On the Use of Algebras as Semantic Domain of
Object Societies

I. Ramos. O. Pastor, J.H. Cands

Departament de Sistemes hnfarmatics i Computacis. Universitat Politéenica de Valéncia

Cami de Vera, s/n . F- 16071 Valénein (Spain). e-mail {iramos,plo, joseh}@dsic.upv.es

Julv 15,1992

Abstract

One of the main current research topics is to find a semantic domain
for the Object-Oriented (OO) model. The interpretation of OO concepts
has Lo reflect in a precise way the properties of the model, keeping at the

same time good formal propertics. One needs to be able in such a domain
to cope with both structural and dynamic aspects. It is possible to use
different =orts of logics (clansal, equational) to interpret the static aspects
of ubjects: soime extensions using temporal azpects (temporal logic, equa-
tional dynamic logic. ete.) have been used lo tnterpret the dynamic ones,
but in these cases we lose an elficient operational semantics allowing the
animation of ohject societies. In soltware engincering, the need of such a
semanlics is crucial 1o give a meaning to the validation and verification
ol soltware via rapid prototyping.

[n this paper. we use term algcbras as the semantic domain for the
ohject socicties. Structural (stafic) aspects are thus handled using the
traditional algebraic specification approach: to deal with dynamic aspects,
a sccond-order extension of the cquational logic is given. These second
order aspects are managed in a lirst order style using syutactic machinery:
operators and cquational genericity. Doing things in this way we have a
well defined and efficient operational semantics allowing the animation of
OO-specilicalions.

The ideas preseuted tn this paper ave in an incipient state; an example
loltowing them is completely prescuted in this paper. A fiest implenen-
tation has heen dowe using the Tunctional Tanguage and interpreter Axis
as a reification of term algebras. e operational semantics is conditional
ternn rewriling.

105

1 Introduction

Many attempts have been done in the last years to find a semantic domain
for the Object-Oriented (QO) model ([IES 91,\Wie 91a]). The interpretation of
conceptssuch as object. class. iheritance, ete., has to reflect in a precise way the
propertics ol the model. and at the same time to keep good formal properties. In
such a donmain, one needs to be able to cope with both structural and dynamic
aspects. 1t is possihle to use different sorts of logics {clausal, equational) to
interpret the static aspects of objects: some extensions using temporal aspects
(temporal logic ([Gab 87)). equational dynaniic logic ([Wie 91a}), etc.) have
been used Lo interpret the dynamic ones, but in these cases we lose an efficient
operational semantics allowing the animation of object societies. In software
engineering, the need of such a semantics is crucial to give a meaning to the
validation of soltware via rapid prototyping ([BCG 33]).

In this paper, we use lermn algcbras as the semantic domain: a class will
be interpreted as a term of a given sort, an object as a ground term, etc. At
the specification level, the functional expressiveness will cope with the classical
OO0 concepts such as encapsulation. reification, and others, and allows an easy
way to take into account object interaction and inheritance (the well-known
ahstraction operations: generalization. specialization, aggregation, part-of, and
others will be interpreted as operators over terins, and their semantics given in
an axiomalic wiy). To deal with dynamic aspects. a second-order extension of
the equational logic is given. These second ovder aspects are managed in a first
ovder style using syntactic inachinery: operators and equational genericity. We
will focus on the aplication of these ideas to OASIS([PHB 92]), an open and
active information systems specification language developed at the DSIC.

This paper is organized as follows. The next section makes a brief descrip-
tion of the QOO nmwodel underlying the OASIS language, as well as the basic
langage constructs. Section 3 introduces the use ol term algebras to establish
the senantics of the abject socicties, and seetion 1 explains how the reification
of the OASIS object model is carried ont. Appendices A to € show the com-
plete source and object codes for the example discussed along the paper and a
simplified algebraic specilication of the OASIS language.

2 The OASIS framework

The QO paradigim is attracting a lot of attention in different fields of Computer
Science. [n Conceptual Modelling, ohject-orientation allows us to model an
Information Systetn (1S) and its environment in a uniform way using the object
as the single design unit. In the OO model. concepts are close to real world
phenomena: thus. the semantie gap (Lo the diference between what the system
is and how it is represented) is narrower than those of non OO approaches.
Many languages have been developed for QOO Conceptual Modelling([JHS 91,

106

Wie 910]): they look at the world as a collection of interacting objects. OASIS
follows these ideas.

An object will be for us an observable process: by that we mean that an ob-
ject’s evolution is a linear process. starting on the object’s creation and finishing
(iCit happens) on its destruction. Its properties can be observed at any moment
during its life. Attributes are valued properties and their values depend on
time. Tlicre are also aniversal properties or object laws ([Wan 89]) that always
must hold.

We call class a collection of objects sharing the same properties. In OO
programming. the notion of type is closely related to the notion of class. In our
view, a class consists of

o a type (in the sense of [FS 917).
o a st of object identificrs (O1Ds). and

o a mapping from the OLD set 1o the population.

