC is a graphical representation of the true positive
rate (TPR) (Equation 5) against the false positive rate (FPR) (Equation 6).

TPR =
TP

TP + FN
(5)

FPR =
FP

TN + FP
(6)

Figure 7 shows ROC curves for different classifiers. A curve in the top left corner indicates
that the classifier is successful, whereas a curve along the diagonal indicates that the
classification is random.

Figure 7: Example of ROC curves [17]

The quantitative value that provides a numerical measure of the ROC is the Area Under
the Curve (AUC). The AUC value is between 0.5 (classifier that chooses randomly) and
1. The best value (1) is achieved when the model has an ideal measure of separability,
and it is perfectly able to distinguish between the positive class and the negative classes.
In this case, FPR is 0 and TPR is 1.
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3 Methodology / Project development

This chapter presents the methodology that has been followed in this thesis. It starts
by providing a general overview of the datasets used. It is followed by an explanation
of the data preprocessing, the data augmentation, the features extracted, and the model
developed for each mode (face expression and voice). Finally, it includes how the two
biometrics are combined to obtain the final multimodal model.

3.1 Datasets

The datasets used to develop this project are RAVDESS and BAUM-1. While there are
numerous datasets of emotions in use currently, the choice of the datasets is based on
the aim to compare the results with previous works. Even though the datasets contain
videos of various emotions, only those that both datasets have in common have been
used: happiness, sadness, anger, fearfulness, and disgust. These emotions are labelled
with numbers from 0 to 4.

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [18]
contains videos collected from 24 professional actors (12 female, 12 male), vocalizing two
lexically-matched statements in a neutral North American accent.

The Bahçeşehir University Multimodal Emotional Database (BAUM-1) [19] consists of
multimodal facial video clips collected from 31 subjects (14 female, 17 male) who express
their ideas and feelings about the images and video clips they have previously watched in
an unscripted and unguided way in Turkish.

Both datasets contain expressions produced at two levels of emotional intensity:
spontaneous/normal or acted/strong. Only the acted ones are considered since there is a
major appreciation and comprehension of the emotions intended to express.

Table 6 shows the number of clips for each of the five emotions for the two datasets.

Happinesss Sadness Anger Fearfulness Disgust Total

RAVDESS 96 96 96 96 96 480
BAUM-1 26 37 42 35 34 174

Table 6: Number of videos per emotion of the datasets

The objective is to develop an emotion recognition model able to generalize and it is
essential that the training data comes from videos of the maximum different people
possible, having a database including several videos for each emotion and subject. The
videos are divided into three sets: training, validation, and test.

The training set contains 60% of the videos and is used to fit the parameters to the
model. The validation set consists of 20% of the videos and is used to obtain an unbiased
evaluation of the model fitted on the training set while tunning the hyperparameters. The
20% missing is used to test the final model.

20



As seen in Table 6, the RAVDESS dataset contains enough videos to achieve the stated
goal. However, in the case of the BAUM-1 dataset, for each emotion there is barely one
video per person. The solution adopted is to split the BAUM-1 videos to double the
number of videos per subject per emotion.

Table 7 presents the number of videos for each set once the BAUM-1 videos are split.

Happy Sad Angry Fearful Disgust Total

Train 57 58 57 58 58 288
RAVDESS Validation 19 19 20 19 19 96

Test 20 19 19 19 19 96

Train 31 44 42 38 40 195
BAUM-1 Validation 10 15 14 12 14 65

Test 11 15 13 13 13 65

Table 7: Train, validation, and test number of clips per emotion

3.2 Face Emotion Recognition

Facial Emotion Recognition (FER) is the technology that analyses facial expressions from
static photos and videos to disclose information about a person’s emotional state.

3.2.1 Frames filtering

The framework used to extract the frames from the videos is OpenCV. The total number
of frames generated is 64114 for the RAVDESS dataset and 21380 and the BAUM-1
dataset.

Figure 8: Sequence of frames labelled as ”Happy”

One of the challenges of FER is dealing with lower-intensity expressions. Some frames in
a video sequence cannot be considered meaningful to the emotion that is supposed to be
represented. The figure above shows an example of a sequence of frames extracted from
a video labelled as “happy”. It can be observed that some frames express more a neutral
emotion rather than happiness.

Consequently, the objective is to extract only the high-intensity expression or, in other
words, remove the less significant frames. This process is carried out using the CNN model
used in Sara Tramonte’s work [20], which is fitted with approximately 600 relevant frames
selected “by hand”. Then, the trained model predicts the label of the dataset frames and
removes the misleadingly predicted (Appendix A contains examples of removed lower-
intensity frames).
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After applying the filtering process to both datasets, Table 8 summarizes the number of
frames per emotion used for training, validation, and testing.

Happy Sad Angry Fearful Disgust Total

Train 6371 6587 6799 6271 7030 33058
RAVDESS Validation 2139 2150 2390 2072 2411 11162

Test 2318 2131 2219 2105 2334 11107

Train 1161 2804 1518 1037 1376 7896
BAUM-1 Validation 470 1111 588 479 503 3160

Test 417 848 171 410 469 2315

Table 8: Train, validation, and test number of frames per emotion

3.2.2 Frame preprocessing

By taking a close look at the frames, it is possible to see differences between the
datasets. As these discrepancies result in poor cross-dataset performance, it is
imperative to preprocess the frames to “normalize” the images to a common format.
This includes removing the background colour, extracting the face region, and resizing
the images.

First of all, the background is removed using the MediaPipe framework. MediaPipe [21]
is a framework for building machine learning pipelines for processing time-series data
like video, audio, etc. Selfie Segmentation module segments the prominent humans in the
scene. It processes the image and creates a mask with the segmented background. The
result is obtained by applying the bit-wise AND operation of the original image and the
mask. Figure 9 displays an example of the stated process.

(a) Original (b) Mask (c) Result

Figure 9: Background removal process

Then, faces are detected and extracted from the frames using MTCNN (see a detailed
explanation of the model in Section 2.1.1). The model takes the frame as the input and
returns the bounding box coordinates and the position of the keypoints (eyes, nose, and
mouth).
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The proposed face region contains irrelevant information that may lead to errors when
recognizing emotions, such as parts of the background, ears, neck, or hair. Therefore, this
work proposes using the positions of the five facial landmarks for the left eye, right eye,
nose, left mouth, and right mouth to crop the region of interest more accurately. The
algorithm below details de process.

Given the MTCNN bounding box, and the keypoints (identified by a pixel position (x,
y)), the algorithm returns the upper-left and the lower-right pixel coordinates that define
the updated face region. First, the coordinates are initialized with those proposed by the
MTCNN model. For each keypoint detected, the region is modified as follows:

� Mouth left and Mouth right refer to the landmarks that correspond to the extremes
of the mouth. They are used to reduce the distance between the lower edge of the
box and the mouth.

� Left eye and Right eye correspond to the centre of the left and right eye. They are
used to reduce the lateral distance between the left and right edges of the box and
the eyes. Moreover, they are used to reduce the distance between the upper edge of
the box and the eyes.
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Figure 10 shows the face detection process and the differences between the suggested
regions. The final face region lies between the box that perfectly fits the landmarks and
the proposed box by the face detector model. Figure 10b displays the distances between
the edges of the two regions, which are used to draw the final region. The top edge of the
final region is placed in the mediatrix of distance a. The lateral edges are located at 1/3
and 2/3 of distances d and b, respectively. Finally, the bottom edge is positioned at 5/6
of distance c. These proportions are computed to ensure no loss of relevant information
about the face. Finally, the frame is resized to 512x512 pixels..

