
 

 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 

 

 
Aquesta és una còpia de la versió author’s final draft d’un article publicat 
a la revista Cells & Development.   
 
 
Kleinberg, G. [et al.]. Usability of deep learning pipelines for 3D nuclei 
identification with Stardist and Cellpose. Cells and Development, 
Desembre 2022, vol. 172, núm. article 203806. DOI: 
<https://doi.org/10.1016/j.cdev.2022.203806>. 

 

 
 
 
 
 

© <2022>. Aquesta versió està disponible sota la llicència  CC-BY- NC-
ND 4.0 http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

 

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
https://doi.org/10.1016/j.cdev.2022.203806
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal Pre-proof

Usability of deep learning pipelines for 3D nuclei identification
with Stardist and Cellpose

Giona Kleinberg, Sophia Wang, Ester Comellas, James R.
Monaghan, Sandra J. Shefelbine

PII: S2667-2901(22)00042-0

DOI: https://doi.org/10.1016/j.cdev.2022.203806

Reference: CDEV 203806

To appear in: Cells and Development

Received date: 13 February 2022

Revised date: 21 July 2022

Accepted date: 22 August 2022

Please cite this article as: G. Kleinberg, S. Wang, E. Comellas, et al., Usability of deep
learning pipelines for 3D nuclei identification with Stardist and Cellpose, Cells and
Development (2022), https://doi.org/10.1016/j.cdev.2022.203806

This is a PDF file of an article that has undergone enhancements after acceptance, such
as the addition of a cover page and metadata, and formatting for readability, but it is
not yet the definitive version of record. This version will undergo additional copyediting,
typesetting and review before it is published in its final form, but we are providing this
version to give early visibility of the article. Please note that, during the production
process, errors may be discovered which could affect the content, and all legal disclaimers
that apply to the journal pertain.

© 2022 Published by Elsevier B.V.

https://doi.org/10.1016/j.cdev.2022.203806
https://doi.org/10.1016/j.cdev.2022.203806


1 
 

 

Usability of Deep Learning Pipelines for 3D Nuclei Identification with Stardist and 

Cellpose 

Running Head: Cell Segmentation Pipelines 

Giona Kleinberga, Sophia Wangb, Ester Comellasc,d, James R. Monaghane,f, and Sandra J. 

Shefelbinea,d, * 

aDepartment of Bioengineering, Northeastern University, Boston, USA 
kleinberg.g@northeastern.edu 

s.shefelbine@northeastern.edu  

bDepartment of Electrical and Computer Engineering, Northeastern University, Boston, USA 

wang.soph@northeastern.edu  

cSerra Húnter Fellow, Department of Physics, Laboratori de Càlcul Numeric (LaCàN), 
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain 

ester.comellas@upc.edu  

dDepartment of Mechanical and Industrial Engineering, Northeastern University, Boston, USA 

eDepartment of Biology, Northeastern University, Boston, USA 

j.monaghan@northeastern.edu  

fInstitute for Chemical Imaging of Living Systems, Northeastern University, Boston, USA 

 

Grant Information: 

National Science Foundation #1727518, European Commission MSCA-GF-COMPLIMB-841047 

*Author for correspondence: s.shefelbine@northeastern.edu  

334 SN, 360 Huntington Avenue, Boston, MA 02115 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

mailto:s.shefelbine@northeastern.edu


2 
 

Abstract  

Segmentation of 3D images to identify cells and their molecular outputs can be difficult and 

tedious. Machine learning algorithms provide a promising alternative to manual analysis as 

emerging 3D image processing technology can save considerable time. For those unfamiliar 

with machine learning or 3D image analysis, the rapid advancement of the field can make 

navigating the newest software options confusing. In this paper, two open-source machine 

learning algorithms, Cellpose and Stardist, are compared in their application on a 3D light sheet 

dataset counting fluorescently stained proliferative cell nuclei. The effects of image tiling and 

background subtraction are shown through image analysis pipelines for both algorithms. Based 

on our analysis, the relative ease of use of Cellpose and the absence of need to train a model 

leaves it a strong option for 3D cell segmentation despite relatively longer processing times. 

When Cellpose’s pretrained model yields results that are not of sufficient quality, or the analysis 

of a large dataset is required, Stardist may be more appropriate. Despite the time it takes to 

train the model, Stardist can create a model specialized to the users' dataset that can be 

iteratively improved until predictions are satisfactory with far lower processing time relative to 

other methods. 

Keywords: 3D Machine Learning, Microscopy, Cell Segmentation 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



3 
 

1. Introduction 

Quantifying data in microscopy images remains a challenge in biology research and biomedical 

applications. To analyze objects of interest such as cells, membranes, and nuclei, quantitative 

data such as size, location, and spatial distribution of the objects must be collected.1 Many fields 

of biological study require image acquisition and quantification of data from these images.  

Methods of quantifying data in 2D images are well established and feasible to do manually on 

smaller datasets.2–5 Complications are introduced, however, when analyzing 3D image stacks 

(Figure 1).4,6,7 Image stacks, sometimes containing hundreds of image slices generated by 3D 

microscopy methods, dramatically increase the dataset's size. 

As modern microscopy methods grow in efficiency and complexity, the need for automated 

methods of processing the datasets also increases.7 There are currently many emerging 

methods for handling the large influx of 3D microscopy image datasets.9–14 Among these 

methods, advances in deep learning have led to algorithms that significantly reduce the time 

required to identify and segment distinct objects within 3D images.4,6,15,16 Instance segmentation 

is the process of locating and delineating objects. Most cellular objects, membranes, and nuclei 

have relatively simple shapes, making them excellent targets for automated instance 

segmentation using deep learning.17 Due to the benefits of deep learning approaches such as 

increased prediction quality and greatly increased efficiency, knowledge on how to use such 

tools should be widely distributed.8,18 This is especially important for those with minimal 

knowledge of machine learning and coding who may be overwhelmed when applying the 

newest deep learning algorithms. 