So. an instance of a class is an object ol its Lype. An object encapsulate
both structural and behavioural aspects. Let us take a brief view of them within
the OASIS [ramework.

Tlie hasis for the lormalization of structural aspects is Lhe abstract data types
(ADT) framework. ADTs give us a polentially infinite naming mechanism for
objects in which equafity can be tested via equational reasoning.

Attributes are valued objoct properties, whose type is an ADT. Their values
at o given moment of the object’s life deline its state. Changes of the object’s
state are driven by occurrences ol events. Every object has a life (which is a
process execution) that we will represent as a trace or sequence of events. So, ob-
servations will consist of reading atteibute values. Those attributes whose value
does not clinnge during the object s existence are called constant attributes; oth-
erwise. they are named variable attributes. A constant attribute will be selected
as the OID or key.

For ench object. there are two special events: new creates the object, and
must be the fiest event in the object’s trace; destroy is the cause of the ob-
jeet's destruction. So. if we call I the set of events associated to an object
0. any trace O will lollow the pattern newe ¢ o --- o ¢, o destroy, being
e € Loi=1.--.n
Obviously, we will use the notion ol class as the basic specification construct.
Structura) mechanisms are used in order to build our conceptual model in a
constructive way: a vollection ol operators gives us a sel of relationships be-
tween classes. Aggregation induces a part-of relationship; classes inay also be
embedded in a specialization hierarchy: specialization usually implies reuse of
specification code by allowing a class to inherit properties from its superclass.
The grouping operator allows us to build complex classes whose instances are

107

made ol a collection of instances of the grouped class. Last but not least, the
parallel composition operator defines the whole object society as a composition
of previously delined classes. So. class operators provide a constructive way to
specily the whole Information Systen.

Objects behaviour can be modelled by means ol Petri nets, process algebra,
etc. In OASIS, arbitrary interleaving has been used as an implementation for
parallelism; in this way, users are able to choose the next action to be taken in
a menu-driven process.

There are two dyuamic relationships between objects: event sharing and
triggering relationships. A shared event will participate in the lives of the
objects sharing it. In the other hand. conditions may serve as triggers of events
from other objects, introducing activity tn the system.

Appendix A shows the OASIS specification of the elementary class person
i the context of the well known emiployiuent agency case study. A class specifi-
cation starts describing the structure of the objects helonging to that class. We
have constant and variable atteibutes, being Lhe constant attribute person-code
the key: abstract data types — in parcticular, the ADT string — give us a nam-
ing mechanisin lor objects, which is potentially infinite and which equality can
be tested. su it is a good ohject identification mechauism.

The observation Tunction allows us to specily the values of the attributes
as a linction of the ohjects” behavionr, The class persen has two variable
:cl.l.li'”llll-l‘:-i. is-cand and is-employee. A person is an cinployee while working
I a company:

is_employee(person,time):bool
formulas
is_employee(P,T)=false :- new_person(P,T).
is_employee(P,T)=true :~ hire(C,P,T).
is_employee(P,T)=false :- fire(C,P,T).
end_formulas

As we can see in the above example. the observation [unction is defined ax-
lomatically using a logical expressiveness. The example corresponds to the
clausal+equational version of the language (L-OASIS). We use a trace language
to represent the objects lives, including a trace as the last argument of every
event in the system being specified. The other variable attribute, is-cand, is
defined in a similar way (see page 13).

The allowed sel of traces is delined by means ol preconditions. In our exam-
ple. a person wight apply ouly once prior to be hired, and only can be destroyed
if he/she is not an employee:

preconditions
apply(P,T) :- is_cand(P,T)=false,is_employee(P,T)=false.
destroy_person(P,T) :- is_employee(P,T)=false.

108

The active behaviour is defined in the triggering paragraph. A person
must apply alter created:

triggering
self :: apply(P,T) :- new_person(P,T).

Both preconditions and triggering sentences are phrases of a dynamic clausal4-equational
logic ([Wie 9la]).

3 Term algebras as the semantic domain for
object societies

The problem of the Information Systems (1S) specification could be stated from
our point ol view as how to define complcr functions starting on the Abstract
Data Types (ADT) world (the data subspecification) using the facilities that
functional fanguages usually offer. \We will start this section introducing the
well-known basic concepts of the algebraic specification framework; alter them,
we will give an overview of our approach, that is fully developed in the section 4.

3.1 Preliminaries

As we have said, we start in the ADT framework: to introduce the basic concepts
we will follow the notation [rom [GTW 78], starting form the notion of indexed
sel.

Definition 1 Lot S be a scl. A S-indexed set A s a collection of sels Ay for
all inder s o S. We will use A = { A }oey to denote S-indexed sels.

Definition 2 Signatiee,

e call signature © a pair (S,Q), where S is a colleclion of sort names and
a S™x S-indcred family of operation symbols. Q = {Qy Jwes- ses- Ifo € Qy
then w ts the arity of the symbol o and s is ils sort.

Definition 3 X-Algebra.

