
Vector Extensions in COTS Processors to

Increase Guaranteed Performance in Real-Time

Systems

Roger Pujol†,*, Josep Jorba*, Hamid Tabani*, Leonidas
Kosmidis*,†, Enrico Mezzetti*, Jaume Abella*, and Francisco

Cazorla*

†Universitat Politècnica de Catalunya
*Barcelona Supercomputing Center

Abstract

The need for increased application performance in high-integrity sys-
tems like those in avionics is on the rise as software continues to imple-
ment more complex functionalities. The prevalent computing solution for
future high-integrity embedded products are multi-processors systems-on-
chip (MPSoC) processors. MPSoCs include CPU multicores that enable
improving performance via thread-level parallelism. MPSoCs also include
generic accelerators (GPUs) and application-specific accelerators. How-
ever, the data processing approach (DPA) required to exploit each of these
underlying parallel hardware blocks carries several open challenges to en-
able the safe deployment in high-integrity domains. The main challenges
include the qualification of its associated runtime system and the dif-
ficulties in analyzing programs deploying the DPA with out-of-the-box
timing analysis and code coverage tools. In this work, we perform a
thorough analysis of vector extensions (VExt) in current COTS proces-
sors for high-integrity systems. We show that VExt prevent many of the
challenges arising with parallel programming models and GPUs. Unlike
other DPAs, VExt require no runtime support, prevent by design race
conditions that might arise with parallel programming models, and have
minimum impact on the software ecosystem enabling the use of existing
code coverage and timing analysis tools. We develop vectorized versions of
neural network kernels and show that the NVIDIA Xavier VExt provide a
reasonable increase in guaranteed application performance of up to 2.7x.
Our analysis contends that VExt are the DPA approach with arguably
the fastest path for adoption in high-integrity systems.

1

The final publication is available at ACM via http://dx.doi.org/10.1145/3561054



1 Introduction

Improving guaranteed and average performance of applications on high-performance
embedded platforms is an emerging challenge across all real-time high-integrity
domains. This is driven by the increasing use of software applications to control
complex safety-related functionalities that involves handling large amounts of
data and implementing complex artificial intelligence (AI) algorithms [12, 25,
28]. MPSoCs comprising GPUs and/or othe specific accelerators are the key
hardware technology used to provide the required performance levels. At the
software level, several DPAs exploit the computing capabilities of the underlying
parallel hardware to provide the required increased performance.

Thread-level parallelism (on multicore processors) is a DPA that introduces
disruptive changes in high-integrity software design, development and verifi-
cation: multi-threaded applications can introduce race conditions and require
changes to the consolidated timing analysis and code coverage tools to be
supported [63, 45, 46, 17]. Furthermore, parallel programming models (e.g.,
OpenMP) require time to analyze and qualify their associated runtime system
for thread management. In fact, data sharing among threads commonly builds
on hardware-supported coherence, which is a major challenge for timing analysis
[57, 23, 56].

GPUs are another DPA that brings its own certification challenges. Very
little information is disclosed by GPU manufacturers about the internal func-
tioning of the GPU’s hardware or software [1], which makes GPU timing analysis
an open challenge. Consequently, despite the numerous reverse engineering and
characterization efforts that have studied GPU’s internals [68, 2, 43, 11], no out-
of-the-box timing analysis tool currently supports GPUs. Also, general-purpose
computing languages such as CUDA, OpenCL, HIP [44], and Vulkan [13] on
GPUs bring additional certification issues due to the use of pointers and dy-
namic memory allocation, violating guidelines for high-integrity systems such
as MISRA-C. This hampers their certification [62]. On the other hand, certified
graphics and vision APIs, e.g., OpenGL SC 2 and OpenVX SC, have been used
for the acceleration of general-purpose computations on GPUs [9], but they have
their own limitations: the timing aspects of these languages are largely ignored
by their specifications [3], which compounds the limited information about the
GPU hardware to derive tight WCET estimates for GPUs.

This work explores a complementary DPA to increase application perfor-
mance: vector extensions (VExt). VExt implement vector/SIMD (single-instruction
multiple-data) processing with which the same operation is performed indepen-
dently and simultaneously on several pieces of data1. Modern processors na-
tively support VExt via vector/SIMD instructions in the Instruction Set Archi-
tecture (ISA), like Arm’s NEON VExt, including processors under evaluation for
their use in high-integrity systems, e.g. the NXP’s T2080 [20] in avionics or the
NVIDIA’s Xavier [41] in automotive. Furthermore, a wide range of time-critical

1In Sections 2 and 4 we respectively introduce and discuss the properties of two related
technologies to VExt for high-integrity systems, namely, scalable vector extensions (scalable
VExt) and vector co-processors (VCOP), whose main related works we describe in Section 6.

2



applications (such as Autonomous Driving) include several processes with var-
ious execution time granularities[50]: the processing data of some applications
are too small to be efficiently computed with a GPU or other accelerators but
are performance-critical amenable for parallelization. However, to our knowl-
edge, while VExt incur no extra cost in hardware development and validation
as they are already present in processors for real-time systems, they are not yet
exploited in high-integrity systems. This is mainly due to the lack of under-
standing of certification implications of vectorized code and the qualification of
the support tools required to that end. In order to cover this gap, we perform
the following contributions:

1. We carry out a thorough analysis, via key relevant metrics for high-
integrity systems, of the main limiting factors for the certification of soft-
ware using other DPA and the necessary tool qualification (Section 3).

2. We show that VExt provide advantages in all these metrics (Section 4), in-
cluding the following: (i) VExt require no runtime support to reduce qual-
ification costs. (ii) VExt build on easy-to-qualify vector built-in types and
compiler constructs, which simplify achieving MISRA-C compliance. (iii)
VExt build on hardware no more complex than regular scalar hardware
and (iv) prevent race conditions that can arise with parallel programming
models, while (v) enabling the use of out-of-the-box code coverage tools,
(vi) VExt are compatible with out-of-the-box measurement-based tools,
and (vii) VExt present no major roadblock for their adoption by static
timing analysis.

3. Using the Arm NEON VExt, we develop vectorized versions of two rep-
resentative neural network kernels widely used for autonomous operation.
We show how commercial and qualified timing analysis and code coverage
tools can analyze these vectorized versions without requiring any change
and reporting no compatibility issue. This allows us to collect software
timing and coverage results, respectively. Results show that we achieve
full code coverage and competitive performance improvements for the vec-
torized neural network kernels, up to 2.7x in the Jetson Xavier AGX, over
non-vectorized versions (Section 5).

Overall, we contend that in the short term, VExt are the DPA with the
fastest path for adoption in high-integrity systems and achieving good perfor-
mance improvements. In the long term, VExt are compatible with any other
DPA, though this depends on the time it takes the different paradigms to reach
certification. As an illustrative example, we show how OpenMP and VExt can
be combined to exploit SIMD and thread-level parallelism, reaching performance
improvements of up to 12x over baseline scalar single-threaded versions of neural
network kernels (Section 5).

The rest of this work is structured as follows: Section 2 provides some ba-
sic background on vector computing. Section 3 compares different DPA with

3



relevant metrics for high-integrity systems. In Section 4, we develop VExt ad-
vantages for real-time systems using those metrics. In Section 5, we assess the
performance benefits of VExt for several representative neural network kernels.
Section 6 and 7 present the related works and conclusions, respectively.

2 Background on Vector Extensions

2.1 Introduction

VExt (SIMD processing) perform the same operation on multiple data simulta-
neously. A scalar instruction acts on one piece of data at a time, while a single
vector instruction can act on several pieces of data at the same time, as shown in
Figure 1. Hence, VExt exploit data-level parallelism but not concurrency. VExt
are consistently supported across processor generations by all major vendors, so
they can be deemed as COTS consolidated technology. This is fundamental in
high-integrity domains where industry seeks to exploit consolidated hardware
technologies, as opposed to hardware features that can be removed in future
processor generations due to the software’s high development costs.

For instance, Intel included x86 processors support for Streaming SIMD
Extensions (SSE) that was followed by Advanced Vector Extensions (AVX).
Arm also introduced an advanced SIMD extension called NEON, which is a
combined 64- and 128-bit data SIMD instruction set. Other chip vendors also
provide SIMD vector extensions like IBM’s AIX and NXP’s Altivec. While
each VExt architecture/implementation has its own instruction set, width and
capabilities, they all have a common substrate, as shown next.

v1
v2

v3+

v1
v2

v3+

v1
v2

v3+

r2

r1

r3+

v2

v1

v3+

Scalar 
(1 operation)

Vector 
(N operations)

add r3, r1, r2
vadd v3, v1, v2

v1
v2

v3+

v1
v2

v3+

v1
v2

v3+

r2

r1

r3+

v2

v1

v3+

Scalar 
(1 operation)

Vector 
(N operations)

add r3, r1, r2
vadd v3, v1, v2

Figure 1: Example of a scalar operation vs. vector operation.

Vector extensions are exposed to software via vector instructions in the ISA
that use architectural vector registers on which vector instructions operate. A
vector instruction has the same format as any other scalar instruction compris-
ing operation code, source register(s), and a destination register. These are
software-visible vector architectural registers. Vector instructions operate on
long operands that may contain different values of different sizes 8 bits, 16 bits,
32, and 64 bits and types (e.g., integer and floating-point). Vector load/store
instructions operate at these different granularities.

4



2.2 Hardware Implementation

At the hardware level, vector instructions are fetched and decoded as regular
scalar operations. In Figure 2, the instruction fetch stage comprises the instruc-
tion cache and MMU, and branch prediction logic which operates seamlessly
on scalar and vector instructions. Instructions go to the instruction buffer that
decouples the fetch logic from the rest of the pipeline. Instructions are then
decoded and renamed to remove read-after-write and write-after-write depen-
dencies. Next, they are dispatched to a different issue queue (IQ). In all these
processes, there is no difference between scalar and vector operations.

Figure 2: Reference Processor Pipeline with support for VExt

Processors supporting vector operations have a vector pipeline (see the bot-
tom part in Figure 2) in the same way they have the integer, floating-point,
and load/store pipeline (top part of Figure 2). The vector pipeline starts with
the vector IQ, where instructions are held until their input operands are ready.
When this happens, instructions are sent to the reservation stations (RS). In the
vector pipeline, there can be several types of vector functional units (VFU) to
execute simple vector integer operations: vector simple integer unit (VSIU) to
execute short-latency instructions (addition, subtraction, maximum, minimum,
comparisons, etc.), vector complex integer unit (VCIU) to execute complex and
longer-latency operations (multiplication and multiplication/addition), vector
floating-point unit (VFPU) to execute vector float operations. This matches the
structure of the scalar integer and floating-point pipelines that have their own
functional units (FU). For memory operations, vector load/store units (VLSU)
execute vector accesses to cache/memory, similar to the scalar LSU unit. Note
that in Figure 2 VLSU/LSU are shown as the regular VFU/FU accessing the
cache system block. After execution, results are consolidated in the vector
register file, which keeps vector registers (e.g., 32) plus the vector rename reg-
isters. Vector and scalar operations are kept in the reorder buffer to provide a
safe save/recovery from interrupts, precise exception management and maintain

5



program execution order.
Overall, there are no major differences in the semantics of scalar and vector

operations, besides, of course, that the latter operate on several pieces of data.
Scalar and vector operations share part of the pipeline, notably the part related
to the control flow, which simplifies timing analysis and code coverage of vector
programs.