Cellpose is a relatively new user-friendly tool utilizing deep learning for 3D cell segmentation.18 

Cellpose uses a pre-trained model based on a diverse dataset containing over 70,000 

fluorescently labeled cells. The model is consistently retrained on user data to improve model 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



4 
 

versatility and prediction performance. Cellpose can be easily installed and used via the custom 

GUI or the command line. Cellpose requires no manual model training to use, making it an ideal 

choice for those without experience in deep learning or those who are aiming to generate 

predictions quickly. Additionally, Cellpose excels at segmenting convoluted object shapes due 

to the large and varied training set of the pre-trained model.19 

Another prominent deep learning algorithm for segmenting cell nuclei is Stardist.19,20 The open-

source Stardist algorithm can train a neural network on a user's data using star-convex 

polygons (a more versatile type of bounding box compared to a simple rectangle used to find 

each cell’s shape) to identify cells by finding objects that match a general shape.  However, it is 

not designed specifically to handle more convoluted object shapes.19,21 The algorithm was first 

created to handle blurry, crowded, or otherwise abnormal 2D images, for which other algorithms 

struggled to create accurate predictions. Later extended to 3D image stacks, the algorithm 

specializes in predicting dense groups of cells and nuclei in images with large amounts of 

background noise. We used an application of the Stardist algorithm in a Google Colab notebook 

from the ZeroCostDl4Mic toolbox.7 This application is convenient as it can run in a notebook 

within Google Colab. Model training and data prediction can be performed using a Google 

Colab runtime, accessing files stored in Google Drive, which significantly increases the usability 

of the algorithm for unfamiliar users. 

The objective of this paper is to provide a comparison of Stardist and Cellpose regarding 

prediction quality, the time investment in learning, and overall usability. The application of each 

algorithm is conveyed through a demonstration on a 3D light sheet fluorescence microscopy 

dataset of 24 axolotl salamander humeri. Proliferative EdU-stained cells were counted in both 

experimental and control groups.  

2. Material and methods 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



5 
 

2.1. Image Acquisition 

The images used here are part of a larger study in which we analyzed the effect of local 

mechanical stimuli on joint shape in regenerating axolotl salamander (Ambystoma mexicanum) 

limbs.23 Animal forelimbs were bilaterally amputated proximal to the elbow joint. GSK1016790A 

(GSK101) was reconstituted in DMSO and injected intraperitoneally at 50μg/kg at 21 days post 

amputation (dpa, n=6). GSK101 is a TRPV4 agonist, a channel involved in the 

mechanotransduction of stimuli.27 Control animals (n=6) were injected with DMSO. Injections 

were repeated at 48-hour intervals. At 31 dpa, animals were injected intraperitoneally with 5-

Ethynyl-2’-deoxyuridine (EdU) and L-Azidohomoalanine (AHA). EdU can be used as a measure 

of cell proliferation since it is incorporated in newly synthesized DNA. AHA was used for the 

segmentation of the humerus rudiment since it labels extracellular proteins. Limbs were 

collected 18 hours after EdU and AHA injection then fixed and stained as described in Duerr et 

al. 2020.28 A Zeiss light sheet Z.1 microscope was used to obtain the images. The dataset was 

chosen for testing due to the large size (each image was approximately 0.75 GB, in-plane about 

1,300 pixels by 1,500 pixels with approximately 200 slices) and the number of objects in each 

image (100-500 cells). The resolution of each image was 0.915 microns x 0.915 microns x 

4.945 microns per voxel. Although Stardist and Cellpose can accommodate anisotropic data 

(such as this dataset), some datasets may require isotropic preprocessing in order to obtain 

satisfactory predictions. Another consideration, AHA staining resulted in image backgrounds of 

varying intensities, further challenging cell segmentation. A low signal-to-background ratio was 

observed between the objects of interest and background, which negatively impacted prediction 

quality and helped highlight each algorithm’s ability to handle less than ideal data. 

2.2. Creating Training Sets for Stardist 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



6 
 

The training set consisted of 15 training images with dimensions of 256 pixels by 256 pixels by 

16 slices, (Figure 2A) in which each cell in the image was manually identified to create labeled 

images (Figure 2B). The size of the training images was selected to be small enough to 

manually identify all cells in the image while remaining large enough to contain an average of at 

least ten cells. Training images were cropped out of the primary dataset such that they provided 

an accurate representation of the whole dataset. We ensured that some of our training images 

included boundaries of the limb as pilot data indicated boundaries of the limb could pose 

problems during processing due to intense AHA staining. We also included images in the 

training set from both the experimental and control groups. In the training images, cells were 

manually outlined using the freehand selection tool in Fiji26 to trace the perimeter of each cell 

appearing within a slice. The selections were saved as regions of interest (ROIs) to the ROI 

Manager function and were then turned into an ROI Map using the LOCI plugin (Figure 2C). 

ROI Maps of each slice were then joined together using the concatenate ImageJ function to 

create the corresponding labeled data for each training image in the training set (Figure 2D). 

Across slices, the ROI for each cell was kept the same color in every ROI Map. With each cell 

having a unique color, Stardist recognizes cells across all the slices they appear in using that 

unique color of the cell across the concatenated ROI Maps. 