Given a signaturc ©. a S-algebra A is composed of a non-empty domain A,
called the wniverse, thal contains a diffcrent carrier A, for each sort s € S
(A= {VYees) and « funuly I of scis of functions such thal for each operation
synbol o € Qb caorriosponding function o, € I is defined as o, 0 A — A,

where A= A x Ao x oot A, e =35t oan.

We will always assiue that universes are non empty, i.e., they will contain at
least a constant. When S is unary we name the algebra as one-sorted. Otherwise
we call it many-sorted. From now on we will consider the signature I as fixed
and we will use ouly the word algebra instead of E-algebra.

109

Definition 4 [Homomorphism.
An homomorphism 2 from an alyebra A to another algebra B s a family of
applications (¢)ses

o e — By

2
that preserves the operations i S, in the sense thal
Px(./.,\(("l ----- an)) = fb‘()fsl(("l Voo wenlan))
Jorall f € Q5. w=sl...5n and a; € .
An isomorphism is a bijective homomorphism.

Defiuition 5 Free algebra.

An algebra A in a class of algebras C is free over a sel of variables X if X is a
subset of A and for any algebra B € C and for any assignment 0 : X — B there
evists a unique homomorphism 22 A — B such thal ¢ and 0 agree over X.

If the (ree algebra exists, it is unique up to an isomorphism.

Definition 6 Initial Algebra.
Awalgchra A inoa class C of algebras is inivial o, for any algebra B &€ C there
exisls a unique homomorphism 2. A — .

Proposition 1 If A is iitial tn a class C of algebras then an algebra B is initial
in C if A and B are isomorphec.

Tosome extent. that means that (abstract) data are representation-independent.

Definition 7 Ground term
Given a signalure ¥ = (S, Q). the scl of sround terms of sort 5. Ty, 15 defined
inductively as follows:

1. Qy.CT. ¥Vses.
2ot LETNeEQ sns y VW €T withi=1,...,n.

Definition 8 The ground term algebra 7T is the algebra having as carrier the
ground lerms of the language. and where the funclion symbols are inlerpreled as

Yo € Q.«I sn.x

vi; €T
ﬂ‘l‘:'l:\‘lx~~-)(7ﬂ.\'n—7-‘s
or(ty.. ... () =o(ly.....ly)

ice.. cach funclion symbol s imicrpreted as ilself.

110

Definition 9 Tern Algebra.

Let N = {N,} ey bc a set of variable symbols such that X, are variables of sort
s. The Term Algebra T(\\') s constructed by adding lo the signature of T lthe
elements of N, as constants of sort s. Among all the algebras. the (absolutely)
free algcbra over XN s (isomorphic to) T(.X).

Definition 10 Equation
Given 1. t» € T(N). an equation bclween by and Uy s denoled by (Vr)t, = o
or. assuning thal cariables arc wnieersally quantfied, = L.

Definition 11 Assignment

Given an algehra A and a sel of variables N an assignment 0 from X lo A isa
mapping 0 : N — A that assigns valucs of A lo the variables of X'. Thus, there
exists a unique homomorphism from T(N) to A, denoted by 0, that extends 0.

Definition 12 Aodel
Let B be a sel of equations. An algebra A is @ model of E if and only 1f for

each cqualion t = 5 in [2 and for cach valuc assignment Lo the variables in 't
and s. the meanings of t and s arc tdentical. We call Mod(E) the class of all
the modcls of F: cach one of thon s an algehra. .

Definition 13 An Abstract Data Type (ADT) is the class of tsomorphic initial
algebras for the ADT s signalurc.

3.2 From ADTs to Objects

Traditionally, the ADT approach deals with values rather than objects. This
is why some authors think that it is not an appropiate framework to formalize
an Object-Oriented model ([FN91]). Nevertheless. in this paper we develop a
cloar and powertul formal algebraie envivonment to characterize our specification
langzuage

The main idea is to look at an OASIS specification as a term with variables
t{r) of the term language with variables Tu(e) generated by a signature T.
Any specilication language will be characterized by its signature. Once it is
fixed, the specilications written on that language will be terms 2(x) € Te(z).
So. il we fix the signature of the OASIS language, we have a constructive way
to write specifications. Furthermore, using a functional programming language
interpreter we will have implementations ol them!.

Recent work on conditional rewriting logic — a logic ofactxons whose models
are concurrent systetns - ([Mes 90]) gives us the chance to deal with concur-
rence. Rewriting logic is implicit in termn rewriting systems, but has passed for

Ppevious work on OASIS coviromments ([RPC 91.CP 91a.CP 91bPCA 92]) have been
based on the construction of translators from an OASLS specilication to the formal first order
(clausal or egnational) theory corresponding to it Such a process of translation is not nec-
esaary 10 the presented cavironment, because adeclarative and operational semantics can be
directly associated to the specilication language

111

the most part unnoticed dne to our overwhelming tendency to associate term
rewriting with equational logic. Maude ([Mes 90]) is a programming language
whose modules are rewriting logic theories with well-defined declarative and
operational semantics. It provides a sumple unification of concurrent program-
ming with functional and object-oriented programming, and supports high-level,
declarative programming ol concurrent systems. [n this context, a significative
research work is in progress Lo deal with concurrence in a natural way within our
object-oriented specification environment by characterizing the rewriting logic
theory that could he associated to a OASIS specification.

4 Object-Oriented Concepts Reification

Once we have defined the object-oriented coucepts and chosen the semantic
domain, let us reiflicate the elenients ol the former in terms ol the latter. We
will require to the reilication mapping the lollowing four properties:

L. Lo be a mapping preserving the structure of the operations (by operalions
in our model we mean concepts sich as: instance-of, population-of, ag-
gregation, grouping. ete.). Let us call rep such a mmapping, op such an
operation and let o and o he two object-oriented concepts. Then

for op unary we have rep(op(o)) = op(rep(o)), and

for a binary op rep(o op o') = rep(o) rep(op) rep(o’),
assuming an infix concerete syntax. The same must apply for n-ary oper-
altors,
Aun alternate view 1o these equations is to say that certain diagrams com-
mute. Following a cathegorial approach, we will have objects (0, 0') and
worphisius (rep.op) that constitute a cathegory with certain properties.

But let us lollow in the algebraic approach.

2. The semantic domain and thie mapping rep have to capture properly the
ohject oriented properties without introducing nor deleting other ones.

3. The process ol reilication (resp. de-reification) needs to be easy and
straigthforward.

4. As we are interested on reasoning about the ohject oriented model (vali-
dating. verilying, ete.) in an automated way, the semantic domain must
be easily computerizable.

Let’'s see now how the chosen =cmantic domain verifies these properties by
showing how the different object-oriented concepls are reificated.

For a functional language such as F-OASIS we will define:

112

e \ Basc Language B that will be the term language of the signature

Yo = (S Qpe) For the OASIS linguage we have:

- Spr =1 concep-sch, events, v-attrib-list, events,) owe
tntroduce a sort for each construct in the language.
- Q,;gL will include lour cathegories ol operators:
1. trivial constructors (TCR),
2. trivial consultors (TCS),

3. non-trivial constructors (NTCR), and

4. non-trivial consultors (NTCS).

The TCR will be used {or building the specification equivalent terms (ex-
cept for the second-order terms needed for defining the axioms that imple-
ment the observation funetion). The TCS will give us the elementary parts
that constitute a class definition: events, preconditions, attributes (both
constant and variable). triggering relationships and other projections of
the classes. A set of equations will be introduced defining the TCS in
terms of Uie TCR. In this way we have a presentation to give account for
the architecture ol the objects society. This is a first-order presentation.

o The extension of the language. A, that will be the term language associ-
ated to the signature ©a = (Sa.94). where Sy = (Instance, State)
and Q4 = (*ev, *ac, *av, obs). These are the non-trivial construc-
tors (*ev) and counsultors (*ac, *av, obs). They arc non-trivial in the
sense that they are second-order concepts that will be used to construct
the second-order axioms that model the iimplementation of the observa-
tion Tunction. triggering relationships and other behavionral aspects of the
object-oriented modil.

The signature ¥4 together with the axioms constitute a second-order pre-
sentation modelling events. lives, triggering relationships (actors) and in
general all the beliavioural properties.

Definition 14 A class C will be represented by a term of the language generated
by the signature © = (5,.Q). where S = {class-id, attrib-id, event-id,
var-id. ...} (see page [6). and Q = { class, attributes, constant, variable,

o (id).

The reification of an elementary class will be a term with variables. The
constructor class is the first operator o the term and it accepts as arguments
a class identifier, the atteibutes, the events, the event preconditions and the
triggering relationships lor that class term. being all of them also terms. This
term will belong to the sort class-id used in the domain. See as an example
the term representing the class person in appendix C.

113

Detinition 15 Aun object that is an instance of a class C will be reificated as
the term instance-of (attsk, attsc, C). whereattsk and attsc will be resp.
the terms of the key and constant atiribules that substitute the etiribule classes
(taken as variables) of the term represculing the class C. The sort of this term
will be instance.

The attributes will be two new terms representing constant and variable
attributes. The constant attributes term will be composed of three subterms:
the key attribute, the constant attribute list and the static constraints. The
variable attribute term will be a list where each element will contain the ax-
iomatic definition —given in the chosen logic— of the observation function for
the corresponding attribute:

Definition 16 7The constant alfribules of a class will be reificated as the terms
with functor key/constant-attributes and domain and codomain as shown
in the signature (see nexl definition).

Definition 17 The QObject Identifier (O1d) concepl will be represented in our
model by the term representing the constant aliribule prefized by the unary op-
erafor key. Erample: key("name"@string).

Definition 18 The nwaming mechanism consists of an ADT that is given lo
the user —string in the previous crample— with the Olds properties: infinite
cardimalily and buili-in incquality. The user will choose al object creation lime
an element of the ADT —diffcrent lo those already in use — as the key atiribute,
betng a parameler of the instance-of operalor (see definilion 15).

Definition 19 The object-oriented conceplevent will be represented by the generic
constructor of the signature ¥ xev. that accepls as first argument the event
name.

The different event names are eleruents of the carrier denoted by the sort
event-id, and they are known only when the user writes a concrete class term
(a specification). This is why we need to include the generic operator at the
signature definition time. In the equations where the event participates (e.g.,
those defining the observation function and/or the preconditions) the variable
used as first argument for the *ev operator will be universally quantified over
the event-id carrier. We have so a second-order logic.

The same thing happens with the class-id and attrib-id sorts. And
the same solution will be taken: 1o introduce generic operators (consultors for
the attributes. *ac, *av) that introduce second-order characteristics in our
reification. This second-order will be dealt with through first-order mechanisms
using the syntactic machinery shown below.

Definition 20 The life concepl will be represented by a ground term buill using
*ev generic operalors. For example:

114

sev(“apply”,1, *ev("new-person”,1,"John Smith", instance-of(person, ...)))

The initial state of an object’s life will be represented by the term of the
sort instance instance-of (...). That is to say, that term represents the
object —i.e.. some class’ instance— in its initial state. Other states of the same
instance will be represented by *ev(...), like the term shown above. The final
state —il that situation arrives— will be represented by destroy(...). An
implicit axiom exists in the retfication:

destroy(*ev(.instance-of(...) ...) = nil
for cach defined class (element ol the sort class-id).

Definition 21 The concepl of state of an objecl will have an equivalent double
represenlalion:

1. As the object’s life (sec definifion 20). In this case we are in o updale-
oriented or hackward stralegy.

2. As the value of the observaiion funcltion. Then we have a query-oriented

or forward siralegy.

People from the Information Systems community would talk respectively
about deductive aud dynamic couceptual models!
The observation [unction will iave the following syntax:

obs . instance — state

being the elements of the sort state tuples composed of the attribute values
In a given state.

Definition 22 The change of state concepl will be represented by the events.

Definition 23 An obserealion pomt will be represented by the evaluation of the
obs funclion al a poind,

Onee defined how a clasgs is represeuted by a term, class operators (aggre-
gation. part-of. gencralization. specialization. ...) will be trivially represented
as ordinary operators in the term algebra. Their syntax and semantics will be
given in the usual way, lollowing a pure algebraic style! This allows the users to
define their very specific class operators. They only needs to specify their syn-
tax and semautics. So. we have an exfensible specification language that users
can customize according their convenience. Obviously. the most usual operators
will be predefined.

115

[n this way we cope with the structural aspects of the object-oriented model
in au elegane, well known and computerizable manner. The dynamic aspects
are coped with using the second-order facilities already explained.

The price we have paved in our example is the collapse of the type system
to a homogeneons one®. But in our opinion these are non-general constraints
and depend only on our very concrete implementation. The consequences are
that the answers to queries are given in a non-normal lorm. But at the stage of
our work this is for the moment irrelevant.

5 .Conclusions and future work

We have shown how term algebras constitute an appropiate framework to deal
with the object orientation fromi a lormal perspective. That seems to be very
valuable due to the executability of the constructs used to reificate the object-
oriented concepts, against other approaches perhaps more promising but hard
to be provided with the necessary executability. Second-order aspects that
arise when dealing with dynamic aspects are handled using a pure syntactic
miachinery, allowing us to stay on a [irst-order environment.

A fiest implementation has been made using Azis ([CDG 88)) as the algebraic
specification language. Other languages such as 0bj ([Gog 32]) will be used in
the future in order to iprove both the expressiveness and performances of the
systenn.

Future work will iuclude the definition ol the most important class opera-
tors as well as the introduction of the appropiate mechanisins that make easy to
incorporate new, user-defined class operators making the language truly exten-
sible. On the other haud. the use of concurrent rewiting systems would improve
the syste performances and would keep the implementation closer to what the
ohjects world is.

Acknowledgments Authors whish to thank José Cuevas and Jaume Devesa
for their implenentations as well as their valnable contribution to the first drafts
of the paper.

References

[BCG 83] Balzer, R, Cheatman, T.E. and Green. C., Software Technology in
the 1990°s: Using a New Paradigm, IEEE Computer, Nov. 1983.

[BINL91]) Prolog by BIM Relcase 3.0 Reference Manual. 1SS, Belgium, 1991.

2Dute tu the lack of genericity, coercions and retracts in the functional language employed;
other languages allow the use of such facilities that would allow aveid this problem

116

[P vta]

(CP 91b)

(CDG §§]

[Dav &3]

[ES 91)

(P 91]

[(i;ll) ST‘]

Cands.J I and Pastor,O. Object Oriented and Functional Specifica-
tion of Information Systemms in Proc. of DEXA-9L,Berlin, 1991.

Cands,J.H. and Pastor,O. AAdding Logic Variables to a Functional and
Object Oriented Specification Language, in Proc. of [ASTED Confer-
ence on Applied Informatics, Zurich, 1991.

Coleman. D., Dollin. C., Gallimore, R., Arnold, P. and Rush, T., An
Introduction lo the Aris Specification Language, Technical Report,
[Mewlett-Packard Labs., Bristol, Uk, 1938.

Davison. A.. Blackboard Systems in Polka. Depl. of Computing, Im-
perial College, London, [Y88.

Ehrich I1.D. and Sernadas,A Fundamental Objects Concepts and
Constructions, Proc. of the Second International IS-CORE Work-
shop. Imperial College,London-1991, pp.1-24.

Fiadeiro.J. and Maibaum.T. Towards Object Calculi, Proc. of the
Second International 1S-CORE \Workshop. Imperial College,London-
1991, pp.129-178.

Gabbay, DM Modal and tcmparal logic progranmming, in A. Galton,
editor. Temparal Logics and ‘Their Applications. chapter 6, pages
197-237. Acadenmic Press, London. December 1987,

[G'TW 78] Goguen,J., Thatcher.J. and Wagner.E. An Initial Algebraic Ap-

[Gog §2]
MNles 90)

(PC'A 9]

[JHS 91)

proach to the Specification, Correctness, and Implementation of Ab-
stracl Data Types, in R.Yeh (ed) Current Trend in Programming
Methiodology, Vol 4, Prentice-tlall 1978,80-149

Goguen ., Rapid Prololyping in the OB.J ereculable specification lan-
guuage ACM Soltware Enginecring Not. 19827 (5), pp.75-84.

Meseguer, S, A Logical Theory of Concurrent Qbjects, in Proc. of the
FCOOP-Q0PSLA 90, OQct. 1990,

dastor, O., Cuevas, J. and Alpuente. M., Functional. Relational and

Objcct-Oriented Spectficalion of Information Systems. in Proc. of the
IASTED Conlerence on Applied Informatics, Innshruck (Austria),
Ieb. 1992,

Jungelaus.R., HartmannT., Saake,G. and Sernadas.C. Introduction
to Troll.- A Language for Object Orienled Specification of Infor-
mation Systems Second lnternational [S-CORE Workshop. London-
1901,

117

[PHB 92]

[RCO 39]

Pastor, O., Illayes. F. and Bear, S.. OASIS: An Object-Oriented
Specification Language. in Proceedings of the CAISE-92 Conference,
Springer-Verlag, 1992.

Ramos, [., Canos, J.H., Forradellas, R. and Oliver, J., A Conceptual
Schema Specificalion System for Rapid Protoiyping, Proc. of the XI
[ASTED , Feb. 1990.

[RAM 90] Ramos. 1., Logics and OO-Databases: A Declarative Approach, Proc.

[RPC 91

[Wan 89]

[Wie 91a]

[\Wie 911)

of the DEXA-90. Springer-Verlag, 1990.

Ramos.l., ,Pastor.O. and Casado,V. OO0 and Active Formal Infor-
malion System Specification In Proc, of DEXA-91, Springer-Verlag,
Berlin, 1991

Sernadas, A. ., Sernadas. C. and Ehrich, H.-D,
Olbject-Oriented Language Fealures for Information Systems Specifi-
cation, INESC' 89,

Waud, Y.. A propesal for a formal model of Objects, in Kim and
Lochovsky (eds). Oliject-Oricnted Concepts, Databases and Applica-
tions, ACM Press. Addison Wesley, 1939.

Wieringa. R.J.. o Formalization of objecls using equalional dynamic
logic, Proc. of the DOOD 9L Conlerence, Springer-Verlag, 1991.

Wieringa.R. A Conceplual Model Specification Language (CHSL ver-
ston 2), Technical Report.Dep.of Mathematics and Computer Sci-
ence Vrije Universiteit, Amsterdam, Abril 1991

118

A Example: the OASIS specification of the class
Person

class person
constant_attributes
key person_code:string;
person_name:string

variable_attributes

is_cand(person,time):bool
formulas P:person; C:company; T:time.
is_cand(P,T)=false :- new_person(P,T)
is_cand(P,T)=true :- apply(P,T).
is_cand(P,T)=false :- hire(C,P,T).
is_cand(P,T)=true :- fire(C,P,T).
end_formulas

is_employee(person,time) :bool
formulas
is_employee(P,T)=false :- new_person(P,T)
is_employee(P,T)=tvue :- hire(C,P,T).
is_employee(P,T)=false :- fire(C,P,T)
end_formulas

private_events
new new_person(P,T);
destroy destroy_person(P,T):
apply(P,T).

shared_events
hire(C,P,T);
fire(C,P,T).

preconditions
person can apply only once
apply(P,T) :- is_cand(P,T)=false,is_employee(P,T)=false
destroy_person(P,T) :- is_employee(P,T)=false

triggering
self ::- apply(P,T) :- new_person(P,T).

end_class

119

B The algebraic specification of the OASIS lan-
guage
4% CLASSES

SPEC cl

SORTS class”id

OPS nat: -> class”id
bool: => class”id
string: -> class”id
_:id => class~id

ENDSPEC

%% ATTRIBUTES

SPEC at

SORTS attrib~id

0PS _:id -> attrib”id
EHDIPEC

%% EVENTS

SPEC ev

SORTS event~id

0PS _:id => event~id
ENDSPEC

%% VARIABLES

SPEC var

SORTS var~id

0PS _:id -> var~id
ENDSPEC

%% WELL-FORHED FORMULAE

SPEC fbf
USING var+
at+
ev+
cl
SORTS atom
formula
term
vector
oPs
nil™f : => formula
& : atom formula -> formula

l : atom formula -> formula
not : formula -> formula

S== : term term -> atom

' 120

id => term

<< term term -> atom
2> term term -> atom
=< term term =-> atom
==, term term -> atom
<> term term -> atom
r ec class”id var~id -> atom
nil™t : -> term
_ ¢ var’id -> term
- nat => term
- bool -> term
- vector -> term
SR term term -> term
s term term -> term
= A term term -> term
// ; term term -> term
r atc attrib~id var~id term -> term
r-atv attrib id var~id term ~> term
rev event~id var~id var~id var”
nil ve -> vector
. term vector -> vector
ENDSPEC
%% CONCEPTUAL SCHEHA
SPEC ec
USTING cl+
at+
ev+t
var+t
fuf
SORTS
concep”sch events
e“class”list private
e"class priv-event list
attribuces privievent
c attrib shared
k- attrib sh”event~list
cTattriblist sh”event
cTattrib def v attrib
nok attrib constraints
trig trig-relation
trig-address trig formula
aPs
%% TRIVIAL CONSTRUCTORS

121

vTattribTlist
v attribTdef

v attrib decl
vTattribTeq list
viattribTeq

prec
prec”formula
prec formula®list
trig relation”list

conceptual “schema : class™id e"class”list -> concep”sch
nile : -> e"class”list
e"class e"class’list -> e"classlist

class : class”id attributes events prec trig -> e"class
attributes : cTattrib vattrib -> attributes

constant : k~-attrib nok attrib constraints -> cTattrib
key : cTattrib"def -> kTattrib

nokey : c attrib”list -> nokTattrib

constraints : formula -> constraints

nil~c :,-> cTattrib"list
_i- : c attrib-def cTattrib"list -> cTattrib list
@ : attrib~id class"id -> cTattribdef

variable : v~attrib~list -> vTattrib

nil”v : -> vTattribTlist

~i- : v attrib~def vTattrib list -> vTattribTlist
equations : v-attrib decl vTattribTeq list -> vTattrib def
@ : attrib~id class”id -> v-attrib decl

nil-eq : -> v7attrib”eqlist

-i- @ v-attribTeq v attrib’eq list -> vTattribTeq list

== ! term term -> v attribTeq

events : private shared -> events

private : priv event”list -> private

nil"p : -> priveventTlist

_i. ¢ privTevent priv-event list -> privTevent list
new : event”id class”id -> priv-event

destroy : event”id class™id -> priv event

normal : event~id class”id -> priv-event

update : event~id class”id class”id ~> priv event

shared : sh™event™list -> shared
nil™s : -> sh event”list
- sh”event sh event~list ~> sh event list

sh : event”id class”id class”id -> sh7event

preconditions : prec formula“list -> prec

nil pc : -> prec formula“list
-i- ! prec formula prec formulalist -> prec”formulaTlist
if : atom formula -> prec formula

triggering : trig-relation”list -> trig

nil“tr : -> trig relation”list

-+~ @ trig-relation trig relation”list -> trig-relation”list
-ti. ! trigTaddress trig formula -> trig-relation

self : -> trig-address

object : => trig-address
class : -> trig-address
if : atom formula -> trig formula

122

#av : event id term term term -> term
%% TRIVIAL CONSULTORS

atk : e“class -> c attrib’def

atc : e class -> c attrib”list

atv : e class =-> v-attrib’list

constr : e class -> formula

evp : e class -> privTeventlist

evsh : e "class -> sh™event™list

ev new : e"¢class -> event~id

term~atc : attrib"id term c attriblist -> term
term~eq : attrib”id event”id v attribTlist -> term

%% NOW-TRIVIAL CONSULTORS

*ac 1 attrib”id term e“class -> term
#av . attrib”id term e“class -> term

FORALL
cid,cidl : class~id
ct : constraints
cal : cTattrib list
ka : k-attrib
noka : nokTattrib
val : vTattriblist
ca : c-attrib
va : v attrib
pel : privTevent”list

p : private

sel : shTevent list
s shared

a attributes

e : events

f : formula

pc : prec

tr : trig

aid,aidl : attribid
eid,eidl : event~id

ec : e class

cad : cTattrib def
vaeql : vTattribTeqlist
t,t1,t2,t3,t4 : term
vli,v2,v3 : var~id

vc : vector

AXIOMS for atk:
atk(class(cid,attributes(constant(key(cad) ,noka,ct),va),e,pc,tr))=cad

AXIOMS for atc:
atc(class(cid,attributes(constant(ka,nokey(cal),ct),va),e,pc,tr))=cal

AXIOMS for constr:
constr(class(cid,attributes(constant(ka,noka,constraints(f)),va),e,pc,tr))=f

123

AXIOMS for atv:
atv(class(cid,attributas(ca,variable(val))

AXIOMS for evp:

,e,pc,tr))=val

evp(class(cid,a,events(private(pel),s),pc,tr))=pel

AXIOMS for evsh:

evsh(class(cid,a,events(p,shared(sel)) ,pc,tr))=sel

AXIOMS for evTnew:

ev new(class(cid,a,events(private(new(eid,cid);pel),s),pc,tr))=eid

AXIONS for termTeq:
%% no variable attributes
term eq{aid,eid,nil”v) = nil"t

%% looking for the appropiate attribute

term eq(aid,eid,aid1@cidl equations vaeql ;val) = term~eq(aid,eid,val)

IF not aid==aidl

%% no equations for the variable attribute

term~eq(aid,eid,aid@cidl equations nil”eq;val) = nil’t

%% looking for the appropiate equation
term eq(aid,eid,aid@cidl

equations r-atv(aid,vl,r ev(eidl,vit,v2,v3))==t3;vaeql;val) =
term eq(aid,eid,aid@cidl equations vaeql;val)

IF not eid==eidl

%% this is the equation!
term-eq(aid,eid,aid@cidl
equations r-atv(aid,vl,r ev(eid,vl

,v2,v3))==

r-atv(aid,vl,v3)++v2 ; vaeql;val) = "+"

term”eq(aid,eid,aid@cidl
equations r-atv(aid,vi,r ev(eid,vl

,v2,v3))==

r-atv(aid,vl,v3)--v2 ; vaeql;val) = "-="

term~eq(aid,eid,aid@cidl
equations r-atv(aid,vi,r ev(eid,vl
r~atv(aid,vl,v3) ;

term eq(aid,eid,aid@cidl
equations r-atv(aid,vl,rev(eid,vl

term~eq(aid,eid,aid@cidl

equations r-atv(aid,vl,r ev(eid,vl,

AXIOHS for termatc:
%% no constant attributes
term-atc(aid,nil"t,nil"¢c) = nil"t
term"atc(aid,nil”vec,nil"c) = nil”¢t

,v2,v3))==

vaeql;val) = "="

,v2,v3))==v2 ; vaeql;val)

v2,v3))==t1 ; vaeql;val) = t1

%% looking for the appropiate constant attribute
term”atc(aid,t!vc,aid1@cid;cal) = term~atc(aid,vc,cal)

124

IF not aid==aidi

%% this is the constant attribute!
term-atc(aid,t!vc,aid@cid;cal) = ¢t

AXIONS for *av:
%% no trace
*av(aid,nil t,ec) = nil7t

%% looking at the previous state
*av(aid,*ev(eid,t,t1,t2) ,ec) = *av(aid,t2,ec) ++ t1
IF term”eq(aid,eid,atv(ec)) == "+"

sav(aid,*ev(eid,t,t1,t2),ec) = *av(aid,t2,ec) -- ti
IF term eq(aid,eid,atv(ec)) == "-"

+av(aid,*ev(eid,t,tl,t2),ec) = *av(aid,t2,ec)
IF term"eq(aid,eid,atv(ec)) == "="

%Y. frame rule
+av(aid,%ev(eid,t,t1,t2),ec) = *av(aid, t2,ec)
IF term”eq(aid,eid,atv(ec)) == nil~t

%% variable
sav(aid,*ev(eid,t,t1,t2),ec) = ti
IF term”eq(aid,eid,atv(ec)) == "~"

%Y constant

+av(aid,*ev(eid,t,t1,t2),ec) = term eq(aid,eid,atv(ec))
IF (not term-eq(aid,eid,atv(ec)) == nil’¢)
and (not term”eq(aid,eid,atv(ec)) == "+")

and (not term”eq(aid,eid,atv(ec)) == "-")
and (not term eq(aid,eid,atv(ec)) == "=*)
and (not term eq(aid,eid,atv(ec)) == ")
AXIOMS for #ac:
%% no trace
*ac(aid,nil"t,ec) = nil"t
%% new
sac(aid,*ev(eid,t,t1,t2),ec) = term”atc(aid,tl,atc(ec))
IF ev new(ec) == eid

%% frame rule
wac(aid,*ev(eid,t,t1,t2),ec) = *ac(aid,t2,ec)
IF not ev new(ec) == eid

ENDSPEC

125

C A class as a term with variables

The lollowing is the representation of the class person of the appendix A as a
term of the language shown in appendix B. We have abbreviated it for the sake
of shortness.

class (
"“person",
attributes(
constant
key("person_code"@string),
nokey("person_name*"@string;nil c),
constraints(nil™f)
),
variable(
"is_cand''@bool equations
r-atv("is_cand",”p", r-ev(''new_person".”p","t')==false;
...)
nil”eq;
...
nil-v
)
),
evants(
private(

new(“new_person”,'person");
destroy("destroy_person","“person");
update("apply",'"person");
nil’p
L

shared(

sh("hire","p","c");
sh("fire","p","c'");
nil~s

)

) i
preconditions(...),
triggering(...)

)

126