2.3 Scalable VExt and Vector Co-Processors (VCOP)

The nominal notion of VExt implies that the vector sizes exposed in the ISA
define the size of the vector registers and VFU (e.g. ARM’s NEON and x86’s
AVX).

In terms of Scalable VExt, recently Arm has introduced Scalable Vector
Extension (SVE) [59] and RISC-V the Vector Extension [49] which provide a
vector-length agnostic abstraction so that the data processed by vector instruc-
tions do not need to match the size of the vector register and the VFU. In that
case, the execution of a vector instruction is not done at once, but it is ‘chunked’
according to the vector register size with vector chunks executed sequentially.

Vector co-processor (VCOP), unlike VExt that are integrated as an addi-
tional execution path within the data path of the main processor, are external
to the processor and it is paired with it. To that end, the cpu processor sends
vector decoded instructions to a buffer the VCOP which dequeues, executes
them, and send the results back. Note that the RISC-V Vector Extension can
be implemented both as SIMD as well as VCOP [49].

The main insight and conclusions we develop for VExt apply to both scalable
VExt and VCOP (we further develop on this in Section 4.6). The main reason
for our choice of VExt is that it is a technology which has existed for decades and
that is now consolidated, with processors undergoing a certification process in
avionics, like the NXP T2080 [51] and the Xilinx Zynq UltraScale+ [67] already
featuring VExt in their CPUs.

3 Other DPAs

Next, we assess the readiness of several DPAs in high-integrity domains. The
comparison in Table 1 covers relevant metrics for hardware support and soft-
ware ecosystem around each approach, in line with high-integrity systems’ cer-
tification guidance documents such as DO-178C [54] (software), CAST-32A [14]
(multicore-related aspects), and DO330 [55] (tool qualification) for avionics;
and ISO 26262 [27] for automotive and tool qualification. We use the following
metrics:

(M1) compliance with the MISRA-C coding standard;

(M2) changes required to out of the box (OOB) timing analysis tools/techniques
to analyze software programmed with the considered data processing paradigm;

(M3) changes required to OOB code coverage tools;

6



(M4) whether race conditions can arise;

(M5) whether a runtime software is required and

(M6) it is open, in case it is not certified;

(M7) the analyzability of required hardware to simplify deriving tight WCET
estimates;

(M8) programming model required to achieve the acceleration;

(M9) the existence of widely-used libraries accelerated using the data process-
ing approach that reduces development and certification cost if they are
already used for autonomous systems.

More in detail, the relevance of these metrics lies on the fact that for embed-
ded high-performance critical systems, software must adhere to safety standards
and best industrial practices for design, validation and verification (V&V), in
line with the usual V development model illustrated in Figure 3. For instance,
(M5) and (M6) relate to the architectural design of the software part of the
system, which will change depending on whether a runtime is used or not. (M1)
relates to the coding guidelines when implementing software units, and (M8)
and (M9) to performance-related implementation choices. (M7) is related to
the hardware implementation in general, and to the hardware platform selec-
tion in particular. Finally, (M2), (M3) and (M4) relate to software and system
testing activities intended to validate that the system design adheres to its spec-
ifications.

Figure 3: Metrics defined in this work in relation to the standard V system
development model (design and verification on the left, implementation at the
bottom and, testing/validation on the right) for systems with safety require-
ments like automotive [27].

3.1 Multicore Programming Models (OpenMP/pthreads/MTAPI)

For single-node shared-memory systems, OpenMP is the de facto programming
model for high-performance computing. As such, it is also evaluated for high-
integrity systems to exploit multicore capabilities. There are mainly two ap-
proaches for its adoption in high-integrity domains:

7



Table 1: Comparison of data processing methodologies using metrics of interest
for high-integrity systems. ‘*’ indicates that only some of the implementations
provide this feature, but not in the general case.

Data Processing Paradigm
ID Feature OpenMP/pthreads/MTAPI CUDA/HIP/OpenCL/Vulkan OpenGLSC2/OpenVXC Vector
M1 MISRA-C compliance 7 7 3 3
M2 OOB timing analysis tools 7 7 7 3
M3 OOB coverage tools 7 3* 7 3
M4 Avoids race conditions 7 3 3 3
M5 Needs no/simple runtime 7 7 7 3
M6 Open runtime (if any) 3 3* 7 -
M7 Easy-to-predict hardware 7 7 7 3
M8 Long/Complex Code 7 3 7 3
M9 Commonly used libraries 3 3* 7 3

1. reusing the OpenMP specification and implementation for mainstream
systems, i.e., as it is currently defined in its standard. However, this fails
to cover many requirements for high-integrity systems [53, 36].

2. defining a high-integrity OpenMP specification. While the creation of an
OpenMP standard for high-integrity systems has been going on for several
years, there is no draft standard available. This is partially due to the fact
that a high-integrity version is not going to be compatible with the core
OpenMP specification [53]. For example, the core OpenMP standard does
not define what should be the expected functional behavior when an error
occurs during the execution of a parallel region [66]. While such features
cannot be disregarded in the specification of the high-integrity version of
the standard, their introduction will also cause compatibility issues. A
compromise is still far from being achieved.

OpenMP’s runtime system is responsible for thread management for the par-
allel processing (M5) and it is usually open-source, since it is an integral part of
the GCC compiler suite (libgomp) (M6). For use in high-integrity systems, run-
times need to be qualified according to the applicable functional safety standard
and support documents. Recently, there have been some research proposals in
this direction [53, 36]. However, to our knowledge, the code of those solutions
is neither publicly available nor qualified for use in the industry yet. In addi-
tion, none of the available runtimes are developed following safety standards or
programming guidelines for high-integrity systems (M1), and therefore they are
not qualified either.

Also, OpenMP programmers can indicate the number of threads for a pro-
gram. However, this is taken simply as a recommendation and the particular
OpenMP implementation is free to select larger values. This creates issues
regarding the control of the OpenMP program’s execution, which affects its
verification (M4).

Although general-purpose profilers work properly with OpenMP programs,
no out-of-the-box (OOB) qualified code coverage tool supports it yet (M3).

8



OpenMP programs are not MISRA-C compliant (M1) and since the OpenMP
runtime is not written to comply with safety standards, it is hard to achieve
100% code coverage [53].

Parallel programming models, including OpenMP, exhibit fundamental dif-
ferences with respect to sequential programming, mainly in the capability of
concurrently sharing the same data across runtime entities. The necessary syn-
chronization/communication primitives are typically designed for average per-
formance and high throughput, at the expense of predictability and analysabil-
ity [45, 46, 36]. This results in programs difficult to analyze with either static
or dynamic approaches (M2). Also, as a shared memory programming model,
OpenMP relies on hardware cache coherence between data caches and other
local memories to simplify data sharing (M7). However, several works have
demonstrated that cache coherence complicates the timing analysis of real-time
systems. Consequently, several hardware mechanisms and real-time specific pro-
tocols have been proposed [23][29][58], but they have not been adopted in COTS
processors yet.

On the positive side, OpenMP provides a good level of abstraction that does
not require the programmer to use low-level device-specific features to obtain
high performance (M8), reducing the possibility to get deadlocks or race con-
ditions (M4) – frequent in alternative low-level multicore programming models
such as pthreads and its lightweight counterpart, MTAPI, which has been ex-
plored by the European Space Agency for exploiting multicore processors in
space [24]. Moreover, there are many available commonly-used libraries pro-
grammed with OpenMP (M9) such as ATLAS.

3.2 General-Purpose/Compute GPUs (CUDA/HIP/OpenCL/Vulkan)

In order to enable the use of GPUs in high-integrity systems, two paths can be
followed: through a compute API, such as CUDA, or a graphics/vision API.
Compute APIs are the most widely used ones in general-purpose computing,
since they are easier to use (M8) because race conditions are easy to manage
(M4). The reason is that thanks to the single instruction, multiple threads
(SIMT) programming model followed by GPU programming models, the same
instruction is executed by all threads, and therefore race conditions can be
simply avoided by using atomic operations on memory positions that are written
by multiple threads and by the use of synchronization primitives among multiple
threads when shared memory is used. However, this does not translate into
easy (direct) adoption for high-integrity systems due to other blocking issues
described below.

Compute APIs include the proprietary CUDA language and implementation
from NVIDIA and the open-source language HIP from AMD, which has nearly
identical syntax with CUDA. OpenCL has an open specification with both open
and closed source implementations. This is also true for Vulkan, which is a
low-level API appropriate for both computing and graphics. However, as a low-
level API, Vulkan requires a significant amount of complex code to be written,
even for a simple operation. This makes it difficult to master, error-prone, and

9



increases the cost of certification of the application code (M8).
An important limitation of GPU compute data processing paradigms is com-

pliance with safety standards and programming guidelines like MISRA-C, as
they depend on pointers and dynamic memory allocations (M1) [62]. In addi-
tion, their runtime systems are not developed with safety in mind (M5), and
they are based on massive and complex code bases that hamper their tool qual-
ification.

Also to our knowledge only one provider has a qualified tool for CUDA code
coverage [64](M3). In addition, GPUs experience significant delays depending
on the data access patterns of these 32/64 elements (absence of memory co-
alescing) or when threads take different execution paths (control divergence),
complicating timing analysis (M7).

In addition, no commercial timing analysis suites have support for timing
analysis of GPUs (M2) either. This is partly because GPU hardware signifi-
cantly lacks available technical information compared to CPU hardware used
in high-integrity systems. In particular, GPU implementation details are not
available in sufficient detail neither at hardware nor at the software level. In
fact, there are several works in the real-time literature that focus on reverse-
engineering the behavior of GPUs [68, 2, 43, 11]. For this reason, GPUs are
used mostly as black boxes, preventing the availability of open runtime sys-
tems. Even in the case that an open specification exists (eg. OpenCL, Vulkan)
for a given GPU and an open-source driver/runtime, such as in the case of
AMD GPUs, this does not necessarily mean that important hardware details
are revealed. Therefore, the construction of an accurate model for static timing
analysis is not possible nor scales well with the hardware complexity (M7). The
use of measurement-based timing analysis methods is also challenging on GPUs
since they have complex architectures, which result in complex event interac-
tions, potentially leading to high variability, as well as the inability to control
low-level sources of jitter without knowledge about the hardware.