2.3. Training Model 

All training images and their corresponding labeled images making up the training set were then 

uploaded to Google Drive. Data augmentation was used to create a larger training set by 

reflecting, rotating, and distorting each pair of image stacks using the Stardist ZeroCostDL4 

Google Colab Notebook.7 The augmented training set was then used to train a model using 320 

training iterations referred to as epochs, and a patch height of eight slices corresponding to the 

training set size in the same notebook. Patch height represents the depth of each comparison 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



7 
 

during prediction and was set to 8 slices in order to fit within the training images’ height of 16 

slices. It is possible to start training with a pre-trained model, but this feature was not used. 

2.4. Preprocessing in Fiji 

Before running Stardist or Cellpose, each image in the primary dataset (Figure 3A) was cropped 

using Fiji to the region of desired cell counting, which in our images was the humerus rudiment 

(Figure 3B). Background subtraction was then applied with a rolling ball radius of 50. A value of 

50 was used based on performance on pilot data and represented the radius of the curvature of 

the paraboloid used to subtract the background on each pixel based on neighboring local pixels. 

We also examined the effects of this rolling ball radius on results. To avoid memory issues 

during Stardist processing, an ImageJ macro was created to crop each image stack into 16 or 

25 equal-sized tiles using 4 or 5 divisions respectively in order to ensure the x and y dimensions 

of the image stack were each under 300 pixels (the limit that could successfully be processed in 

the Stardist Colab Notebook, Figure 3C). Fewer divisions were favored to minimize the number 

of image edges during processing as long as the x and y dimensions were under 300 pixels. By 

minimizing divisions, error was limited to a negligible amount for our data. If this error is not 

negligible, overlapping the tiles and then reconstructing them is a more complex yet effective 

way to further reduce error. To ensure an accurate comparison, tiling was done before 

processing images in Cellpose as well, even though the local installation of Cellpose was able 

to run the full image stack at once. 

2.5. Processing in Stardist  

Each tile was then processed from a Google Drive folder using the trained Stardist model via 

the Google Colab notebook. Stardist processed each humerus (consisting of multiple tiles) in 

approximately 3-4 minutes. Prediction outputs from Stardist in the form of ROI Maps (Figure 3D) 

were then downloaded for post-processing in Fiji. Processing was completed using a Google 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



8 
 

Colab runtime which has a performance independent of a user’s computer specifications since it 

runs remotely. 

2.6. Processing in Cellpose  

After preprocessing in Fiji using background subtraction and tiling, each image was run through 

Cellpose’s algorithm (version 0.6) as well. Tiling is not necessary for Cellpose but was used in 

order to compare the algorithm accurately with Stardist. Cellpose’s estimated diameter function 

was used, except for images with little to no cells for which we supplied an estimated radius 

based on the average within the dataset. The nuclei channel was used, but Cellpose can 

identify cytoplasm as well. Like Stardist, Cellpose generated an ROI map for each image 

processed. Unlike Stardist, however, Cellpose also generated an NPY file (NumPy array file that 

can be used for other methods of image quantification in python). Since Cellpose operates 

locally (instead of in a Google Colab session like Stardist), the runtime is heavily dependent on 

the computer's processing power. Note that a preliminary 3D Cellpose Colab Notebook has 

recently been developed and can be used instead of a local installation.30 The estimated 

average runtime for an entire image stack (without tiling) was approximately 10 hours (on a 1.99 

GHz processer with 16 GB ram). Varying tiling size had a negligible effect on the runtime.  

2.7. Post-Processing in Fiji and MATLAB 

Both algorithms output ROI maps during processing so post-processing was consistent between 

both methods. Since predictions were created for the entire image stack, including the area 

around the humerus, an ImageJ macro was created to mask the ROI Map predictions with a 

mask of the humerus. This was done to isolate the predictions within the humeri by excluding 

objects found outside the area of interest. Since the prediction image stacks were still tiled, the 

corresponding mask of each humerus was cropped and tiled using identical parameters from 

the original crop and tiling to mask each tile individually. Next, the 3D Objects Counter function28 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



9 
 

was run on each masked tile without counting objects that did not fall within the area of interest 

(the humerus) due to the masking. The cell counts of all tiles corresponding to each original 

image were then summed and filtered for outlier volumes that indicate a false positive 

prediction. Using MATLAB, humeri proximo-distal axes were aligned, and humeri were cut on 

the proximal end to a normalized length to ensure cells were counted within an equivalent 

length across all humeri. The total number of proliferating cells was assessed for each humerus, 

and each cell was plotted in 3D using MATLAB with a sphere representing the size of the cell 

(Figure 3E). More details on the pipeline are available online.29 

3. Results 

3.1. Training Image Size 

Whereas Cellpose uses a pre-trained database of thousands of images, Stardist requires self-

training a model on your data. Through multiple attempts at training the model, we found the 

optimal dimensions for each pair of source and target images in the training set to be x and y 

dimensions of 128 pixels by 128 pixels per slice with a stack size of 16 slices. “Optimal” was 

determined by the size and number of objects in the image. We found the most success for our 

data when each image in the training set contained around ten objects in each slice with around 

20 objects throughout the image stack. This was ideal for balancing many objects to train the 

model in each stack while keeping the number of objects manageable for manual segmentation. 

Based on the size of each object and their spatial distribution within a dataset, it is 

recommended that the dimensions of each image stack in the training set be adjusted to 

maintain a similar number of objects. The number of image pairs (training stack and labeled 

stack) required for a successful training set was found to be 15 pairs for our dataset. This value 

is especially variable as datasets with harder-to-predict objects (usually due to blurry images or 

closely-packed objects) will need a larger training set. In comparison, datasets with easy-to-

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



10 
 

predict objects (usually far apart objects with a high signal-to-background ratio) will need a 

smaller training set. These dimensions found and then used to create our training set represent 

the optimal values for our specific images and should not be used for every dataset. Instead, the 

trends and methodology described to find these dimensions should be utilized to find the 

optimal training image and training set sizes for each specific dataset. 

