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Abstract: Measuring the diffuse attenuation coefficient (Kd) allows for monitoring the water body’s
environmental status. This parameter is of particular interest in water quality monitoring programs
because it quantifies the presence of light and the euphotic zone’s depth. Citizen scientists can mean-
ingfully contribute by monitoring water quality, complementing traditional methods by reducing
monitoring costs and significantly improving data coverage, empowering and supporting decision-
making. However, the quality of the acquisition of in situ underwater irradiance measurements
has some limitations, especially in areas where stratification phenomena occur in the first meters of
depth. This vertical layering introduces a gradient of properties in the vertical direction, affecting the
associated Kd. To detect and characterize these variations of Kd in the water column, it needs a system
of optical sensors, ideally placed in a range of a few cm, improving the low vertical accuracy. Despite
that, the problem of self-shading on the instrumentation becomes critical. Here, we introduce a new
concept that aims to improve the vertical accuracy of the irradiance measurements: the underwater
annular irradiance (Ea). This new concept consists of measuring the irradiance in an annular-shaped
distribution. We first compute the optimal annular angle that avoids self-shading and maximizes the
light captured by the sensors. Second, we use different scenarios of water types, solar zenith angle,
and cloud coverage to assess the robustness of the corresponding diffuse attenuation coefficient,
Ka. Finally, we derive empirical functions for computing Kd from Ka. This new concept opens the
possibility to a new generation of optical sensors in an annular-shaped distribution which is expected
to (a) increase the vertical resolution of the irradiance measurements and (b) be easy to deploy and
maintain and thus to be more suitable for citizen scientists.

Keywords: annular irradiance; water quality; marine citizen science; diffuse attenuation coefficient;
oceanography; light

1. Introduction

The studies of light propagation and light field characteristics are crucial for un-
derstanding many physical and biological processes in the water bodies, driven by, or
depending on, solar radiation [1], such as phytoplankton dynamics and surface bloom [2]
or eutrophication [3]. This radiation at the sea surface is conventionally measured as spec-
trally resolved downward planar irradiance, Ed(λ), and the attenuation of this quantity
with depth (z) can be described by the diffuse attenuation coefficient Kd(z, λ) [4]. This pa-
rameter is of particular interest in water quality monitoring programs because it represents
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a suitable proxy of water transparency [5] and it is related to light penetration and avail-
ability in aquatic systems [4,6]. Monitoring water transparency provides an indicator of the
environmental status of the water body by providing information about phytoplankton
concentrations or levels of dissolved organic and inorganic compounds. This is especially
relevant in coastal areas and lakes that are strongly affected by human activities and rivers,
winds, and waves.

Satellite-based ocean color sensors have been used to map optical properties of the
ocean such as Kd(z, λ) on local and global scales. Approximately 90% of the diffuse reflected
light from a water body comes from a surface layer of water within a depth of 1/Kd [7].
Therefore, Kd is an important parameter for remote sensing reflectance of ocean colour
satellite. With an increase in the remote sensing data availability over the past decade, there
has been a rise in the in situ data available for calibration and validation of the satellite
measurements [8]. However, the current satellite measurements for monitoring coastal
and inland waters are still evolving and remain challenging because of the spatial scales
that satellite measurements represent [9,10]. To improve data coverage in these zones, in
situ irradiance measurements are still required. Furthermore, growing worldwide requires
exploring cost-effective data acquisition to generate knowledge for sustainable natural
resource management.

This need to develop novel approaches for monitoring environmental data is reflected
in the recent growing attention toward citizen science [11]. Citizen science is an expanding
practice in which scientists and citizens actively collaborate to produce new knowledge
for science and society [12]. Volunteers participate in a wide range of projects to monitor
aquatic ecosystems. For example, a project called Urbamar collects observational data on
marine species in the Barcelona coastal area and creates a participative guide made with
and by the people. Another project called Surfing for Science [13] assesses microplastic
pollution in shoreline waters; the citizens participate in the project by collecting scientific
samples while paddle surfing. Other citizen science projects involve monitoring environ-
mental variables like water transparency and participants use optical instrumentation to
do that. The Secchi Disk is a classical citizen science instrument used to measure the trans-
parency of ocean and lake waters [14,15]. However, the quality of Secchi depth data varies
from person to person as a function of vision, producing low-precision measurements.
In addition, unlike electronic devices, this instrument lacks quality control of data and
cannot set adjustment parameters. In recent years, electronic devices have appeared to
monitoring water quality [16,17]. An example is the low-cost and DIY (Do-It-Yourself)
moored system KdUINO, which allows measuring the diffuse attenuation coefficient pa-
rameter (Kd), related to water transparency [18]. The participation of citizen scientists
in water quality monitoring can complement traditional monitoring methods and has
other potential advantages such as lowering monitoring costs, significantly increasing data
coverage, increasing social capital, enhancing support for decision-making, and enhancing
the potential for knowledge co-creation [19].