On the other hand, all general-purpose GPU languages, except for Vulkan,
include widely used libraries such as cuBLAS, clBLAS, and hipBLAS (M9).
Moreover, some OpenCL and Vulkan implementations have open-source versions
of their implementations for some GPUs, such as the ones from AMD (M6).
However, a specific problem faced in the case of HIP is that the source code
is evolving very fast (being still under active development) with the effect of
increasing its maintenance cost [44].

3.3 Graphics/Vision APIs (OpenGL SC 2 / OpenVX SC)

In addition to compute APIs, GPUs are currently used in high-integrity systems
by employing a safety-certified (SC) API like OpenGL SC 2, which focuses on
graphics operations, or OpenVX SC, which is used for vision operations [9].
These certified APIs exist because GPUs are already used in high-integrity sys-
tems for a long time in order to perform visualization-related tasks. For example,
GPUs drive screens within aircraft cockpits and display speed or engine rotations
per minute on cars’ dashboards. These GPUs are programmed with MISRA-C

10



compliant (M1), certified graphics or vision solutions for the highest criticality
levels of high integrity systems, which are subsets of the larger general-purpose
standards. As such, their runtime system is smaller than the fully-fledged one
of the general-purpose standards (M5), but it is still required and needs to
be qualified. Obviously, commercial implementations for these APIs are pro-
vided, therefore their implementations are proprietary (M6), and consequently,
important information about their internals is not available. Also, and more
importantly, these solutions only focus on graphics and visual processing tasks
instead of general-purpose computations. Although this has some benefits, e.g.,
thanks to this property their processing model resembles a pipeline, in which
memory positions can be only read or written by only one parallel element,
and thus avoiding data races (M4), they do not natively offer the flexibility of
general-purpose computation.

In the case of OpenGL SC 2, while it can be leveraged for general-purpose
computations [9], it can do so at the cost of a highly complex and excessively
large codebase (M8), which again increases the certification costs. The same
happens with OpenVX SC, where complicated task graphs need to be con-
structed manually by the programmer [3]. Complex compiler/tool support is
required for both the above solutions in terms of GPU tooling, not differently
from compute APIs (M2). This is because GPUs are not standalone systems
but accelerators that need to be programmed, so complex, low-level operations
are needed in the driver/runtime system to program the GPU and manage data
transfers (M8).

Despite the fact that both OpenGL SC 2 and OpenVX SC are designed
to facilitate certification, their standards do not provision timing [3], which is
an essential element of real-time systems. As a consequence, both methods
face the same challenges we identified in the previous subsection with compute
APIs for the computation of WCET (M2), since they both rely on ‘cryptic’,
highly complex GPU hardware (M7) that is not supported by commercial timing
analysis tools (M2).

Another issue of these solutions is that they do not support interoperability
with commonly used libraries, e.g., for matrix operations or machine learning
inference, which are frequently used for the development of autonomous systems
(M9).

3.4 Putting It All Together

Overall, GPU-related DPAs are not yet generally suitable for certified applica-
tions and systems, and only restricted applications of those – and with non-
negligible costs – are suitable for safety-related systems as of now. Therefore,
they cannot be considered as drop-in replacements of scalar computation and
VExt, so we leave them out of any comparison.

OpenMP is currently being assessed as a future approach to gain perfor-
mance building on parallelization, both considering safety-related domains [35,
36], and the space domain with the support of the European Space Agency [38].
Hence, while this approach is not yet generally compatible with safety-related

11



systems, we assess its potential in the evaluation section considering both, the
use of OpenMP on scalar code, and on code combining OpenMP with VExt.

4 Vector Extensions

This section assesses VExt adopting the same metrics used in the previous
section to evaluate other data processing paradigms.

4.1 Context of Application

A large range of time-critical applications in the context of Advanced Driver
Assistance Systems (ADAS) and autonomous driving, such as those related to
object detection and navigation, are good candidates for vectorization rather
than for other DPAs such as on GPUs. There are two reasons for that, (1)
due to the certification challenges brought by GPUs and (2) because of the
characteristics of the application.

Regarding certification, GPUs are highly efficient in executing massively
parallel workloads with large data sets. However, they cannot be generally
deployed in high-integrity systems, and only a few specific GPUs and runtimes
have been successfully included in certified applications with high costs for their
certification (see Sections 3.2 and 3.3).

Regarding the application characteristics, we observe the following:

• Some control applications often include parallel – not yet massive – compu-
tations too small to be deployed in a GPU due to the kernel preparation
and launch costs, but still being performance-critical and amenable for
parallelization (e.g., by means of vectorization). For instance, automotive
radar applications [21, 61] work on small workloads (e.g., 8x16 and 16x16
matrices), and apply a number of algebraic operations on the data such as
the generation of covariance matrices, Hessenberg matrices, P matrices,
Eigenvalues, Eigenvectors, QR iterations and the like [19, 37]. Those oper-
ations consist of rather simple loops (with one or two nesting levels) inter-
twined with sequential code and executed within external loops. Hence,
such code, generally in the form of matrix-matrix and matrix-vector op-
erations with relatively small matrices and vectors, is highly amenable for
vectorization but not friendly for deployment on a GPU.

• Also, autonomous driving frameworks like Apollo [6] use matrix-multiplication-
based deep and recurrent neural networks in several stages like object de-
tection, object tracker, etc. Each of those stages has different execution
times and works with different input sizes [50].

This section shows that VExt tools and code do not present the qualification
and certification issues of that for GPUs while exploiting with low-overhead the
parallelism present in some control applications. VExt benefits are summarized
in the last column of Table 1.

12



4.2 Timing analysis

Industrial-quality methods exist based on static and dynamic (i.e., measurement-
based) analysis techniques or a combination thereof [65]. Timing analysis ap-
proaches have been prevalently deployed on traditional SISD (single instruction
single data) models. While moving from the SISD to SIMD may have some
implications on the specific analysis technique, we contend the same techniques
are effectively applicable to vector operations (M2).

4.2.1 Measurement-Based Timing Analysis

The use of SIMD operations has practically no impact on pure measurement-
based timing analysis approaches as these methods operate in a black-box man-
ner, without any assumption on the underlying ISA [65]. Slightly different
considerations apply to hybrid methods, where measurements at small granu-
larity (e.g., basic blocks) are combined based on structural information on the
program control flow graph (CFG) [18]. For this family of approaches, we main-
tain that the only issues that may arise are those occurring when vectorization
is automatically produced by aggressive compiler optimizations (as in the static
timing analysis case). This paper completely excludes this scenario by advocat-
ing for the explicit use of vector instructions. In Section 5.2.1 we show how the
RapiTime commercial timing analysis tool [16] is able to provide timing analysis
results for the vectorized code we have generated.

4.2.2 Static Timing Analysis

In static timing analysis techniques [65], vector operations need to be explicitly
considered both in the low-level timing model and high-level hardware modeling
phase.

In terms of the low-level timing analysis, vector operations are analogous
to non-vector (scalar) operations, in the sense that their low-level hardware
latencies are either constant or tightly bounded. As shown in Section 2, the
operation of vector instructions in the front-end of the processor (fetch, decode,
rename) is the same as scalar instructions, while in the back-end, SIMD vector
instructions operate on all data loaded into a vector register in a single operation.
That is, if the width of vector operations is 32 bytes (e.g., 8 floats), vector loads
fetch 32 bytes at once, and vector add/mult/... operations are applied to the
full register (e.g., 8 floats) at the same time (M7).

Also, by defining vector instructions and adding them to the ISA, the com-
piler or the user can use them to explicitly identify which operations should be
performed at the vector unit. The duration of the vector simple and complex,
integer and floating-point units operations vary across architectures, but they
have a fixed latency or experience limited jitter. The same applies to scalar

13



functional units. For instance, for the NXP T2080, the VSIU has single-cycle
latency for most operations, the VCIU has three-cycle latency, and the VFPU
has a four-cycle latency [20]. As another example, in the Arm Cortex-A57 [4]
– used in a variety of devices and SoCs such as NVIDIA TX1 and TX2 [39, 40]
– instructions such as VMUL, VSLI, VMAX, VMIN, etc. take 3-6 cycles. Jittery
vector instructions – if any – would bring analogous concerns for timing anal-
ysis to their scalar counterparts. For instance, scalar divisions, either integer
or floating point, have input-dependent variable latency in several processors,
but the same considerations made by the static timing analysis tools for those
scalar instructions would apply to their vector counterparts.

When considering higher-level timing modeling, in general, vector instruc-
tions do not introduce specific semantics affecting the program instruction and
data flows. Similar to scalar load/store operations, the semantics of vector
load/store operations require some minor adjustments to the data flow analysis
and hardware models of pipelines and caches, for example. Few works have
considered the implications between timing analysis and the SIMD model. The
only relevant objection is about the use of (auto) vectorization due to aggressive
compiler optimizations, compromising the effectiveness of data-flow analysis and
the validity of flow-facts [32]. In fact, these objections are avoided by construc-
tion in the scenario considered in this work, as we advocate for the explicit use
of the ISA vector extensions by the programmer or an automated code generator
via vector intrinsics (Section 4.3).

Only a small subset of vector operations might exhibit more elaborated se-
mantics than the ones that make them harder to analyze. These instructions
are added for performance optimization reasons in mainstream systems. As an
example, we find vector gather and scatter operations that generalize load/store
operations. The gather instruction allows to populate a register with data com-
ing from non-consecutive memory locations, either with a given stride among
them or even different strides that can be handled by providing the vector in-
struction indexes to the data to fetch. The scatter operation simply does the
opposite, i.e., scattering the contents of a register over the memory. It is simi-
lar to store operation, however, it can handle non-contiguous memory accesses.
Vector gather/scatter are considered complex instructions, and usually, their
latency is longer than other vector instructions due to their complexity. While
these operations are useful, there is no functionality that cannot be developed
without them, i.e., using only simple vector instructions. Avoiding the use of
complex vector operations implies using other simpler vector operations instead,
which can result in an increase in code size and execution time. On the other
hand, however, it simplifies timing analysis. In the evaluation section, we show
how representative neural network kernels used for autonomous operation in
high-integrity systems can be implemented without using complex vector opera-
tions while obtaining significant performance improvements over non-vectorized
versions of the same kernels.