(a) Region proposed by
MTCNN

(b) Region that
perfectly fits the

landmarks

(c) Final face region

Figure 10: Face detection process

3.2.3 Optical flow frames

Apart from taking advantage of the spatial information provided by static features (face
images), this work uses optical flow to gather temporal information. Two different models
have been designed and trained for each type of information: In the first case, the CNN
input is the face images and, in the other case, the optical flow frames.

Optical flow is the pattern of apparent motion of image objects between two consecutive
frames caused by the movement of an object, in the case of this project, face muscles,
lips, eyebrows, etc. Optical flow images are computed from optical flow vectors, which are
2D vectors where each vector represents a displacement showing the movement of points
from one frame to the following one, with its magnitude and direction. Vectors are then
mapped onto colour for better visualization. The optical flow frames are generated from
the normalized face images using dense optical flow as implemented in [22] (see example
in Figure 11).

(a) Previous frame (b) Optical flow (c) Next frame

Figure 11: Optical flow frame
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3.2.4 Data augmentation

The quality, quantity, and contextual significance of training data all play a role in the
performance of deep learning models. However, one of the most common obstacles in
developing deep learning models is the lack of data. The use of transfer learning with
VGG-16 or ResNet50 models pre-trained on ImageNet has been considered, but the results
were disappointing. Therefore, the models have been trained from scratch also applying
data augmentation techniques.

Data augmentation is a process of artificially increasing the amount of data by generating
new data points from existing data. Its main advantages are contributing to avoiding
overfitting and balancing the dataset. The augmented data derive from original images
with minor geometric transformations. In this work, the techniques used are mirroring,
rotation, histogram equalization, and modifying the brightness(see Figure 12).

(a) Original (b) Mirroring (c) Rotation (d) Histogram
Equalization

(e) Brightness

Figure 12: Image data augmentation techniques

Mirroring consists of flipping horizontally the given image. Considering that the videos are
filmed by cameras and can be placed in different places, it is interesting to have distinct
points of view for recognition. Taking into account the fact that, in some videos, the
subject moves its head while speaking, rotating the images at a random angle might be
helpful. Histogram Equalization increases contrast in images by detecting the distribution
of pixel densities in an image and plotting these pixel densities on a histogram. The
distribution of this histogram is then analysed and if there are ranges of pixel brightness’s
that aren’t currently being utilized, the histogram is then “stretched” to cover those
ranges, and then is “back projected” onto the image to increase the overall contrast of
the image [23]. As dataset recording conditions differ among them, it is preferred to train
the model with images whose brightness has been modified, simulating different light
conditions. After balancing the dataset and augmenting the training dataset, the number
of frames per class for training is the following:

Happy Sad Angry Fearful Disgust Total

RAVDESS
Face images 13223 13223 13223 13223 13223 66115
Optical flow 10072 10072 10072 10072 10072 50360

BAUM-1
Face images 8412 8412 8412 8412 8412 42060
Optical flow 3964 3964 3964 3964 3964 19820

Table 9: Train set number of frames per emotion after data augmentation
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3.2.5 Model

This section describes the two classifiers used to predict face emotions: the face image
model and the optical flow model. The structure of the models is the same in both cases,
and it is a simplified version of the VGG16 network [24]. Figure 13 displays the architecture
of the face image model. The only difference between the classifiers is that the input layer
is adapted to the number of image channels (3 for RGB face images and 1 for black
and white optical flow frames). The five stages of convolutional layers and pooling layers
extract the features from the images, and the dense layers classify the features to predict
the label.

Figure 13: Face image model architecture

The frames are resized to 64x64 pixels and normalized so the pixel values are between 0
and 1. The Conv2D layer creates a convolution kernel, where the first parameter is the
filter that indicates the dimensionality of the output space, the second is the kernel size
which specifies the dimensions of the 2D convolution window, and last is the padding used
to add zeros to the output so it will have the same height/width dimension as the input.
The MaxPool2D layer is used to down sample the input along its spatial dimension, and
its parameter is the pooling window size. The Dropout layer randomly sets input units to
0 with a specified rate at each step during training time, which helps prevent overfitting.
The Flatten layer flattens the input, and the Dense layer is a densely connected layer,
where the first parameter, called units, is an integer indicating the dimensionality of the
output. The last dense layer of the model is activated by the Softmax function, whose
output is an array with the probabilities that the frame belongs to each class.
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The model is compiled using Adam as an optimizer, which is a stochastic gradient
descent method well suited for most problems and using as a loss function the
sparse categorical crossentropy, which calculates the cross-entropy loss between the
predictions and the labels.

Finally, the model is trained using ReduceLROnPlateau and EarlyStopping. The first
callback reduces the learning rate when the validation accuracy is not improving after
two epochs. The second one stops the training and restores the weights from the epoch
with the best validation accuracy when the monitored metric does not improve.

3.3 Speech Emotion Recognition

Speech Emotion Recognition is the act of attempting to recognize human emotion and
affective states from speech. Voice often reflects underlying emotion through tone and
pitch.

3.3.1 Audio extraction

Librosa is a Python library for analysing audio and music [25], and it is used to obtain the
audio files from the video. The load function takes the video path as the input and returns
the audio signal and the sample rate. Both datasets have in common the sample rate, but
in the case of the RAVDESS dataset, the speaker waits one second before starts speaking.
The silent parts of the signal at the beginning and the end are removed to homogenize
the datasets. Mention that silence is considered when the peak amplitude is 30 dB lower
than the maximum peak amplitude.

3.3.2 Data augmentation

Data augmentation techniques for speech are used to generate new audio files from the
original data. This work applies the techniques used in Sara Tramonte’s work that are
noise injection and changing pitch. In addition, this work proposes also using time shifting
[26].

Noise injection consists in adding random values to data. The result is the original signal
plus Gaussian white noise (GWN). The other techniques include shifting the audio to
the right or the left with a random second and randomly modifying the pitch. Figure 14
represents the mentioned speech augmentation approaches.

(a) Original (b) Noise injection (c) Time shifting (d) Pitch

Figure 14: Speech data augmentation techniques
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3.3.3 Audio chunking

This section introduces a novel approach for the data preparation process implemented
before the feature extraction. As videos have different durations, the extracted audio
signal arrays vary in their lengths, and so does the feature vectors’ length. The CNN
model requires a fixed input dimension, so it is necessary to chunk the audios at a specific
duration.

(a) Speech concatenation (b) Speech chunking

Figure 15: Speech chunking process

Once the dataset is balanced using speech data augmentation, it is ensured that all the
audios have the same length to guarantee that the number of chunks per class is equal. The
proposed algorithm calculates the maximum audio duration of the dataset and repeatedly
concatenates the original signal to itself until it matches this length (see Figure 15a).

After the speech signals have been lengthened, they are segmented using the Librosa
framework. According to [27], the optimal fixed length of the chunk is 1 s. After several
experiments, the overlap between chunks was fixed to 250 ms (see Figure 15b).