3.2. Processing Image Size 

We ran Cellpose locally and used Google Colab to run Stardist. Cellpose was able to handle the 

1 GB image sizes when run on a standard desktop processor albeit 10 hours to process a single 

image were required.  Due to the large dimensions of the dataset, Google Colab ran out of 

memory when processing full image stacks. Google Colab offers higher memory runtimes; 

however, for larger images, the higher memory is still insufficient to process a full image stack at 

once. This was solved by cropping each image stack into tiles and processing the tiles 

individually. We found that for our data, image stacks with around 100 slices required x and y 

dimensions of less than 230 pixels to be processed successfully without incurring memory 

errors (Appendix, Figure A.1). Image stacks with more slices required a smaller number of 

pixels in the x and y dimensions. For our example dataset, larger image stacks with slightly over 

200 slices were successfully processed with x and y dimensions as high as 200 pixels. These 

optimal dimensions were found through incrementally increasing the image dimensions until 

Stardist was no longer able to process them. This process should be replicated when training on 

a new dataset in order to find the largest images that can be processed without incurring an 

error. We also found that if cropping into tiles was required, cropping in the x and y dimensions 

(in the image plane) was preferable to cropping through the image stack (z dimension). 

Cropping images in the dataset creates more image edges which, when processed, result in 

more object edge cases where predictions are less reliable. Cropping through the image stack 

in the z dimension creates a larger edge area as the entire 2D slices around the crop location 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



11 
 

end up as edges that introduce error to the predictions. To avoid this, cropping to avoid memory 

errors should be limited to the x and y (in-plane) dimensions, if possible. Another possible 

alternative could involve deriving a model based on image parameters to find an ideal 

processing image size. The Stardist algorithm can also be run locally without using the 

ZeroCostDl4Mic Google Colab notebook to avoid incurring memory errors. 

3.3. Epoch Number 

One important parameter tested through the application of Stardist was the number of epochs 

used during model training. An epoch is a hyperparameter representing an iteration of the 

learning algorithm through the entire training set. Another related parameter of a model is its 

loss. The loss of a model represents the difference between a model’s expected prediction and 

actual prediction during model validation. A slight loss is usually correlated with higher 

prediction quality. The value of each epoch on the model’s resultant loss diminishes 

exponentially as the epoch number increases until eventually asymptotically approaching the 

minimum loss that can be reached with a particular training set. Based on this knowledge, we 

determined the smallest epoch number that still reached this minimum loss to avoid redundant 

training and overfitting. We found that a training set of our size required an epoch number of 

320. Additional epochs (training iterations) beyond 320 resulted in little benefit (Appendix, 

Figure A.2). Similar to training and processing image dimensions, this number is specific to our 

dataset and can be found for a new dataset through incrementally increasing or decreasing the 

epoch number when training a model. When optimizing the number of epochs, performance on 

the validation set can be used as an indication of possible overfitting. Epoch optimizations have 

no effect on the quality of the predictions. However, if similar models are being trained for 

frequent or long term-use, the time it saves on each iteration of training can save considerable 

time overall. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



12 
 

3.4. Background Subtraction 

We analyzed the effect of background subtraction by changing the rolling ball radius used in 

background subtraction. The recommended rolling ball radius is the radius of the largest object 

to be found in an image. The average diameter of axolotl nuclei is 30±10 µm, or about 25 pixels. 

Four radii were used to track the improvement in predictions: a minimal value of 5 pixels, about 

half the diameter, 10 pixels, the diameter, 25 pixels, and twice the diameter of the nucleus, 50 

pixels. We determined smoothing in (another available parameter when using the background 

subtract tool in Fiji) did not have an effect on the cell count but provided clearer images as 

shown in Figure 4. Background subtraction enhanced the contrast between objects and the 

background (Figure 4). This typically increased the cell count as objects became easier to 

identify and segment. All rolling ball radii tested resulted in more segmented cells when 

compared with no background subtraction on the same image (Figure 4). Based on our testing, 

it is recommended that the rolling ball radius used is slightly greater than the average dimension 

of the largest object in the image. When processing our dataset, a rolling ball radius of 25 was 

the practical minimum required for successful segmentations without too many false positives. 

However, a rolling ball radius of 50 (following the theoretical guideline that the rolling ball radius 

should be approximately the size of the largest object in the image) was used for processing to 

ensure no cells were subtracted entirely out of the cell count. Since inspecting every dataset 

image for the largest object is not always feasible, allowing for a margin of error by assigning a 

high rolling ball radius is recommended. It is much easier to locate false positives in the cell 

count after post-processing as opposed to having too small a rolling ball radius that results in 

objects of interest getting subtracted. The trends in rolling ball radius were similar for both 

Stardist and Cellpose. The results from Cellpose are shown in Figure 4. 

It is very challenging to know the ground truth for the exact dimensions or quantity of segmented 

cells in an image because all prediction methods, including manual segmentation, are 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



13 
 

susceptible to biases. However, by comparing predictions, we can determine how specific 

parameters quantitatively affect the cell count. As long as all images in a dataset are processed 

with the same parameters, quantitative comparisons between groups can be made (even if we 

do not know the ground truth). 