14



Table 2: Arm NEON vector intrinsics and the vector ISA operations they are
translated into by the compiler

Vector Intrinsic Vector Operation Description

int32x4 t vaddq s32

(int32x4 t a, int32x4 t

b)

ADD Vd.4S,Vn.4S,

Vm.4S

Adds elements in the two source reg-
isters, places the results into a vector,
and writes the vector to the destination
register.

int16x8 t vsubw high s8

(int16x8 t a, int8x16 t

b)

SSUBW2

Vd.8H,Vn.8H,

Vm.16B

Subtracts each vector element in the
lower or upper half of the second source
register from the corresponding vec-
tor element in the first source register,
places the result in a vector, and writes
the vector to the destination register.

int16x8 t vld1q s16

(int16 t const * ptr)

LD1 Vt.8H,[Xn] Loads multiple single-element struc-
tures from memory and writes the re-
sult to one, two, three, or four registers.

4.3 Abstraction and MISRA-C compliance

Implementing a software function or parts thereof with VExt builds on two
elements: built-in types and built-in functions (intrinsics). They provide ab-
stractions that simplify the use of VExt and the certification of programs using
VExt (M8).

Today, most compilers, including those that are open-source (e.g., GCC and
LLVM), provide complete support for vector instructions. Vector intrinsics, or
simply intrinsics, are function calls that provide a clear mapping to specific
assembly vector instructions. Hence, the compiler can replace them with appro-
priate vector instructions in the ISA. Therefore, intrinsics provide direct access
to the exact vector instructions the user needs. Table 2 shows a few examples
(add, subtract and load) of Arm NEON vector intrinsics as well as the vector
operations in the Arm64 ISA they translate to. It follows that no runtime sup-
port is needed for VExt (M5 and M6). In fact, intrinsics align to the MISRA-C
approach to deal with assembly code (M1). In particular, MISRA-C requires
that “assembly language shall be encapsulated and isolated” (MISRA C 2012,
Directive 4.3).

Intrinsics can be as optimal as implementing code directly in assembly with-
out requiring the programmer to deal with the burden of managing low-level de-
tails like register allocation. Overall, vector intrinsics provide the right balance
between abstraction – so as to avoid shifting VExt management responsibility
to the programmer increasing development and validation costs – and control-
lability – so as to avoid complex transformations between the source code and
the object code or the actual code executed (M8).

Another advantage of VExt in terms of abstraction and reduction of devel-
opment and validation costs is the existence of widely used libraries for several
architectures, which are accelerated with vector instructions (M9). An example
of such libraries are the BLAS (Basic Linear Algebra Subprograms)-compatible
implementations ATLAS, OpenBLAS, and Intel MKL, to name a few, which im-

15



1 void mul_add_baseline

2 (const int N,

3 const float X[],

4 const float Y[],

5 float Z[])

6 {

7 int i;

8 for(i = 0; i < N; ++i){

9 Z[i] += Y[i] * X[i];

10 }

11

12 }

1 mul_add_baseline:

2 cmp w0, 0

3 ble .L1

4 mov x4, 0

5 .p2align 3

6 .L3:

7 ldr s0, [x2, x4, lsl 2]

8 ldr s2, [x1, x4, lsl 2]

9 ldr s1, [x3, x4, lsl 2]

10 fmadd s0, s0, s2, s1

11 str s0, [x3, x4, lsl 2]

12 add x4, x4, 1

13 cmp w0, w4

14 bgt .L3

15 .L1:

16 ret

(a) Multiply-add Function in C (b) Compiler-generated assembly code

Figure 4: C and assembly code of a simple multiply-addition function.

plement operations between matrices and array vectors and that are frequently
used in the development of autonomous driving software.

4.4 Code Coverage

Achieving structural code coverage requirements is a fundamental and recurring
concern in the validation of high-integrity real-time systems. Domain-specific
standards and regulations set specific coverage goals based on the criticality of
the system or application under test [54]. Coverage objectives typically range
in between baseline statement coverage and Modified Condition Decision Cov-
erage (MC/DC). The vast majority of existing tools and techniques for code
coverage build on widely-acknowledged coverage criteria that apply to sequen-
tial programs and do not straightforwardly apply to parallel programming and
GPUs programming paradigms in reason of their specific execution models as
well as memory model [10, 47]. Although few preliminary approaches for multi-
threaded programming have been proposed [26], structural coverage on this class
of programs tends to be overly complex and, still, not consolidated.

Conversely, the SIMD paradigm is not encumbered by the complexities of
GPU and parallel programming in general. In particular, VExt preserve the
single-threaded execution model and, hence, do not jeopardize the applicability
of coverage criteria for single-threaded programming (M3). In Section 5.3, we
show how a commercial and qualified code coverage tool supports the vectorized
versions of our neural network kernels without reporting any compatibility issue.

4.5 Testing and race conditions

Vector extensions generally perform the same operation on multiple data simul-
taneously and synchronously for computing instructions. That is, they exploit
data parallelism but not concurrency, preventing issues arising in parallel pro-

16



gramming models and GPUs, such as data races (M4) and barrier divergence,
to name just a few.

In the case of memory load and store operations, read and write operations
respectively are performed serially in a specific order, as if they were indepen-
dent instructions of a single-threaded program. Therefore, while latencies may
vary, the internal order of read and write operations in a vector load or store
is preserved, hence avoiding race conditions by construction. As a result, all
executions of a vector instruction will always trigger the only possible order
among its individual operations: this simplifies testing drastically, since those
approaches effectively deployed on sequential code can be used directly on vector
code with the same advantages and limitations.

4.6 Scalable VExt and VCOP

Next we assess the different properties presented above for VExt for scalable
VExt and VCOP. In terms of timing (Section 4.2), with scalable VExt a given
instruction might be translated into multiple (micro) operations depending on
the actual hardware implementation (e.g., 8 operations are required for a scal-
able vector of 1024 bits if the hardware vector pipeline supports 128 bits). From
the programmers perspective, this means that the instruction might take longer
where the hardware vector pipeline is smaller than the size of the scalable vector.
With VCOP latencies can increase due to the off-loading of vector operations
to the VCOP and the retrieval of data back to the main processor, yet their
execution would be as predictable as regular scalar operations. The key differ-
entiating element is whether VCOP is shared or not among the different cores of
the MPSoC. If it is not, the same principles defined for the timing of VExt apply
to VCOP. If it is shared, a new whole set of problems arise due to multicore
contention [48].

MISRA-C compliance (Section 4.3), code coverage (Section 4.5), and race
condition testing (Section 4.5) are not affected by scalable VExt and VCOP,
as the abstraction provided to the programmer is the same, where the main
difference w.r.t scalable VExt is the hardware implementation. For instance,
if a scalable VExt instruction is executed, then all the chunks of the scalable
VExt instructions are executed, so code coverage is maintained at the vector
instruction as for VExt.

4.7 Illustrative Example

In order to consolidate some of the concepts presented in this section, we il-
lustrate the use of vector intrinsics and the generated vector ISA operations.
We focus on Arm NEON SIMD vector intrinsics [5] since those are the VExt
implemented in our target platform. We start by showing the implementation
of a simple vector (array) multiply-addition function in C in Figure 4 (a), which
is similar to the saxpy function found in popular mathematical libraries such as
BLAS and the generated assembly instructions without VExt using the GCC
compiler in Figure 4 (b). In the latter case, we can see that the code does not

17



use vector instructions since all the used registers are w0-w4 (32-bit), x0-x4

(64-bit) and s0-s2 (32-bit). Line 9 in the C code translates into lines 7-11 in
the assembly code where we see the load operations for the elements of arrays
X, Y, and Z (lines 7-9), the floating-point multiply-add operation (line 10) and
the store to the array Z (line 11). The instructions in lines 7-11 are regular
scalar instructions. Assembly lines 12-14 correspond to the increment of the
loop counter and its conditional branch.

1 void mul_add_vector

2 (const int N,

3 const float X[],

4 const float Y[],

5 float Z[])

6 {

7 int i;

8 for(i = 0; i < N; i+=4) {

9 float32x4 t x = vld1q f32(&X[i]);

10 float32x4 t y = vld1q f32(&Y[i]);

11 float32x4 t z = vld1q f32(&Z[i]);

12 z = vmlaq f32(z, y, x);

13 vst1q f32(&Z[i],z);

14 }

15 }

1 mul_add_vector:

2 cmp w0, 0

3 ble .L10

4 sub w0, w0, #1

5 add x4, x1, 16

6 lsr w0, w0, 2

7 add x0, x4, x0, uxtw 4

8 .p2align 3

9 .L12:

10 ldr q1, [x1], 16

11 ldr q2, [x2], 16

12 ldr q0, [x3]

13 cmp x1, x0

14 fmla v0.4s, v2.4s, v1.4s

15 str q0, [x3], 16

16 bne .L12

17 .L10:

18 ret

(a) C vectorized multiply-add (b) Vector assembly

Figure 5: Vector implementation and compiler-generated assembly code of the
multiply-addition function.

Figure 5 (a) shows the same example of multiply-addition function in C but
using vector intrinsics. The generated assembly looks very similar with just a
few key differences. Assembly lines 4-7 in the initialization are different because
now the loop counter increases by 4 each time, instead of 1. This accounts
for the fact that vector instructions operate on 4 data elements of type float
instead of just 1 float as in the scalar case. Assembly lines 10-12 and 15 are
the loads/stores as before, but this time the registers q0-q2 are vector registers
(128-bit long). This is one way vector instructions in the ISA are exposed
to the software, namely, the same opcode as scalar instructions but on vector
registers. Assembly line 14 with the fmla operation performs a vector floating-
point multiply-add operation on 128-bit (4 floats) operands. That is because
it uses the registers v0.4s-v2.4s, which are the same 128-bit long registers
as q0-q2, but this time are treated as vectors of 4 single-precision elements of
32-bit.

As shown in Figure 4(b) and Figure 5(b), scalar and vector assembly instruc-
tions individually, and the complete code block globally, are pretty similar (e.g.,
ldr), and their main differences are in the use of different register type (e.g.,
floating-point registers for scalar instructions, and vector registers for vector
instructions).

18



Overall, with this example we have illustrated the use of vector intrinsics
(e.g., vld1q f32, vmlaq f32 and vst1q f32) and how they translate into vector
operations, creating a simple mapping between source code and object code.
Also, we have shown how scalar and vector code share the same control flow,
hence simplifying timing analysis and code coverage.

5 Evaluation

In this section, we assess the execution time reductions achieved by deploying
VExt in COTS MPSoC on a set of representative kernels for neural network
computation. We also develop OpenMP, OpenMP+VExt, and GPU imple-
mentations for those kernels to provide a more solid comparison in terms of
performance. Finally, we provide evidence that, unlike for the other FPA, ex-
isting commercial and qualified code coverage tools support VExt out of the
box.

5.1 Experimental Setup

We conduct our experiments on an NVIDIA AGX Xavier platform, which in-
cludes an octa-core Arm v8 CPU [41]. Arm processors are widely used in various
domains, from high-performance domains, such as artificial intelligence and au-
tomotive, to low-power edge devices such as IoT devices. Table 3 shows the
specifications and features of the CPU in the NVIDIA AGX Xavier and its
vector unit, which implements NEON VExt. Note that there exist very few
implementations of the recent Arm SVE VExt, which we discuss in Section 6,
but none of them in embedded processors used in real-time domains.