There are some practical issues in acquiring in situ irradiance measurements, especially
in areas where Kd is not homogeneous. For example, in stratified water columns, the thin
layers of phytoplankton can change across environmental gradients [20,21]. To detect and
characterize these variations of Kd [22] requires a system of optical sensors, ideally placed in
a range of a few cm, improving the low vertical accuracy. However, there are inherent issues
in the acquisition of in situ irradiance measurements mainly introduced by the influence
of the instrumentation on in-water light fields: self-shading caused by the upwelling
irradiance meter itself [23–27] and self-shading caused by a buoyed instrument [28,29].
Instrument self-shading can lead to an increase in the measurements’ uncertainty from
a few percent to several tens of percent depending on the wavelength, the instrument
radius, and the illumination conditions [30]. Moreover, there is an issue with instrument
making. In the case of an instrument with multiple light sensors at different depths, these
sensors must be attached to a structure that could also add a shadowing artifact to the
integrated radiance value. This implies a limitation in the vertical distance of the sensors



Sensors 2021, 21, 5537 3 of 14

and thus a limitation of the accuracy of the measurements of Ed, especially in strongly
stratified waters.

Here, we propose a new approach to integrate radiance: annular irradiance Ea (see
Figure 1). Therefore, instead of integrating the light arriving at the full upper semi-sphere,
we propose integrating only the light that arrives at a specific ring of the light sphere. The
choice of the annular angle in which the ring of sensors is set will determine the quantity
of light arriving at the sensor and the shadow affecting the measurements. This new
approach aims to (i) simplify the instrumentation design: instruments may be designed
with a “tubular” shape. This makes them much easier to assemble, deploy, manipulate,
and maintain. This simplicity makes Ea-based instruments ideal candidates to be used
in citizen science-based water quality monitoring. (ii) Avoid self-shading: Sensors at
a particular depth do not interfere with the rest of the sensors at different depths (this
happens with Ed based instruments). With this mechanism, the device works as a moored
system, covering the spatial and temporal resolution of the water column. (iii) Provide
very high vertical resolution measurements: As there are no potential self-shading effects,
installing a large number of sensor units at different depths could be possible. This could
be potentially useful for those observations that require concurrent high vertical resolution
measurements.

The remainder of this paper is structured as follows. Section 2 presents the meth-
ods, numerical tools, and data sets used to develop and assess the radiance integration
numerically in annular bands as annular irradiance (Ea) and its derived diffuse attenuation
coefficient (Ka). Section 3 presents the results corresponding to the performance analysis
of the Ea and Ka in terms of (i) the optimal integration annular angle and (ii) comparison
and assessment of Ka concerning the standard values of Kd. Section 4 provides a brief
discussion on the results, by analyzing critical scenarios and finding possibles practical
limitations and closes with the conclusions and outlooks.

Figure 1. (a) Integrated radiances in the case of downward irradiance Ed. (b) Integrated radiances in
the case of annular irradiance Ea.

2. Materials and Methods
2.1. Theoretical Basis

The fundamental measure of light energy in an aquatic system is the spectral radiance
L, which in horizontally homogeneous water bodies is a function of time, depth, direction,
and wavelength [4] that can be described by the following formula:

L(x, y, z, t, θ, φ, λ) =
∆Q

∆t∆A∆Ω∆λ
(1)
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with ∆Q being the amount of radiant energy incident in a time interval ∆t centered on
time t, onto a surface of area ∆A located at position (x, y, z), and arriving through a set
of directions contained in a solid angle ∆Ω on the direction (θ, φ) normal to the area ∆A,
as produced by photons in a wavelength interval ∆λ centered on wavelength λ [31]. The
units of radiance are W m−2 nm−1 sr−1. One of the most commonly measured radiometric
quantities is irradiance. The irradiance E, or flux density of radiant energy, is the integrated
radiance on a unit area and is usually expressed as W m−2. The spectral downward plane
irradiance Ed is related to the spectral radiance, which measures photons traveling in all
downward directions, but with each photon’s contribution weighted by the cosine of the
photon’s incident angle θ [31].