3.5. Effect of Tiling on Background Subtract 

To directly compare the results of Stardist and Cellpose, we analyzed a single image in Stardist 

with tiling and in Cellpose with and without tiling. In Cellpose, tiling resulted in an increase in cell 

count in images. This is most likely because each tile had a more consistent background 

compared to the background of the entire image, making it easier for the algorithm to identify 

objects. Due to the varying background intensity of uncropped images and varying staining 

intensity of nuclei throughout such images, background subtraction makes less drastic changes 

to pixel intensity. It is possible that when an image is cropped into tiles and background subtract 

is run on each tile, the localized area of each tile has a smaller range of intensities and can 

therefore show higher contrast once background subtraction is run.  

3.6. Overlapped Cells and 3D Objects Counter 

We found that Stardist performed consistently well on patches of closely packed cells that 

appeared overlapped in 2D slices of the image stack (Figure 5). The model used the expected 

shape and size profile from the algorithm’s training to consistently segment the clustered cells 

into distinct objects. Another important finding is that despite overlapped cells (like those shown 

in Figure 5) being recognized as independent objects by Stardist and Cellpose, the Fiji 3D 

Objects Counter function counts all the cells together as one object. This is due to how 3D 

Objects Counter identifies individual objects through searching for clusters of voxels in binary 

images. Since 3D Objects counter looks at a binary version (each voxel is either part of an 

object or the background) of the ROI Maps output by Stardist and Cellpose, it cannot recognize 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



14 
 

the unique color of each cell in an overlap and therefore labels the overlap as one large object. 

In order to solve this problem and count each cell as its own object correctly, the overlapped 

cells need to be split (by placing a minimal layer of background intensity in between the cells) 

using a watershed or similar Fiji function that can split the objects. This division allows 3D 

Objects Counter to view each overlapped cell as its own object to mitigate the undercounting of 

cells. 

3.7. Direct Comparison with Manual Segmentation 

To compare the pipelines with each other and with manual counting, a subsection of the data 

was segmented by each method (Figure 6). A 256-pixel by 256-pixel subsection of 16 slices 

was cropped from the initial dataset. The subsection was processed using the Stardist 

ZeroCostDL4 Google Colab notebook and Cellpose finding cell counts of 24 cells and 20 cells 

respectively. The count obtained from the manual segmentation was 30 cells. Each cell resides 

within approximately 3-5 slices and the manual segmentation for an image subsection of this 

size took 3 hours which further highlights the need for algorithms when attempting to segment 

large datasets. These results are specific to the dataset tested. However the tips and trends 

found are generalizable to other datasets. 

4. Discussion 

With most images being processed in less than five minutes, Stardist’s quick prediction time 

significantly increases processing efficiency compared to Cellpose, which generated predictions 

for a single image sometimes requiring over 10 hours. Cellpose runtime is dependent on 

hardware limitations and can therefore be improved with higher processing power although it is 

unlikely to match Stardist’s prediction time even on high-end hardware. A quick processing time 

is very favorable when working with larger datasets or determining the effects of the various 

preprocessing parameters. However, this advantage of Stardist over Cellpose is only valid once 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



15 
 

a model has been trained in Stardist, which itself requires a significant amount of time. Since the 

amount of training required to train a model is independent of the dataset size, there is a critical 

dataset size where Stardist’s quick processing time will still save time despite a large initial 

amount of time spent training. Once a model is trained sufficiently, it no longer requires more 

training and, as a result, Stardist is better suited towards projects with large datasets or an 

expected continuous influx of similar images. Datasets with few images are likely to cost more 

time in training than they save in processing with Stardist. 

The critical dataset size where Stardist becomes more efficient is variable depending on the 

actual elements of the dataset. Far less training is needed when images contain objects with 

high signal-to-background ratio or when objects are spaced far apart (Figure 7). Consequently, 

images with closely clustered cells or a high-intensity background require a larger training set to 

produce an accurate model. Since a good training set should ideally have components 

representative of all the images, a dataset with highly varied and inconsistent backgrounds, 

object shapes, and intensities will also require a larger training set. There are also many useful 

tools in development that can be used to reduce the time spent creating a training set manually 

such as APEER, Ilastik, Segmentor, and ImJoy.14,22–25 By reducing the time needed to train an 

initial model using such tools, Stardist’s advantages can become more accessible for small 

datasets. 

Another advantage of Stardist is the ability to improve prediction quality. Once a model has 

been trained, further training sets can be made and used in conjunction with the model to train it 

further until an acceptable accuracy is achieved. Even when analyzing a small dataset, if 

Cellpose’s predictions are not accurate enough, Stardist can be a valuable alternative. By 

training a model from scratch, Stardist’s predictions can be tailored to a specific dataset and 

improved with further training leading to more accuracy. At the time of this research, Cellpose 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



16 
 

did not offer the ability to further train their model however this option has since become 

available.34 

These findings are evidenced by our results from creating and comparing the most usable 

pipelines found on our dataset. We are therefore unable to determine a superior method for all 

types of datasets found in biological research. However, based on the results, informative 

trends can be observed. Since no model training is required, Cellpose should be used unless 

the dataset is large enough to make Stardist the more efficient tool even when accounting for 

training time. Stardist should be used when Cellpose predictions are not accurate enough to be 

used. This is likely to occur when datasets contain low contrast between the background and 

nuclei, contain highly clustered cells, or otherwise contain consistent irregularities that a model 

should be trained specifically to handle. Fitting these trends, Stardist would be the better option 

for the test dataset used here as well as similar datasets due to the high noise-to-background 

ratio and large image size and quantity. 

The most efficient model for a project can be best determined primarily by the size of the 

dataset. Due to the large initial training time, Stardist is less efficient on small datasets when the 

time to train a model is greater than the time to process each image in Cellpose. On large 

datasets such as those with over a hundred images, the quick processing time of Stardist 

leaves it as the more efficient model despite the training time as processing the images in 

Cellpose would be slower than training a model and processing the images in Stardist.    