Table 3: CPU and Vector configurations of the Xavier SoC.

Hardware block Feature Configuration

CPU Cores 8-core Arm v8
L1 caches 128KB 4-way icache, 64KB 4way dcache
L2 caches 2MB 16-way L2 per cluster of 2 cores
L3 cache 4MB 16-way L3 shared

VExt Vector Instruction Arm v8.2 NEON unit
Vector Length 128 bits

GPU Micro-Architecture Volta
Streaming Multiprocessors (SM) 8
Warp-width 32 threads
CUDA Cores 512 (64 per SM)

DRAM 32 GB, 256-bit LPDDR4x, 137 GB/s

We have developed vectorized code for two well-known functions, which are
widely used and of relevance in a wide set of high-integrity functions in increased-
autonomy products [6, 42]. For each of them, we develop two variants to capture

19



the variable size and form-factor of some vectorizable control applications as
described in Section 4.1.

• General Matrix Multiplication (GEMM) is a common algorithm in linear
algebra, machine learning, statistics, and many other domains. This func-
tion is used not only in a variety of scientific algorithms and functions,
but also in deep learning frameworks where the core operations are imple-
mented building on the GEMM operation, as well as in radar applications
for computations such as covariance matrices. We evaluate two versions
of the GEMM kernel:

– GEMMa, that uses asymmetric matrices as in the convolutional layers
of neural networks. We used the following matrix dimensions M ×
N ×K = 64 × 92000 × 288.

– GEMMs, that uses symmetric matrices with dimensions 2048×2048×
2048.

• YOLO Object Detection [52]. You Only Look Once (YOLO) is a state-of-
the-art, real-time object detection system. YOLO is exposed to represen-
tative images during training and test time, so it implicitly encodes con-
textual information about classes as well as their appearance. YOLO [52]
learns generalizable representations of the objects so that, when trained on
natural images and tested on artworks, the algorithm outperforms other
top detection methods.

We deploy different versions of YOLO: YOLOl is the default version avail-
able with high-resolution images, whereas YOLOs has been created to ex-
periment with smaller footprints and thus, different use of the processor.

YOLOl uses 608 × 608 data inputs and all layers of the YOLO’s neural
network, which packs 106 layers where 75 are convolutional. This results
in a total of 7.03 × 1010 multiply-add instructions. Given its size, the
computations take relatively long to be performed.

We also implemented a small version (YOLOs) that uses 416 × 416 data
inputs and a reduced set of 22 layers, where 16 of them are convolutional,
which results in 2.78 × 109 multiply-add instructions. These changes lead
to faster computations.

5.2 Performance Analysis

We evaluate the performance obtained with VExt comparing it with purely
scalar versions of the code. For completeness, and given that OpenMP is cur-
rently being considered for future safety-related systems (see Section 3.4), we
also evaluate OpenMP implementations, including combinations of VExt and
OpenMP since they are orthogonal.

20



1 void gemm_vector(const int M, const int N, const int K,

2 const float ALPHA, const float A[], const int lda,

3 const float B[], const int ldb, const float BETA,

4 float C[], const int ldc)

5 {

6 int i,j,k;

7 for(i = 0; i < M*N; i+=4){

8 float32x4 t vec_C = vld1q f32(&C[i]);

9 vec_C = vmulq n f32(vec_C,BETA)

10 vst1q f32(&C[i],vec_C);

11 }

12 for(i = 0; i < M; ++i){

13 register int i_a = i*lda, i_c = i*ldc;

14 for(k = 0; k < K; k+=4){

15 float32x4 t vec_A_alpha = vld1q f32(&A[i_a+k]);

16 vec_A_alpha = vmulq n f32(vec_A_alpha,ALPHA);

17 register int k_b0 = k*ldb, k_b1 = k_b0+ldb;

18 register int k_b2 = k_b1+ldb, k_b3 = k_b2+ldb;

19 for(j = 0; j < N; j+=4){

20 float32x4 t vec_C = vld1q f32(&C[i_c+j]);

21 float32x4 t vec_B = vld1q f32(&B[k_b0+j]);

22 vec_C = vmlaq laneq f32(vec_C,vec_B,vec_A_alpha,0);

23 vec_B = vld1q f32(&B[k_b1+j]);

24 vec_C = vmlaq laneq f32(vec_C,vec_B,vec_A_alpha,1);

25 vec_B = vld1q f32(&B[k_b2+j]);

26 vec_C = vmlaq laneq f32(vec_C,vec_B,vec_A_alpha,2);

27 vec_B = vld1q f32(&B[k_b3+j]);

28 vec_C = vmlaq laneq f32(vec_C,vec_B,vec_A_alpha,3);

29 vst1q f32(&C[i_c+j],vec_C);

30 } } } }

Figure 6: GEMM NEON vectorized code.

21



5.2.1 NEON Results

We have used RapiTime commercial timing analysis tool [16], which is qualified
for both avionics and automotive use. We focus on the high-water mark execu-
tion time. Figure 7 shows the performance results of both VExt and OpenMP
for both kernels. Since the maximum speedup we can get with the implementa-
tion of VExt in the target processor is 4 (VExt works with 128b registers, which
translates into four 32b elements), the OpenMP implementation is executed for
2 (OMP2) and 4 (OMP4) cores for a fair comparison.

GEMM. For GEMMa, Figure 7a, the performance improvement achieved
with NEON is 2.04x, therefore, almost equal to OMP2 (2.04x). OMP4 achieves
4.02x performance improvement. GEMMa’s performance gains of NEON are
limited because the innermost loop of the matrix multiplication (lines 19-30 in
Figure 6) iterates over N , which is 92,000 for GEMMa. In this scenario, the
data used by the algorithm does not fit in the L1 data cache (64KB): 92,000
elements times 2 matrices times 4 bytes per element results in a footprint of
≈719KB. This causes the benchmark not to fully exploit the potential of the
NEON (vector) units. Instead, GEMMs iterates over 2048 elements only for the
innermost loop, so it accesses 16KB in total for all matrices, reusing data for
some matrices in the L1 cache. Hence, it can deliver higher gains than GEMMa
(2.66x instead of 2.04x). GEMMs performance improvement is hence greater
than that of OMP2 (2.13x).

YOLO: For YOLOl we see in Figure 7b how NEON achieves slightly better
performance results than OMP2 (around 2x). For YOLOs, NEON outperforms
OMP2 reaching 2.35x improvements, and gets closer to OMP4, which respec-
tively achieves 3.28x improvements. OMP’s performance improvement reduces
for YOLOs as OMP’s overheads for thread management and synchronization
at the beginning and the end of the execution have a relatively higher impact.
VExt do not have that type of overheads. Moreover, VExt get higher per-
formance for YOLOs because YOLOs is more CPU bounded as the data fits
in the caches. YOLOl is more dominated by cache/memory and less by CPU
transactions, hence inducing worse relative performance for VExt.

5.2.2 NEON+OMP Results

In the long term, VExt can be combined with other data processing paradigms
when these other paradigms find their way to certification. In order to assess
the potential benefits, we developed versions of our kernels using OpenMP and
vectorization (VExt). For the OpenMP versions, we measure the time manually
instead of using a qualified commercial timing analysis tool, as no such tool
supports OpenMP (M2 in Section 3.1). The key question we address is whether
both data processing paradigms attack the same sources of parallelism, and
hence, their combination does not bring additional performance benefits, or

22



0
1
2
3
4
5

GEMMa GEMMs

OMP2
OMP4
NEON

(a) GEMM

0
1
2
3
4
5

YOLOl YOLOs

OMP2
OMP4
NEON

(b) YOLO

Figure 7: Performance improvements achieved with VExt and OpenMP over a
scalar single thread version.

0
2
4
6
8

10
12

GEMMa GEMMs

NEON+OMP2
NEON+OMP4

(a) GEMM

0
1
2
3
4
5
6
7

YOLOl YOLOs

NEON+OMP2 NEON+OMP4

(b) YOLO

Figure 8: Performance improvements achieved with VExt+OpenMP over a
scalar single thread version. Note the different scales in the Y axis in both
charts.

instead, their combination effectively results in performance benefits higher than
those obtained by each of them individually.

Figure 8 shows the performance improvements of OpenMP+VExt (NEON+OMP).
We can see that in all four kernel variants, the benefits obtained by combining
VExt (NEON) and OpenMP (OMP) are quite high for 2 and 4 cores reaching
around 5x for YOLO and around 4x and 11x for GEMMa and GEMMs, respec-
tively. Comparing this to the results of OMP without VExt, we see a significant
improvement from VExt on top of OMP. In the best base (GEMMs) for 2 cores,
the improvement goes from 2.1x with OMP2 to 5.9x with OMP2+NEON, and
for 4 cores from 4.2x to 12.1x.

These improvements are not only bigger than those of OpenMP and VExt
individually, but they are relatively close to the product of their individual
performance improvements for each method. In Table 4 the first three result
columns show the individual performance improvements. The following two
columns present the theoretical improvements that could be achieved by mul-
tiplying NEON and OMPx speedups. The final 2 columns report the actual
improvement we observed in our experiments. As it can be seen, the predicted
improvements for NEON+OMPx are mostly aligned with those observed in our
implementation, being GEMMa the only clear exception.

Note that the combined performance of NEON+OMPx is generally a bit

23



Table 4: Observed and predicted performance benefits

Multiplicative Observed
Kernel OMP2 OMP4 NEON NEON+OMP2 NEON+OMP4 NEON+OMP2 NEON+EMP4

GEMMa 2.0 4.0 2.0 4.2 8.2 2.4 4.0
GEMMs 2.1 4.2 2.7 5.7 11.3 5.9 12.1
YOLOl 1.9 3.7 2.0 3.8 7.3 2.9 5.0
YOLOs 1.8 3.3 2.4 4.3 7.7 3.5 5.3

lower than the theoretical multiplicative case. This relates to the fact that
data bandwidth requirements to load vectors increases, naturally, by a similar
factor, but data does not fit in L1 data caches for the innermost loops of the
kernels, so it needs to be fetched normally from the L2 cache. In the case of
GEMMs, data fits in L1 for the innermost loop, as explained before, and hence
its higher speedup. In the case of GEMMa, data does not fit, and hence its
lower speedup. In the case of YOLOl and YOLOs, they combine operations
with the innermost loop data fitting in L1 or fitting only in L2, so their speedup
is in between that of GEMMa and GEMMs, being slightly higher for YOLOs
due to its relatively smaller working sets. L2 cache cannot fully maintain such
high bandwidth requested without some stalls in the access ports and queues,
which leads to slightly suboptimal performance scalability.

5.2.3 GPU Results

For completeness reasons, we have developed and executed GPU versions of the
two variants of both GEMM and YOLO. We executed them in the GPU of
the NVIDIA’s MPSoC whose main characteristics are listed in Table 3. The
GPU has a warp size of 32 threads, which is equivalent to a vector width of
32. It features 8 SMs, each capable of executing 2 warps at the time, which
provides a total CUDA core count of 512, ie. it is capable of executing 512
operations per GPU cycle. Figure 9 shows the speedup of GPU over other
DPA: VExt executed in a single core using VExt, VExt+OpenMP (executed
in 4 cores each with VExt enabled) and the baseline non-parallelized versions
of the kernel (single core and no VExt). It is noted that GPU execution times
have been captured manually, not via any timing analysis qualified tool (M2 in
Section 3.2 and Section 3.3).

• With respect to the baseline, as expected, GPUs provide significant im-
provements that range from 60x to 257x. For the YOLOs, the overheads
to move data from to the GPU reduce the performance benefits of GPUs
w.r.t. YOLOl. Likewise, for GEMMa, the use of asymmetric matrices
also causes a reduction of the benefits of the GPU w.r.t. GEMMs.

• Compared to VExt (NEON), and focusing on reduced-size kernels (repre-
sentative of some application scenarios with limited parallel computation

24



needs) and non-symmetric problems (representative of some control ap-
plications), we see that GPU improvements over VExt are still significant
43x and 29x, yet much smaller than those for the baseline.

• When combining VExt and OpenMP (NEON+OpenMP), we see that
GPU benefits, while still significant, reduce to 19x and 15x, respectively.

30
.9

19
.1

14
.8

21
.353

.6

29
.2

25
.2 44

.078
.8

43
.3

29
.4

96
.7

15
5.

7

10
2.

0

59
.9

25
7.

4

0

50

100

150

200

250

YOLOl YOLOs GEMMa GEMMs

Sp
ee

du
p 

of
 G

P
U NEON+OMP4 NEON+OMP2 NEON Baseline

Figure 9: Performance improvements achieved with GPU over other DPA
(VExt, and VExt+OpenMP).

These raw performance improvement results confirm the higher degree of
parallelism exploitable by GPUs with respect to that VExt in current MPSoCs
used in high-integrity systems like the NVIDIA’s Xavier [41] in automotive and
the Xilinx Zynq UltraScale+ [67] in avionics. Besides, in previous sections we
have discussed the difficulties to certify GPU software [62] and qualify the as-
sociated tools [34] so that the GPU performance benefits shown can be safely
exploited in high-integrity systems. VExt, which we show to address all certifi-
cation and qualification challenges for their fast adoption in high-integrity sys-
tems, and their combination with OpenMP (which has a much shorter horizon
to reach certification and qualification goals than GPUs) offer good performance
improvements.

In our view, in the long term, VExt+OpenMP will co-exist in MPSoCs
integrating multicore vector-enabled processors as well as GPUs; once GPUs can
address all certification and qualification challenges. Each of these DPAs will
cover different needs for parallelization and performance that future applications
will have.

5.3 Code Coverage

We use the RapiCover commercial code coverage tool [15] on the code shown in
Figure 6 to assess whether qualified code coverage tools support VExt. Rapi-
Cover fulfills tool qualification requirements for domains like avionics (DO-
178C/D, DO-330), automotive (ISO 26262) and others. Note that we cannot
make any comparison with the code coverage of other DPA as no qualified tool
support them (M3 in Sections 3.1, 3.2, and 3.3).

25



Among the analysis templates offered by RapiCover, we choose “ISO 26262
HR ASIL D”, which is the highest certification level provided by the tool for
automotive. In Table 5 we show statement coverage and call coverage provided
by RapiCover. For each of them we show the following metrics in absolute units:
Req (Required coverage), Unk (Unknown, i.e. not instrumented or otherwise
addressed), Adr (Missing coverage addressed by justification); Cov (Coverage
achieved); and Total (Coverage achieved or addressed).

As it can be seen, all 33 statements (note that in Figure 6, line 6 does
not count as a statement because it is only a declaration without definition,
lines 13, 17, and 18 are double definitions count as 2 statements each, and the
“for” loops in lines 7, 12, 14, and 19 counts as 3 statements each, one for the
initialization, one for the condition, and one for the iterator update) in the code
where analyzed and hence full statement coverage is achieved.

Regarding call coverage, we see the 15 ‘function’ calls from our gemm vector

implementation (they correspond to the functions whose name is highlighted in
blue and start with ’v’ in Figure 6). These functions are, in turn, the vector
intrinsics in the code. Table 5 shows that all 15 functions were called and hence
we achieved full code coverage.

Overall, we conclude that VExt add no complexity to standard code cover-
age practice analysis and are supported by qualified tools out of the box. This
emanates from the fact that VExt exploit data-level parallelism and not concur-
rency, which would cause changes in the control flow and hence, in all metrics
related to coverage.

Table 5: RapiCover code coverage for vectorized GEMM in absolute units.

GEMM vector
Analysis Type Req Unk Adr Cov Total

Statements Coverage 33 0 0 33 33
Call Coverage 15 0 0 15 15

5.4 Discussion

As introduced in Section 4.1, certification challenges brought by other DPA
and the characteristics of some application (many control applications include
parallel regions that are small enough to be offloaded to a CPU) makes VExt
an excellent DPA option. Scalable VExt and VCOP also provide the main
properties achieved by VExt and hence bring the same benefits in terms of
reduced certification effort. Besides its low-overhead, performance-improving,
and minimal certification costs, we see that all chip vendors continue to provide
support for and improve VExt.

Vector sizes have been continuously increasing across product generations,
hence, increasing the maximum performance improving benefits of VExt. For
instance, Intel proposed Advanced Vector Extensions (AVX) to extend SSE by

26



featuring a widened data path from 128 bits to 256 bits. More recently, Intel
has proposed AVX-512, the 512-bit extensions to the 256-bit AVX for the x86
instruction set architecture. Likewise, Arm SVE supports wide vectors of up to
2048 bits and the RISC-V Vector extension up to 216. Although currently, most
Arm processors with SVE have only 128-bit, this can increase in the future,
effectively increasing the speedups obtained with SVE. RISC-V CPU imple-
mentations (not VCOP) with vector extensions use similar sizes. It is noted
that the scalable VExt performance gain over scalar code is not proportional to
the vector size but to the width of the vector pipeline. In this line, VCOP offer
another good path to increase performance while containing certification costs.

6 Related Works

From the first computer implementing the SIMD concept in the ’60s, the Illiac-
IV [7], and some follow-up interest in the ’70s, vector computers have not prolif-
erated due to their traditional narrow application market (i.e., scientific compu-
tation). Later on, SIMD vector extensions widely reached the desktop systems
with Intel’s MMX extension to the x86 architecture in 1996. This trend kept
growing, creating more powerful vector extensions (as mentioned at the end
of Section5). For instance, in x86, Intel first introduced SSE, which then was
improved to AVX, AVX2, and AVX512. Similarly, ARM started with a first
vector extension NEON that expanded with SVE, while RISC-V introduced the
scalable Vector Extension and is currently working a packed SIMD extension.
Recently, instead, vector processing has been applied at a small scale in the form
of vector co-processors and standalone vector accelerators with varying degrees
of coupling with the cores [31, 30, 60].

Vector co-processors and accelerators offer a different set of trade-offs than
vector extensions. First and foremost, VExt are often part of COTS scalar pro-
cessors (supported by their ISAs), and are already present in processors used
in the high-integrity domain and in multicore processors being evaluated for
adoption in high-integrity systems. Conversely, co-processors and accelerators
are often optional features of an MPSoC, typically providing richer functionality
than VExt, and hence, may not be explicitly supported by the ISA depending on
their degree of coupling. The most coupled incarnation of a vector co-processor
may be integrated analogously to VExt with minor differences related only to its
physical integration in the MPSoC, which may have negligible (if any) and con-
stant additional latencies w.r.t. VExt. Hence, those co-processors may offer the
same advantages as VExt. One such case is the Vicuna vector co-processor [49],
which supports the RISC-V Vector Extension and has been devised to be par-
ticularly time predictable. Other co-processors not particularly devised to be
time predictable [22, 33] may need further considerations. However, the main
challenge for the use of vector co-processors and accelerators for time-critical
applications is the fact that they are often conceived as external components
to the core with the aim of sharing them across cores for resource efficiency [8],
hence bringing concerns about timing interference across cores. Moreover, if

27



vector co-processors and accelerators are shared and/or are physically placed
far from some cores in the MPSoC (or even in different chips), they may have
higher latencies to start and complete computation by not being integrated into
the core’s pipeline.

Very Long Instruction Word (VLIW) have some commonalities with VExt,
since VLIW processors execute instruction bundles all at once, hence processing
data in parallel in a predetermined manner. However, unlike VExt, VLIW do
not implement the SIMD concept and, instead, operate with heterogeneous in-
structions on heterogeneous data and are fully statically scheduled. VLIW pro-
cessors further require the compiler to take full control of instruction scheduling.

The implications of parallel programming on consolidated approaches to soft-
ware timing analysis have been increasingly considered to sustain the adoption
of high-performance computing platforms in performance-eager high-integrity
embedded systems [63, 46, 17]. From the perspective of timing analysability,
the main focus has been placed on the role of synchronization/communication
and critical sections [45, 46] or on the assumption of both a predictable hard-
ware platform and a simple fork-join model to support composability across
parallel tasks’ timing in isolation [63, 17]. From the opposite perspective, other
approaches have been focusing on the injection of a real-time dimension in con-
solidated (and more complex) parallel programming paradigms [36, 53]. Despite
the progress made in the last decade, none of these approaches has been devel-
oped into a successful fully-fledged approach for the certification of embedded
real-time high-integrity systems.

7 Conclusions

We performed a thorough analysis of the challenges for the use of several data
processing approaches (DPAs) in high-integrity embedded domains. We showed
that GPU-related DPAs are not yet generally suitable for certified applications.
Also, while OpenMP is not yet generally compatible with certification and qual-
ification requirements in high-integrity systems, it is currently assessed in some
safety-related domains. We showed how vector extensions (VExt) address all
major certification and qualification challenges of the aforementioned DPAs.
In particular, vector intrinsics are a mechanism providing a good balance be-
tween control and abstraction, achieving the best of both controllability and
performance, as required in embedded high-integrity systems. In terms of ap-
plicability, VExt provide low-overhead, performance improvements that fit the
identified scenarios in which some, yet not massive, parallelism is needed. We
provided experimental evidence that VExt are analyzable with commercial qual-
ified out-of-the-box code coverage tool ad timing analysis tools. We also showed
the performance benefits of vectorized matrix multiplication and object detec-
tion kernels on a Jetson Xavier AGX, and how VExt combines with OpenMP
to reach even higher performance improvements. Overall, our analysis shows
that VExt provide reasonable performance improvements, which will increase
based on current prospects by different chip vendors on the size of vector sizes

28



in their chips, while offering a straight path for certification, removing the ma-
jor stumbling blocks found in the road to certification by other DPA based on
parallel programming models and GPUs.