Ed(z, λ) =
∫ 2π

φ=0

∫ π
2

θ=0
L(z, θ, φ, λ)cosθ|dθdφ (2)

In typical conditions, radiances and irradiances decrease approximately exponentially
with depth. The downwelling diffuse attenuation coefficient Kd, in m−1, explains the
concept of light extinction with depth of spectral downwelling plane irradiance Ed [31].

Kd(z; λ) = − 1
Ed(z; λ)

dEd(z; λ)

dz
(3)

To know the vertical variation of Kd, Ed needs to be measured within an infinitesimal
range of depths. To overcome this obstacle, a common and useful practise is to calculate
the diffuse attenuation coefficient between the irradiances measured over distant depths:

Kd(z1 ↔ z2; λ) =
1

z2 − z1
ln
(

Ed(z1; λ)

Ed(z2; λ)

)
(4)

with z1 and z2 being different depths far apart to ensure reliable measurements of Ed change.
In addition, when there are vertical profiles of Ed(z), Kd(z1 ↔ z2) is usually derived by
linear regression analysis between ln(Ed(z)) and z [32], obtained as the negative of the
slope of this linear regression. In this case, we assume that Kd is a constant value through
the depth range, and it is valued simply as Kd. We will use Kd during the rest of this study.

2.2. Computational Fundamentals: HydoLight as a Numerical Tool

We use HydroLight (version 5.2) to define and assess the performance of the Ea. Hy-
droLight is an example of a radiative transfer numerical model which computes radiance
distributions and derived quantities given water column inherent optical properties and
other oceanographic environmental conditions [33]. The HydroLight code employs math-
ematically sophisticated invariant embedding techniques to solve the radiative transfer
equation and offers the possibility of performing numerical simulations in controlled en-
vironments. HydroLight performs a discretization of the two directions of working (θ
(0 ≤ θ ≤ 180) and φ (0 ≤ φ ≤ 360), see Figure 2) with quad averaged radiances from a
sphere. Therefore, this discretization allows the computation of the standard Ed by the
integration of the radiances of all the solid angles over the downward hemisphere, but also
it allows to select of some specific quads and to integrate the corresponding radiances to
derive a radiance over a configurable-by-the-user solid angle.

We will provide our results over the PAR (Photosynthetically Active Radiation), which
is calculated by summing the contribution to the radiance of each of the bands which lie in
the PAR range, that is, 400–700 nm. PAR is by definition a broadband quantity, expressed
in mol quanta s−1 m−2.

PAR(~x ) =
∫ 700nm

400nm
Ed(~x , λ)

λ

hc
dλ (5)

In this case, PAR is calculated from Ed irradiance. To convert Ed in W m−2 in each
band to mol quanta s−1 m−2, the per-band contributions are simply added up with unit
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conversion factors by 1/hc with h the Plank constant, c the speed of light in vacuum, and
also Avagadro’s constant.

Figure 2. Radiance as a function of polar and azimuthal viewing directions, at 0.2 m depth and at
wavelength 500 nm. Solar zenith angle is 30 degrees.

2.3. Definition and Computation of Annular Irradiance Ea and Ka

We define the annular irradiance Ea as the contribution of a selected θ band (by
integrating all φ from 0◦ to 360◦) to irradiance onto a perpendicular sensor to the θ direction.
We use HydroLight to integrate the annular irradiance by summing over the correct quads
radiances and multiplying by the solid angles of them. In this case, the planar irradiance,
which is the sum of radiance multiplied by solid angle and the cos(θ), will be the annular
irradiance multiplied by a constant number.

We compute annular irradiance Ea by using the following formula:

Ea(θi)
=

24

∑
j=1

L(θi, φj)dθidφj (6)

where L(θi, φj) is the radiance corresponding to the (i, j) quad and dθidφj factor is the solid
angle of the i, j quad. HydroLight provides a discretization of the θ angle in bins of 10◦

from 85◦ to 5◦, and two additional bins corresponding to the equator (90◦) and to the polar
cap (0◦). Then,

dθi = cosθi − cosθi−1 (7)

The bins of φ are spacing at 15◦ for all quads, so each φ bin has the same dφ value:

dφ(j) =
(15deg)2π

360
= 0.2618 (8)
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We use Equation (6) for computing annular irradiandes for θi = 10, . . . , 80◦. We
compute the corresponding diffuse attenuation coefficients, Ka(θi)

by using Equation (4)
applied to the Ea(θi)

in the PAR, namely:

Ka(θi)
(z1 ↔ z2; λ) =

1
z2 − z1

ln

(
Ea(θi)

(z1; λ)

Ea(θi)
(z2; λ)

)
. (9)

2.4. Data Sets Description

We use HydroLight to generate a total of 3024 different scenarios. We generate this
wide variety of situations by changing:

• Water types: we consider in our study from extremely clear to extremely turbid water
situations, simulating the kind of waters that could be encountered in estuaries and
inland water bodies.

• Wavelengths: We consider wavelengths in between 400 and 700 nm at 5 nm intervals.
• Illumination conditions: we consider a solar zenith angle ranging from 0◦ to 80◦ in

steps of 10◦, and cloud coverage from 0% to 100% in steps of 20%.
• Depth resolution: we follow the depth resolution configurations described in Table 1.

Table 1. Depth resolution configuration.

Value Step

2 cm to 50 cm 2 cm
50 cm to 2 m 5 cm
2 m to 3 m 10 cm
3 m to 4 m 20 cm

4 m to 10 m 50 cm
10 m to 15 m 1 m
15 m to 20 m 5 m

Regarding the other parameters, we fix the wind speed to 0 m/s and assume that the
water is infinitely deep homogeneous. The direct and diffuse solar irradiance were simulated
using a semi-empirical sky model (the Radtran atmospheric irradiance model, developed
by Gregg and Carder [34]), with the annual average sun-earth distance and ozone content
of 300 DU as input. Raman scattering and chlorophyll and CDOM fluorescence were also
included in all simulations. The input data concentrations of phytoplankton, colored dissolved
organic matter (CDOM), and detritus/minerals were taken from the optical classification of
lakes and coastal waters in Estonia and south Finland [35] (see Table 2).

Table 2. Characteristics of different type of water classes. Clear, moderate, turbid, very turbid, and
brown classes are from the work in [35]. Very clear and ultra-clear classes are generated manually.

chl (mg m−3) cdom af(380) mineral (g m−3)

Max Min Max Min Max Min

ultra clear 0.0 1.0 0.0 0.6 0.0 0.8

very clear 1.0 3.0 0.5 1.5 0.5 1.5

clear 2.1 7.5 1.3 3.3 1.2 2.4

moderate 3.9 17.1 5.0 12.0 1.0 6.6

turbid 19.7 41.3 5.5 9.7 10.8 18.6

very turbid 65.2 67.6 6.1 6.7 30.3 38.7

brown 3.3 20.3 18.1 22.5 2.2 7.8
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From this configuration, the following data set were created:

• Data set 1: contains 3024 simulations, following the same parameters described above,
with all the different water types (ultra clear, very clear, clear, moderate, turbid, very
turbid, brown). Illumination conditions are considered as solar zenith angle range
from 0◦ to 80◦ at 10◦ intervals, and cloud coverage from 0% to 100% at 20% intervals.
To optimize the number of simulations per water type and lighting conditions, it
is considered two different values (maximum and minimum concentrations from
Table 2) for each phytoplankton, CDOM, and minerals concentration.

From these data sets, we create different study cases depending on the analysis we
want to address (see Table 3).

Table 3. Description of all the case studies.

N. Simulations Water Types Solar Angle Range Cloud Coverage Figure-Table

1 2352 all [0◦ : 60◦] [0% : 100%] Figures 3 and 4,

2 3024 all [0◦ : 80◦] [0% : 100%] Figures 5–7, Table 4

2.5. Methods to Analyze the Relations Ea-Ed, and Ka-Kd

A collection of methods is used to assess the correspondence between these variables,
using the different scenarios described in Table 3. To assess the optimal θi that optimizes
Ea(θi)

in terms of light acquisition and instrumental feasibility, we compute the ratio
between Ea(θi)

and Ed in logarithmic values at the following depths: 0.2, 0.5, 1.0, 1.5, 5.0,
and 10.0 m. We represent the average ratio and the corresponding standard deviation
at 1.5 m depth by using a bar plot. Once it is selected the optimal integration angle for
annular irradiance (θo), a scatter analysis is used to compare Kd and Ka(θo) to analyze
the functional relationship between both. Then, we analyse how the diffuse attenuation
coefficients change with different light conditions by modifying solar zenith angle and per
cent of cloud coverage. The main goal is to analyze how the performance degrades as a
function as these light conditions also degrade.

The results are plotted as heat-maps between the solar zenith angle and percent of
clouds, all of them fixed at 1.5 m depth.