There are still many opportunities for improvements to current deep learning software. Further 

development of tools that simplify manual object identification would significantly reduce the 

meticulous and lengthy process of creating a training set. This would make the dataset tailored 

predictions produced by Stardist far more accessible and efficient to use for the Google Colab 

application tested. As algorithms increase in complexity, the time to produce predictions of both 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



17 
 

methods will likely decrease while the accuracy of the predictions will increase. For larger 

datasets, manual methods of object isolation and segmentation are unfeasible and require such 

tools. As more development is done on these methods in 3D, they will be able to increase 

processing efficiency on datasets of all sizes and may surpass the accuracy provided by manual 

methods. 

Acknowledgements 

The authors would like to thank Timothy J Duerr and Johanna E Farkas for their help obtaining 

the images used in this study. Microscopy images were obtained from the Harvard University 

Center for Biological Imaging and the Northeastern University Chemical Imaging of Living 

Systems core. This work was completed using the Discovery cluster, supported by Northeastern 

University’s Research Computing team. We acknowledge animal support from the Ambystoma 

Genetic Stock Center funded by NIH grant P40-OD019794. 

Funding Statement 

This project has received funding from the European Union’s Horizon 2020 research and 

innovation program under the Marie Skłodowska-Curie grant agreement No 841047 and NSF 

CMMI #1727518. 

  Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



18 
 

References 

1. Noller CM, Boulina M, McNamara G, Szeto A, McCabe PM, Mendez AJ. A Practical 
Approach to Quantitative Processing and Analysis of Small Biological Structures by 
Fluorescent Imaging. J Biomol Tech JBT. 2016;27(3):90-97. doi:10.7171/jbt.16-2703-001 

2. Al-Kofahi Y, Zaltsman A, Graves R, Marshall W, Rusu M. A deep learning-based algorithm 
for 2-D cell segmentation in microscopy images. BMC Bioinformatics. 2018;19(1):365. 
doi:10.1186/s12859-018-2375-z 

3. Green JM, Appel H, Rehrig EM, et al. PhenoPhyte: a flexible affordable method to quantify 
2D phenotypes from imagery. Plant Methods. 2012;8(1):45. doi:10.1186/1746-4811-8-45 

4. Arganda-Carreras I, Kaynig V, Rueden C, et al. Trainable Weka Segmentation: a machine 
learning tool for microscopy pixel classification. Bioinformatics. 2017;33(15):2424-2426. 
doi:10.1093/bioinformatics/btx180 

5. Carpenter AE, Jones TR, Lamprecht MR, et al. CellProfiler: image analysis software for 
identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi:10.1186/gb-
2006-7-10-r100 

6. Nunez-Iglesias J, Kennedy R, Parag T, Shi J, Chklovskii DB. Machine Learning of 
Hierarchical Clustering to Segment 2D and 3D Images. PLOS ONE. 2013;8(8):e71715. 
doi:10.1371/journal.pone.0071715 

7. von Chamier L, Laine RF, Jukkala J, et al. Democratising deep learning for microscopy with 
ZeroCostDL4Mic. Nat Commun. 2021;12(1):2276. doi:10.1038/s41467-021-22518-0 

8. Jacquemet G. Deep learning to analyse microscopy images. The Biochemist. 
2021;(bio_2021_167). doi:10.1042/bio_2021_167 

9. Ayankoso S. The Surge in Deep Learning for Computer Vision: A Concise Review of 
Convolutional Neural Networks. Published online December 18, 2018. 
doi:10.6084/m9.figshare.11987520 

10. Xie W, Noble JA, Zisserman A. Microscopy cell counting and detection with fully 
convolutional regression networks. Comput Methods Biomech Biomed Eng Imaging Vis. 
2018;6(3):283-292. doi:10.1080/21681163.2016.1149104 

11. Grishagin IV. Automatic cell counting with ImageJ. Anal Biochem. 2015;473:63-65. 
doi:10.1016/j.ab.2014.12.007 

12. Takko H, Pajanoja C, Kurtzeborn K, Hsin J, Kuure S, Kerosuo L. ShapeMetrics: A 
userfriendly pipeline for 3D cell segmentation and spatial tissue analysis. Dev Biol. 
2020;462(1):7-19. doi:10.1016/j.ydbio.2020.02.003 

13. Falk T, Mai D, Bensch R, et al. U-Net: deep learning for cell counting, detection, and 
morphometry. Nat Methods. 2019;16(1):67-70. doi:10.1038/s41592-018-0261-2 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



19 
 

14. Ouyang W, Mueller F, Hjelmare M, Lundberg E, Zimmer C. ImJoy: an open-source 
computational platform for the deep learning era. Nat Methods. 2019;16(12):1199-1200. 
doi:10.1038/s41592-019-0627-0 

15. Bakas S, Reyes M, Jakab A, et al. Identifying the Best Machine Learning Algorithms for 
Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the 
BRATS Challenge. Published online November 5, 2018. Accessed August 15, 2021. 
https://arxiv.org/abs/1811.02629v3 

16. Jain V, Seung HS, Turaga SC. Machines that learn to segment images: a crucial technology 
for connectomics. Curr Opin Neurobiol. 2010;20(5):653-666. 
doi:10.1016/j.conb.2010.07.004 

17. Prakash M, Buchholz TO, Lalit M, Tomancak P, Jug F, Krull A. Leveraging Self-supervised 
Denoising for Image Segmentation. In: 2020 IEEE 17th International Symposium on 
Biomedical Imaging (ISBI). ; 2020:428-432. doi:10.1109/ISBI45749.2020.9098559 