Acknowledgements

This work has received funding from the the European Research Council (ERC)
grant agreement No. 772773 (SuPerCom) and the Spanish Ministry of Science
and Innovation (AEI/10.13039/501100011033) under grants PID2019-107255GB-
C21 and IJC2020-045931-I.

References

[1] Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernández, Jaume
Abella, and Francisco J. Cazorla. Safety-related challenges and opportuni-
ties for gpus in the automotive domain. IEEE Micro, 38(6):46–55, 2018.

[2] Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and
F. Donelson Smith. GPU scheduling on the NVIDIA TX2: hidden details
revealed. In 2017 IEEE Real-Time Systems Symposium, RTSS 2017, Paris,
France, December 5-8, 2017, pages 104–115, New York, NY, USA, 2017.
IEEE Computer Society.

[3] Tanya Amert, Sergey Voronov, and James H. Anderson. Openvx and real-
time certification: The troublesome history. In IEEE Real-Time Systems
Symposium, RTSS 2019, Hong Kong, SAR, China, December 3-6, 2019,
pages 312–325, New York, NY, USA, 2019. IEEE.

[4] Arm. Arm - Cortex-A57 Software Optimization Guide. https://

developer.arm.com/documentation/uan0015/b/, 2020.

[5] Arm. Arm - Neon Intrinsics Reference. https://developer.arm.com/

architectures/instruction-sets/simd-isas/neon/intrinsics, 2020.

[6] Baidu. Apollo, an open autonomous driving platform. http://apollo.

auto/, 2019.

[7] George H. Barnes, Richard M. Brown, Maso Kato, David J. Kuck, Daniel L.
Slotnick, and Richard A. Stokes. The ILLIAC IV computer. IEEE Trans.
Computers, 17(8):746–757, 1968.

[8] Spiridon F. Beldianu and Sotirios G. Ziavras. Multicore-based vector co-
processor sharing for performance and energy gains. ACM Trans. Embed.
Comput. Syst., 13(2), sep 2013.

[9] Marc Benito, Matina Maria Trompouki, Leonidas Kosmidis, Juan David
Garcia, Sergio Carretero, and Ken Wenger. Comparison of GPU computing

29

https://developer.arm.com/documentation/uan0015/b/
https://developer.arm.com/documentation/uan0015/b/
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
http://apollo.auto/
http://apollo.auto/


methodologies for safety-critical systems: An avionics case study. In De-
sign, Automation & Test in Europe Conference & Exhibition, DATE 2021,
Grenoble, France, February 1-5, 2021, pages 717–718, New York, NY, USA,
2021. IEEE.

[10] Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul
Thomson. Gpuverify: a verifier for GPU kernels. In Gary T. Leavens and
Matthew B. Dwyer, editors, Proceedings of the 27th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ,
USA, October 21-25, 2012, pages 113–132, New York, NY, USA, 2012.
ACM.

[11] Alejandro J. Calderón, Leonidas Kosmidis, Carlos F. Nicolás, Francisco J.
Cazorla, and Peio Onaindia. GMAI: understanding and exploiting the in-
ternals of GPU resource allocation in critical systems. ACM Trans. Embed.
Comput. Syst., 19(5):34:1–34:23, 2020.

[12] Carlos Hervás Garćıa. AI-4-GNC Airbus DS perspectives. In 14th
ESA Workshop on Avionics, Data, Control and Software Systems (AD-
CSS2020), pages 1–12, Paris, France, 2020. European Space Agency (ESA).

[13] Roberto Cavicchioli, Nicola Capodieci, Marco Solieri, and Marko Bertogna.
Novel methodologies for predictable cpu-to-gpu command offloading. In
Sophie Quinton, editor, 31st Euromicro Conference on Real-Time Systems,
ECRTS 2019, July 9-12, 2019, Stuttgart, Germany, volume 133 of LIPIcs,
pages 22:1–22:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

[14] Certification Authorities Software Team. CAST-32A Multi-core Processors,
2016.

[15] RAPITA Systems. A DANLAW Company. RapiCover. Low-overhead cov-
erage analysis for critical software. https://www.rapitasystems.com/

products/rapicover, 2019.

[16] RAPITA Systems. A DANLAW Company. RapiTime. In-depth execu-
tion time analysis for critical software. https://www.rapitasystems.com/
products/rapitime, 2019.

[17] Steven Derrien, Isabelle Puaut, Panayiotis Alefragis, Marcus Bednara, Har-
ald Bucher, Clément David, Yann Debray, Umut Durak, Imen Fassi, Chris-
tian Ferdinand, Damien Hardy, Angeliki Kritikakou, Gerard K. Rauwerda,
Simon Reder, Martin Sicks, Timo Stripf, Kim Sunesen, Timon D. ter Braak,
Nikolaos S. Voros, and Jürgen Becker. Wcet-aware parallelization of model-
based applications for multi-cores: The ARGO approach. In Design, Au-
tomation & Test in Europe Conference & Exhibition, DATE 2017, Lau-
sanne, Switzerland, March 27-31, 2017, pages 286–289, New York, NY,
USA, 2017. IEEE.

30

https://www.rapitasystems.com/products/rapicover
https://www.rapitasystems.com/products/rapicover
https://www.rapitasystems.com/products/rapitime
https://www.rapitasystems.com/products/rapitime


[18] Boris Dreyer and Christian Hochberger. Non-intrusive online timing anal-
ysis of large embedded applications. In Sebastian Altmeyer, editor, 19th
International Workshop on Worst-Case Execution Time Analysis, WCET
2019, July 9, 2019, Stuttgart, Germany, volume 72 of OASICS, pages 2:1–
2:11, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik.

[19] Alfonso Farina. Introduction to radar signal and data processing: the
opportunity. Technical report, Selex Sistemi Integrati Rome (Italy), 2006.

[20] Freescale semicondutor. QorIQ T2080 Reference Manual, 2016. Also sup-
ports T2081. Doc. No.: T2080RM. Rev. 3, 11/2016.

[21] Jonah Gamba. Automotive Radar Applications, pages 123–142. Springer
Singapore, Singapore, 2020.

[22] Yi Ge, Yoshimasa Takebe, Masahiko Toichi, Makoto Mouri, Makiko Ito,
Yoshio Hirose, and Hiromasa Takahashi. A vector coprocessor architecture
for embedded systems. In 2011 International SoC Design Conference, pages
195–198, New York, NY, USA, 2011. IEEE.

[23] Mohamed Hassan, Anirudh M. Kaushik, and Hiren D. Patel. Predictable
cache coherence for multi-core real-time systems. In Gabriel Parmer, editor,
2017 IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, RTAS 2017, Pittsburg, PA, USA, April 18-21, 2017, pages 235–246,
New York, NY, USA, 2017. IEEE Computer Society.

[24] Daniel Hellström and Fabrice Cros. Rtems smp final report: Development
environment for future leon multi-core. Technical report, European Space
Agency (ESA), Paris, France, 2015.

[25] Martin Hofmann, Florian Neukart, and Thomas Bäck. Artificial intelligence
and data science in the automotive industry. CoRR, abs/1709.01989:1–22,
2017.

[26] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean
Harrold. Testing concurrent programs to achieve high synchronization cov-
erage. In Mats Per Erik Heimdahl and Zhendong Su, editors, International
Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis,
MN, USA, July 15-20, 2012, pages 210–220, New York, NY, USA, 2012.
ACM.

[27] International Organization for Standardization. ISO/DIS 26262. Road Ve-
hicles – Functional Safety, 2009.

[28] Chris W. Johnson. The increasing risks of risk assessment: On the rise of
artificial intelligence and non-determinism in safety-critical systems. In the
26th Safety-Critical Systems Symposium, page 15, York, UK, 2018. Safety-
Critical Systems Club York, UK., SCSC on Amazon / CreateSpace.

31



[29] Anirudh M. Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren D. Patel.
CARP: A data communication mechanism for multi-core mixed-criticality
systems. In IEEE Real-Time Systems Symposium, RTSS 2019, Hong Kong,
SAR, China, December 3-6, 2019, pages 419–432, New York, NY, USA,
2019. IEEE.

[30] Mario Kovač, Philippe Notton, Daniel Hofman, and Josip Knezović. How
europe is preparing its core solution for exascale machines and a global,
sovereign, advanced computing platform. Mathematical and Computational
Applications, 25(3):1–8, 2020.

[31] Christoforos E. Kozyrakis and David A. Patterson. Overcoming the lim-
itations of conventional vector processors. In Allan Gottlieb and Kai Li,
editors, 30th International Symposium on Computer Architecture (ISCA
2003), 9-11 June 2003, San Diego, California, USA, pages 399–409, New
York, NY, USA, 2003. IEEE Computer Society.

[32] Hanbing Li, Isabelle Puaut, and Erven Rohou. Tracing flow information
for tighter WCET estimation: Application to vectorization. In 21st IEEE
International Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA 2015, Hong Kong, China, August 19-21, 2015,
pages 217–226, New York, NY, USA, 2015. IEEE Computer Society.

[33] Yuan Lin, Nadev Baron, Hyunseok Lee, Scott Mahlke, and Trevor Mudge.
A programmable vector coprocessor architecture for wireless applications.
In 3rd Workshop on Application Specific Processors, pages 103–110, New
York, NY, USA, 2004. ACM.

[34] Matina Maria Trompouki and Leonidas Kosmidis. Do-178c certification
of general-purpose gpu software: Review of existing methods and future
directions. In 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC), pages 1–9, New York, NY, USA, 2021. IEEE.

[35] Adrian Munera, Sara Royuela, Germán Llort, Estanislao Mercadal, Franck
Wartel, and Eduardo Quiñones. Experiences on the characterization of par-
allel applications in embedded systems with extrae/paraver. In José Nelson
Amaral, Lizy Kurian John, and Xipeng Shen, editors, ICPP 2020: 49th
International Conference on Parallel Processing, Edmonton, AB, Canada,
August 17-20, 2020, pages 53:1–53:11, New York, NY, USA, 2020. ACM.

[36] Adrian Munera, Sara Royuela, and Eduardo Quiñones. Towards a qualifi-
able openmp framework for embedded systems. In 2020 Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE 2020, Grenoble,
France, March 9-13, 2020, pages 903–908, New York, NY, USA, 2020.
IEEE.

[37] Netlib.org. EISPACK. http://www.netlib.org/eispack/, 2021.

32

http://www.netlib.org/eispack/


[38] Eduardo Qui nones and Franck Wartel. Extrae: an OpenMP-compatible
performance monitoring tool for the gr740. In GR740 User Day (at ES-
TEC/ESA), pages 1–20, Paris, France, 2019. European Space Agency
(ESA).

[39] NVIDIA. NVIDIA - Jetson TX1 Module. https://developer.nvidia.

com/embedded/jetson-tx1, 2016.

[40] NVIDIA. NVIDIA - Jetson TX2 Module. https://developer.nvidia.

com/embedded/jetson-tx2, 2017.

[41] NVIDIA. Technical Reference Manual. Xavier Series SoC. DP-09253-002.
Version 1.1. Technical report, NVIDIA, 2018.

[42] NVIDIA. NVIDIA DRIVE PX. Scalable supercomputer for autonomous
driving. http://www.nvidia.com/object/drive-px.html, 2021.

[43] Ignacio Sanudo Olmedo, Nicola Capodieci, Jorge Luis Martinez, Andrea
Marongiu, and Marko Bertogna. Dissecting the CUDA scheduling hierar-
chy: a performance and predictability perspective. In IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS 2020, Sydney,
Australia, April 21-24, 2020, pages 213–225, New York, NY, USA, 2020.
IEEE.

[44] Nathan Otterness and James H. Anderson. AMD gpus as an alternative
to NVIDIA for supporting real-time workloads. In Marcus Völp, editor,
32nd Euromicro Conference on Real-Time Systems, ECRTS 2020, July
7-10, 2020, Virtual Conference, volume 165 of LIPIcs, pages 10:1–10:23,
Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik.

[45] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat. Automatic WCET
analysis of real-time parallel applications. In Claire Maiza, editor, 13th In-
ternational Workshop on Worst-Case Execution Time Analysis, WCET
2013, July 9, 2013, Paris, France, volume 30 of OASICS, pages 11–20,
Dagstuhl, Germany, 2013. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik.

[46] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat. Minimizing the
cost of synchronisations in the WCET of real-time parallel programs. In
Henk Corporaal and Sander Stuijk, editors, 17th International Workshop
on Software and Compilers for Embedded Systems, SCOPES ’14, Sankt
Goar, Germany, June 10-11, 2014, pages 98–107, New York, NY, USA,
2014. ACM.

[47] Chao Peng. On the correctness of GPU programs. In Dongmei Zhang and
Anders Møller, editors, Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019, pages 443–447, New York, NY, USA, 2019. ACM.

33

https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
http://www.nvidia.com/object/drive-px.html


[48] Jon Pérez-Cerrolaza, Roman Obermaisser, Jaume Abella, Francisco J. Ca-
zorla, Kim Grüttner, Irune Agirre, Hamidreza Ahmadian, and Imanol Al-
lende. Multi-core devices for safety-critical systems: A survey. ACM Com-
put. Surv., 53(4):79:1–79:38, 2020.

[49] Michael Platzer and Peter Puschner. Vicuna: A Timing-Predictable RISC-
V Vector Coprocessor for Scalable Parallel Computation. In Björn B.
Brandenburg, editor, 33rd Euromicro Conference on Real-Time Systems
(ECRTS 2021), volume 196 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 1:1–1:18, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[50] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume
Abella, and Francisco J. Cazorla. Generating and Exploiting Deep Learn-
ing Variants to Increase Heterogeneous Resource Utilization in the NVIDIA
Xavier. In Sophie Quinton, editor, 31st Euromicro Conference on Real-
Time Systems (ECRTS 2019), volume 133 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 23:1–23:23, Dagstuhl, Germany,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[51] David Radack, Harold G. Tiedeman, and Paul Parkinson. Civil Certifica-
tion of Multi-core Processing Systems in Commercial Avionics, 2018.

[52] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767:1–6, 2018.

[53] Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quiñones, and
Xavier Martorell. A functional safety openmp ˆ* for critical real-time em-
bedded systems. In Bronis R. de Supinski, Stephen L. Olivier, Christian
Terboven, Barbara M. Chapman, and Matthias S. Müller, editors, Scaling
OpenMP for Exascale Performance and Portability - 13th International
Workshop on OpenMP, IWOMP 2017, Stony Brook, NY, USA, Septem-
ber 20-22, 2017, Proceedings, volume 10468 of Lecture Notes in Computer
Science, pages 231–245, New York, NY, USA, 2017. Springer.

[54] RTCA and EUROCAE. DO-178C / ED-12C, Software Considerations in
Airborne Systems and Equipment Certification. RTCA and EUROCAE,
2011.

[55] RTCA and EUROCAE. RTCA DO-330 - Software Tool Qualification Con-
siderations. RTCA and EUROCAE, 2011.

[56] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. On how to iden-
tify cache coherence: Case of the NXP qoriq T4240. In Marcus Völp,
editor, 32nd Euromicro Conference on Real-Time Systems, ECRTS 2020,
July 7-10, 2020, Virtual Conference, volume 165 of LIPIcs, pages 13:1–
13:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik.

34



[57] Nivedita Sritharan, Anirudh M. Kaushik, Mohamed Hassan, and Hiren D.
Patel. Enabling predictable, simultaneous and coherent data sharing in
mixed criticality systems. In IEEE Real-Time Systems Symposium, RTSS
2019, Hong Kong, SAR, China, December 3-6, 2019, pages 433–445, New
York, NY, USA, 2019. IEEE.

[58] Nivedita Sritharan, Anirudh M. Kaushik, Mohamed Hassan, and Hiren D.
Patel. Enabling predictable, simultaneous and coherent data sharing in
mixed criticality systems. In IEEE Real-Time Systems Symposium, RTSS
2019, Hong Kong, SAR, China, December 3-6, 2019, pages 433–445, New
York, NY, USA, 2019. IEEE.

[59] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanaël Prémillieu, Alastair Reid, Alejandro Rico, and Paul
Walker. The ARM scalable vector extension. IEEE Micro, 37(2):26–39,
2017.

[60] Hideki Sugimoto and Koji Adachi. Vector compliance testing for risc-v. In
RISC-V Global Forum, pages 1–35, Zurich, Switzerland, September 2020.
RISC-V International.

[61] Lee Teschler. The basics of automotive radar, 2019. https://www.

designworldonline.com/the-basics-of-automotive-radar/.

[62] Matina Maria Trompouki and Leonidas Kosmidis. Brook auto: high-level
certification-friendly programming for gpu-powered automotive systems. In
Proceedings of the 55th Annual Design Automation Conference, DAC 2018,
San Francisco, CA, USA, June 24-29, 2018, pages 100:1–100:6, New York,
NY, USA, 2018. ACM.

[63] Theo Ungerer, Christian Bradatsch, Martin Frieb, Florian Kluge, Jörg Mis-
che, Alexander Stegmeier, Ralf Jahr, Mike Gerdes, Pavel G. Zaykov, Lucie
Matusova, Zai Jian Jia Li, Zlatko Petrov, Bert Böddeker, Sebastian Kehr,
Hans Regler, Andreas Hugl, Christine Rochange, Haluk Ozaktas, Hugues
Cassé, Armelle Bonenfant, Pascal Sainrat, Nick Lay, David George, Ian
Broster, Eduardo Quiñones, Milos Panic, Jaume Abella, Carles Hernández,
Francisco J. Cazorla, Sascha Uhrig, Mathias Rohde, and Arthur Pyka. Par-
allelizing industrial hard real-time applications for the parmerasa multicore.
ACM Trans. Embed. Comput. Syst., 15(3):53:1–53:27, 2016.

[64] VECTOR. Coffee with Vector: Code Coverage for CUDA
Code using VectorCAST/QA. https://www.vector.com/

es/es/eventos/global-de-en/webinar-recordings/2021/

coffee-with-vector-code-coverage-for-cuda-code-using-vectorcastqa/,
2021.

[65] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David B. Whalley, Guillem Bernat, Christian Ferdinand,

35

https://www.designworldonline.com/the-basics-of-automotive-radar/
https://www.designworldonline.com/the-basics-of-automotive-radar/
https://www.vector.com/es/es/eventos/global-de-en/webinar-recordings/2021/coffee-with-vector-code-coverage-for-cuda-code-using-vectorcastqa/
https://www.vector.com/es/es/eventos/global-de-en/webinar-recordings/2021/coffee-with-vector-code-coverage-for-cuda-code-using-vectorcastqa/
https://www.vector.com/es/es/eventos/global-de-en/webinar-recordings/2021/coffee-with-vector-code-coverage-for-cuda-code-using-vectorcastqa/


Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter P.
Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-
time problem - overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):36:1–36:53, 2008.

[66] Michael Wong, Michael Klemm, Alejandro Duran, Tim Mattson, Grant
Haab, Bronis R. de Supinski, and Andrey Churbanov. Towards an error
model for openmp. In Mitsuhisa Sato, Toshihiro Hanawa, Matthias S.
Müller, Barbara M. Chapman, and Bronis R. de Supinski, editors, Be-
yond Loop Level Parallelism in OpenMP: Accelerators, Tasking and More,
6th Internationan Workshop on OpenMP, IWOMP 2010, Tsukuba, Japan,
June 14-16, 2010, Proceedings, volume 6132 of Lecture Notes in Computer
Science, pages 70–82, New York, NY, USA, 2010. Springer.

[67] Xilinx. Rockwell Collins Uses Zynq UltraScale+ RFSoC Devices in Rev-
olutionizing How Arrays are Produced and Fielded: Powered by Xilinx,
2019.

[68] Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H. An-
derson, and F. Donelson Smith. Avoiding pitfalls when using NVIDIA gpus
for real-time tasks in autonomous systems. In Sebastian Altmeyer, editor,
30th Euromicro Conference on Real-Time Systems, ECRTS 2018, July 3-6,
2018, Barcelona, Spain, volume 106 of LIPIcs, pages 20:1–20:21, Dagstuhl,
Germany, 2018. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

36


	Introduction
	Background on Vector Extensions
	Introduction
	Hardware Implementation
	Scalable VExt and Vector Co-Processors (VCOP)

	Other DPAs
	Multicore Programming Models (OpenMP/pthreads/MTAPI)
	General-Purpose/Compute GPUs (CUDA/HIP/OpenCL/Vulkan)
	Graphics/Vision APIs (OpenGL SC 2 / OpenVX SC)
	Putting It All Together

	Vector Extensions
	Context of Application
	Timing analysis
	Measurement-Based Timing Analysis
	Static Timing Analysis

	Abstraction and MISRA-C compliance
	Code Coverage
	Testing and race conditions
	Scalable VExt and VCOP
	Illustrative Example

	Evaluation
	Experimental Setup
	Performance Analysis
	NEON Results
	NEON+OMP Results
	GPU Results

	Code Coverage
	Discussion

	Related Works
	Conclusions