Table 10 shows the total number of chunks per class for both datasets.

Happy Sad Angry Fearful Disgust Total

Train 1160 1160 1160 1160 1160 5800
RAVDESS Validation 100 100 100 100 100 500

Test 100 100 100 100 100 500

Train 1760 1760 1760 1760 1760 8800
BAUM-1 Validation 150 150 150 150 150 750

Test 150 150 150 150 150 750

Table 10: Train, validation, and test number of audio chunks per emotion
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3.3.4 Features extraction

There are two types of audio features: physical features and perceptual features [28].
Physical features refer to mathematical measurements computed directly from the sound
wave, such as the energy function, the spectrum, the cepstral coefficients, the fundamental
frequency, etc. Perceptual features are subjective terms related to the perception of sounds
by human beings, including loudness, brightness, pitch, timbre, rhythm, etc. This work
uses the Zero-Crossing rate, the Mel spectrogram, the chroma, the Mel Frequency Cepstral
Coefficients, the delta MFCCs, and the delta-delta MFCCs, to classify the emotions from
the audio files. For each of the speech chunks, a 525-length feature vector is computed
using Librosa.

The zero-crossing rate (ZCR) is the rate at which a signal transitions from positive to zero
to negative or negative to zero to positive. It can be utilized as a basic pitch detection
algorithm for monophonic tonal signals [29].

(a) Spectrogram (b) Mel-spectrogram

(c) Chroma (d) MFCCs

Figure 16: Speech features

Spectrograms represent the signal power over time at different frequencies. Mel-Spaced
filter banks are applied to the power spectrum to extract the Mel-spectrogram. The
Mel-scale aims to mimic the non-linear human ear perception of sound by being more
discriminative at lower frequencies and less discriminative at higher frequencies.
Figure 16a and Figure 16b display the spectrogram and the Mel-spectrogram of a speech
signal.
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Chroma is a representation of music audio in which the entire spectrum is projected onto
12 bins representing the 12 different semitones of the musical octave (see Figure 16c).
Since, in music, notes exactly one octave apart are perceived as particularly similar,
knowing the distribution of chroma even without the absolute frequency (i.e., the original
octave) can give useful musical information about the audio and may even reveal perceived
musical similarity that is not apparent in the original spectra [30].

The Mel-frequency cepstrum is highly effective in audio recognition and modelling the
audio signal subjective pitch and frequency content. The Mel-frequency Cepstral
Coefficients (MFCCs) are computed from the FFT power coefficients, which are filtered
by a triangular band pass filter bank (Mel-Spaced filter bank) [31]. Figure 16d shows an
example of the MFCCs.

Delta and Delta-Delta MFCCs are also known as differential and acceleration
coefficients. The idea behind using differential and acceleration coefficients is to
understand the dynamics of the power spectrum, i.e., the trajectories of MFCCs over
time.

3.3.5 Model

The model used to classify the audios is a CNN with two stages of convolutional layers
appended to a fully-connected neural network. The voice model takes as input the feature
vectors explained in the previous section and returns, for each class, the probability that
the chunk belongs to it. Figure 17 describes the architecture of the classifier.

Figure 17: Voice model architecture

The model uses Adam as an optimizer and the sparse categorical crossentropy as a loss
function. It also uses the callbacks explained in Section 3.2.5: ReduceLROnPlateau and
EarlyStopping.
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3.4 Multimodal Emotion Recognition

Single-mode biometric solutions have limitations in terms of accuracy and susceptibility
to spoofing. Several small-scale experimental experiments have shown that combining
evidence from several sources enhances performance [32].

The fusion (i.e., combination) of the various biometric mode data is the key to multimodal
biometrics. Fusion can occur at the feature extraction, match-score, or decision level [33].
Feature level fusion combines feature vectors at the representation level that essentially
provides higher dimensional data points when comparing the matching score. Match-score
level fusion combines the disjoint confidence scores. Decision level fusion combines the final
decisions of the different systems.

The strategy adopted in this work is the score-level fusion, and it is implemented in two
stages: an intra-model score fusion and an inter-model score fusion. Figure 18 describes
the steps for one video, but the process is repeated for all the videos of the datasets.

The intra-model stage consists in averaging the frames scores or the audio chunk scores
to obtain the video score. A video is preprocessed to obtain the cropped face images, the
optical flow frames, and the voice chunks features, that are the input of their corresponding
model. Then, each model makes its prediction and returns the scores, resulting in three
matrices with K, M, and N rows and five columns (being K the number of image faces,
M the number of optical flow frames, N the number of audio feature vectors, and five
the number of emotions). For each matrix, each column is averaged to obtain the video
scores. Once the first stage is completed, the results are three video score proposals,
one per model, represented on three vectors. Each vector has five components (Phappy,
Psad, Pangry, Pfearful, Pdisgust) representing the probabilities that the video belongs to each
emotion.

The inter-model fusion refers to averaging the video scores of each model to generate the
final video scores. The three vectors are averaged, and the result is a single vector with
the final scores. At this point, the way is given to the argmax function that returns the
final label by selecting the emotion with the highest score.

Figure 18 shows the schematic of the multimodal emotion recognition system.

31



F
ig
u
re

18
:
S
ch
em

at
ic

of
th
e
m
u
lt
im

o
d
al

em
ot
io
n
re
co
gn

it
io
n
sy
st
em

32



4 Results
This chapter presents the main results obtained in this project for facial, speech, and
multimodal emotion recognition. It also includes a comparison of this work with Sara
Tramonte’s proposal evaluated on the same datasets, giving an overview of the possible
advantages of the techniques applied in this thesis. It details the individual results of
the three models and the performance results of the face model (fusion of the face image
model and optical flow model) and the multimodal system (three models fused), evaluated
for each dataset and cross-dataset.

The following sections summarize the most relevant results for each model. They are
calculated based on the classification of the individual frames or audio chunks (Ind. column
of the tables) or based on the classification of the videos (Vid. column of the tables).

The tables below contain the weighted average results for each of the metrics explained
in Section 2.4. Weighted average considers how many frames, audio chunks, or videos of
each emotion are in its calculation. It means that the impact of a class on the weighted
average of each of the metrics is directly proportional to the amount of data it has.

While this chapter presents the averaged results, Appendix B contains an extended
analysis by emotion. It shows, for each of the models and emotions, the performance
metrics, and the ROC curves. In addition, it includes the train, validation, and test
confusion matrices of all the classifiers.

4.1 RAVDESS
This section aims to show the results obtained when the models are trained and tested
with the RAVDESS dataset.

Precision Recall F1-score AUC

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00
Face Image Val 0.88 0.96 0.87 0.96 0.87 0.96 0.98 1.00

Test 0.90 0.97 0.89 0.97 0.89 0.97 0.99 1.00

Train 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00
Optical flow Val 0.78 0.90 0.77 0.90 0.77 0.90 0.95 0.99

Test 0.78 0.94 0.78 0.94 0.78 0.94 0.95 1.00

Train 0.88 0.90 0.88 0.90 0.87 0.90 0.97 0.98
Voice Val 0.84 0.85 0.82 0.83 0.83 0.83 0.94 0.94

Test 0.86 0.87 0.86 0.88 0.85 0.87 0.97 0.98

Train - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 0.96 - 0.96 - 0.96 - 1.00

Test - 0.98 - 0.98 - 0.98 - 1.00

Train - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 0.98 - 0.98 - 0.98 - 1.00

Test - 0.99 - 0.99 - 0.99 - 1.00

Table 11: RAVDESS averaged results
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Table 11 outlines the performance of the models tested. The results indicate that the
multimodal system can correctly classify the emotion in most videos (99%). Its
performance is better than the individual performance of the three models, which means
that the three modes can be used to complement each other to generate a more robust
model.