18. Kromp F, Fischer L, Bozsaky E, et al. Evaluation of Deep Learning Architectures for 
Complex Immunofluorescence Nuclear Image Segmentation. IEEE Trans Med Imaging. 
2021;40(7):1934-1949. doi:10.1109/TMI.2021.3069558 

19. Stringer C, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular 
segmentation. bioRxiv. Published online February 3, 2020:2020.02.02.931238. 
doi:10.1101/2020.02.02.931238 

20. Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-convex Polygons. 
ArXiv180603535 Cs. 2018;11071:265-273. doi:10.1007/978-3-030-00934-2_30 

21. Weigert M, Schmidt U, Haase R, Sugawara K, Myers G. Star-convex Polyhedra for 3D 
Object Detection and Segmentation in Microscopy. 2020 IEEE Winter Conf Appl Comput Vis 
WACV. Published online March 2020:3655-3662. doi:10.1109/WACV45572.2020.9093435 

22. Walter FC, Damrich S, Hamprecht FA. Multistar: Instance Segmentation Of Overlapping 
Objects With Star-Convex Polygons. In: 2021 IEEE 18th International Symposium on 
Biomedical Imaging (ISBI). ; 2021:295-298. doi:10.1109/ISBI48211.2021.9433769 

23. Comellas E, Farkas JE, Kleinberg G, et al. Local mechanical stimuli correlate with tissue 
growth in axolotl salamander joint morphogenesis. Proc R Soc B Biol Sci. 
2022;289(1975):20220621. doi:10.1098/rspb.2022.0621 

24. O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F. TRPV4-mediated 
mechanotransduction regulates the metabolic response of chondrocytes to dynamic 
loading. Proc Natl Acad Sci. 2014;111(4):1316-1321. doi:10.1073/pnas.1319569111 

25. Duerr TJ, Comellas E, Jeon EK, et al. 3D visualization of macromolecule synthesis. Stainier 
DY, Sandoval-Guzman T, Sandoval-Guzman T, eds. eLife. 2020;9:e60354. 
doi:10.7554/eLife.60354 

26. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-
image analysis. Nat Methods. 2012;9(7):676-682. doi:10.1038/nmeth.2019 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



20 
 

27. Google Colaboratory. Accessed October 5, 2021. 
https://colab.research.google.com/github/MouseLand/cellpose/blob/master/notebooks/run_c
ellpose_GPU.ipynb 

28. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light 
microscopy. J Microsc. 2006;224(3):213-232. doi:10.1111/j.1365-2818.2006.01706.x 

29. Comellas E, Kleinberg G, Lloyd K, Mueller T, Shefelbine SJ. Pipeline for the 3D Shape and 
Cell Proliferation Analysis in a Regenerating Axolotl Humerus. Zenodo; 2021. 
doi:10.5281/zenodo.5591984 

30. Ouyang W, Le T, Xu H, Lundberg E. Interactive biomedical segmentation tool powered by 
deep learning and ImJoy. Published online February 24, 2021. 
doi:10.12688/f1000research.50798.1 

31. Berg S, Kutra D, Kroeger T, et al. ilastik: interactive machine learning for (bio)image 
analysis. Nat Methods. 2019;16(12):1226-1232. doi:10.1038/s41592-019-0582-9 

32. Sommer C, Straehle C, Köthe U, Hamprecht FA. Ilastik: Interactive learning and 
segmentation toolkit. In: 2011 IEEE International Symposium on Biomedical Imaging: From 
Nano to Macro. ; 2011:230-233. doi:10.1109/ISBI.2011.5872394 

33. Borland D, McCormick CM, Patel NK, et al. Segmentor: a tool for manual refinement of 3D 
microscopy annotations. BMC Bioinformatics. 2021;22(1):260. doi:10.1186/s12859-021-
04202-8 

34. Stringer C, Pachitariu M. Cellpose 2.0: how to train your own model. Published online April 
5, 2022:2022.04.01.486764. doi:10.1101/2022.04.01.486764 

 

 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



21 
 

Figures 

 

Figure 1: Surfaces of Cells Identified by Stardist  

Segmenting cells in 3D images provides a much greater challenge compared to 2D 

segmentation as each 3D image can contain hundreds of 2D cross sections often referred to as 

slices. Each 2D cross section of 3D microscopy images are then often more difficult to manually 

segment than normal 2D images as the exact boundaries of cells in 3D images are not always 

well defined. As a result, if attempting to manually segment cells in 3D images, it is often 

necessary to look at adjacent slices in the 3D image stack in order to better visualize the 

boundaries of a cell. As shown above, this process can be made harder still when cells are 

clumped together. In a 2D view (A), these clumps of cells may look like one large object, and it 

is necessary to gather data from the adjacent slices in order to segment the individual cells as 

when viewed in 3D (B), where it is easier to see that these “clumps” are made up of a few 

individual cells. 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



22 
 

Figure 2: Creating Labeled Image Stacks for a Stardist Training Set 

To create an element of a training set, a small, cropped section of one slice was taken from an 

image in the dataset (A). The selection tool was then used to add all objects in the slice to the 

ROI manager (B). This was followed by using the LOCI plugin to create a region of interest map 

of all the selections (C). The same process was then repeated for 15 neighboring slices which 

were then concatenated (D) and paired with their original source image. 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



23 
 

Figure 3: Image Analysis Pipeline 

To process an image (A), a box around the area of interest was cropped out and background 

subtract was applied to all slices in Fiji (B). The cropped image was then split into 16 or 25 

equally sized tiles based on the image size (C). The tiles were then processed using Stardist in 

Google Colab or Cellpose to obtain ROI maps of the objects detected by the algorithm’s model 

(D). Fiji was used to collect data on the size and locations of each detected object and MATLAB 

was used to reassemble all the tiles in a plot to view the detected objects in 3D as well as 

compute the total number of objects (E).   