Regression analysis is used to estimate the strength and direction of the Ka and Kd
relationship. We compute the correlation coefficients (r) (which measures the degree of
association, with 0.05 probability level of significance) and slopes (m) (which measure the
rate of change) of the regression line at 1.5 m. Both of them are obtained by computing
a linear least-squares regression for two sets of measurements. Finally, the relative error,
expressed in %, is calculated by the following equation:

εK =
K̃d − Kd

Kd
100 (10)

where K̃d is the estimated Kd from Ka values. We use the slope m resulting from the
previous analysis to derive a K̃d from Ka:

K̃d = Ka/m (11)

where m corresponds to the average of the slope of the regression line for each fixed depth.

3. Results
3.1. Optimal Ea Integration Angle

We generate the annular irradiances from Ea10 to Ea80 from the data set described in
the case study 1 (see Table 3).

As observed in Figure 3, Ea/Ed in logarithmic values increases from Ea10 to Ea30 and
then start to decrease at Ea40 by reaching very low values in the range of Ea60 to Ea80.
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This ratio has been tested at different depths (0.2, 0.5, 1.0, 1.5, 5.0, and 10.0 m depth),
and the results are very similar. For this reason, we select the values only at one depth:
1.5 m.The standard deviation is widely distributed around the mean and indicates how
wide it spreads out. Deep waters have a higher standard deviation in comparison with
shallow waters.

10 20 30 40 50 60 70 80
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0

10

20

30

40

50
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80
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ln
(E

a)
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)
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1.5

Figure 3. Comparison of the optimal Ea integration annular angle in different water types, with solar
zenith angle between 0◦ and 60◦ and cloud coverage between 0% and 100%.

To select the optimal annular angle, we need to take into account not only the optimiza-
tion of Ea/Ed, but also that as closest the annular angle to the light sphere equator (90◦), the
best performance in terms of avoiding self-shading effects and better the potential vertical
resolution. The Ea/Ed values at annular angles larger than 60◦ are very low, indicating
very low accuracy to the corresponding Ea measurements. Therefore, we select 40◦ as
the optimal annular angle to measure Ea. For the rest of our study, the entire analysis
is performed with Ea40 integration annular angle of 40 degrees. We also include in our
analysis Ea50 because although it presents a decrease of accuracy with respect to Ea40, we
want to assess a potential range of error in the placement of the sensors in the instrument.

3.2. Comparisons between Kd and Ka40

Figure 4 represents a scatter plot between Kd and Ka40 (left), and Kd and Ka50 (right),
both at 1.5 m (top) and 10 m (bottom) depths using data from case study 1 (see Table 3).
In this case, Ka40 is strongly correlated with Kd in all the water types, with a correlation
coefficient value equal to 0.9828 at 1.5 m and 0.9919 at 10 m. The Ka50 is less correlated with
Kd than Ka40, especially in water types more turbid, although the correlation coefficient is
also higher than 0.9 (0.9460 at 1.5 m and 0.9865 at 10 m).



Sensors 2021, 21, 5537 9 of 14

0 m - 1.5 m depth

0 m - 10 m depth

a b

c d

Figure 4. (a) Scatter plot between the Kd and Ka40 computed in a range depth between 0 m and 1.5 m
depth. (b) Scatter plot between the Kd and Ka50 computed in a range depth between 0 m and 1.5 m
depth. (c) Scatter plot between the Kd and Ka40 computed in a range depth between 0 m and 10 m
depth. (d) Scatter plot between the Kd and Ka50 computed in a range depth between 0 m and at 10 m
depth. All plots are configured in the PAR region, with solar zenith angle between 0◦ and 60◦, and
cloud coverage between 0% and 100%.

3.3. Comparison between Different Lighting Scenarios

Figure 5 shows the correlation coefficient (left) and the regression line’s slope (right)
between Kd and Ka40 (upper) and Kd and Ka50 (lower) as a function of the solar zenith
angle and cloud coverage at 1.5 m depth. The correlation coefficient between Kd and Ka40
remains constant, equal to 1, for almost all the different lighting scenarios. For solar zenith
angles in the range of the same integration angle, 40◦, the correlation coefficient decreases
slightly, reaching values of 0.96. The correlation coefficient between Kd and Ka50 follows
the same structure as Ka40, with lower values in solar zenith angles between 40◦ and 50◦.
In this case, all the correlation coefficient values are not as good as in the Ka40 correlation.
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Figure 5. Correlation coefficient between Kd and Ka40 (upper left). Regression line’s slope between
Kd and Ka40 (upper right). Correlation coefficient between Kd and Ka50 (lower left). Regression line’s
slope between Kd and Ka50 (lower right). All the plots are configured modifying lighting scenarios
as solar zenith angle and cloud coverage, at 1.5 m depth.

The regression line’s slope between Kd and Ka40 presents variability in the range from
solar zenith angles at 40◦ and cloud coverage at 0–20%, with values equal to 0.81, to solar
zenith angles at 0◦ and cloud coverage at 0–20%, with values equal to 1.18. For the rest
of the lighting scenarios the regression line’s slope remains stable in values close to 1.1.
The regression line’s slope between Kd and Ka50 presents variability in the range from solar
zenith angles at 50◦–60◦ and cloud coverage at 0–20%, with values equal to 0.79, to solar
zenith angle at 80◦ and cloud coverage at 40–80%, with values equal to 1.25. The rest of
lighting scenarios the regression line’s slope remains stable in values close to 1.05–1.12.

Figure 6 shows the relative error between Kd and Ka40 (left) and between Kd and Ka50
(right) as a function of the solar zenith angle and cloud coverage at 1.5 m depth. By using
the Equation (11) and the values of the linear regression from Table 4, we estimate the
values of K̃d from Ka40 and Ka50, and we provide an estimation of the relative error by
following Equation (10). In the case of the K̃d estimated from Ka40, for solar zenith angles
from 0◦ to 40◦, and cloud coverage from 0% to 20%, it has a relative error in the range of
10% to 20%. In the other lighting scenarios, the relative error decreases to lower values
until almost 0%. In the case of Ka50, the estimation of K̃d has relative errors higher than 20%
at solar zenith angles from 0◦ to 30◦, and cloud coverage from 0% to 20%. In the rest of the
lighting scenarios, the relative error is constant at 10% approximately. We have focused our
analysis in 1.5 m depth, but as shown in Tables 4 and 5 similar results are obtained when
we consider different depths.
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Figure 6. (a) Relative error between Kd and Ka40. (b) Relative error between Kd and Ka50. Both plots
are configured modifying lighting scenarios as solar zenith angle and cloud coverage, at 1.5 m depth.

Finally, we analyze the relative error of K̃d as a function of the different types of water.
Figure 7 shows that the estimated error of K̃d computed from Ka40 at 1.5 m depth has
variations depending on which water type is analyzed. Clear waters have larger errors
when the solar zenith angle is close to the zenith; however, turbid waters have errors
focused on solar zenith angles close to the incident angle of 40◦.

Figure 7. Relative error between Kd and Ka40 depending on water types at 1.5 m depth, changing
lighting scenarios as solar zenith angle and cloud coverage.
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Table 4. Average of slope for each depth range and for each diffuse attenuation coefficient used to
calculate the relative error, from simulations generated in the case study 1.

Depth-Range (m)

0–0.2 0–0.5 0–1.0 0–1.5 0–5.0 0–10.0

Ka40 1.125 1.095 1.084 1.079 1.070 1.057

Ka50 1.098 1.045 1.039 1.046 1.065 1.058

Table 5. Average of relative error for each depth range and for each diffuse attenuation coefficient,
from simulations generated in the case study 1.

Depth-Range (m)

0–0.2 0–0.5 0–1.0 0–1.5 0–5.0 0–10.0

Ka40 0.083 0.075 0.070 0.068 0.061 0.056

Ka50 0.140 0.154 0.149 0.138 0.112 0.095

4. Discussion and Conclusions

This study presents the underwater annular irradiance Ea as a new radiometric ap-
proach to compute underwater irradiances and its derived annular diffuse attenuation
coefficient Ka as an effective proxy to estimate the downwelling diffuse attenuation coeffi-
cient Kd in the PAR region. We find that the optimal angle to measure underwater annular
irradiance is at 40 degrees, which is the angle measured from the z-axis in spherical coordi-
nates (see Figure 2). With this setup, light is captured by the sensor avoiding limitations
due to instrument self-shading. The performances decrease with annular angles larger than
50 degrees, obtaining very poor performances with annular angles greater than 60 degrees.
This degradation is probably caused by Snell’s law [36,37].

We observe a large correlation between Kd and Ka40 in different water types (see
Figure 4). In the case of the correlation between Kd and Ka50, there are still correlations
greater than 0.9. In this study, we analyze with special detail the performance at 1.5 m to
simulate an instrument measuring the diffuse attenuation coefficient near the surface, as in
real field conditions. We know that measures very close to the near-surface are affected by
large light fluctuations caused by the surface waves [38]. Besides, the diffuse attenuation
coefficient presents variability in response to changing solar altitude [39]. For this reason,
in this correlation the solar zenith angle is set until 60◦. The relationship between Ka40 and
Kd is robust when the light conditions change (see Figure 5). The larger differences of the
correlation coefficient and the slope between Ka40 and Kd occurs when the solar zenith
angles directly affects the annular angle: the largest difference in the case of Ka40 happens
when the solar zenith angle is incident at 40◦, while the largest difference in the case of
Ka50 happens when the solar zenith angle is incident at the range of 40◦ to 50◦.

Therefore, we derive empirical functions to estimate K̃d from Ka40 and Ka50 measure-
ments, obtaining a relative error from this estimation and for each simulation. After that,
we group the simulations in this case by different lighting scenarios. The estimation pro-
vides accurate measurements of Kd (see Figure 6), which has relative errors below the 20%
in the case of the estimations from Ka40 and below the 30% in the case of the estimations
from Ka50. In both cases, the estimates of K̃d degrade for solar zenith angles close to the
zenith. If we study this relative error grouping simulations by different water types, in
the case of Ka40 (see Figure 7), we observe the largest errors in clear waters on solar zenith
angles focused on zenith, and in turbid waters on solar zenith angles focused on incident
angles at 40◦.

As a result, the annular diffuse attenuation coefficient Ka40 allows the design of
instruments expected to be particularly useful in those underwater environments where
high vertical Ed resolution is required. This design, ideally as a moored system tube,
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facilitates the instrumentation’s clean, critical when sampling different water columns and
avoiding act as a disease vector [40]. Furthermore, devices based on this light-sensing
approach are much easier to deploy and maintain. With these characteristics, the proposed
work advances the current state-of-the-art of Marine Citizen Science as a DIY and low-cost
sensor for water quality monitoring programs [41].

Author Contributions: Conceptualization, J.P.; methodology, C.R., E.O. and J.P.; software, C.R.;
validation, J.P. and E.O.; formal analysis, E.O., R.B. and J.P.; investigation, C.R., E.O. and J.P.; resources,
C.R.; data curation, R.B.; writing—original draft preparation, C.R., E.O. and J.P.; writing—review
and editing, C.R., E.O., R.B. and J.P.; visualization, C.R., E.O., R.B. and J.P.; supervision, J.P. and
E.O.; project administration, J.P.; funding acquisition, J.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Horizon 2020 Framework Programme (776480, MONOCLE).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The work presented in this article is fully reproducible. The config-
uration files have been obtained with HidroLight (version 5.2) and the analysis of the data with
Python (version 3.8.0). The following list shows the available links to the configurations, data and
scripts used:

• The HydroLight configuration files : https://doi.org/10.5281/zenodo.5153536, accessed on 11
August 2021.

• The numerical results: https://doi.org/10.5281/zenodo.5041192, accessed on 11 August 2021.
• The code to generate, process and plot simulations: https://git.csic.es/36579996Z/pysimhydro/

-/releases/v1.0.1, accessed on 11 August 2021.

The HydroLight configuration files and the numerical results are available under the terms
of the Creative Commons Attribution 4.0 International. The code to generate, process, and plot
simulations is licensed under the BSD-style license found in the LICENSE file in the root directory of
the source tree.

Acknowledgments: We thank Curtis Mobley (Sequoia Scientific, Inc.) and John Hedley (Numerical
Optics Ltd.) for the useful helps about how to compute the irradiances and diffuse attenuation
coefficients through HydroLight software.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mobley, C.D.; Chai, F.; Xiu, P.; Sundman, L.K. Impact of improved light calculations on predicted phytoplankton growth and

heating in an idealized upwelling-downwelling channel geometry. J. Geophys. Res. Ocean. 2015, 120, 875–892. [CrossRef]
2. Horion, S.; Bergamino, N.; Stenuite, S.; Descy, J.P.; Plisnier, P.D.; Loiselle, S.A.; Cornet, Y. Optimized extraction of daily bio-optical

time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sens. Environ. 2010, 114, 781–791. [CrossRef]
3. Cairo, C.T.; Barbosa, C.C.F.; de Moraes Novo, E.M.L.; do Carmo Calijuri, M. Spatial and seasonal variation in diffuse attenuation

coefficients of downward irradiance at Ibitinga Reservoir, São Paulo, Brazil. Hydrobiologia 2017, 784, 265–282. [CrossRef]
4. Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994.
5. Sarangi, R.; Chauhan, P.; Nayak, S. Vertical diffuse attenuation coefficient (K d) based optical classification of IRS-P3 MOS-B

satellite ocean colour data. J. Earth Syst. Sci. 2002, 111, 237–245. [CrossRef]
6. Wang, M.; Son, S.; Harding, L.W., Jr. Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions

for satellite ocean color applications. J. Geophys. Res. Ocean. 2009, 114, C10011. [CrossRef]
7. Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm

for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [CrossRef] [PubMed]
8. Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R. Research trends in the use of remote sensing for inland water

quality science: Moving towards multidisciplinary applications. Water 2020, 12, 169. [CrossRef]
9. Tyler, A.N.; Hunter, P.D.; Spyrakos, E.; Groom, S.; Constantinescu, A.M.; Kitchen, J. Developments in Earth observation for

the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci. Total Environ. 2016, 572, 1307–1321.
[CrossRef]

10. Kulshreshtha, A.; Shanmugam, P. Estimation of underwater visibility in coastal and inland waters using remote sensing data.
Environ. Monit. Assess. 2017, 189, 199. [CrossRef]

https://doi.org/10.5281/zenodo.5153536
https://doi.org/10.5281/zenodo.5041192
https://git.csic.es/36579996Z/pysimhydro/-/releases/v1.0.1
https://git.csic.es/36579996Z/pysimhydro/-/releases/v1.0.1
http://doi.org/10.1002/2014JC010588
http://dx.doi.org/10.1016/j.rse.2009.11.012
http://dx.doi.org/10.1007/s10750-016-2883-7
http://dx.doi.org/10.1007/BF02701970
http://dx.doi.org/10.1029/2009JC005286
http://dx.doi.org/10.1364/AO.41.005755
http://www.ncbi.nlm.nih.gov/pubmed/12269575
http://dx.doi.org/10.3390/w12010169
http://dx.doi.org/10.1016/j.scitotenv.2016.01.020
http://dx.doi.org/10.1007/s10661-017-5905-7


Sensors 2021, 21, 5537 14 of 14

11. Njue, N.; Kroese, J.S.; Gräf, J.; Jacobs, S.; Weeser, B.; Breuer, L.; Rufino, M. Citizen science in hydrological monitoring and
ecosystem services management: State of the art and future prospects. Sci. Total Environ. 2019, 693, 133531. [CrossRef]

12. Vohland, K.; Land-Zandstra, A.; Ceccaroni, L.; Lemmens, R.; Perelló, J.; Ponti, M.; Samson, R.; Wagenknecht, K. The Science of
Citizen Science; Springer Nature: Basingstoke, UK, 2021

13. Camins, E.; de Haan, W.P.; Salvo, V.S.; Canals, M.; Raffard, A.; Sanchez-Vidal, A. Paddle surfing for science on microplastic
pollution. Sci. Total Environ. 2020, 709, 136178. [CrossRef]

14. Tyler, J.E. The secchi disc. Limnol. Oceanogr. 1968, 13, 1–6. [CrossRef]
15. Wernand, M.R. On the history of the Secchi disc. J. Eur. Opt. Soc. Rapid Publ. 2010, 5, 10013s [CrossRef]
16. Pham, T.N.; Ho, A.P.H.; Nguyen, T.V.; Nguyen, H.M.; Truong, N.H.; Huynh, N.D.; Nguyen, T.H. Development of a Solar-Powered

IoT-Based Instrument for Automatic Measurement of Water Clarity. Sensors 2020, 20, 2051. [CrossRef]
17. Matos, T.; Faria, C.L.; Martins, M.S.; Henriques, R.; Gomes, P.; Goncalves, L.M. Design of a multipoint cost-effective optical

instrument for continuous in-situ monitoring of turbidity and sediment. Sensors 2020, 20, 3194. [CrossRef]
18. Bardaji, R.; Sánchez, A.M.; Simon, C.; Wernand, M.R.; Piera, J. Estimating the underwater diffuse attenuation coefficient with a

low-cost instrument: The KdUINO DIY buoy. Sensors 2016, 16, 373. [CrossRef] [PubMed]
19. Ho, S.Y.F.; Xu, S.J.; Lee, F.W.F. Citizen science: An alternative way for water monitoring in Hong Kong. PLoS ONE 2020,

15, e0238349. [CrossRef] [PubMed]
20. Mellard, J.P.; Yoshiyama, K.; Litchman, E.; Klausmeier, C.A. The vertical distribution of phytoplankton in stratified water columns.

J. Theor. Biol. 2011, 269, 16–30. [CrossRef] [PubMed]
21. Yoshiyama, K.; Mellard, J.; Litchman, E.; Klausmeier, C. Phytoplankton Competition for Nutrients and Light in a Stratified Water

Column. Am. Nat. 2009, 174, 190–203. [CrossRef] [PubMed]
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