The results in terms of video classification outperform the ones considering the individual
classification of frames or audio chunks. The main reason is that the video score is obtained
by averaging the individual scores of the frames, so if the number of misclassified frames
is lower than the number of correctly classified frames, the predicted emotion of the video
will be correct.

Figure 19: RAVDESS test confusion matrix

The confusion matrix in Figure 19 shows that just one video of the test dataset has been
misleadingly classified by the final model. This emphasizes the outstanding results with
the RAVDESS dataset.

Figures 20a and 20b display the ROC curves of the system. The average results and
the analysis per class reveal an almost perfect classifier, as the curves are plotted in the
top-left corner.

(a) Averaged (b) Per class

Figure 20: RAVDESS ROC curves
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As stated in the introduction, the objective is to improve the results of previous works.
Table 12 compares the accuracies of the models developed in Sara Tramonte’s work with
the ones obtained in this project. It can be said that the accuracies of the individual
model and the multimodal system have increased. The most relevant improvement is in
the optical flow model, which may be caused by computing the optical flow frames once
the frames have been precisely cropped to eliminate unnecessary information.

Previous work This work Improvement (%)

Face Image 0.94 0.97 3.19
Optical flow 0.69 0.94 36.23
Voice 0.86 0.87 1.16
Face + Voice 0.91 0.99 8.79

Table 12: RAVDESS accuracy results comparison

4.2 BAUM-1

This section presents the results obtained when the models’ training and the testing are
done on the BAUM-1 dataset.

Precision Recall F1-score AUC

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Face Image Val 0.84 0.89 0.84 0.88 0.82 0.88 0.97 0.97

Test 0.81 0.83 0.74 0.82 0.75 0.83 0.95 0.96

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Optical flow Val 0.67 0.71 0.65 0.69 0.65 0.70 0.88 0.88

Test 0.63 0.68 0.54 0.61 0.55 0.60 0.85 0.85

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Voice Val 0.61 0.67 0.60 0.66 0.60 0.66 0.84 0.88

Test 0.73 0.83 0.73 0.81 0.73 0.80 0.90 0.93

Train - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 0.81 - 0.80 - 0.80 - 0.96

Test - 0.78 - 0.77 - 0.77 - 0.94

Train - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 0.87 - 0.86 - 0.86 - 0.99

Test - 0.85 - 0.84 - 0.84 - 0.98

Table 13: BAUM-1 averaged results
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The table above shows that the results are worse than when using the RAVDESS dataset.
One possible explanation is that the quality of the images and the sound of this dataset
is lower than the previous one. In addition, comparing the training, validation, and test
results it is seen that the models are overfitted. Overfitting occurs when the model fits
exactly against the training data and cannot perform accurately against unseen data.
However, the models still can distinguish clearly between the five emotions.

Figure 21: BAUM-1 confusion matrix

Figure 21 details which classes are the most difficult to identify for the multimodal
model. In some cases, anger, fear, and disgust are misleadingly confused between them.
Moreover, sometimes disgust and fear emotions are predicted as happiness. This fact is
corroborated by the ROC curves below, where the red curve representing happiness is
the lowest. Likewise, the decrease in performance when using the BAUM-1 dataset is
seen by comparing the plots with the ones obtained with the RAVDESS dataset. The
curves are no longer in the upper-left corner (ideal case).

(a) Averaged (b) Per class

Figure 22: BAUM-1 ROC curves

The results obtained for the BAUM-1 results are worse than the ones in the previous
work. The most significant decline is that of the voice model. Even though adding new
speech features have resulted in a better performance for the RAVDESS dataset, in the
case of the BAUM-1 dataset, it has not provided discriminant information to the model.
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Another possible reason for this opposite effect on the BAUM-1 dataset is data
augmentation. To compensate for the fact that the dataset contains fewer frames than
the RAVDESS dataset, the number of generated images is higher. This fact may have
caused the model to learn from redundant features, making it very difficult to generalize
to other data.

Previous work This work Improvement (%)

Face Image 0.86 0.82 -4.65
Optical flow 0.63 0.62 -1.59
Voice 0.94 0.81 -13.83
Face + Voice 0.94 0.84 -10.64

Table 14: BAUM-1 accuracy results comparison

4.3 Cross-dataset

It has been stated in the above sections the importance of having a model capable of
generalizing and predicting emotions in different people. This section provides the results
obtained when the models are trained and tested with different datasets.

First, Table 15 and Table 16 show that the cross-dataset results are much worse than the
results previously explained. One thing to remark is that the face image model and the
optical flow model work better when combined alone than when combined with the voice
model.

Precision Recall F1-score AUC

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.49 0.55 0.48 0.53 0.45 0.53 0.73 0.78
Optical flow 0.47 0.44 0.38 0.40 0.36 0.40 0.67 0.76
Voice 0.28 0.24 0.23 0.21 0.23 0.21 0.58 0.55
Face - 0.55 - 0.54 - 0.53 - 0.83
Face + Voice - 0.49 - 0.51 - 0.49 - 0.81

Table 15: RAVDESS - BAUM-1 averaged results

Precision Recall F1-score AUC

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.37 0.18 0.36 0.34 0.26 0.22 0.72 0.72
Optical flow 0.41 0.60 0.40 0.51 0.38 0.47 0.70 0.76
Voice 0.25 0.24 0.21 0.20 0.21 0.20 0.52 0.52
Face - 0.57 - 0.40 - 0.32 - 0.74
Face + Voice - 0.39 - 0.43 - 0.36 - 0.71

Table 16: BAUM-1 - RAVDESS averaged results
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The voice model is not able to distinguish among the classes and acts nearly like a
random classifier, especially when trained with the BAUM-1 dataset and tested with the
RAVDESS dataset (Table 16). One possible cause is that this work tackles voice
emotion recognition with a 1-D approach: the mean of the 2D features across the
frequency dimension is computed and concatenated to one-dimensional features such as
the Zero-Crossing Rate to form the feature vector. This process reduces the complexity
and the computational effort with the cost of losing information. In addition, there is
the fact that the language spoken in the two datasets is different (American English and
Turkish), which may also be an extra source of errors.

Regarding the face image model, another explanation for the drop in performance is the
difference in resolution between the datasets. Even though the cropped face images are
resized, the CNN learns information about the resolution, which differs in each dataset.

(a) RAVDESS - BAUM-1 confusion matrix (b) BAUM-1 - RAVDESS confusion
matrix

Figure 23: Cross-dataset confusion matrices

The confusion matrices above show the cross-dataset classification results. As previously
seen in the tables, the final model has difficulties to classify the emotions when the dataset
used for training and for testing is not the same.

(a) Averaged (b) Per class

Figure 24: RAVDESS - BAUM-1 ROC curves

38



(a) Averaged (b) Per class

Figure 25: BAUM-1 - RAVDESS ROC curves

On the one hand, when the model trains with the RAVDESS dataset (Figure 23a), sadness
and disgust emotions are often confused between them. That is the main reason why their
ROC curves are the lower ones. On the other hand, when the model is trained with BAUM-
1, it tends to predict either happiness or disgust for all of the emotions (Figure 23b). In
addition, for this second case, the classifier predicts the fear emotion wrongly as its ROC
curve lies in the line with a unitary slope that divides the plot (random classifier).

Previous work This work Improvement (%)

Face Image 0.39 0.53 35.90
Optical flow 0.22 0.44 100
Voice 0.21 0.21 0
Face + Voice 0.30 0.51 70

Table 17: RAVDESS - BAUM-1 accuracy results comparison

Previous work This work Improvement (%)

Face Image 0.27 0.34 25.93
Optical flow 0.25 0.51 104
Voice 0.18 0.20 11.11
Face + Voice 0.28 0.43 53.57

Table 18: BAUM-1 - RAVDESS accuracy results comparison

Finally, the tables above show the comparison between the cross-dataset results of the
previous work and the ones obtained during this project. Although there is an overall
improvement in results, it varies depending on the model: the classifier with the best
percentage of improvement is the optical flow model (with more than 100%), followed by
the face image model and the voice model. The latter shows small improvement due to
its poor performance on the BAUM-1 dataset.

The key to good cross-dataset performance lies primarily in minimizing the dissimilarities
between datasets. The normalization applied to frames and speech signals has had a
negative impact on the BAUM-1 dataset results, but these techniques have enhanced
both the RAVDESS and the cross-dataset results. Nonetheless, it is worth mentioning
that there is still much room for improvement.
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5 Budget

The costs of this project are divided into human resources and the hardware needed. As
all the programs used are open source, no fees are related to software. To calculate the
budget, it is considered a project duration of 900 hours (equivalent to 30 ECTS).

On the one hand, the human resources cost includes the gross salary of a junior employee
and social charges. A junior employee is paid 10¿/h worked, which means a total wage of
9000¿. The standard fees are 30% of the gross salary, which represents a cost of 2700¿.

On the other hand, the hardware needed to develop the project is a computer with
enough capacity to perform the training of the models. To calculate the amortisation, it
is considered a computer price of 600¿, a residual value of 60¿, and a life span of 5
years. As a result, the first year’s amortisation cost is 108¿.

Concept Cost(¿)

Gross salary 9000
Social charges (30%) 2700
Computer amortization 108

TOTAL 11808

Table 19: Costs of the project

As can be seen in Table 19, the total cost of the project for one year is 11808¿.
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6 Conclusions and future development

This project has been developed with the intention of improving the cross-dataset results
with respect to previous works when classifying emotions with a multimodal system based
on facial expressions and voice. To this end, three models (face image, optical flow, and
voice) have been trained and fused using score-fusion techniques to complement each other
and create a robust final model.

After the testing phase, the developed system outperforms the previous related works. It
can be concluded that the preprocessing techniques are the main reason of this
improvement. Normalizing the frames reduces the differences between the datasets
enhancing the cross-dataset performance. Moreover, chunking the audio files and using
more voice features has resulted in an increment of discriminative information and,
therefore, better classification results.

Despite the results being better, there is still a considerable difference between the
performance of the models when they are trained and tested with the same dataset and
when using cross-datasets. One of the possible causes is that, although there seem to
exist similar patterns, there are still variations between individuals, especially when
people are from different nationalities. However, the most challenging task is to unify
the datasets into a common format. Further investigation into normalizing techniques
must be done to deal with this issue. A future line of development can be to decrease
the difference in the quality of both datasets, either by reducing the resolution of the
dataset with better quality or by applying super-resolution techniques to enhance the
worse quality dataset.

This project has focused on extracting information directly from the frames of the
videos using Convolutional Neural Networks. An alternative that may also help with the
normalization challenge is using a geometric approach. Most geometric feature-based
approaches use the active appearance model (AAM) or its variations, to track a dense
set of facial points. The locations of these facial landmarks are then used in different
ways to extract the shape and the movement of facial features, as the expression evolves
[34].

Finally, it is worth mentioning that the technologies used in this project do not only have
a successful present but a promising future.
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[15] C. Luna-Jiménez, Z. Callejas, R. Kleinlein, F Fernández-Mart́ınez, D. Griol, and
Juan M. Montero. Multimodal Emotion Recognition on RAVDESS Dataset Using
Transfer Learning. Sensors, 21(22), 2021.

42
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A Filtered frames examples

(a) RAVDESS Happy (b) RAVDESS Happy (c) BAUM-1 Happy

(d) RAVDESS Sad (e) BAUM-1 Sad (f) BAUM-1 Sad

(g) RAVDESS Angry (h) BAUM-1 Angry (i) RAVDESS Fearful

(j) BAUM-1 Fearful (k) RAVDESS Disgust (l) BAUM-1 Disgust

Figure 26: Filtered images using the CNN model
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B Extended results

B.1 RAVDESS

Confusion matrices

Next, it is shown the train, validation, and test confusion matrices for the face image
model, the optical flow model, the voice model, and the face model (face image + optical
flow). The results are presented based on frames or audio chunks and videos.

Face image model:

(a) Train (b) Train

(c) Validation (d) Validation

(e) Test (f) Test

Figure 27: RAVDESS face image model confusion matrices based on frames (a)(c)(e)
and based on videos (b)(d)(f)
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Optical flow model:

(a) Train (b) Train

(c) Validation (d) Validation

(e) Test (f) Test

Figure 28: RAVDESS optical flow model confusion matrices based on frames (a)(c)(e)
and based on videos (b)(d)(f)
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Voice model:

(a) Train (b) Train

(c) Validation (d) Validation

(e) Test (f) Test

Figure 29: RAVDESS voice model confusion matrices based on speech chunks (a)(c)(e)
and based on videos (b)(d)(f)
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Face model (Face image + optical flow):

(a) Train (b) Validation

(c) Test

Figure 30: RAVDESS face multimodal model confusion matrices
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Performance results

Next, it is shown the train, validation, and test performance results (precision, recall,
F1-score, AUC) for the face image model, the optical flow model, the voice model, and
the face model (face image + optical flow). The results are presented based on frames or
audio chunks (Ind.) and videos (Vid.).

Precision:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Face Image Val 0.91 0.95 0.78 0.86 0.86 1.00 0.86 1.00 0.91 1.00

Test 0.89 0.95 0.81 0.95 0.90 0.95 0.92 1.00 0.96 1.00

Train 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00
Optical flow Val 0.94 1.00 0.69 0.85 0.83 0.94 0.68 0.85 0.77 0.85

Test 0.90 1.00 0.75 0.95 0.74 0.94 0.75 0.89 0.76 0.90

Train 0.94 0.92 0.79 0.85 0.91 0.95 0.86 0.86 0.90 0.92
Voice Val 0.87 0.88 0.72 0.74 0.99 1.00 0.86 0.87 0.75 0.74

Test 0.83 0.79 0.85 0.84 0.90 0.95 0.83 0.85 0.87 0.95

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 0.95 - 0.90 - 1.00 - 0.95 - 1.00

Test - 1.00 - 1.00 - 0.95 - 0.95 - 1.00

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 1.00 - 0.90 - 1.00 - 1.00 - 1.00

Test - 1.00 - 1.00 - 1.00 - 1.00 - 0.95

Table 20: RAVDESS precision results
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Recall:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00
Face Image Val 0.94 1.00 0.94 1.00 0.89 0.95 0.85 1.00 0.73 0.84

Test 0.94 1.00 0.96 1.00 0.93 1.00 0.77 0.89 0.84 0.95

Train 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00
Optical flow Val 0.86 0.95 0.75 0.89 0.79 0.85 0.73 0.89 0.75 0.89

Test 0.85 1.00 0.77 1.00 0.70 0.84 0.71 0.89 0.83 0.95

Train 0.81 0.92 0.93 0.85 0.94 0.95 0.81 0.86 0.88 0.92
Voice Val 0.76 0.88 0.87 0.74 0.89 1.00 0.71 0.87 0.89 0.74

Test 0.73 0.79 0.83 0.84 0.92 0.95 0.86 0.85 0.95 0.95

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 1.00 - 1.00 - 0.95 - 1.00 - 0.84

Test - 1.00 - 1.00 - 0.95 - 0.95 - 1.00

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 1.00 - 1.00 - 1.00 - 1.00 - 0.89

Test - 1.00 - 0.95 - 1.00 - 1.00 - 1.00

Table 21: RAVDESS recall results

F1-score:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00
Face Image Val 0.92 0.97 0.85 0.93 0.88 0.97 0.85 1.00 0.83 0.91

Test 0.92 0.98 0.88 0.97 0.91 0.97 0.84 0.94 0.90 0.97

Train 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00
Optical flow Val 0.90 0.97 0.72 0.87 0.81 0.89 0.70 0.87 0.76 0.87

Test 0.87 1.00 0.76 0.97 0.72 0.89 0.73 0.89 0.79 0.92

Train 0.87 0.87 0.85 0.89 0.93 0.95 0.83 0.84 0.89 0.92
Voice Val 0.81 0.80 0.79 0.81 0.94 0.97 0.77 0.76 0.82 0.81

Test 0.78 0.77 0.84 0.84 0.91 0.95 0.85 0.87 0.91 0.95

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 0.97 - 0.95 - 0.97 - 0.97 - 0.91

Test - 1.00 - 1.00 - 0.95 - 0.95 - 1.00

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 1.00 - 0.95 - 1.00 - 1.00 - 0.94

Test - 1.00 - 0.97 - 1.00 - 1.00 - 0.97

Table 22: RAVDESS F1-score results

51



AUC:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Face Image Val 0.99 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.95 0.99

Test 0.99 1.00 0.99 1.00 0.99 1.00 0.97 1.00 0.99 1.00

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Optical flow Val 0.98 1.00 0.94 0.99 0.97 1.00 0.93 0.98 0.93 0.99

Test 0.98 1.00 0.94 1.00 0.94 0.99 0.94 0.99 0.95 0.99

Train 0.97 0.98 0.98 0.98 0.99 0.99 0.94 0.95 0.98 0.99
Voice Val 0.94 0.95 0.96 0.96 0.99 1.00 0.85 0.84 0.95 0.95

Test 0.95 0.97 0.95 0.96 0.98 0.98 0.97 0.98 0.99 1.00

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 1.00 - 1.00 - 0.99 - 0.99 - 0.99

Test - 1.00 - 1.00 - 0.99 - 0.99 - 1.00

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 1.00 - 1.00 - 1.00 - 1.00 - 0.99

Test - 1.00 - 1.00 - 1.00 - 1.00 - 1.00

Table 23: RAVDESS AUC results
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ROC curves

Next, it is shown the weighted-average ROC curves and the ROC curves per class for the
face image model, the optical flow model, the voice model, and the face model (face image
+ optical flow). The results are presented based on frames or audio chunks and videos.

Face image model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 31: RAVDESS face image model ROC curves based on frames (a)(c) and based
on videos (b)(d)
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Optical flow model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 32: RAVDESS face optical flow ROC curves based on frames (a)(c) and based on
videos (b)(d)
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Voice model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 33: RAVDESS voice model ROC curves based on speech chunks (a)(c) and based
on videos (b)(d)
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Face model (Face image + optical flow):

(a) Averaged (b) Per class

Figure 34: RAVDESS face multimodal model ROC curves based on frames (a) and
based on videos (b)

Observations

The results for the RAVDESS dataset are excellent. The face image and the optical flow
model have shown outstanding performances, and when combined, the results are even
better. The figures above show that using optical flow separately results in some confusion
between sadness, anger, fear, and disgust. Moreover, it can be seen that in some cases,
the voice model has misleadingly predicted sadness for videos representing happiness.
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B.2 BAUM-1

Confusion matrices

Next, it is shown the train, validation, and test confusion matrices for the face image
model, the optical flow model, the voice model, and the face model (face image + optical
flow). The results are presented based on frames or audio chunks and videos.

Face image model:

(a) Train (b) Train

(c) Validation (d) Validation

(e) Test (f) Test

Figure 35: BAUM-1 face image model confusion matrices based on frames (a)(c)(e) and
based on videos (b)(d)(f)
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Optical flow model:

(a) Train (b) Train

(c) Validation (d) Validation

(e) Test (f) Test

Figure 36: BAUM-1 optical flow model confusion matrices based on frames (a)(c)(e) and
based on videos (b)(d)(f)
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Voice model:

(a) Train (b) Train

(c) Validation (d) Validation

(e) Test (f) Test

Figure 37: BAUM-1 voice model confusion matrices based on speech chunks (a)(c)(e)
and based on videos (b)(d)(f)
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Face model (Face image + optical flow):

(a) Train (b) Validation

(c) Test

Figure 38: BAUM-1 face multimodal model confusion matrices
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Performance results

Next, it is shown the train, validation, and test performance results (precision, recall,
F1-score, AUC) for the face image model, the optical flow model, the voice model, and
the face model (face image + optical flow). The results are presented based on frames or
audio chunks (Ind.) and videos (Vid.).

Precision:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Face Image Val 0.87 1.00 0.96 1.00 0.74 0.79 0.74 0.82 0.75 0.82

Test 0.76 0.83 0.92 1.00 0.29 0.67 0.76 0.73 0.89 0.85

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Optical flow Val 0.73 0.73 0.73 0.65 0.52 0.67 0.63 0.88 0.70 0.64

Test 0.54 0.50 0.83 0.80 0.29 1.00 0.32 0.60 0.62 0.50

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Voice Val 0.85 0.89 0.54 0.69 0.61 0.62 0.54 0.57 0.50 0.60

Test 0.76 0.90 0.90 0.93 0.65 0.64 0.67 0.75 0.68 0.83

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 0.90 - 0.79 - 0.69 - 0.89 - 0.80

Test - 0.75 - 0.87 - 0.67 - 0.88 - 0.69

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 0.90 - 0.82 - 0.79 - 1.00 - 0.89

Test - 0.83 - 0.93 - 0.70 - 0.88 - 0.83

Table 24: BAUM-1 precision results
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Recall:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Face Image Val 0.94 0.90 0.75 0.93 0.86 0.92 0.83 0.82 0.84 0.82

Test 0.96 0.91 0.59 0.80 0.73 0.67 0.70 0.80 0.84 0.92

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Optical flow Val 0.79 0.80 0.55 0.73 0.68 0.67 0.70 0.64 0.69 0.64

Test 0.65 0.73 0.45 0.80 0.60 0.33 0.44 0.30 0.67 0.75

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Voice Val 0.75 0.80 0.63 0.60 0.74 0.67 0.57 0.73 0.34 0.55

Test 0.85 0.82 0.89 0.93 0.78 1.00 0.61 0.90 0.53 0.42

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 0.90 - 0.73 - 0.92 - 0.73 - 0.73

Test - 0.82 - 0.87 - 0.44 - 0.70 - 0.92

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 0.90 - 0.93 - 0.92 - 0.82 - 0.73

Test - 0.91 - 0.93 - 0.78 - 0.70 - 0.83

Table 25: BAUM-1 recall results

F1-score:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Face Image Val 0.90 0.95 0.84 0.97 0.80 0.85 0.78 0.82 0.79 0.82

Test 0.85 0.87 0.72 0.89 0.42 0.67 0.73 0.76 0.87 0.88

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Optical flow Val 0.76 0.76 0.63 0.69 0.58 0.67 0.66 0.74 0.70 0.64

Test 0.59 0.59 0.58 0.80 0.39 0.50 0.37 0.40 0.64 0.60

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Voice Val 0.79 0.84 0.58 0.64 0.67 0.64 0.55 0.64 0.40 0.57

Test 0.80 0.86 0.89 0.93 0.71 0.78 0.64 0.82 0.60 0.58

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 0.90 - 0.76 - 0.79 - 0.80 - 0.76

Test - 0.78 - 0.87 - 0.53 - 0.78 - 0.79

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 0.90 - 0.87 - 0.85 - 0.90 - 0.80

Test - 0.87 - 0.93 - 0.74 - 0.78 - 0.83

Table 26: BAUM-1 F1-score results
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AUC:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Face Image Val 1.00 1.00 0.98 1.00 0.97 0.97 0.93 0.93 0.96 0.98

Test 0.99 0.98 0.93 0.96 0.92 0.95 0.92 0.90 0.99 1.00

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Optical flow Val 0.95 0.90 0.86 0.84 0.85 0.92 0.89 0.85 0.92 0.91

Test 0.85 0.82 0.86 0.95 0.80 0.74 0.77 0.76 0.88 0.91

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Voice Val 0.93 0.91 0.87 0.85 0.88 0.86 0.79 0.92 0.75 0.85

Test 0.95 0.94 0.99 0.98 0.85 0.97 0.88 0.96 0.82 0.80

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face Val - 0.99 - 0.97 - 0.96 - 0.92 - 0.96

Test - 0.95 - 0.98 - 0.91 - 0.88 - 0.97

Train - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
Face + Voice Val - 1.00 - 0.98 - 0.98 - 1.00 - 0.97

Test - 0.96 - 1.00 - 0.98 - 0.98 - 0.98

Table 27: BAUM-1 AUC results
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ROC curves

Next, it is shown the weighted-average ROC curves and the ROC curves per class for the
face image model, the optical flow model, the voice model, and the face model (face image
+ optical flow). The results are presented based on frames or audio chunks and videos.

Face image model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 39: BAUM-1 face image model ROC curves based on frames (a)(c) and based on
videos (b)(d)
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Optical flow model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 40: BAUM-1 face optical flow ROC curves based on frames (a)(c) and based on
videos (b)(d)
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Voice model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 41: BAUM-1 voice model ROC curves based on speech chunks (a)(c) and based
on videos (b)(d)
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Face model (Face image + optical flow):

(a) Averaged (b) Per class

Figure 42: BAUM-1 face multimodal model ROC curves based on frames (a) and based
on videos (b)

Observations

Despite the results being worse than those obtained with the RAVDESS dataset, there
is the same tendency to confuse sadness, anger, and fear. In addition, the voice model
struggles when recognizing the disgust emotion.
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B.3 Cross-datset

B.3.1 RAVDESS � BAUM-1

The results of this section are obtained by training the models on the RAVDESS dataset
and testing on the BAUM-1 dataset.

Confusion matrices

Next, it is shown the test confusion matrices for the face image model, the optical flow
model, the voice model, and the face model (face image + optical flow). The results are
presented based on frames or audio chunks and videos.

Face image model:

(a) Test (b) Test

Figure 43: RAVDESS - BAUM-1 face image model confusion matrices based on frames
(a) and based on videos (b)

Optical flow model:

(a) Test (b) Test

Figure 44: RAVDESS - BAUM-1 optical flow model confusion matrices based on frames
(a) and based on videos (b)
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Voice model:

(a) Test (b) Test

Figure 45: RAVDESS - BAUM-1 voice model confusion matrices based on speech chunks
(a) and based on videos (b)

Face model (Face image + optical flow):

Figure 46: RAVDESS - BAUM-1 face multimodal model confusion matrices
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Performance results

Next, it is shown the train, validation, and test performance results (precision, recall,
F1-score, AUC) for the face image model, the optical flow model, the voice model, and
the face model (face image + optical flow). The results are presented based on frames or
audio chunks (Ind.) and videos (Vid.).

Precision:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.66 0.88 0.43 0.36 0.14 0.40 0.46 0.50 0.60 0.64
Optical flow 0.50 0.62 0.60 0.33 0.12 0.25 0.48 0.60 0.33 0.42
Voice 0.12 0.29 0.38 0.18 0.25 0.29 0.40 0.40 0.17 0.10
Face - 0.67 - 0.56 - 0.36 - 0.50 - 0.62
Face + Voice - 0.64 - 0.25 - 0.62 - 0.67 - 0.43

Table 28: RAVDESS - BAUM-1 precision results

Recall:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.71 0.64 0.26 0.33 0.42 0.44 0.53 0.70 0.49 0.58
Optical flow 0.45 0.45 0.17 0.07 0.18 0.33 0.61 0.60 0.73 0.83
Voice 0.16 0.18 0.19 0.13 0.26 0.44 0.18 0.20 0.37 0.17
Face - 0.55 - 0.33 - 0.44 - 0.60 - 0.83
Face + Voice - 0.64 - 0.13 - 0.56 - 0.60 - 0.75

Table 29: RAVDESS - BAUM-1 recall results

F1-score:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.68 0.74 0.32 0.34 0.21 0.42 0.50 0.58 0.54 0.61
Optical flow 0.47 0.53 0.26 0.11 0.15 0.29 0.53 0.60 0.45 0.56
Voice 0.14 0.22 0.25 0.15 0.26 0.35 0.25 0.27 0.24 0.12
Face - 0.60 - 0.42 - 0.40 - 0.55 - 0.71
Face + Voice - 0.64 - 0.17 - 0.59 - 0.63 - 0.55

Table 30: RAVDESS - BAUM-1 F1-score results
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AUC:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.89 0.95 0.65 0.69 0.66 0.71 0.77 0.79 0.75 0.78
Optical flow 0.66 0.66 0.61 0.68 0.54 0.72 0.88 0.86 0.74 0.91
Voice 0.62 0.59 0.52 0.52 0.68 0.75 0.63 0.45 0.48 0.51
Face - 0.89 - 0.70 - 0.83 - 0.86 - 0.93
Face + Voice - 0.89 - 0.70 - 0.87 - 0.84 - 0.82

Table 31: RAVDESS - BAUM-1 AUC results

ROC curves

Next, it is shown the weighted-average ROC curves and the ROC curves per class for the
face image model, the optical flow model, the voice model, and the face model (face image
+ optical flow). The results are presented based on frames or audio chunks and videos.

Face image model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 47: RAVDESS - BAUM-1 face image model ROC curves based on frames (a)(c)
and based on videos (b)(d)
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Optical flow model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 48: RAVDESS - BAUM-1 face optical flow ROC curves based on frames (a)(c)
and based on videos (b)(d)
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Voice model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 49: RAVDESS - BAUM-1 voice model ROC curves based on speech chunks (a)(c)
and based on videos (b)(d)

Face model (Face image + Optical flow):

(a) Averaged (b) Per class

Figure 50: RAVDESS - BAUM-1 face multimodal model ROC curves based on frames
(a) and based on videos (b)
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Observations

The figures above show that the cross-dataset results are much worse than the individual
results of each dataset. The results highlight the effects of combining the Spatio-temporal
information of the videos, as the face model outperforms both the face image model and
the optical flow model. The voice model acts nearly as a random classifier in all the
emotions except for the anger.

B.3.2 BAUM-1 � RAVDESS

The results of this section are obtained by training the models on the BAUM-1 dataset
and testing on the RAVDESS dataset.

Confusion matrices

Next, it is shown the test confusion matrices for the face image model, the optical flow
model, the voice model, and the face model (face image + optical flow). The results are
presented based on frames or audio chunks and videos.

Face image model:

(a) Test (b) Test

Figure 51: BAUM-1 - RAVDESS face image model confusion matrices based on frames
(a) and based on videos (b)
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Optical flow model:

(a) Test (b) Test

Figure 52: BAUM-1 - RAVDESS optical flow model confusion matrices based on frames
(a) and based on videos (b)

Voice model:

(a) Test (b) Test

Figure 53: BAUM-1 - RAVDESS voice model confusion matrices based on speech chunks
(a) and based on videos (b)

75



Face model (Face image + Optical flow):

Figure 54: BAUM-1 - RAVDESS face multimodal model confusion matrices

Performance results

Next, it is shown the train, validation, and test performance results (precision, recall,
F1-score, AUC) for the face image model, the optical flow model, the voice model, and
the face model (face image + optical flow). The results are presented based on frames or
audio chunks (Ind.) and videos (Vid.).

Precision:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.43 0.42 0.24 0.20 0.32 0.00 0.59 0.00 0.29 0.28
Optical flow 0.50 0.68 0.35 0.50 0.24 0.33 0.48 1.00 0.45 0.50
Voice 0.16 0.19 0.27 0.25 0.29 0.29 0.13 0.12 0.35 0.33
Face - 0.47 - 0.40 - 0.67 - 1.00 - 0.30
Face + Voice - 0.50 - 0.14 - 0.50 - 0.43 - 0.38

Table 32: BAUM-1 - RAVDESS precision results

Recall:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.92 0.95 0.08 0.05 0.01 0.00 0.06 0.00 0.64 0.68
Optical flow 0.68 0.95 0.17 0.26 0.42 0.53 0.16 0.11 0.55 0.68
Voice 0.11 0.15 0.23 0.21 0.31 0.26 0.30 0.26 0.15 0.11
Face - 1.00 - 0.11 - 0.11 - 0.11 - 0.68
Face + Voice - 1.00 - 0.05 - 0.21 - 0.16 - 0.68

Table 33: BAUM-1 - RAVDESS recall results
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F1-score:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.59 0.58 0.12 0.08 0.02 0.00 0.12 0.00 0.40 0.40
Optical flow 0.58 0.79 0.23 0.34 0.30 0.41 0.24 0.19 0.50 0.58
Voice 0.13 0.17 0.25 0.23 0.30 0.28 0.19 0.17 0.21 0.16
Face - 0.63 - 0.17 - 0.18 - 0.19 - 0.42
Face + Voice - 0.67 - 0.08 - 0.30 - 0.23 - 0.49

Table 34: BAUM-1 - RAVDESS F1-score results

AUC:

Happy Sad Angry Fearful Disgust

Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid. Ind. Vid.

Face Image 0.91 0.93 0.51 0.46 0.73 0.79 0.75 0.74 0.66 0.65
Optical flow 0.85 0.98 0.62 0.65 0.64 0.68 0.64 0.62 0.74 0.83
Voice 0.37 0.39 0.59 0.57 0.51 0.54 0.40 0.40 0.68 0.73
Face - 0.98 - 0.61 - 0.68 - 0.66 - 0.75
Face + Voice - 0.92 - 0.63 - 0.73 - 0.51 - 0.75

Table 35: BAUM-1 - RAVDESS AUC results
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ROC curves

Next, it is shown the weighted-average ROC curves and the ROC curves per class for the
face image model, the optical flow model, the voice model, and the face model (face image
+ optical flow). The results are presented based on frames or audio chunks and videos.

Face image model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 55: BAUM-1 - RAVDESS face image model ROC curves based on frames (a)(c)
and based on videos (b)(d)
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Optical flow model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 56: BAUM-1 - RAVDESS face optical flow ROC curves based on frames (a)(c)
and based on videos (b)(d)
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Voice model:

(a) Averaged (b) Averaged

(c) Per class (d) Per class

Figure 57: BAUM-1 - RAVDESS voice model ROC curves based on speech chunks (a)(c)
and based on videos (b)(d)

Face model (Face image + Optical flow):

(a) Averaged (b) Per class

Figure 58: BAUM-1 - RAVDESS face multimodal model ROC curves based on frames
(a) and based on videos (b)
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Observations

The results show that the worst performance is achieved when the model is trained with
the BAUM-1 dataset and tested with the RAVDESS dataset. The face image model
predicts happiness or disgust for almost all the videos. In the case of the optical flow
model, also identifies anger emotions. Finally, the voice model predicts almost randomly
sadness, anger, and fear emotions.
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C Glossary

UPC Universitat Politècnica de Catalunya

AI Artificial Intelligence

HCII Human-Computer Intelligent Interaction

RAVDESS Ryerson Audio-Visual Database of Emotional Speech and Song

BAUM-1 Bahcesehir University Multimodal Emotional Database

MTCNN Multi-task Cascaded Convolutional Networks

FER Face Emotion Recognition

FACS Facial Action Coding System

AU Action Unit

CNN Convolutional Neural Network

DBN Deep Belief Network

FCN Fully Convolutional Network

SER Speech Emotion Recognition

NMS Non-Maximum Supression

HMM Hidden Markov Model

DNN Deep Neural Network

RNN Recurrent Neural Network

SVM Support Vector Machine

TP True Positive

TN True Negative

FP False Positive

FN False Negative

TPR True Positive Rate

FPR False Positive Rate

ROC Receiver Operating Characteristic

AUC Area Under the Curve

GWN Gaussian White Noise

ZCR Zero-Crossing Rate

MFCC Mel Frequency Cepstral Coefficient

FFT Fast Fourier Transform
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