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



24 
 

Figure 4: Effect of Background Subtract, Rolling Ball Radius, and Smoothing 

The original image (A) was processed in Cellpose with background subtract and smoothing (B) 

as well as with background subtract with no smoothing (C). Background subtract enhances the 

contrast between objects of interest and the background by finding the average pixel intensity 

around each pixel in a circle (the size of which is the rolling ball radius [R.B.R.]) and subtracting 

it from the pixel’s intensity (A to B, A to C). The rolling ball radius should be set to at least the 

size of the largest non-background object in the image to avoid mistakenly subtracting objects of 

interest from the image (B, C). Smoothing is another parameter, which reduces noise by 

averaging pixel intensities in sets of 3x3 which improves the background subtraction. It should 

be disabled with very small changes on intensity to prevent image data from being subtracted 

below the background. The low cell count on the original image shows the need for background 

subtract when predicting on high intensity images with low contrast. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



25 
 

Figure 5: Stardist Predictions on Overlapped Cells 

Shown is one slice of three different Stardist predictions (A) and their corresponding original 

images (B). Based on our results, Stardist excels at identifying overlapped cells and creating 

appropriate predictions in the form of an ROI map. This is especially important as in a 2D cross 

section of a 3D image, overlapped cells can appear as just one large object (B). By using data 

from adjacent slices, Stardist is able to determine which sections of the “large object” belong to 

each cell. 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



26 
 

 

Figure 6: Direct Comparison of Stardist, Cellpose, and Manual Segmentations 

Shown is the Cellpose and Stardist segmentations as well as one slice of the source image for a 

256-pixel by 256-pixel subsection of the initial dataset. A manual segmentation is also shown. 

For the whole subsection, manual segmentation found 30 cells while Cellpose found 20 cells 

and Stardist found 24 cells.  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



27 
 

 

Figure 7: Cellpose and Stardist Predictions on High Contrast or Blurry Images 

When images contain high contrast between objects of interest and the background, largely 

spaced-out objects, or objects with uniform shape and intensity, Cellpose will generate 

predictions that will segment objects consistently and correctly. For the source image (A, 

middle), the cells of interest overlap very little and are clearly visible against the dark 

background. As a result, the Cellpose predictions (A, left) are sufficient and training a Stardist 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



28 
 

model to create predictions (A, right) is not necessary and may even lead to less accuracy 

compared to Cellpose’s widely pretrained model. In these cases, training a Stardist model from 

the ground up is not necessary and may actually miss more cells than Cellpose as neither 

model can be completely accurate. Cellpose’s correct segmentation of objects decreases in 

consistency when images contain high amounts of noise, clustered cells, and unusual 

intensities. The source image shown (B, middle) is slightly blurry with areas of low contrast. As a 

result, the Cellpose predictions (B, left) which are found using a pre-trained algorithm are 

incomplete, missing a large amount of the cells in the source image. Due to being trained on a 

dataset containing similar blur and noise, the specialized Stardist predictions (B, right) find more 

of the cells. Due to the poor quality of the source image and the current progress in deep 

learning, neither algorithm will generate perfect predictions, but Stardist is preferred since it best 

mitigates the errors between the two algorithms. 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



29 
 

Appendix 

 

Figure A.1: Testing Stardist Processing Image Size   

Images were processed by Stardist at varying planar dimensions and varying depths in order to 

find the largest image size that Stardist could successfully (green) generate predictions for 

without incurring an error (red). Increments were determined by starting at very high and low 

dimensions and gradually decreasing the increment size while homing in on the critical image 

dimensions. Systematic narrowing of the image dimensions is a practical way to accomplish this 

however due to Stardist’s quick image processing time, the process is rather short. Minimizing 

edges in the z dimension was prioritized. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



30 
 

Figure A.2: Training Loss vs. Epoch Number In Stardist Training 

Training loss (shown in blue) is a measure of the difference between a model’s current 

prediction of a source image and the correct prediction based on labeled data within the training 

set. A smaller loss value indicates a more accurate prediction. Validation loss (shown in orange) 

is a similar measure but instead is based on the model’s prediction accuracy on an image that is 

not within the training set. Low validation loss indicates a model that is more likely to succeed in 

processing images. A successfully trained model should have a training curve with a shape 

resembling exponential decay (A). Because of this, additional training has diminishing returns 

and may be unnecessary. If training loss is lower than validation loss by a large amount, the 

model is likely overtrained and needs a larger, more varied training set (B). 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



31 
 

CRediTAuthorStatement 

Giona Kleinberg: Data Curation, Formal Analysis, Investigation, Methodology, Software, 

Writing - Original draft preparation, Writing – Review & Editing.: Sophia Wang: Formal 

Analysis, Investigation, Methodology, Writing - Original draft preparation, Writing – Review & 

Editing.: Ester Comellas:  Software, Data Curation, Formal Analysis, Funding Acquisition, 

Writing – Review & Editing.: James R. Monaghan: Conceptualization, Funding Acquisition, 

Writing – Review & Editing.: Sandra J. Shefelbine: Conceptualization, Validation, Resources, 

Data Curation, Supervision, Funding Acquisition, Writing – Review & Editing 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



32 
 

Highlights 

- Image analysis pipelines were used for cell quantification in 3D light-sheet images. 

- Stardist outperforms Cellpose on large datasets that have high amounts of objects. 

- Stardist outperforms Cellpose given a low signal-to-background ratio of intensity. 

- Tiling of images results in more effective background subtract when pre-processing. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof


