Appendix A:

ALTIUM SCHEMATICS NEW GATE DRIVER PCB

$+\mathrm{VCC}+\mathrm{H} \quad+\mathrm{VCC} . \mathrm{H}$ $\xrightarrow{\text { COMH }} \quad$ COM_H - VEE.H $\underbrace{- \text { VEE. } H}$

$+\mathrm{VCCL} \quad+\mathrm{VCC} L$
\square COML \quad COML
$\underbrace{}_{- \text {VEEL }} \quad-$-VEEL
$\xrightarrow{P W M L L} \longrightarrow$ PWML

5V DCDC Converter

AVVDCDC converter is includede to supply the PWM
geserato and
sic NTC. (HV opococouplet to solate the ses igal of the

Appendix B:

ALTIUM PCB LAYOUTS NEW GATE DRIVER PCB

Layer Stack Legend			Thickness	Dielectric Material	Type Legend	$\begin{aligned} & \text { Gerber } \\ & \text { GTO } \end{aligned}$
	Material	Layer				
		Top Overlay				
	Surface Material	Top Solder	0.01 mm	Solder Resist	Solder Mask	GTS
N	Copper	Top Layer	0.04 mm	FR-4	Signal	GTL
\square	Core	VCC/GATE	0.25 mm		Dielectric	G1
2	Copper		0.04 mm		Signal	
	Prepreg		0.13 mm		Dielectric	
	Copper	GND/GATE	0.04 mm	$F R-4$	Signal	G2
	Core		0.25 mm		Dielectric	
N ${ }^{\text {N }}$	Copper	Bottom Layer	0.04 mm		Signal	GBL
	Surface Material	Bottom Solder	0.01 mm	Solder Resist	Solder Mask	GBS
		Bottom Overlay			Legend	GBO

	NAME	DATE	TITLE	VCC/GATE Layer PCB Layout GATE DRIVER PCB		
DRAWN		0661092022				
			SIZE	DWG. No.		
COMMENTS: dimensions are in inches			A3	3/5		

GND/SOURCE (Scale: 1.5)

Appendix C:

DATASHEETS OF MAIN COMPONENTS

EiceDRIVER ${ }^{\text {m" }}$ 1ED34x1Mc12M Enhanced

Datasheet

Single-channel 5.7 kV (rms) isolated gate driver IC with adjustable DESAT and soft-off

Features

- 650 V, 1200 V, 1700 V, 2300 V IGBTs, SiC, and Si MOSFETs
- $\quad 40 \mathrm{~V}$ absolute maximum output supply voltage
- $\pm 3 \mathrm{~A}, \pm 6 \mathrm{~A}$, and ± 9 A typical sinking and sourcing peak output current
- Separate source and sink outputs for hard switching and with active Miller clamp/clamp driver
- Adjustment pins for parameter configuration from input side
- Precise $\mathrm{V}_{\text {CEsat }}$ detection (DESAT) with fault output and adjustable filter time and leading edge blanking time with resistor at $A D J B$ pin
- Adjustable IGBT soft turn-off after desaturation detection with resistor at ADJA pin
- Operation at high ambient temperature up to $125^{\circ} \mathrm{C}$ with over-temperature shut down at $160^{\circ} \mathrm{C}\left(\pm 10^{\circ} \mathrm{C}\right)$
- Tight IC-to-IC propagation delay matching ($t_{\text {PDD, } \max }=30 \mathrm{~ns}$)
- Undervoltage lockout protection with hysteresis for input and output side with active shut-down
- High common-mode transient immunity CMTI $=200 \mathrm{kV} / \mu \mathrm{s}$
- Small space-saving DSO-16 fine-pitch package with large creepage distance (>8 mm)
- Safety certification
- UL 1577 recognized (File E311313) with $V_{\text {ISO,test }}=6840 \mathrm{~V}$ (rms) for $1 \mathrm{~s}, V_{\text {ISO }}=5700 \mathrm{~V}$ (rms) for 60 s
- VDE 0884-11 approval (Certificate no. 40053980) with $V_{\text {IORM }}=1767 \mathrm{~V}$ (peak, reinforced)
- Evaluation board available EVAL-1ED3491MX12M

Potential applications

- Industrial motor drives - compact, standard, premium, servo drives
- Solar inverters
- UPS systems
- Welding
- Commercial and agricultural vehicles (CAV)
- Commercial air-conditioning (CAC)
- High-voltage isolated DC-DC converters

PG-DSO-16

- Isolated switch mode power supplies (SMPS)

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

EiceDRIVER ${ }^{\text {T" }}$ 1ED34x1Mc12M Enhanced
Datasheet

Device information

Device information

Product type	Output current	CLAMP type $^{1)}$	Isolation class	Marking	OPN
1ED3431MC12M	3 A (typ)	CLAMP	reinforced	$3431 \mathrm{MC12}$	1ED3431MC12MXUMA1
1ED3461MC12M	6 A (typ)	CLAMPDRV	reinforced	$3461 \mathrm{MC12}$	1ED3461MC12MXUMA1
1ED3491MC12M	9 A (typ)	CLAMPDRV	reinforced	$3491 \mathrm{MC12}$	1ED3491MC12MXUMA1
1ED3431MU12M	3 A (typ)	CLAMP	UL 1577	3431 MU12	1ED3431MU12MXUMA1
1ED3461MU12M	6 A (typ)	CLAMPDRV	UL 1577	$3461 M U 12$	1ED3461MU12MXUMA1
1ED3491MU12M	9 A (typ)	CLAMPDRV	UL 1577	$3491 M U 12$	1ED3491MU12MXUMA1

1) Please refer to Chapter 4.5.4.1 for circuit connection to avoid damage to the gate driver IC

Description

The 1ED34x1Mc12M family (X3 Analog) consists of galvanically isolated single channel gate driver ICs in a small PG-DSO-16 package with a large creepage and clearance of 8 mm . The gate driver ICs provide a typical peak output current of $3 \mathrm{~A}, 6 \mathrm{~A}$, and 9 A .
Adjustable control and protection functions are included to simplify the design of highly reliable systems. All parameter adjustments are done from the input side, including adjustable DESAT filter time, leading edge blanking time, and soft-off current level with only two resistors..
All logic I/O pins are supply voltage dependent 3.3 V or 5 V CMOS compatible and can be directly connected to a microcontroller.
The data transfer across the galvanic isolation is realized by the integrated coreless transformer technology.

Figure 1
Typical application

Datasheet
Table of contents

Table of contents

Table of contents 3
1 Block diagram 5
2 Related products 6
3 Pin configuration and functionality 7
3.1 Pin configuration 7
3.2 Pin functionality 9
4 Functional description 11
4.1 Start-up and fault clearing 11
4.2 Supply 12
4.2.1 Input side undervoltage lockout, VCC1 UVLO 13
4.2.2 Output side under-voltage lockout, VCC2 UVLO 13
4.3 Input side logic 15
4.3.1 IN non-inverting driver input 15
4.3.2 RDYC ready status output, fault-off and fault clear input 15
4.3.2.1 RDYC fault-off input 15
4.3.2.2 RDYC fault clear input 16
4.3.3 FLT_N status output and fault-off input 16
4.3.3.1 FLT_N fault-off input 16
4.4 Desaturation protection 18
4.4.1 DESAT behavior 18
4.4.2 DESAT filter and leading edge blanking time adjustment with $A D J B$ 19
4.5 Gate driver output 21
4.5.1 Turn-on behavior 22
4.5.2 Turn-off and fault turn-off behavior 22
4.5.2.1 Hard switching turn-off 22
4.5.2.2 Soft turn-off 22
4.5.2.2.1 Soft-off current source adjustment with ADJA 23
4.5.3 Active shut-down 24
4.5.4 Active Miller clamp 24
4.5.4.1 CLAMP output types 24
4.5.5 Switch-off timeout until forced switch-off 26
4.6 Short circuit clamping 26
5 Electrical parameters 28
5.1 Absolute maximum ratings 28
5.2 Thermal parameters 29
5.3 Operating parameters 29
5.4 Electrical characteristics 31
5.4.1 Voltage supply 31

Table of contents
5.4.2 Logic input and output 32
5.4.3 Analog input 32
5.4.4 Gate driver 34
5.4.5 Active Miller clamp 35
5.4.6 Dynamic characteristics 36
5.4.7 Desaturation protection 37
5.4.8 Soft-off current source 39
5.4.9 Over-temperature protection 40
6 Insulation characteristics 41
6.1 Certified according to VDE 0884-11 reinforced insulation (Certificate no. 40053980) 41
6.2 Recognized under UL 1577 (File E311313) 42
7 Package information 43
8 Application notes 44
8.1 Reference layout for thermal data 44
8.2 Printed circuit board guidelines 44
Revision history 44
Disclaimer 45

1 Block diagram

Figure 2
Block diagram

2 Related products

2 Related products

Note: \quad Please consider the gate driver IC power dissipation and insulation requirements for the selected power switch and operating condition.

Product group	Product name	Description
TRENCHSTOP ${ }^{\text {m" }}$ IGBT Discrete	IKQ75N120CS6	High Speed 1200 V, 75 A IGBT with anti-parallel diode in TO247-3
	IKW15N120BH6	High Speed 1200 V, 15 A IGBT with anti-parallel diode in TO247
	IHW40N120R5	Reverse conducting 1200 V, 40 A IH IGBT with integrated diode in TO247
CoolSiC ${ }^{\text {m" }}$ SiC MOSFET Discrete	IMBF170R650M1	$1700 \mathrm{~V}, 650 \mathrm{~m} \Omega \mathrm{SiC}$ MOSFET in TO263-7 package
	IMBG120R045M1H	$1200 \mathrm{~V}, 45 \mathrm{~m} \Omega \mathrm{SiC}$ MOSFET in TO263-7 package
	IMZ120R350M1H	1200 V, $350 \mathrm{~m} \Omega \mathrm{SiC}$ MOSFET in TO247-4 package
CoolSiC ${ }^{\text {m" }}$ SiC MOSFET Module	FS45MR12W1M1_B11	EasyPACK ${ }^{\text {m/ }} 1$ B $1200 \mathrm{~V} / 45 \mathrm{~m} \Omega$ sixpack module
	FF23MR12W1M1_B11	EasyDUAL ${ }^{\text {mm }} 1 \mathrm{~B} 1200 \mathrm{~V}, 23 \mathrm{~m} \Omega$ half-bridge module
	FF6MR12W2M1_B11	EasyDUAL ${ }^{\text {m }} 2 \mathrm{~B} 1200 \mathrm{~V}, 6 \mathrm{~m} \Omega$ half-bridge module
	F3L11MR12W2M1_B74	EasyPACK ${ }^{\text {Tm }} 2$ B $1200 \mathrm{~V}, 11 \mathrm{~m} \Omega$ 3-Level module in Advanced NPC (ANPC) topology
	F4-23MR12W1M1_B11	EasyPACK ${ }^{\text {m/ }} 1 \mathrm{~B} 1200 \mathrm{~V}, 23 \mathrm{~m} \Omega$ fourpack module
TRENCHSTOP ${ }^{\text {m' }}$ IGBT Modules	F4-100R17N3E4	EconoPACK ${ }^{\text {m }} 31700$ V, 100 A fourpack IGBT module
	F4-200R17N3E4	EconoPACK ${ }^{\text {™ }} 31700$ V, 200 A fourpack IGBT module
	FS150R17N3E4	EconoPACK ${ }^{\text {m/ }} 31700 \mathrm{~V}, 150$ A sixpack IGBT module
	FF650R17IE4	PrimePACK ${ }^{\text {tw }} 31700$ V, 650 A half-bridge dual IGBT module
	FF1000R17IE4	PrimePACK ${ }^{\text {tm }} 31700$ V, 1000 A half-bridge dual IGBT module
	FF1200R17IP5	PrimePACK ${ }^{\text {tm }} 3+1700$ V, 1200 A dual IGBT module
	FF1500R17IP5	PrimePACK ${ }^{\text {Tm }} 3+1700$ V, 1500 A dual IGBT module
	FF1500R17IP5R	PrimePACK ${ }^{\text {m }} 31700$ V, 1500 A dual IGBT module
	FF1800R17IP5	PrimePACK ${ }^{\text {Tm }} 3+1700$ V, 1800 A dual IGBT module
	FP10R12W1T7_B11	EasyPIM ${ }^{\text {mi }} 1 \mathrm{~B} 1200$ V, 10 A three phase input rectifier PIM IGBT module
	FS100R12W2T7_B11	EasyPACK ${ }^{\text {m }} 2 \mathrm{2B} 1200$ V, 100 A sixpack IGBT module
	FP150R12KT4_B11	EconoPIM ${ }^{\text {™ }} 31200 \mathrm{~V}$ three-phase PIM IGBT module
	FS200R12KT4R_B11	EconoPACK ${ }^{\text {m/ }} 31200$ V, 200 A sixpack IGBT module

$3 \quad$ Pin configuration and functionality

The pin assignment at the gate driver IC generally differentiates between the input side and the output side.

Table 1

General pin assignment

Pins	Designation
1 to 8	input side, input logic signal side, or low voltage side
9 to 16	output side, driver power side, or high voltage side

For simplicity reasons the driver is described as an IGBT driver. For use with MOSFETs and other power switches simply replace any mentioning of collector and emitter with their corresponding pin names.

3.1 Pin configuration

Table 2 Pin configuration table abbreviations

Abbreviation	Description
Pin type	
PWR	Power supply and gate current output pins
$\mathbf{I / O}$	Digital input and output pin
\mathbf{I}	Digital input pin
GND	Ground reference pin
AI	Analog input pin

Buffer type

OD	Open drain output
CMOS	CMOS compatible input threshold levels
PP	Push/pull output buffer
special	Special output/input function, see individual description

Pull device

PD	Pull-down resistor
$\mathbf{C S}$	Current source

Table $3 \quad$ Pin configuration

Pin no.	Pin name	Pin type	Buffer type	Pull device	Function
$\mathbf{1}$	GND1	GND	-	-	Ground input side
2	VCC1	PWR	-	-	Positive power supply input side
3	ADJA	AI	special	CS	Parameter adjust set A
4	ADJB	AI	special	CS	Parameter adjust set B
5	RDYC	I/O	OD, CMOS	-	Combined ready output, high active and fault clear input and soft-off input, low active
6	FLT_N	I/O	OD, CMOS	-	Fault output, low active and soft- off input, low active
7	IN	I	CMOS	PD, $40 \mathrm{k} \Omega$	Non inverted driver input

(table continues...)

Table 3 (continued) Pin configuration

Pin no.	Pin name	Pin type	Buffer type	Pull device	Function
8	GND1	GND	-	-	Ground input side
9	VEE2	GND	-	-	Negative power supply output side
10	CLAMP	PWR	OD	-	Active Miller clamping, open drain to VEE2 $(1$ ED3431M only)
10	CLAMPDRV	PWR	PP	-	Active miller clamping, clamp driver for external MOSFET (1ED3461M, 1ED3491M)
11	OFF	PWR, AI	OD	-	Driver sink output
12	ON	PWR, AI	OD	-	Driver source output
13	DESAT	AI	special	CS, 500 $\mu \mathrm{A}$	Enhanced desaturation protection
14	VCC2	PWR	-	-	Positive power supply output side
15	GND2	AI	-	-	Signal ground output side
16	VEE2	GND	-	-	Negative power supply output side

Figure 3 PG-DSO-16 (top view) with CLAMP

Figure 4 PG-DSO-16 (top view) with CLAMPDRV

$3.2 \quad$ Pin functionality

GND1

Reference ground of the input side. Connect direct to input signal ground.

VCC1

Positive power supply terminal of the input side, connect to 5 V or 3.3 V for proper operation. Place a decoupling capacitor close to this pin and GND1.

ADJA and ADJB parameter adjust input for set A or B

The pins $A D J A$ and $A D J B$ are used to adjust two sets of independent parameters of output functions.
Connect a resistor between $1.33 \mathrm{k} \Omega$ and $28.0 \mathrm{k} \Omega$ to GND1 to adjust each parameter. All valid resistor values belong to the E96-series with 1% tolerance.
Connecting ADJA to GND1 uses a default value for soft switch-off. Connecting it to VCC1 is disabling the gate driver IC.

Connecting $A D J B$ to GND1 is disabling the gate driver IC. Connecting it to VCC1 is setting the function to minimum values.

RDYC ready status output, fault-off input and fault-clear input

Open-drain output reports the correct operation of the device, ready output is high active. Fault-clear input and fault-off input clears a gate driver fault or switch the gate driver output to off with fault-off function, input is low active. Connect to a microcontroller with 5 V or 3.3 V I/O with an external pull-up resistor to VCC1. A typical value for this resistor is $2.2 \mathrm{k} \Omega$. The RDCY signal is referenced to GND1.

FLT_N fault output and fault-off input

Open-drain output reports the failures related to operating of the inverter system to the microcontroller, fault output is active low. Fault-off input switch the gate driver output to off with fault-off function, input is low active. Connect to a microcontroller with 5 V or $3.3 \mathrm{VI} / \mathrm{O}$ with an external pull-up resistor to VCC1. A typical value for this resistor is $2.2 \mathrm{k} \Omega$. The FLT_N signal is referenced to GND1.

IN non inverting gate driver input

$I N$ input controls the output of the gate driver IC, the IGBT is turned on if $I N$ is set to high. Connect to a PWM output of the microcontroller with 5 V or 3.3 VIO . An internal pull-down resistor ensures IGBT off-state if not connected. A minimum pulse width of typical 103 ns is defined to make the gate driver IC robust against glitches at $I N$.

VEE2

Negative power supply terminal of the output side. Connect to a voltage of 0 V to -25 V referenced to $G N D 2$ for proper operation. Place a decoupling capacitor close to the following pins:

- VCC2 and VEE2
- GND2 and VEE2

If no negative supply voltage is used, all VEE2 pins have to be connected to GND2.

CLAMP Miller clamp output, CLAMPDRV Miller clamp pre-driver output

CLAMP: High-current clamp output to hold the gate voltage low during collector-emitter-voltage rise. Connect directly to the gate of the IGBT.
CLAMPDRV: Clamp pre-driver output for the use of an external clamp switch. Connect directly to the gate of a n-channel MOSFET.

OFF driver output

High-current driver sink output to discharge the gate of the external IGBT.The gate driver IC also sinks the Soft-off current at this pin. Connect to the gate of the IGBT via a chosen turn-off gate resistor.

ON driver output

High-current driver source output to charge the gate of the external IGBT and turn it on and sense input for the CLAMP function. Connect to the gate of the IGBT via a chosen turn-on gate resistor.

DESAT enhanced desaturation detection input

Desaturation detection input to monitor the IGBT collector-emitter voltage (V_{CE}) to detect desaturation caused by short circuit events. Connect to the collector of the driven IGBT via a series connection of a protection resistor and a high-voltage diode. The DESAT signal is referenced to GND2.

VCC2

Positive power supply terminal of the output side. Connect to sufficient supply voltage referenced to GND2 for proper operation. Place a decoupling capacitor close to the following pins:

- VCC2 and VEE2
- VCC2 and GND2

GND2 reference ground

Reference ground of the output side. Connect to common voltage of a bipolar supply and the emitter of the IGBT. Place a decoupling capacitor close to the following pins:

- VCC2 and GND2
- GND2 and VEE2

4 Functional description

4 Functional description

The 1ED34x1Mc12M family (X3 Analog) consists of galvanically isolated single channel gate driver ICs with adjustable feature parametrization by two simple resistors. All adjustments can be done from the low voltage input side.
To start-up the gate driver IC for normal operation both input and output sides of the gate driver IC need to be powered.
The 1ED34x1Mc12M family (X3 Analog) is designed to support various supply configurations on the input and output side. On the output side unipolar and bipolar supply is possible.
The output stage is realized as rail-to-rail. There the gate driver voltage follows the supply voltage without an additional voltage drop. In addition it provides an easy clamping of the gate voltage during short circuit of an external IGBT.
The RDYC status output reports correct operation of the gate driver IC like sufficient voltage supply. The FLT_N status output reports failures in the application like desaturation detection.
To ensure safe operation the gate driver IC is equipped with an input and output side under-voltage lockout circuit. The UVLO levels are optimized for IGBTs.
The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The gate driver IC reacts on a DESAT fault by turning off the IGBT with the adjustable soft-off method.
The soft turn-off function is used to switch-off the external IGBT in overcurrent conditions in a soft-controlled manner to protect the IGBT against collector emitter over-voltages.
An active Miller clamp function protects the IGBT from parasitic turn-on in fast switching applications.

$4.1 \quad$ Start-up and fault clearing

For normal operation both input and output sides of the gate driver IC need to be powered. A low level at the $F L T _N$ pin always indicates a fault condition. In this case the IC starts internal mechanisms for fault clearing.

Input side start-up

1. Voltage at VCC1 reaches the input UVLO threshold: input side of gate driver IC starts operating
2. FLT_N follows input supply voltage
3. Records resistor programmable function from $A D J A$ and $A D J B$
4. Waits until output side is powered
5. Initiates internal start-up: Transfers configured values to output side
6. Performs internal self-test

The start-up delay takes approx. $200 \mu \mathrm{~s}$ and is part of the complete start-up time $t_{\text {START1 }}$.

Output side start-up

1. Voltage at VCC2 reaches the output UVLO threshold: output side of gate driver IC starts operating
2. Activates OFF gate driver output: connected gate stays discharged
3. Waits until input side is powered
4. Initiates internal start-up: Receives configured values from input side
5. Performs internal self-test

The start-up delay takes approx. $200 \mu \mathrm{~s}$ and is part of the complete start-up time $t_{\text {START2 }}$.
The gate driver IC releases RDYC to high to signal a successful start-up and its readiness to operate. The gate driver IC will follow the status of the IN signal.

Clearing a fault with RDYC to low cycle

1. Set $I N$ to low
2. Set RDYC to low for a duration longer than the fault clear time $t_{\text {CLRMIN }}$

EiceDRIVER"' ${ }^{\text {m }}$ 1ED34x1Mc12M Enhanced
Datasheet

4 Functional description

3. Release RDYC to high
a. If the source of the fault is no longer present, $F L T _N$ is released to high
b. If another fault source is active, $F L T_{-} N$ stays low and the cycle needs to be repeated
4. Continue PWM operation

$4.2 \quad$ Supply

The 1ED34x1Mc12M family (X3 Analog) is designed to support various supply configurations. The input side can be used with a 3.3 V or 5 V supply.
The output side requires either an unipolar supply (VEE2 = GND2) or a bipolar supply.

- Individual supply voltages between VCC2 and GND2 or GND2 and VEE2 shall not exceed 25 V .
- The total supply voltage between VCC2 and VEE2 shall not exceed 35 V .

To ensure safe operation of the gate driver IC, it is equipped with an input and output side undervoltage lockout circuit.

Unipolar supply

In unipolar supply configuration the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2. GND2 and VEE2 are connected together and this common potential is connected to the IGBT emitter.

Figure 5 Application example with unipolar supply (1ED3431M)

Bipolar supply

For bipolar supply the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2 and a negative voltage of -8 V or -15 V at VEE2 relative to GND2.
Between VCC2 and VEE2 the maximum potential difference is 35 V .

Figure 6 Application example with bipolar supply (1ED3431M)
Negative supply prevents a parasitic turn-on due to the additional voltage margin to the gate turn-on threshold.

VEE2 over GND2 supply connection check

The gate driver IC has a built-in connection check for VEE2. A loss of VEE2 connection will be detected and signaled via RDYC.

4.2.1 Input side undervoltage lockout, VCC1 UVLO

To ensure correct operation of the input side and safe operation of the application the gate driver IC is equipped with an input supply undervoltage lockout for VCC1.
UVLO behavior during start-up:

1. The voltage at the supply terminal VCC1 reaches the $V_{\text {UVLO1H }}$ threshold
2. The gate driver IC reads the $A D J A$ and $A D J B$ resistor values and transfers the configuration to the output side
3. The IC releases the RDYC output to high and is ready to operate.

The start-up delay takes approx. 200μ s and is part of the complete start-up time $t_{\text {START1 }}$.
UVLO behavior during shut-down:

- If the supply voltage $V_{V C C 1}$ of the input side drops below $V_{U V L O 1 L}$ the $R D Y C$ signal is switched to low and the output will be switched off.
The fault signal $F L T _N$ follows the input supply voltage.

Figure $7 \quad$ UVLO VCC1 behavior

4.2.2 Output side under-voltage lockout, VCC2 UVLO

To ensure correct operation of the output side and safe operation of the IGBT in the application, the gate driver IC is equipped with an output supply undervoltage lockout for VCC2 versus GND2.
UVLO behavior during start-up:

- If the voltage at the supply terminal VCC2 reaches the $V_{U V L O 2 H}$ threshold the RDYC output is released to high and the gate driver IC is ready to operate.
The start-up delay takes approx. 200μ s and is part of the complete start-up time $t_{\text {START2 }}$.
UVLO behavior during shut-down:
- If the supply voltage $V_{V C C 2}$ of the output side drops below $V_{U V L O 2 L}$ the $R D Y C$ signal is switched to low and the output will be switched off.

Figure 8

UVLO VCC2 behavior

Any $V_{\text {UvLozL }}$ event will lead to a fault-off and a RDYC low level. Depending of the level of the voltage drop, the gate driver IC either stays in a not ready state and waits for the supply voltage to recover, or it will fully reset the gate driver IC. Both variants differ in the necessary delay of $R D Y C$ release after the supply voltage has recovered. After a reset, the gate driver IC needs to fully restart until it becomes ready again.

4.3 Input side logic

The input threshold levels are always CMOS compliant. The threshold levels are 30% of VCC1 for low level and 70% of VCC1 for high level.
The 1ED34x1Mc12M family (X3 Analog) has three input pins (IN, ADJA, ADJB) and two I/O pins (RDYC, FLT_N) at the input side.

4.3.1 IN non-inverting driver input

The input pin has a positive logic. To turn on the associated IGBT apply a logic high signal at the IN pin. A minimum pulse width of typical 103 ns is defined to make the IC robust against glitches at $I N$.

4.3.2 RDYC ready status output, fault-off and fault clear input

The RDYC pin is a logic input and open drain output and has three different functions:

- RDYC as ready status output of all ready sources
- RDYC as fault-off input
- RDYC as fault clear input

In a typical application the RDYC pins of all gate driver ICs in the inverter are connected together and form a single wire RDYC signal.
An external pull-up resistor is required to ensure RDYC status output during operation.

Ready sources

- the input side is properly supplied, VCC1 supply above UVLO1 threshold
- the output side is properly supplied with a positive voltage, VCC2 supply above UVLO2 threshold
- no VEE2 over GND2 failure
- Internal signal transmission is operating nominal
- the ON pin monitoring of the gate driver is below VEE2 +2 V , IGBT has to be off at start-up

4.3.2.1 RDYC fault-off input

Pulling RDYC to low disables the operation of the gate driver IC. The gate driver IC ignores IN signals as long as the RDYC pin stays low and the IC uses its fault-off function to switch-off the IGBT.
The defined minimum pulse width makes the IC robust against glitches at RDYC. The gate driver ignores pulses with a shorter duration.

Figure $9 \quad$ RDYC short pulse behavior of external manipulation of the RDYC pin
After an external RDYC low signal the IC is actively pulling RDYC to low until the voltage at $O N$ pin falls below the VEE2 +2 V threshold.
The RDYC fault-off input is active low.

4 Functional description

4.3.2.2 \quad RDYC fault clear input

Setting RDYC to low for longer than the fault clear time $t_{\text {CLRMIN }}$ will reset the stored fault signal at pin FLT_N with the rising edge of RDYC. Additionally the following conditions have to be met as well:

- PWM IN pin level needs to be low,
- voltage at $O N$ pin has dropped below the VEE2+2 V threshold, and
- triggering fault condition is no longer present.

The typical fault clear time $t_{\text {CLRMIN }}$ is $1.0 \mu \mathrm{~s}$.

Figure $10 \quad$ RDYC fault clear timing
\square
Figure 11
RDYC fault clear rising edge to FLT_N

4.3.3 FLT_N status output and fault-off input

The FLT_N pin is a logic input and open drain output and has two different functions:

- FLT_N as fault-status output for fault sources
- $\quad F L T _N$ as fault-off input

In a typical application the FLT_N pins of all gate driver ICs in the inverter are connected together and form a single wire $F L T _N$ signal.
An external pull-up-resistor is required to ensure FLT_N status output during operation.

Fault sources

The following fault sources can trigger a FLT_N pin to low and initiate a fault turn-off:

- desaturation detection of IGBT
- gate driver over temperature protection

4.3.3.1 \quad FLT_N fault-off input

Pulling FLT_N to low disables the operation of the gate driver IC. The gate driver IC ignores IN signals as long as the FLT_N pin stays low and the IC uses its fault-off function to switch-off the IGBT.
The defined minimum pulse width makes the gate driver IC robust against glitches at FLT_N.
After a low at the FLT_N pin either internally or externally applied, the fault event is latched until cleared.

4 Functional description

The FLT_N fault-off input is active low.

Figure 12
FLT_N short pulse behavior of external manipulation of the FLT_N pin cleared by RDYC

4 Functional description

4.4 Desaturation protection

The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The desaturation protection follows the given sequence:

1. Voltage at DESAT pin reaches DESAT threshold level, for a period of time exceeding the filter time
2. Gate driver IC output switches the external IGBT off, using the soft-off method
3. Gate driver IC switches FLT_N pin to low to indicate the fault to a connected microcontroller
4. Short circuit situation is resolved

- after the voltage at the $O N$ pin has dropped below the VEE2 +2 V threshold,
- no other fault condition is present,
- the input has been turned off and
- the fault has been cleared using the RDYC low cycle method

Figure 13 DESAT circuit (only relevant pins shown)
The 1ED34x1Mc12M family (X3 Analog) has a fixed DESAT threshold level of typical 9.18 V . If lower threshold levels are required, the DESAT resistor can be increased. Larger DESAT resistor values lead to lower DESAT threshold voltages. The threshold voltage reduction is equal to the DESAT current multiplied by the DESAT resistance.
The high-precision internal current source results in a minimum impact on the DESAT detection variation.

4.4.1 DESAT behavior

The DESAT function offers a leading edge blanking time and filters to optimize the DESAT detection for application usage.
The leading edge blanking inhibits threshold detection during an IGBT turn on phase. The typical IGBT turn on behavior starts with charging of the gate, commutation of the application load current and finally $V_{C E}$ voltage decrease to $V_{\text {CEsat }}$ voltage levels. To prevent the gate driver IC from detecting a false DESAT event, leading edge blanking pauses the DESAT circuit until the time $t_{\text {DESATleb }}$ has elapsed.
Following the leading edge blanking time, the gate driver IC forces the DESAT current into the external DESAT circuit. The current typically flows through a protection resistor, a fast high voltage diode and the collector-emitter path of the IGBT. The resulting voltage at the DESAT pin is the sum of the voltage drop across this path.
During a short circuit condition, the $V_{C E}$ voltage increases, resulting in a reverse polarity condition of the DESAT diode. The remaining DESAT current also increases the voltage level at the DESAT pin and triggers the DESAT threshold. If the pin voltage level stays above the threshold for the duration of the DESAT filter time $t_{\text {DESATfilter }}$, the gate driver IC registers the DESAT event and acts accordingly.

4 Functional description

The internal processing time after DESAT threshold crossing, filtering and beginning of fault-off is defined as $t_{\text {DESATOUT }}$. The duration of the gate discharge during fault-off is defined as $t_{\text {FLTOFFtot }}$ and is depending on the soft-off function and the gate load.

Figure 14 DESAT timing with leading edge blanking, filter and reaction times

4.4.2 DESAT filter and leading edge blanking time adjustment with ADJB

The ADJB pin configures the DESAT leading edge blanking time and DESAT filter time:

- A resistor from $A D J B$ to GND1 sets the DESAT leading edge blanking time and the DESAT filter time used during DESAT detection
- Use resistors from the E96 resistor-series with 1\% tolerance values to achieve accurate parameter configuration
- The gate driver IC reads the resistor value once during start-up
- Connecting $A D J B$ to GND1 inhibits the gate driver operation and stops the start-up sequence
- Connecting $A D J B$ to VCC1 disables the filtering resulting in minimum response times

Table 4 DESAT filter timing ADJB adjustment

DESAT filter time set up	stopped	0	1	2	3	4	5	6	7
Resistance at $A D J B$ to GND1	$<$ $1.05 \mathrm{k} \Omega$ or tied to GND1	$1.33 \mathrm{k} \Omega$	$1.58 \mathrm{k} \Omega$	$1.91 \mathrm{k} \Omega$	$2.26 \mathrm{k} \Omega$	$2.74 \mathrm{k} \Omega$	$3.32 \mathrm{k} \Omega$	$4.02 \mathrm{k} \Omega$	$4.87 \mathrm{k} \Omega$
typ. $t_{\text {DESATleb }}$	inhibit gate driver operatio n	650 ns							
typ. $t_{\text {DESATfilter }}$		1575 ns	1775 ns	1975 ns	2375 ns	2775 ns	3175 ns	3575 ns	3975 ns

EiceDRIVER ${ }^{\text {T" }}$ 1ED34x1Mc12M Enhanced
Datasheet
4 Functional description

Table 4 DESAT filter timing ADJB adjustment

DESAT filter time set up	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	default
Resistance at $A D J B$ to $G N D 1$	$5.90 \mathrm{k} \Omega$	$7.15 \mathrm{k} \Omega$	$8.66 \mathrm{k} \Omega$	$10.7 \mathrm{k} \Omega$	$13.7 \mathrm{k} \Omega$	$17.4 \mathrm{k} \Omega$	$23.2 \mathrm{k} \Omega$	$28.0 \mathrm{k} \Omega$	$>45.3 \mathrm{k} \Omega$ or tied to VCC1
typ. $t_{\text {DESATleb }}$	1150 ns	400 ns							
typ. $t_{\text {DESATfilter }}$	3975 ns	3575 ns	3175 ns	2775 ns	2375 ns	1975 ns	1775 ns	1575 ns	225 ns

4 Functional description

4.5 Gate driver output

The gate driver output side uses MOSFETs to provide a rail-to-rail output. Therefore, the gate drive voltage follows the supply voltage closely.
Due to the low internal voltage drop, the switching behavior of the IGBT is predominantly governed by the external gate resistor. The gate driver IC offers separate sink and source outputs to adapt the gate resistor for turn-on and turn-off separately without additional bypass components.
The cell value x in the following table is placeholder for high or low and indicates that this pin does not influence the resulting gate driver output state. The arrow (\rightarrow) in cells indicate the transition initiated by the pin of the logic input and gate driver supply pins resulting in a transition to the gate driver output state as listed.

Table $5 \quad$ Driver output state including transition behavior

Logic input and gate driver supply				Gate driver output		
IN	RDYC	FLT_N	VCC1	VCC2	ON	OFF

Static gate driver output state: on and off

high	high	high	high	high	high	tri-state
low	high	high	high	high	tri-state	low

Transition to not ready and static not ready state

x	high \rightarrow low	high	high	high	\rightarrow tri-state	\rightarrow fault off
x	low	high	high	high	tri-state	low

Transition to fault and static fault state

x	high	high \rightarrow low	high	high	\rightarrow tri-state	\rightarrow fault off
x	high	low	high	high	tri-state	low

Transition with VCC1 power loss and unsupplied input side

x	x	x	high \rightarrow low	high	\rightarrow tri-state	\rightarrow fault off
x	x	x	low	high	tri-state	low

Transition with VCC2 power loss and unsupplied output side

x	x	x	x	high \rightarrow low	\rightarrow tri-state	\rightarrow fault off
x	x	x	x	low	tri-state	active shut down

4.5.1 Turn-on behavior

The 1ED34x1Mc12M family (X3 Analog) is optimized for hard switching turn-on. A turn-on command switches the ON pin internally to VCC2.

4.5.2 Turn-off and fault turn-off behavior

The gate driver IC supports different turn-off sequences to adapt to different applications and IGBT currents during normal switching operation and in the case of a fault.

Table $6 \quad$ Turn-off sequences

Turn-off reason	Turn-off sequence		Remark
	Hard switching	Soft turn-off	
normal off	X		
fault turn-off		X	adjustable via $A D J A$

The gate driver fault turn-off behavior can be configured with the ADJA pin
Once started, the fault turn-off sequence cannot be interrupted by an $I N=$ low turn-off signal.

Figure $15 \quad$ Fault turn-off sequence initiated by FLT_N or RDYC

Figure 16

Fault turn-off sequence initiated by DESAT event

4.5.2.1 Hard switching turn-off

The gate driver IC supports hard switching turn-off during normal switching operation. Switching the IGBT gate off by turning on the discharge MOSFET in the output stage, the OFF pin is switched to VEE2 pin.

4.5.2.2 Soft turn-off

The soft turn-off function protects the IGBT against collector-emitter overvoltage during turn off in an overcurrent condition. It turns-off the IGBT with a reduced gate current to reduce the di/dt induced overvoltage..
The IGBT gate is connected via OFF to an internal current sink circuit. The discharge current is typically lower than the hard switch-off current used for normal operation. Since soft turn-off is a single event after a failure, the gate driver IC can handle the additional power dissipation internally.
Soft turn-off can be configured with the ADJA pin. The function is only active during fault turn-off. The adjustable range depends on the current strength of the gate driver IC:

EiceDRIVER"' ${ }^{\text {m }}$ 1ED34x1Mc12M Enhanced
Datasheet
4 Functional description

- 1ED3431M: $15 \mathrm{~mA}-233 \mathrm{~mA}$
- 1ED3461M: $29 \mathrm{~mA}-466 \mathrm{~mA}$
- 1ED3491M: $44 \mathrm{~mA}-699 \mathrm{~mA}$

4.5.2.2.1 Soft-off current source adjustment with ADJA

The ADJA pin configures the Soft-off function and current level:

- A resistor from ADJA pin to GND1 sets the Soft-off current level for the fault-off function
- Use resistors from the E 96 resistor-series with 1% tolerance values to achieve accurate parameter configuration
- The gate driver IC reads the resistor value once during start-up
- Connecting ADJA to GND1 results in a Soft-off function for fault-off with a predefined value
- Connecting ADJA to VCC1 inhibits the gate driver operation and stops the start-up sequence

Table 7 Soft-off adjustment with ADJA

Soft-off set up	default	0	1	2	3	4	5	6	7
Resistance from ADJA to GND1	$<1.05 \mathrm{k} \Omega$ or tied to GND1	$1.33 \mathrm{k} \Omega$	$1.58 \mathrm{k} \Omega$	$1.91 \mathrm{k} \Omega$	$2.26 \mathrm{k} \Omega$	$2.74 \mathrm{k} \Omega$	$3.32 \mathrm{k} \Omega$	$4.02 \mathrm{k} \Omega$	$4.87 \mathrm{k} \Omega$
typ. $\mathrm{I}_{\text {CSOFF }}$ 1ED3431M	146 mA	15 mA	29 mA	44 mA	58 mA	73 mA	87 mA	102 mA	116 mA
typ. $\mathrm{I}_{\text {CSOFF }}$ 1ED3461M	291 mA	29 mA	58 mA	87 mA	116 mA	146 mA	175 mA	204 mA	233 mA
typ. I ${ }_{\text {Csoff }}$ 1ED3491M	437 mA	44 mA	87 mA	131 mA	175 mA	218 mA	262 mA	306 mA	349 mA

Table 7 Soft-off adjustment with ADJA

Soft-off set up	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	stopped
Resistance from ADJA to GND1	$5.90 \mathrm{k} \Omega$	$7.15 \mathrm{k} \Omega$	$8.66 \mathrm{k} \Omega$	$10.7 \mathrm{k} \Omega$	$13.7 \mathrm{k} \Omega$	$17.4 \mathrm{k} \Omega$	$23.2 \mathrm{k} \Omega$	$28.0 \mathrm{k} \Omega$	$>45.3 \mathrm{k} \Omega \mathrm{or}$ tied to $V C C 1$
typ. $\mathrm{I}_{\text {CSOFF }}$ 1ED3431M	131 mA	146 mA	160 mA	175 mA	189 mA	204 mA	218 mA	233 mA	inhibit gate driver operation
typ. $\mathrm{I}_{\text {CSOFF }}$ 1ED3461M	262 mA	291 mA	320 mA	349 mA	379 mA	408 mA	437 mA	466 mA	oper
typ. $\mathrm{I}_{\text {CSOFF }}$ 1ED3491M	393 mA	437 mA	480 mA	524 mA	568 mA	612 mA	655 mA	699 mA	

4.5.3 Active shut-down

The active shut-down feature ensures a safe IGBT off-state, if the output chip is not supplied. It protects the IGBT against a floating gate. The IGBT gate is always clamped via OFF to VEE2.

4.5.4 Active Miller clamp

The 1ED34x1Mc12M family (X3 Analog) is equipped with an active Miller clamp function to protect the IGBT from parasitic turn-on in fast switching applications.
After a turn-off command the gate driver IC follows the implemented sequence:

1. Discharge of the IGBT gate while monitoring the voltage level at the $O N$ pin
2. Detection of a voltage at the $O N$ pin less than a level of $V E E 2+2.0 \mathrm{~V}$
3. Filtering of the detection to avoid false CLAMP activation and not to influence regular turn-off behavior
4. Activating clamp function to keep IGBT gate at VEE2 level

4.5.4.1 CLAMP output types

The CLAMP output stage offers two operating modes:

- direct gate clamping with an open drain output for medium clamping current, 1ED3431M variants
- pre-driver output, to clamp IGBT gate with external transistor for high clamping current, 1ED3461M and 1ED3491M variants

Direct gate clamping

Direct gate clamping with an open drain output is tailored for direct clamping of IGBT gate to VEE2. The output current capability is typically 2 A . Useful IGBT current rating for direct gate clamping is a collector current of typically smaller than 100 A . Connect the CLAMP pin directly to the gate with low inductive tracks.

Figure 17 Application example with unipolar supply (1ED3431M)

Figure 18 Direct clamp output behavior

Pre-driver output

Track inductance and clamp output resistance reduces the clamping capability for large IGBTs. In this case, select the pre-driver output product variant with an external MOSFET.
The external small signal n-channel MOSFET transistor in combination with the pre-driver output enables clamping of high gate currents. Connect the MOSFET between the CLAMPDRV output, VEE2 pin, and IGBT gate. Due to the pre-driver configuration the clamp current is only limited by the external clamp MOSFET transistor. Depending on the external MOSFET a Miller current clamping up to 20 A can be reached. The clamping MOSFET has to be placed close to the IGBT gate to minimize track resistance and inductance.

Figure 19 Application example with bipolar supply and CLAMP pre-driver output (1ED3461M, 1ED3491M)

Figure 20

Clamp pre-driver output behavior

4.5.5 Switch-off timeout until forced switch-off

The gate driver IC is equipped with a switch-off timeout monitoring feature. In case the pin monitoring comparator has not registered an off-state within the timeout time this feature activates a forced switch-off. The monitoring feature secures the IGBT switch-off in case of a connection failure between the OFF output and the IGBT gate or a faulty gate resistor. In a forced switch-off all available output switch-off paths (OFF and CLAMP/CLAMPDRV) will be used to hard switch-off the IGBT after such an event.
OFF activated \rightarrow

Figure 21 Switch-off timeout behavior
The timing diagram shows the switch-off timeout behavior from the moment of OFF output activation until the timeout has elapsed and the CLAMP output is activated.

4.6 Short circuit clamping

The integrated short circuit clamping diode limits the IGBT gate over voltage during a short circuit. The over voltage is typically triggered by the capacitive feedback of the Miller capacitance.
The internal diodes from ON and CLAMP to VCC2 limit the gate driver voltage to a value slightly higher than the supply voltage. These diode paths are rated for a maximum current of 0.75 A and the duration of $6 \mu \mathrm{~s}$. Add an external Schottky diode if higher currents are expected or a tighter clamping is desired. Also use an external diode if the active Miller clamping circuit uses the pre-driver output configuration.

EiceDRIVER ${ }^{\text {Tw }}$ 1ED34x1Mc12M Enhanced
Datasheet
4 Functional description

Figure 22
Short circuit clamping circuitry

EiceDRIVER"' ${ }^{\text {m }}$ 1ED34x1Mc12M Enhanced
Datasheet

5 Electrical parameters

5 Electrical parameters

5.1 Absolute maximum ratings

Note: \quad Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 8, GND2 for pins 9 to 16).

Table $8 \quad$ Absolute maximum ratings

Parameter	Symbol	Values		Unit	Note / Test Condition
		Min.	Max.		
Input to output offset voltage	$V_{\text {OFFSET }}$	-	2300	V	$\begin{aligned} & V_{\text {VEE } 2, \max }-V_{\text {VEE } 2, \min } \\ & \text { with } V_{\text {VEE } 2, \max } \geq \\ & V_{\text {GND1 }} \\ & \geq V_{\text {VEE } 2, \min }{ }^{1) 2)} \end{aligned}$
Supply voltage input side	V_{VCC1}	-0.3	6.5	V	-
Logic input voltage (IN)	$V_{\text {Logicln }}$	-0.3	6.5	V	-
Logic input voltage (RDYC, FLT_N)	$V_{\text {LogicRF }}$	-0.3	6.5	V	-
Logic input voltage (ADJA, $A D J B$)	$V_{\text {LogicAD }}$	-0.3	6.5	V	-
Open drain logic output current (RDYC, FLT_N)	$I_{\text {LogicOC }}$	-	10	mA	-
Positive supply voltage output side	$V_{V C C 2}$	-0.3	40	V	-
Negative supply voltage output side	$V_{\text {VEE2 }}$	-40	0.3	V	-
Maximum supply voltage difference output side ($V_{\text {VCC2 }}-V_{\text {VEE2 }}$)	$V_{\max 2}$	-	40	V	-
DESAT input voltage	$V_{\text {DESAT }}$	-0.3	$V_{V C C 2}+0.3$	V	-
CLAMP input voltage	$V_{\text {CLAMP }}$	$V_{\text {VEE2 }}-0.3$	$V_{\mathrm{VCC} 2}+0.3$	V	3)
Maximum CLAMP output current	$I_{\text {CLAMP }}$	-	2.4	A	$t<5 \mu \mathrm{~s}$
Gate driver output voltage (ON, OFF)	$V_{\text {OUT }}$	$V_{\text {VEE2 }}-0.3$	$V_{\max 2}+0.3$	V	-
Maximum CLAMP to VCC2 diode IGBT short circuit clamping time	$t_{\text {CLP }}$	-	6	$\mu \mathrm{s}$	$I_{\text {CLAMP/OUT }}=0.75 \mathrm{~A}$
Junction temperature	T_{J}	-40	150	${ }^{\circ} \mathrm{C}$	-
Storage temperature	$T_{\text {Stg }}$	-55	150	${ }^{\circ} \mathrm{C}$	-
Power dissipation, input side	$P_{\text {D,IN }}$	-	100	mW	$@ T_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Power dissipation, output side	$P_{\text {D,OUT }}$	-	700	mW	$@ T_{\mathrm{A}}=25^{\circ} \mathrm{C}^{4}$
ESD capability: Human body model	$V_{\text {ESDHBM }}$	-	2	kV	5)
ESD capability: Charged device model	$V_{\text {ESDCDM }}$	-	500	V	6)

1) for functional operation only
2) See also Chapter 6 on page 41
3) May be exceeded during short circuit clamping.
4) Derating the power above $65^{\circ} \mathrm{C}$ with $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

EiceDRIVER ${ }^{\text {m" }} 1$ 1ED34x1Mc12M Enhanced
Datasheet

5 Electrical parameters

5) According to ANSI/ESDA/JEDEC-JS-001-2017 (discharging a 100 pF capacitor through a $1.5 \mathrm{k} \Omega$ series resistor).
6) According to ANSI/ESDA/JEDEC-JS-002-2014 (TC = test condition in volt)

$5.2 \quad$ Thermal parameters

Thermal performance may change significantly with layout and heat dissipation of components in close proximity.

Figure $23 \quad$ Reference layout for thermal data (Two layer PCB; copper thickness $35 \mu \mathrm{~m}$; left: top layer; right: bottom layer)
The PCB layout represents the reference layout used for the thermal characterization. Pins 1 and 8 (GND1) and pins 9 and 16 (VEE2) require ground plane connections for achieving maximum power dissipation. The $1 E D 34 \times 1 \mathrm{Mc} 12 \mathrm{M}$ family (X3 Analog) is conceived to dissipate most of the heat generated through these pins.

Table $9 \quad$ Thermal parameters

Parameter	Symbol	Value	Unit	Note $/$ Test Condition
Thermal resistance junction to ambient	$R_{\text {THJA,OUT }}$	122	$\mathrm{~K} / \mathrm{W}$	$@ T_{\mathrm{A}}=65^{\circ} \mathrm{C}, P_{\mathrm{D}, \text { ouT }}=400 \mathrm{~mW}$, $P_{\mathrm{D}, \mathrm{IN}}=50 \mathrm{~mW}, 4$ layer test PCB,
Characterization parameter junction to package top input side	$\Psi_{\text {Jtop }}$	8	$\mathrm{~K} / \mathrm{W}$	PG-DSO-16

5.3 Operating parameters

Note: \quad Within the operating range the IC operates as described in the functional description. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 8, GND2 for pins 9 to 16).

Table $10 \quad$ Operating parameters

Parameter $^{1)}$	Symbol	Values		Unit	Note / Test Condition
		Min.	Max.		V
Supply voltage input side	$V_{\text {VCC1 }}$	3.0	5.5	-	
Logic input voltages (IN, RDYC, FLT_N)	$V_{\text {LogicIN }}$	-0.3	5.5	V	-
Positive supply voltage output side	$V_{\text {VCC2 }}$	13	25	V	-
Negative supply voltage output side	$V_{\text {VEE2 }}$	-25	0	V	-

[^0]EiceDRIVER ${ }^{\text {T" }}$ 1ED34x1Mc12M Enhanced
Datasheet
5 Electrical parameters

Table 10 (continued) Operating parameters

Parameter ${ }^{1)}$	Symbol	Values		Unit	Note $/$ Test Condition
		Min.	Max.		V
Supply voltage difference output side $\left(V_{\text {VCC2 }}-V_{\text {VEE2 }}\right)$	V_{max2}	13	35	-	
Ambient temperature	T_{A}	-40	125	${ }^{\circ} \mathrm{C}$	$2)$
Switching frequency	$f_{\text {SW }}$	0	250	kHz	max P_{D} applies
Common mode transient immunity	$\|C M T I\|$	0	200	$\mathrm{~V} / \mathrm{ns}$	$V_{\text {OFFSET,test }}=$ 1500 V

1) Parameter is not subject to production test - verified by design/characterization
2) T_{J} has to be below over temperature protection temperature $T_{\text {OTPOFF }}$

5 Electrical parameters

5.4 Electrical characteristics

Note: \quad The electrical characteristics include the spread of values in supply voltages, load, and junction temperatures within the operating parameters unless specified otherwise. Typical values represent the median values at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 8, GND2 for pins 9 to 16).

5.4.1 Voltage supply

Table $11 \quad$ Voltage supply

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
VCC1 UVLO threshold	$V_{\text {UVLOIH }}$	-	2.95	3.05	v	-
	$V_{\text {UVLOIL }}$	2.6	2.8	-	V	-
VCC1 UVLO hysteresis ($V_{\text {UVLOIH }}-V_{\text {UVLOIL }}$)	$V_{\text {HYS } 1}$	0.1	0.14	-	v	-
VCC1 quiescent current	${ }_{\text {Q1 }}$	-	2.4	4.0	mA	$V_{\text {VCC1 }}=3.3 \mathrm{~V}, I \mathrm{~N}=$ High, RDYC = High, FLT_N = High
VCC1 operating current	I_{01}	-	2.4	4.0	mA	$V_{\text {VCC } 1}=3.3 \mathrm{~V}, I \mathrm{~N}=$ $16 \mathrm{kHz}, 50 \%$, RDYC $=$ High, FLT_N = High
VCC2 UVLO threshold	$V_{\text {UVLO2H,0 }}$	-	12.0	12.6	V	
	$V_{\text {UVLO2L,0 }}$	10.4	11.0	-	V	
VCC2 UVLO hysteresis ($V_{\text {UVLO2H,0 }}$ - $V_{\text {UVLO2LL,0 }}$)	$V_{\text {HYS } 2,0}$	0.75	1.0	-	V	
VEE2 not connected detection threshold	$V_{\text {VEE } 2, \mathrm{NC}}$	-	0.5	-	v	$V_{\text {VEE2 }}-V_{\text {GND2 }}$
VCC2 quiescent current	$\mathrm{l}_{\mathrm{Q} 2}$	-	3.9	5	mA	$\begin{aligned} & V_{\text {VCC2 } 2}=15 \mathrm{~V}, V_{\text {VEE } 2} \\ & =-8 \mathrm{~V}, \text { OUT }=\text { High, } \\ & D E S A T=\text { Low } \end{aligned}$
VCC2 operating current	102	-	3.9	5	mA	$\begin{aligned} & V_{\text {VCC2 }}=15 \mathrm{~V}, V_{\text {VEE2 }}= \\ & -8 \mathrm{~V}, O U T=16 \mathrm{kHz}, \\ & 50 \%, D E S A T=\text { Low, } \\ & C_{\text {LOAD }}=100 \mathrm{pF} \end{aligned}$

EiceDRIVER"' ${ }^{\text {m }}$ 1ED34x1Mc12M Enhanced
Datasheet

5 Electrical parameters

5.4.2 Logic input and output

Table 12
Logic input and output

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
Logic low input voltage (IN, RDYC, FLT_N)	$V_{\text {LogicliL }}$	-	-	30	\%	of V_{VCCl}
Logic high input voltage (IN, RDYC, FLT_N)	$V_{\text {Logiclinh }}$	70	-	-	\%	of V_{VCC1}
Logic low output voltage (RDYC, FLT_N)	$V_{\text {RDYC5 }}$, $V_{\text {FLT_N5 }}$	-	-	300	mV	$I_{\text {SINK }}=5 \mathrm{~mA}$
Logic input pull down resistor (IN)	$R_{\text {INPD }}$	33	40	47	$\mathrm{k} \Omega$	-
Logic input pull down resistor (RDYC, FLT_N)	$R_{\text {RDYCPD }}$, $R_{\text {FLT NPD }}$	0.8	1.0	1.2	$\mathrm{M} \Omega$	-

5.4.3 Analog input

Resistor values outside of the 1% tolerance range results in the gate driver IC selecting either the lower or higher step for the corresponding function.

Table 13
Analog input

Parameter ${ }^{1)}$	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
Analog input resistor (ADJA, ADJB)	$R_{\text {ADJx0 }}$	-	1.33	-	$k \Omega$	all resistor values are from the E96-series with 1% tolerance
	$R_{\text {ADJx1 }}$	-	1.58	-		
	$R_{\text {ADJx2 }}$	-	1.91	-		
	$R_{\text {ADJx3 }}$	-	2.26	-		
	$R_{\text {ADJx4 }}$	-	2.74	-		
	$R_{\text {ADJx5 }}$	-	3.32	-		
	$R_{\text {ADJx6 }}$	-	4.02	-		
	$R_{\text {ADJx7 }}$	-	4.87	-		
	$R_{\text {ADJx } 8}$	-	5.90	-		
	$R_{\text {ADJx9 }}$	-	7.15	-		
	$R_{\text {ADJx10 }}$	-	8.66	-		
	$R_{\text {ADJx11 }}$	-	10.7	-		
	$R_{\text {ADJ } \times 12}$	-	13.7	-		
	$R_{\text {ADJ } \times 13}$	-	17.4	-		
	$R_{\text {ADJx14 }}$	-	23.2	-		
	$R_{\text {ADJ } \times 15}$	-	28.0	-		

EiceDRIVER ${ }^{\text {m" }}$ 1ED34x1Mc12M Enhanced
Datasheet
5 Electrical parameters
1)

Parameter is not subject to production test - verified by design/characterization

EiceDRIVER"' ${ }^{\text {m }}$ 1ED34x1Mc12M Enhanced
Datasheet

5 Electrical parameters

5.4.4 Gate driver

Note: High and low level output currents are absolute values without an information of current direction.

Table 14
Gate driver

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
High level output voltage	$V_{\text {ON0 }}$	-	$V_{\text {vcC2 }}+0.87$	$V_{\text {vcC2 }}+1.01$	V	$\mathrm{I}_{\mathrm{ON}}=500 \mathrm{~mA}^{1)}$
High level output peak current 1ED3431M	Ion	2.6	3.8	-	A	${ }^{2) 3)} C_{\text {LOAD }}=33 \mathrm{nF}$
High level output on resistance 1ED3431M	$R_{\text {DSON,H }}$	0.51	1.12	2.24	Ω	$\mathrm{I}_{\mathrm{ON}}=67 \mathrm{~mA}^{3}$
Low level output peak current 1ED3431M	$I_{\text {OFF }}$	2.0	2.5	-	A	${ }^{\text {2) 4) }} C_{\text {LOAD }}=33 \mathrm{nF}$
Low level ouput on resistance 1ED3431M	$R_{\text {DSON,L }}$	0.31	0.82	1.64	Ω	$I_{\text {OFF }}=67 \mathrm{~mA}^{4}$
High level output peak current 1ED3461M	Ion	5.2	7.5	-	A	${ }^{\text {2) 3) }} C_{\text {LOAD }}=68 \mathrm{nF}$
High level output on resistance 1ED3461M	$R_{\text {DSON,H }}$	0.26	0.56	1.13	Ω	$\mathrm{I}_{\mathrm{ON}}=133 \mathrm{~mA}^{3}$
Low level output peak current 1ED3461M	$I_{\text {OFF }}$	4.0	5.0	-	A	${ }^{\text {2) 4) }} C_{\text {LOAD }}=68 \mathrm{nF}$
Low level ouput on resistance 1ED3461M	$R_{\text {DSon,L }}$	0.16	0.41	0.83	Ω	$I_{\text {OFF }}=133 \mathrm{~mA}^{4}$
High Level output peak current 1ED3491M	Ion	7.9	11	-	A	${ }^{2) 3)} C_{\text {LOAD }}=100 \mathrm{nF}$
High level output on resistance 1ED3491M	$R_{\text {DSON,H }}$	0.17	0.38	0.75	Ω	$I_{\text {ON }}=200 \mathrm{~mA}^{3}$
Low Level output peak current 1ED3491M	Ioff	6.0	7.5	-	A	2) 4) $C_{\text {LOAD }}=100 \mathrm{nF}$
Low level ouput on resistance 1ED3491M	$R_{\text {DSON,L }}$	0.11	0.28	0.55	Ω	$I_{\text {OFF }}=200 \mathrm{~mA}^{4}$
Active Shut Down Voltage OFF 1ED3431M	$V_{\text {ACTSD }}{ }^{5}$	-	-	$V_{\text {VEE2 }}+2.4$	V	$\begin{aligned} & I_{\text {OUT }}=67 \mathrm{~mA}, V_{V C C 2} \\ & \text { open } \end{aligned}$
Active Shut Down Voltage OFF 1ED3461M	$V_{\text {ACTSD }}{ }^{5}$	-	-	$V_{\text {VEE2 }}+2.4$	v	$\begin{aligned} & l_{\text {out }}=133 \mathrm{~mA}, \mathrm{~V}_{\text {VCC2 }} \\ & \text { open } \end{aligned}$
Active Shut Down Voltage OFF 1ED3491M	$V_{\text {ACTSD }}{ }^{5}$	-	-	$V_{\text {VEE2 }}+2.4$	v	$I_{\mathrm{OUT}}=200 \mathrm{~mA}, V_{\mathrm{VCC} 2}$ open

1) Integrated diode $O N$ vs. VCC2 clamping test
2) Parameter is not subject to production test - verified by design/characterization
3) $I N=$ High, $O N=$ High; $V C C 2-O N=15 \mathrm{~V} ; R_{G}=0.1 \Omega ; V C C 2=15 \mathrm{~V} ; V E E 2=-8 \mathrm{~V}$
4) $I N=$ Low, OFF = Low; OFF-VEE2 $=15 \mathrm{~V} ; R_{G}=0.1 \Omega ; V C C 2=15 \mathrm{~V} ; V E E 2=-8 \mathrm{~V}$

EiceDRIVER ${ }^{\text {T" }}$ 1ED34x1Mc12M Enhanced
Datasheet

5 Electrical parameters

5) With reference to VEE2

5.4.5 Active Miller clamp

Table $15 \quad$ Active Miller clamp

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
High level clamp voltage	$V_{\text {CLAMPHO }}$	-	$V_{\text {VCC } 2}+1.5$	$V_{\text {vCC2 }}+1.63$	V	$I_{\text {CLAMP }}=500 \mathrm{~mA}^{1 / 2)}$
	$V_{\text {CLAMPH1 }}$	-	$V_{\text {VCC2 } 2}+0.9$	$V_{V C C 2}+1.1$	V	$I_{\text {CLAMP }}=50 \mathrm{~mA}^{1 / 2)}$
Clamp-driver high level output voltage (1ED3461M, 1ED3491M)	$V_{\text {CLAMPDH } 1}$	$V_{\text {VEE } 2}+7.5$	$V_{\text {VEE2 } 2}+9.5$	$V_{\text {VEE } 2}+11.5$	V	$I_{\text {CLAMPH }}=5 \mathrm{~mA}^{3 /}$
	$V_{\text {CLAMPDH2 }}$	$V_{\text {VEE } 2}+4.5$	$V_{\text {VEE2 } 2}+6.7$	-	V	$I_{\text {CLAMPH }}=50 \mathrm{~mA}^{3}{ }^{\text {I }}$
Clamp-driver high level output peak current (1ED3461M, 1ED3491M)	$I_{\text {CLAMPH }}$	0.20	0.27	-	A	4) $V C C 2=15 \mathrm{~V}$; VEE2 $=$ 0 V ; $\mathrm{C}_{\text {CLAMP }}=100 \mathrm{nF}$; $R_{\text {CLAMP }}=1 \Omega$
Clamp/Clamp-driver output low level current	$I_{\text {CLAMPL, } 2}$	1.1	1.8	-	A	$\begin{aligned} & \text { 4) } V C C 2=15 \mathrm{~V} ; \mathrm{VEE} 2 \\ & =0 \mathrm{~V} ; V_{\text {CLAMP }}=2 \mathrm{~V} ; \\ & C_{\text {CLAMP }}=100 \mathrm{nF} ; \\ & R_{\text {CLAMP }}=0.1 \Omega \end{aligned}$
Clamp/Clamp-driver output low level current	$I_{\text {CLAMPL, } 5}$	2.2	3.5	-	A	$\begin{aligned} & \text { 4) } V C C 2=15 \mathrm{~V} ; \mathrm{VEE} 2 \\ & =0 \mathrm{~V} ; V_{\text {CLAMP }}=5 \mathrm{~V} ; \\ & C_{\text {CLAMP }}=100 \mathrm{nF} ; \\ & R_{\text {CLAMP }}=0.1 \Omega \end{aligned}$
Clamp/Clamp-driver output low level ON resistance	$R_{\text {DSon,CLP }}$	0.50	0.85	1.35	Ω	$I_{\text {CLAMPL }}=200 \mathrm{~mA}$
Clamp threshold voltage	$V_{\text {On_CLAMP }}$	1.5	2.0	2.5	v	Related to VEE2
Clamp filter time	$t_{\text {CLAMPfilter }}$	195	235	275	ns	
CLAMP reaction time in CLAMP mode	$t_{\text {CLAMP_ON }}$	$16+$ $t_{\text {CLAMPfilter }}$	$23+$ $t_{\text {CLAMPfilter }}$	$35+$ $t_{\text {CLAMPfilter }}$	ns	${ }^{\text {4) 5) }} C_{\text {LOAD }}=100 \mathrm{pF}$
CLAMP reaction time in CLAMP driver mode	$t_{\text {CLAMPD_ON }}$	$24+$ $t_{\text {CLAMPfilter }}$	35 $t_{\text {CLAMPFilter }}$	$53+$ $t_{\text {CLAMPfilter }}$	ns	${ }^{\text {4) 6) }} C_{\text {LOAD }}=100 \mathrm{pF}$
Switch-off time-out time	$t_{\text {CTT }}$	-	2.4	-	$\mu \mathrm{s}$	4)
Switch-off time-out soft-off offset time	$t_{\text {ctsoos }}$	-	2.4	-	$\mu \mathrm{s}$	4) additional time-out delay during soft-off

1) Integrated diode CLAMP vs. VCC2 clamping test
2) only valid for direct clamping: $I N=$ High, $O U T=$ High
3) only valid for clamp pre-driver output: $I N=$ Low, $O U T=$ Low
4) Parameter is not subject to production test - verified by design/characterization
5) CLAMP mode reaction time specified with $3.3 \mathrm{k} \Omega$ pull-up from CLAMP to 3.3 V , from CLAMP threshold until reaching 0.8 V (falling) at CLAMP pin

EiceDRIVER ${ }^{\text {T" }}$ 1ED34x1Mc12M Enhanced
Datasheet

5 Electrical parameters

6) CLAMP driver mode reaction time specified from CLAMP threshold until reaching 0.8 V (rising) at CLAMP(DRV) pin

5.4.6 Dynamic characteristics

Dynamic characteristics are measured with $V_{V C C 1}=5 \mathrm{~V}, V_{\text {VCC2 }}=15 \mathrm{~V}$ and $V_{\text {VEE } 2}=-8 \mathrm{~V}$ unless specified otherwise.
Table 16 Dynamic characteristics

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
Input pulse suppression time IN	$t_{\text {INMIN }}$	98	103	108	ns	-
Input pulse suppression time RDYC/FLT_N for enable / fault off	$t_{\text {RDYCMIN }}$, $t_{\text {FLT_NMIN }}$	85	100	115	ns	-
Input pulse width RDYC for FLT_N reset (Fault clear time)	$t_{\text {CLRMIN }}$	-	1.0	1.2	$\mu \mathrm{s}$	
Input IN to output propagation delay ON	$t_{\text {PDON }}$	226	244	270	ns	$\begin{aligned} & C_{\text {LOAD }}=100 \mathrm{pF}, V_{I N}= \\ & 70 \%, V_{\text {OUT }}=20 \% \end{aligned}$
Input IN to output propagation delay OFF	$t_{\text {PDOFF }}$	218	236	262	ns	$\begin{aligned} & C_{\text {LOAD }}=100 \mathrm{pF}, V_{\text {IN }}= \\ & 30 \%, V_{\text {OUT }}=80 \% \end{aligned}$
Input to output propagation delay distortion ($\left.t_{\text {PDOFF }}-t_{\text {PDON }}\right)$	$t_{\text {PDISTO }}$	-23	-8	7	ns	$C_{\text {LOAD }}=100 \mathrm{pF}$
Input IN to output propagation delay distortion between any devices ($t_{\text {PDON }}{ }^{-t_{\text {PDON }}}$) or ($t_{\text {PDOFF }}-t_{\text {PDOFF }}$)	$t_{\text {PDD }}$	-	-	30	ns	${ }^{1)}$ same conditions ($V_{\mathrm{IN}}, V_{\mathrm{VCC1}}, V_{\mathrm{VCC} 2}$ and $V_{\text {VEE2 }}, C_{\text {LOAD }}, T_{A}$)
State synchronization time between input and output	$t_{\text {ssio }}$	-	-	13	$\mu \mathrm{s}$	1)
Input RDYC to output on propagation delay	$t_{\text {PDRDYC }}$	447	523	600	ns	$\begin{aligned} & C_{\text {LOAD }}=100 \mathrm{pF} ; I \mathrm{IN} \\ & \text { high } ; V_{\text {RDYC }}=70 \%, \\ & V_{\text {OUT }}=20 \% \end{aligned}$
Input RDYC or FLT_N to Soft-off output propagation delay	$t_{\text {PDRDYCS }}$, $t_{\text {PDFLT_NS }}$	323	361	407	ns	$\begin{aligned} & C_{\text {LOAD }}=100 \mathrm{pF}, V_{\text {Signal }} \\ & =30 \%, V_{\text {OUT }}=80 \% \text {, } \\ & \text { Soft-off function } \\ & I_{\text {CSOFF, } 15} \end{aligned}$
Input RDYC or FLT_N to hard switch-off output propagation delay	$t_{\text {PDRDYCH }}$, $t_{\text {PDFLT_NH }}$	303	342	384	ns	$\begin{aligned} & C_{\text {LOAD }}=100 \mathrm{pF}, V_{\text {Signal }} \\ & =30 \%, V_{\text {OUT }}=80 \% \text {, } \\ & \text { OFF function } \end{aligned}$
Rise time 1ED3431M	$t_{\text {RISE }}$	-	15	30	ns	$\begin{aligned} & C_{\text {LOAD }}=1 \mathrm{nF}, V_{\text {OUT: }}: \\ & 20 \% \text { to } 80 \% \end{aligned}$

(table continues...)

EiceDRIVER"' ${ }^{\text {m }}$ 1ED34x1Mc12M Enhanced
Datasheet

5 Electrical parameters

Table 16
(continued) Dynamic characteristics

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
Fall time 1ED3431M	$t_{\text {FALL }}$	-	15	30	ns	$\begin{aligned} & C_{\text {LOAD }}=1 \mathrm{nF}, V_{\text {OUT }}: \\ & 80 \% \text { to } 20 \% \end{aligned}$
Rise time 1ED3461M	$t_{\text {RISE }}$	-	15	30	ns	$\begin{aligned} & C_{\text {LOAD }}=2.2 n F, V_{\text {OUT }}: \\ & 20 \% \text { to } 80 \% \end{aligned}$
Fall Time 1ED3461M	$t_{\text {FALL }}$	-	15	30	ns	$\begin{aligned} & C_{\text {LOAD }}=2.2 n F, V_{\text {OUT }}: \\ & 80 \% \text { to } 20 \% \end{aligned}$
Rise Time 1ED3491M	$t_{\text {RISE }}$	-	15	30	ns	$\begin{aligned} & C_{\text {LOAD }}=3.3 n F, V_{\text {OUT }}: \\ & 20 \% \text { to } 80 \% \end{aligned}$
Fall Time 1ED3491M	$t_{\text {FALL }}$	-	15	30	ns	$\begin{aligned} & C_{\text {LOAD }}=3.3 \mathrm{nF}, V_{\text {OUT }}: \\ & 80 \% \text { to } 20 \% \end{aligned}$

1) Parameter is not subject to production test - verified by design/characterization

5.4.7 Desaturation protection

All parameters valid for VCC1 $=5 \mathrm{~V}, V C C 2=15 \mathrm{~V}$, and VEE2 $=0 \mathrm{~V}$ unless specified otherwise.

Desaturation protection						
Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
DESAT charge current	$I_{\text {DESATC }}$	470	500	525	$\mu \mathrm{A}$	$V_{\text {DESAT }}=0 \mathrm{~V}$
DESAT voltage divider resistance	$R_{\text {DVD }}$	259	312.5	366	$\mathrm{k} \Omega$	between DESAT and GND2 pins
DESAT clamp and discharge ON resistance	$R_{\text {DSON, }}$	-	7.7	25.0	Ω	$I_{\text {DESATD }}=200 \mathrm{~mA}$
DESAT threshold level	$V_{\text {DESAT }}$	8.88	9.18	9.48	V	-
DESAT leading edge blanking time	$t_{\text {DESATleb, }}$	356	400	444	ns	$\begin{aligned} & \text { ADJB depending, } V_{\text {ON }} \\ & 20 \% \text { rising to } V_{\text {DESAT }} \\ & =1 \mathrm{~V}, C_{\text {LOAD }}=100 \mathrm{pF}, \\ & C_{\text {DESAT }}=2 \mathrm{pF}, \end{aligned}$
	$t_{\text {DESATleb, }}$	597	650	703	ns	
	$t_{\text {DESATleb, }}$	1077	1150	1223	ns	
DESAT filter time (default)	$t_{\text {DESATfilter, def }}$	190	225	263	ns	$A D J B=V C C 1$
DESAT filter time (ADJB adjustable)	$t_{\text {DESATfilter,A }}$	1476	1575	1684	ns	$A D J B$ depending
	$t_{\text {DESATfilter,B }}$	1667	1775	1895	ns	
	$t_{\text {DESATfilter, } \mathrm{C}}$	1857	1975	2105	ns	
	$t_{\text {DESATfilter, } \mathrm{D}}$	2238	2375	2526	ns	
	$t_{\text {DESATfilter,E }}$	2619	2775	2947	ns	
	$t_{\text {DESATfilter,F }}$	3000	3175	3368	ns	

(table continues...)

EiceDRIVER ${ }^{\text {r" }} 1 E D 34 \times 1$ Mc12M Enhanced
Datasheet
5 Electrical parameters

Table 17
(continued) Desaturation protection

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
	$t_{\text {DESATfilter,G }}$	3381	3575	3789	ns	
	$t_{\text {DESATfilter, }}$	3762	3975	4211	ns	
DESAT sense to FLT_N low delay	$t_{\text {DESATFLT }}$	623	743	883	ns	$\begin{aligned} & V_{\text {FLT_N }}=30 \%, I_{\text {FLT_N }} \\ & =5 \mathrm{~mA}, t_{\text {DESATfilter,def }}, \\ & C_{\text {FLT_N }}=100 \mathrm{pF} \end{aligned}$
DESAT sense to OFF low delay, Soft-off	$t_{\text {DESATOUTS }}$	$\begin{aligned} & 287+ \\ & t_{\text {DESATfilter }} \end{aligned}$	$\begin{aligned} & 333+ \\ & t_{\text {DESATfilter }} \end{aligned}$	$\begin{aligned} & 382+ \\ & t_{\text {DESATfilter }} \end{aligned}$	ns	$\begin{aligned} & V_{\text {OUT }}=80 \%, C_{\text {LOAD }}= \\ & 100 \mathrm{pF}, I_{\text {CSOFF, } 15} \end{aligned}$

EiceDRIVER"' ${ }^{\text {m }}$ 1ED34x1Mc12M Enhanced
Datasheet

5 Electrical parameters

5.4.8 Soft-off current source

Soft-off current source values specified at OFF pin at $V_{\text {OFF }}=3 \mathrm{~V}$ with unipolar supply of $V_{\mathrm{VCC} 2}=15 \mathrm{~V}$.
Table $18 \quad$ Current source turn-off

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
Soft-off current source current 1ED3431M	$I_{\text {CSOFF,0 }}$	10	15	19	mA	depends on resistor value at ADJA
	$I_{\text {CSOFF,1 }}$	24	29	36	mA	
	$I_{\text {CSOFF,2 }}$	35	44	52	mA	
	$I_{\text {CSOFF,3 }}$	47	58	70	mA	
	$I_{\text {CSOFF,4 }}$	58	73	87	mA	
	${ }^{\text {CSSOFF5 }}$	70	87	105	mA	
	$I_{\text {CSOFF, } 6}$	82	102	122	mA	
	$I_{\text {CSOFF, } 7}$	93	116	140	mA	
	$I_{\text {CSOFF, }}$	105	131	157	mA	
	$I_{\text {CSoFF,9 }}$	116	146	175	mA	
	ICSOFF,10	128	160	192	mA	
	ICSOFF,11	140	175	210	mA	
	ICSOFF,12	151	189	227	mA	
	ICSOFF,13	163	204	245	mA	
	ICSOFF,14	175	218	262	mA	
	ICSOFF,15	186	233	280	mA	
Soft-off current source current 1ED3461M	$I_{\text {CSOFF,0 }}$	22	29	36	mA	depends on resistor value at ADJA
	$I_{\text {CSOFF, } 1}$	45	58	72	mA	
	$I_{\text {CSOFF,2 }}$	70	87	105	mA	
	$I_{\text {CSOFF,3 }}$	93	116	140	mA	
	$I_{\text {CSOFF,4 }}$	116	146	175	mA	
	$I_{\text {CSOFF,5 }}$	140	175	210	mA	
	$I_{\text {CSOFF, } 6}$	163	204	245	mA	
	$I_{\text {CSOFF, } 7}$	186	233	280	mA	
	$I_{\text {CSOFF,8 }}$	210	262	314	mA	
	$I_{\text {CSOFF,9 }}$	233	291	349	mA	
	ICSOFF,10	256	320	384	mA	
	ICSOFF,11	280	349	419	mA	
	$I_{\text {CSOFF,12 }}$	303	379	454	mA	
	$I_{\text {CSOFF,13 }}$	326	408	489	mA	
	ICSOFF,14	349	437	524	mA	

(table continues...)

5 Electrical parameters

Table 18
(continued) Current source turn-off

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Typ.	Max.		
	$I_{\text {CSOFF,15 }}$	373	466	559	mA	
Soft-off current source current 1ED3491M	$I_{\text {CSOFF, }}$	34	44	54	mA	depends on resistor value at $A D J A$
	$I_{\text {CSOFF, } 1}$	70	87	105	mA	
	$I_{\text {CSOFF, } 2}$	105	131	157	mA	
	$I_{\text {CSOFF, }}$	140	175	210	mA	
	$I_{\text {CSOFF, } 4}$	175	218	262	mA	
	$I_{\text {CSOFF, } 5}$	210	262	314	mA	
	$I_{\text {CSOFF, } 6}$	245	306	367	mA	
	$I_{\text {CSOFF, }}$	280	349	419	mA	
	$I_{\text {CSOFF, } 8}$	314	393	472	mA	
	$I_{\text {CSOFF, } 9}$	349	437	524	mA	
	$I_{\text {CSOFF,10 }}$	384	480	577	mA	
	$I_{\text {CSOFF,11 }}$	419	524	629	mA	
	$I_{\text {CSOFF,12 }}$	454	568	681	mA	
	$I_{\text {CSOFF,13 }}$	489	612	734	mA	
	$I_{\text {CSOFF,14 }}$	524	655	786	mA	
	$I_{\text {CSOFF,15 }}$	559	699	839	mA	

5.4.9 Over-temperature protection

Table 19
Over-temperature protection

Parameter $^{1)}$	Symbol	Values			Unit	Note or Test Condition
		Min.		Typ.	Max.	
Over-temperature protection level	$T_{\text {OTPOFF }}$	150	160	170	${ }^{\circ} \mathrm{C}$	

1) Parameter is not subject to production test - verified by design/characterization

Datasheet

6 Insulation characteristics

6 Insulation characteristics

The following isolation classes are available for the 1ED34x1Mc12M family (X3 Analog).
Table $20 \quad$ Product isolation classes

Product name	Marking	Insulation characteristics	Values specified in	UL values
1ED34x1MU12M	34×1 MU12	UL 1577 certified insulation	-	Table 23
1ED34x1MC12M	34×1 MC12	Reinforced insulation	Table 22	Table 23

Table 21 Safety limiting values
This coupler is suitable for rated insulation only within the given safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

Description	Symbol	Characteristic	Unit
Maximum ambient safety temperature	T_{S}	150	${ }^{\circ} \mathrm{C}$
Maximum input-side power dissipation at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{SI}	100	mW
Maximum output-side power dissipation at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}^{1)}$	P_{SO}	1000	mW
Maximum driver output current $(\mathrm{ON}, \text { OFF })^{2)}$	$I_{\text {OUT }}$		A
1ED3431MC		2.4	
1ED3461MC		4.8	7.2
1ED3491MC			

1) IC output-side power dissipation is derated linearly at $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $65^{\circ} \mathrm{C}$
2) Maximum pulse length of $t=5 \mu \mathrm{~s}$

6.1 Certified according to VDE 0884-11 reinforced insulation (Certificate no. 40053980)

Valid for parts with part name 1ED34x1MC12M, x indicate different variants.
This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

Table 22 Reinforced insulation according to VDE 0884-11

Description	Symbol	Characteristic	Unit
Installation classification per EN 60664-1, Table 1			-
for rated mains voltage $\leq 150 \mathrm{~V}$ (rms) for rated mains voltage $\leq 300 \mathrm{~V}$ (rms) for rated mains voltage $\leq 600 \mathrm{~V}$ (rms) for rated mains voltage ≤ 1000 V (rms)		I-IV	
Climatic classification	I-III		
Pollution degree (EN 60664-1)		$40 / 125 / 21$	-
Minimum external clearance	$C L R$	>8	-
Minimum external creepage	$C T I$	400	mm
Minimum comparative tracking index		>8	mm

(table continues...)

EiceDRIVER ${ }^{\text {r" }} 1 E D 34 \times 1$ Mc12M Enhanced
Datasheet

6 Insulation characteristics

Table 22 (continued) Reinforced insulation according to VDE 0884-11

Description	Symbol	Characteristic	Unit
Apparent charge, method a $V_{\mathrm{pd}(\mathrm{ini}), \mathrm{a}}=V_{\text {IOTM }}, V_{\mathrm{pd}(\mathrm{~m})}=1.6 \times V_{\text {IORM }}, \mathrm{t}_{\mathrm{ini}}=1 \mathrm{~min}$	q_{c}	<5	pC
Apparent charge, method b $V_{\text {pd(ini) }) \mathrm{b}}=V_{\text {IOTM }} \times 1.2, V_{\mathrm{pd}(\mathrm{~m})}=1.875 \times V_{\text {IORM }}, t_{\mathrm{ini}}=1 \mathrm{~s}$	q_{c}	<5	pC
Isolation resistance at $T_{\mathrm{A}, \text { max }}$	R_{10}	$>10^{11}$	Ω
Isolation resistance at T_{S}	$R_{\text {IO_S }}$	$>10^{9}$	Ω
Maximum rated transient isolation voltage	$V_{\text {IOTM }}$	8000	V (peak)
Maximum repetitive insulation voltage	$V_{\text {IORM }}$	1767	V (peak)
Maximum surge isolation voltage for reinforced isolation $V_{\text {TEST }}=V_{\text {IOSM }} \times 1.6$	$V_{\text {IOSM }}$	6875	V (peak)
Insulation capacitance	C_{10}	1.7	pF

6.2 Recognized under UL 1577 (File E311313)

Table 23
Recognized under UL 1577

Description	Symbol	Characteristic	Unit
Insulation withstand voltage $/ 1 \mathrm{~min}$	$V_{\text {ISO }}$	5700	V (rms)
Insulation test voltage $/ 1 \mathrm{~s}$	$V_{\text {ISO, TEST }}$	6840	V (rms)

$7 \quad$ Package information

Figure 24
PG-DSO-16-28/33-300 mil 16-pin fine pitch plastic green dual small outline package

8 Application notes

8.1 Reference layout for thermal data

Figure $25 \quad$ Reference layout for thermal data (Two layer PCB; copper thickness $35 \mu \mathrm{~m}$; left: top layer; right: bottom layer)

The PCB layout represents the reference layout used for the thermal characterization. Pins 1 and 8 (GND1) and pins 9 and 16 (VEE2) require ground plane connections for achieving maximum power dissipation. The 1ED34x1Mc12M family (X3 Analog) is conceived to dissipate most of the heat generated through these pins.

8.2 Printed circuit board guidelines

Following factors should be taken into account for an optimum PCB layout.

- Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
- The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained to increase the effective isolation and reduce parasitic coupling.
- In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept as short as possible.

Revision history

Revision history	
Reference	Description
$\begin{aligned} & \text { v2.1 } \\ & (2021-02-15) \end{aligned}$	- Change footnotes to table notes - added param $V_{\text {OfFSET }}$ - update package drawing to latest revision - update certification status
(2021-09-01)	New version number schema: Target/Preliminary datasheet: $0 . X Y$; Final datasheet: 1.XY
$\begin{aligned} & 1.10 \\ & (2021-10-08) \end{aligned}$	- Certification information update (VDE certification) - Fix unit and conditions in certification table according to standards - Related product table update

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-10-08

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2021 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?
Email: erratum@infineon.com

Document reference IFX-fiz1584344472005

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Infineon:
1ED3431MC12MXUMA1

Murata Power Solutions

FEATURES
■ Optimised bipolar output voltages for IGBT/ Mosfet gate drives
■ Reinforced insulation to UL60950 recognised
■ ANSI/AAMI ES60601-1, 1 MOPP/2 M00P's recognised ${ }^{3}$

- 5.2kVDC isolation test voltage 'Hi Pot Test'

Ultra Iow coupling capacitance
SIP package style
■ 5V, 12V, 15 V \& 24V inputs
■ +15V/-3V, +15V/-5V, +15V/-8.7V, $+15 \mathrm{~V} /-15 \mathrm{~V},+17 \mathrm{~V} /-9 \mathrm{~V},+18 \mathrm{~V} /-2.5 \mathrm{~V}$, $+20 \mathrm{~V} /-3.5 \mathrm{~V}$ \& $+20 \mathrm{~V} /-5 \mathrm{~V}$ outputs

Operation to $100^{\circ} \mathrm{C}$

Characterised CMTI >200kV/ $\mu \mathrm{S}$
■ Continuous barrier withstand voltage 2.4kVDC

Characterised partial discharge performance

PRODUCT OVERVIEW

The MGJ2 series of DC-DC converters is ideal for powering 'high side' and 'low side' gate drive circuits for IGBTs and Mosfets in bridge circuits. A choice of asymmetric output voltages allows optimum drive levels for best system efficiency and EMI. The MGJ2 series is characterised for high isolation and dv/dt requirements commonly seen in bridge circuits used in motor drives and inverters, while the MGJ2 industrial grade temperature rating and construction gives long service life and reliability.

5.2kVDC Isolated 2W Gate Drive DC-DC Converters

INPUT CHARACTERISTICS

1. Calculated using MIL-HDBK-217 FN2 and Telecordia SR-332 calculation model with nominal input voltage at full load.
2. See ripple \& noise test method.
3. ANSI/AAMI ES60601-1 recognition is currently pending for the MGJ2D241709SC, MGJ2Dxx1515SC, MGJ2Dxx1802SC, MGJ2Dxx1503SC and MGJ2Dxx2003SC variants.
All specifications typical at $T_{A}=25^{\circ} \mathrm{C}$, nominal input voltage and rated output current unless otherwise specified.

${ }_{m n}$ Prtata $^{P_{5}}$ Murata Power Solutions

MGJ2 Series

5.2kVDC Isolated 2W Gate Drive DC-DC Converters

OUTPUT CHARACTERISTICS						
Parameter	Conditions		Min.	Typ.	Max.	Units
Rated Power	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$				2	W
Voltage Set Point Accuracy	See tolerance envelopes					
Line regulation	High Vis to low Vin			1.0	1.2	\%/\%
ISOLATION CHARACTERISTICS						
Parameter	Conditions		Min.	Typ.	Max.	Units
Isolation test voltage	Production tested for 1 second		5200			VDC
	Qualification tested for 1 minute		5200			
Resistance	Viso= 500VDC			1		G Ω
Continuous barrier withstand voltage	Non-safety barrier application				2400	VDC
Safety standard	MGJ2Dxx1515SC types	Basic/supplementary			200	Vrms
	All others	Reinforced			150	
		Basic/supplementary			300	
	MGJ2Dxx1515SC types	1 MOOP			200	
	All others ${ }^{1}$	1 MOOP			300	
		2 M00P/1 MOPP			200	

GENERAL CHARACTERISTICS					
Parameter	Conditions	Min.	Typ.	Max.	Units
Switching frequency	All other types		45		kHz
	MGJ2Dxx1802SC \& MGJ2D241503SC types		50		

TEMPERATURE CHARACTERISTICS					
Parameter	Conditions	Min.	Typ.	Max.	Units
Specification	All output types (see safety approval section for limitations)	-40		100	${ }^{\circ} \mathrm{C}$
Storage		-55		125	
Case Temperature above ambient	5 V input types		24		
	All other input types		20		
Cooling	Free air convection				

ABSOLUTE MAXIMUM RATINGS	
Short-circuit protection	Continuous
Lead temperature 1mm from case for 10 seconds	$260^{\circ} \mathrm{C}$
Input voltage $\mathrm{V}_{\text {IN, }}$ MGJ2D05xxxxSC	5.5 V
Input voltage $\mathrm{V}_{\text {IN, }}$ MGJ2D12xxxxSC	13.2 V
Input voltage $\mathrm{V}_{\mathbf{I N},}$ MGJ2D15xxxxSC	16.5 V
Input voltage $\mathrm{V}_{\text {IN, }}$ MGJ2D24xxxxSC	26.4 V
Wave Solder	Wave Solder profile not to exceed the profile recommended in IEC $61760-1$ Section 6.1 .3 . Please refer to application notes for further information.

[^1]
5.2kVDC Isolated 2W Gate Drive DC-DC Converters

TECHNICAL NOTES
 ISOLATION VOLTAGE

'Hi Pot Test', ‘Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' \& 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.
Murata Power Solutions MGJ2 series of DC-DC converters are all 100% production tested at 5.2 kVDC for 1 second and have been qualification tested at 5.2 kVDC for 1 minute.
The MGJ2 series is recognised by Underwriters Laboratory, please see safety approval section for more information. When the insulation in the MGJ2 series is not used as a safety barrier, i.e. provides functional isolation only, continuous or switched voltages across the barrier up to 2.4 kV are sustainable. This is established by measuring the partial discharge Inception voltage in accordance with IEC 60270. Please contact Murata for further information.

repeated high-voltage isolation testing

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPRROVAL

MGJ2Dxx1515SC

ANSI/AAMI ES60601-1

The MGJ2Dxx1515SC variants are pending recognition by Underwriters Laboratory (UL) to ANSI/AAMI ES60601-1 and provides 1 M00P (Means Of Operator Protection) based upon a working voltage of 200 Vrms max and 280 Vpk max., between Primary and Secondary and between Primary and its Enclosure, in a maximum ambient temperature of $85^{\circ} \mathrm{C}$ and $/$ or case temperature limit of $130^{\circ} \mathrm{C}$ (case temperature measured on the face opposite the pins).

File Number E202895 applies.

UL60950

The MGJ2Dxx1515SC variants have been recognised by Underwriters Laboratory (UL) to UL60950 for basic/supplementary insulation to a working voltage of 200Vrms in a maximum ambient temperature of $85^{\circ} \mathrm{C}$ and $/$ or case temperature limit of $130^{\circ} \mathrm{C}$ (case temperature measured on the face opposite the pins).

File number E151252 applies.
Creepage and clearance 2 mm
Working altitude 4000 m

Fusing

The MGJ2 Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below. MGJ2D051515SC: 2A
MGJ2D121515SC: 750mA
MGJ2D151515SC: 750mA
All fuses should be UL recognised and rated to 125 V .

All other variants

ANSI/AAMI ES60601-1

The MGJ2 series has been recognised by Underwriters Laboratory (UL) to ANSI/AAMI ES60601-1 and provides 1 MOOP (Means Of Operator Protection) based on a working voltage of 300 Vrms or 2 MOOP based upon a working voltage of 200 Vrms , and 1 MOPP (Mean Of Patient Protection) based on a working voltage of 200Vrms., between Primary and Secondary. The MGJ2D241709SC, MGJ2Dxx1802SC, MGJ2Dxx1503SC and MGJ2Dxx2003SC variants are currently pending recognition.
File number E202895 applies.
UL60950
The MGJ2 series is recognised by Underwriters Laboratory (UL) to UL60950 for reinforced insulation to a working voltage of 150Vrms and for basic/supplementary insulation to a working voltage of 300 Vrms .
File number E151252 applies.

Over voltage category	OVC I	OVC II
Working voltage	150 Vrms	300 Vrms
Working altitude	2000 m	2000 m
Creepage \& clearance	2 mm	2 mm

Fusing

The MGJ2 Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below.
MGJ2D05xxxxSC: 1.25A
MGJ2D12xxxxSC: 750mA
MGJ2D15xxxxSC: 750mA
MGJ2D24xxxxSC: 750mA
All fuses should be UL recognised and rated to 125 V .

This series is compatible with RoHS soldering systems with a peak wave solder temperature of $260^{\circ} \mathrm{C}$ for 10 seconds. Please refer to application

ENVIRONMENTAL VALIDATION TESTING

The following tests have been conducted on this product series, as part of our design verification process. The datasheet characteristics specify user operating conditions for this series, please contact Murata if further information about the tests is required.

Test	Standard	Condition
Temperature cycling	MIL-STD-883 Method 1010, Condition B	10 cycles between two chambers set to achieve $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. The dwell time shall not be less than 10 min .
Humidity bias	JEDEC JESD22-A101	$85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 85 \% \pm 5 \%$ R.H. for >1000 hours.
High temperature storage life	JEDEC JESD22-A103, Condition A	$125^{\circ} \mathrm{C}+10 /-0^{\circ} \mathrm{C}$ for ≥ 1000 hours.
Vibration	MIL-STD-883 Method 2007, Condition A	1.5 mm pk-pk / 20 g pk min, $20-2000 \mathrm{~Hz}$, 4 sweeps in each of 3 mutually perpendicular axes at 3 oct/min.
Shock	MIL-STD-883 Method 2002, Condition A	500 g 1.0 ms half sine, 5 shocks in each direction of 3 mutually perpendicular axis.
ESD	JEDEC JESD22-A114	HBM Testing Standard at 3 stress levels; 2.0kV, 4.0kV and 8.0kV.
Bump	IEC Class 4M5 of ETS 300 019-2-4	Shock Spectrum Type II, 6 mS duration, $250 \mathrm{~m} / \mathrm{s}^{2} 500$ bumps in 6 directions.
Solderability	IPC/ECA J-STD-002, Test A and A1	SnPb (Test A) For leaded solderability the parts are conditioned in a steam ager for 8 hours ± 15 min. at a temperature of $93 \pm 3^{\circ} \mathrm{C}$. Dipped in solder at $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for $5+0 /-0.5$ seconds. Pb -free (Test A1) For lead free solderability the parts are conditioned in a steam ager for 8 hours $\pm 15 \mathrm{~min}$. at a temperature of $93 \pm 3^{\circ} \mathrm{C}$. Dipped in solder at $255^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for $5+0 /-0.5$ seconds.
Solder heat	JEDEC JESD22-B106	The test sample is subjected to a molten solder bath at $260 \pm 5^{\circ} \mathrm{C}$ for 10 seconds (96 SC tin/ silver/copper).
Solder heat (hand)	MIL-STD-202 Method 210, Condition A	The soldering iron is heated to $350^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ and applied to the terminations for a duration of 4 to 5 seconds.
Solvent cleaning	Resistance to cleaning agents.	Solvent - Novec 71IPA \& Topklean EL-20A. Pulsed ultrasonic immersion $45^{\circ} \mathrm{C}-65^{\circ} \mathrm{C}$
Solvent Resistance	MIL-STD-883 Method 2015	Separate samples subjected to solvent A, solvent B and solvent D
Lead Integrity (Adhesion)	MIL-STD-883 Method 2025	Leads are bent through 90° until a fracture occurs.
Lead Integrity (Fatigue)	MIL-STD-883 Method 2004, condition B_{2}	The leads are bent to an angle of 15°. Each lead is subjected to 3 cycles.
Lead Integrity (Tension/Pull)	MIL-STD-883 Method 2004, Condition A_{1}	Pull of 0.227 kg applied for 30 seconds. The force is then increased until the pins snap.

PART NUMBER STRUCTURE

Series name
Power rating

Output type
RoHS compliant
S - Single
D - Dual
T-Triple
Package type
Q - Quad
Input voltage
S - SIP
D - DIP
M - Surface mount
Z-ZIP
Output voltage

muRinta

CHARACTERISATION TEST METHODS

Ripple \& Noise Characterisation Method

Ripple and noise measurements are performed with the following test configuration.

C1	1 μ F X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC-DC converter
C2	10μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC-DC converter with an ESR of less than $100 \mathrm{~m} \Omega$ at 100 kHz
C3	100 nF multiliayer ceramic capacitor, general purpose
R1	450л resistor, carbon film, $\pm 1 \%$ tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC-DC converter. Connections should be made via twisted wires
Measured values are multiplied by 10 to obtain the specified values.	

Differential Mode Noise Test Schematic

muninta

APPLICATION NOTES

Minimum Ioad

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically 1.25 times the specified output voltage if the output load falls to less than 5%.

Gate Drive Applications Advisory Note
For general guidance for product usage in gate drive applications please refer to "gate drive application notes"

Capacitive loading and start up

Typical start up times for this series, with a typical input voltage rise time of $2.2 \mu \mathrm{~s}$ and output capacitance of $10 \mu \mathrm{~F}$, are shown in the table below. The product series will start into capacitance ranging from $47 \mu \mathrm{~F}$ up to $220 \mu \mathrm{~F}$ with increased start times.

	Start-up time		Start-up time
	ms		ms
MGJ2D051505SC	3	MGJ2D151505SC	2.5
MGJ2D051509SC	4.5	MGJ2D151509SC	3
MGJ2D051515SC	21	MGJ2D151515SC	10.5
MGJ2D051802SC	4	MGJ2D151802SC	3
MGJ2D052003SC	5	MGJ2D152003SC	5
MGJ2D052005SC	5	MGJ2D152005SC	4.5
MGJ2D121503SC	3	MGJ2D241503SC	3
MGJ2D121505SC	3	MGJ2D241505SC	3
MGJ2D121509SC	4	MGJ2D241509SC	3
MGJ2D121515SC	14.5	MGJ2D241709SC	4
MGJ2D121802SC	5	MGJ2D241802SC	3
MGJ2D122003SC	5	MGJ2D242003SC	4
MGJ2D122005SC	5.5	MGJ2D242005SC	4

TEMPERATURE DERATING GRAPHS

POSITIVE OUTPUT VOLTAGE TOLERANCE ENVELOPES
The voltage tolerance envelopes show typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading and set point accuracy.

NEGATVE OUTPUT VOLTAGE TOLERANCE ENVELOPES (Continued)

PACKAGE SPECIFICATIONS

MECHANICAL DIMENSIONS

All dimensions in $\mathrm{mm} \pm 0.25 \mathrm{~mm}$ (inches ± 0.01). All pins on a 2.54 (0.1) pitch and within ± 0.25 (0.01) of true position.

Weight: 4.3 g

PIN CONNECTIONS

Pin Output
Pin Function 1 $+V_{\text {IN }}$ 2 $-V_{\text {IN }}$ 5 - Vout $^{\prime 2}$ 6 0 V 7 + Vout

Unless otherwise stated all dimensions in mm (inches).
Tube length : $525 \mathrm{~mm}[20.669\} \pm 2.0[0.079]$

RECOMMENDED FOOTPRINT DETAILS

DISCLAIMER
Unless otherwise stated in the datasheet, all products are designed for standard commercial and industrial applications and NOT for safety-critical and/or life-critical applications.

Particularly for safety-critical and/or life-critical applications, i.e. applications that may directly endanger or cause the loss of life, inflict bodily harm and/or loss or severe damage to equipment/property, and severely harm the environment, a prior explicit written approval from Murata is strictly required. Any use of Murata standard products for any safety-critical, life-critical or any related applications without any prior explicit written approval from Murata shall be deemed unauthorised use.

These applications include but are not limited to:

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data Processing equipment

Murata makes no express or implied warranty, representation, or guarantee of suitability, fitness for any particular use/purpose and/or compatibility with any application or device of the buyer, nor does Murata assume any liability whatsoever arising out of unauthorised use of any Murata product for the application of the buyer. The suitability, fitness for any particular use/purpose and/or compatibility of Murata product with any application or device of the buyer remain to be the responsibility and liability of the buyer.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify and hold Murata, its affiliated companies, and its representatives harmless against any damages arising out of unauthorised use of any Murata products in any safety-critical and/ or life-critical applications.

Remark: Murata in this section refers to Murata Manufacturing Company and its affiliated companies worldwide including, but not limited to, Murata Power Solutions.

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy:
Refer to: https://www.murata.com/en-eu/products/power/requirements

features

- Pulse Width Modulation (PWM) Controlled by Simple OV to 1V Analog Input
- Four Available Options Define Duty Cycle Limits
- Minimum Duty Cycle at 0\% or 5\%
- Maximum Duty Cycle at 95\% or 100\%
- Frequency Range: 3.81 Hz to 1 MHz
- Configured with 1 to 3 Resistors
- <1.7\% Maximum Frequency Error
- PWM Duty Cycle Error <3.7\% Maximum
- Frequency Modulation (VCO) Capability
- 2.25V to 5.5 V Single Supply Operation
- $115 \mu \mathrm{~A}$ Supply Current at 100 kHz
- 500 $\mu \mathrm{s}$ Start-Up Time
- CMOS Output Driver Sources/Sinks 20mA
- $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range
- Available in Low Profile (1 mm) SOT-23 (ThinSOT ${ }^{\text {TM }}$) and $2 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN
- AEC-Q100 Qualified for Automotive Applications

applications

- PWM Servo Loops
- Heater Control
- LED Dimming Control
- High Vibration, High Acceleration Environments
- Portable and Battery-Powered Equipment

All registered trademarks and trademarks are the property of their respective owners.

DESCRIPTION

The LTC ${ }^{\circledR} 6992$ is a silicon oscillator with an easy-to-use analog voltage-controlled pulse width modulation (PWM) capability. The LTC6992 is part of the TimerBlox ${ }^{\circledR}$ family of versatile silicon timing devices.
A single resistor, R ${ }_{\text {SET, }}$ programs the LTC6992's internal master oscillator frequency. The output frequency is determined by this master oscillator and an internal frequency divider, $\mathrm{N}_{\text {DIV }}$, programmable to eight settings from 1 to 16384.

$$
\mathrm{f}_{\text {OUT }}=\frac{1 \mathrm{MHz}}{\mathrm{~N}_{\text {DIV }}} \cdot \frac{50 \mathrm{k} \Omega}{\mathrm{R}_{\text {SET }}}, \mathrm{N}_{\text {DIV }}=1,4,16 \ldots 16384
$$

Applying a voltage between OV and 1 V on the MOD pin sets the duty cycle.
The four versions differ in their minimum/maximum duty cycle. Note that a minimum duty cycle limit of 0% or maximum duty cycle limit of 100% allows oscillations to stop at the extreme duty cycle settings.

DEVICE NAME	PWM DUTY CYCLE RANGE
LTC6992-1	0% to 100%
LTC6992-2	5% to 95%
LTC6992-3	0% to 95%
LTC6992-4	5% to 100%

For easy configuration of the LTC6992, use the TimerBlox LTC6992: PWM Web-Based Design Tool.

TYPICAL APPLICATION

1MHz Pulse Width Modulator

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (V^{+}) to GND6V
Maximum Voltage On Any Pin
$($ GND $-0.3 \mathrm{~V}) \leq \mathrm{V}_{\text {PIN }} \leq\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Operating Temperature Range (Note 2)
LTC6992C
$.40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992I .. $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992H... $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992MP \qquad

Specified Temperature Range (Note 3) LTC6992C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992I .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992H.. $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992MP $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
S6 Package

PIn CONFIGURATIOn

ORDER InFORMATION

Lead Free Finish

TAPE AND REEL (MINI)	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6992CDCB-1\#TRMPBF	LTC6992CDCB-1\#TRPBF	LDXC	6-Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IDCB-1\#TRMPBF	LTC6992IDCB-1\#TRPBF	LDXC	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HDCB-1\#TRMPBF	LTC6992HDCB-1\#TRPBF	LDXC	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CS6-1\#TRMPBF	LTC6992CS6-1\#TRPBF	LTDXB	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IS6-1\#TRMPBF	LTC6992IS6-1\#TRPBF	LTDXB	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-1\#TRMPBF	LTC6992HS6-1\#TRPBF	LTDXB	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CDCB-2\#TRMPBF	LTC6992CDCB-2\#TRPBF	LDXF	6-Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IDCB-2\#TRMPBF	LTC6992IDCB-2\#TRPBF	LDXF	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HDCB-2\#TRMPBF	LTC6992HDCB-2\#TRPBF	LDXF	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CS6-2\#TRMPBF	LTC6992CS6-2\#TRPBF	LTDXD	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IS6-2\#TRMPBF	LTC6992IS6-2\#TRPBF	LTDXD	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-2\#TRMPBF	LTC6992HS6-2\#TRPBF	LTDXD	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CDCB-3\#TRMPBF	LTC6992CDCB-3\#TRPBF	LFCP	6-Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IDCB-3\#TRMPBF	LTC6992IDCB-3\#TRPBF	LFCP	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HDCB-3\#TRMPBF	LTC6992HDCB-3\#TRPBF	LFCP	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CS6-3\#TRMPBF	LTC6992CS6-3\#TRPBF	LTFCQ	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IS6-3\#TRMPBF	LTC6992IS6-3\#TRPBF	LTFCQ	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-3\#TRMPBF	LTC6992HS6-3\#TRPBF	LTFCQ	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CDCB-4\#TRMPBF	LTC6992CDCB-4\#TRPBF	LFCR	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IDCB-4\#TRMPBF	LTC6992IDCB-4\#TRPBF	LFCR	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HDCB-4\#TRMPBF	LTC6992HDCB-4\#TRPBF	LFCR	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CS6-4\#TRMPBF	LTC6992CS6-4\#TRPBF	LTFCS	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IS6-4\#TRMPBF	LTC6992IS6-4\#TRPBF	LTFCS	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-4\#TRMPBF	LTC6992HS6-4\#TRPBF	LTFCS	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992MPS6-1\#TRMPBF	LTC6992MPS6-1\#TRPBF	LTDXB	6-Lead Plastic TSOT-23	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992MPS6-2\#TRMPBF	LTC6992MPS6-2\#TRPBF	LTDXD	6-Lead Plastic TSOT-23	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992MPS6-3\#TRMPBF	LTC6992MPS6-3\#TRPBF	LTFCQ	6-Lead Plastic TSOT-23	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992MPS6-4\#TRMPBF	LTC6992MPS6-4\#TRPBF	LTFCS	6-Lead Plastic TSOT-23	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
AUTOMOTIVE PRODUCTS**				
LTC6992IS6-1\#WTRMPBF	LTC6992IS6-1\#WTRPBF	LTDXB	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-1\#WTRMPBF	LTC6992HS6-1\#WTRPBF	LTDXB	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992IS6-2\#WTRMPBF	LTC6992IS6-2\#WTRPBF	LTDXD	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-2\#WTRMPBF	LTC6992HS6-2\#WTRPBF	LTDXD	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992IS6-3\#WTRMPBF	LTC6992IS6-3\#WTRPBF	LTFCQ	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-3\#WTRMPBF	LTC6992HS6-3\#WTRPBF	LTFCQ	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992IS6-4\#WTRMPBF	LTC6992IS6-4\#WTRPBF	LTFCS	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-4\#WTRMPBF	LTC6992HS6-4\#WTRPBF	LTFCS	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These models are designated with a \#W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

ELECTRICAL CHARACTERISTICS The o denotes the speciification which apply ver the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{MOD}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {SET }}$, DIVCODE $=0$ to 15 ($\mathrm{N}_{\text {DIV }}=1$ to 16,384), $\mathrm{R}_{\text {SET }}=50 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\text {LOAD }}=5 \mathrm{k}, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oscillation Frequency | | | | | | | |
| fout | Output Frequency | | | 3.81 | | 1000000 | Hz |
| $\Delta f_{\text {OUT }}$ | Frequency Accuracy (Note 4) | $3.81 \mathrm{~Hz} \leq \mathrm{f}_{\text {OUT }} \leq 1 \mathrm{MHz}$ | \bullet | | ± 0.8 | $\begin{array}{r} \pm 1.7 \\ +24 \end{array}$ | \% |
| $\Delta \mathrm{f}_{\text {OUT }} / \Delta \mathrm{T}$ | Frequency Drift Over Temperature | | \bullet | | ± 0.005 | | $\% /{ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{f}_{\text {OUT }} / \Delta \mathrm{V}^{+}$ | Frequency Drift Over Supply | $\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 0.25 \\ & 0.08 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.18 \end{aligned}$ | \%/V |
| | Long-Term Frequency Stability | (Note 10) | | | 90 | | $\mathrm{ppm} / \sqrt{\mathrm{kHr}}$ |
| | Period Jitter (Note 9) | NDIV $=1$ | | | 1.2 | | \%p-p |
| | | NDIV $=4$ | | | $\begin{gathered} 0.4 \\ 0.07 \end{gathered}$ | | \%p-p \%RMS |
| | | $N_{\text {DIV }}=16$ | | | $\begin{gathered} 0.15 \\ 0.022 \end{gathered}$ | | \%p-p \%RMS |

Pulse Width Modulation

$\Delta \mathrm{D}$	PWM Duty Cycle Accuracy	$\begin{array}{\|l} \hline \mathrm{V}_{\text {MOD }}=0.2 \cdot \mathrm{~V}_{\text {SET }} \text { to } 0.8 \bullet \mathrm{~V}_{\text {SET }} \\ \mathrm{V}_{\text {MOD }}=0.2 \cdot \mathrm{~V}_{\text {SET }} \text { to } 0.8 \cdot \mathrm{~V}_{\text {SET }} \\ \mathrm{V}_{\text {MOD }}<0.2 \cdot \mathrm{~V}_{\text {SET }} \text { or } \mathrm{V}_{\text {MOD }}>0.8 \cdot \mathrm{~V}_{\text {SET }} \\ \hline \end{array}$	\bullet		± 3.0	$\begin{aligned} & \pm 3.7 \\ & \pm 4.5 \\ & \pm 4.9 \end{aligned}$	\% $\%$ $\%$
$\overline{D_{\text {MAX }}}$	Maximum Duty Cycle Limit	$\begin{aligned} & \text { LTC6992-1/LTC6992-4, POL }=0, V_{M 0 D}= \\ & 1 \mathrm{~V} \end{aligned}$	\bullet	100			\%
		LTC6992-2/LTC6992-3, POL = 0, V $\mathrm{MOD}=$ 1V	\bullet	90.5	95	99	\%
$\overline{\mathrm{D}_{\text {MIN }}}$	Minimum Duty Cycle Limit	$\begin{aligned} & \text { LTC6992-1/LTC6992-3, POL }=0, \mathrm{~V}_{\mathrm{MOD}}= \\ & \text { OV } \end{aligned}$	\bullet			0	\%
		$\begin{aligned} & \text { LTC6992-2/LTC6992-4, POL }=0, \mathrm{~V}_{\mathrm{MOD}}= \\ & \text { OV } \end{aligned}$	\bullet	1	5	9.5	\%
$\mathrm{t}_{\mathrm{s}, \mathrm{PWM}}$	Duty Cycle Settling Time (Note 6)	$\mathrm{t}_{\text {MASTER }}=\mathrm{t}_{\text {OUT }} / \mathrm{N}_{\text {DIV }}$			$8 \bullet \mathrm{t}_{\text {MASTER }}$		$\mu \mathrm{S}$

Power Supply

ELECTRICAL CHARACTERISTICS The odenotes the speciifications which apply vere the full operating

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{MOD}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {SET }}$, DIVCODE = 0 to 15 ($\mathrm{N}_{\text {DIV }}=1$ to 16,384), $\mathrm{R}_{\text {SET }}=50 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\text {LOAD }}=5 \mathrm{k}, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Analog Inputs								
$V_{\text {SET }}$	Voltage at SET Pin				0.97	1.00	1.03	V
$\Delta \mathrm{V}_{\text {SET }} / \Delta \mathrm{T}$	$\mathrm{V}_{\text {SET }}$ Drift Over Temperature					± 75		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {SET }}$	Frequency-Setting Resistor				50		800	$\mathrm{k} \Omega$
	MOD Pin Input Capacitance					2.5		pF
	MOD Pin Input Current						± 10	nA
$\mathrm{V}_{\text {MOD, } \mathrm{HI}}$	$V_{\text {MOD }}$ Voltage for Maximum Duty Cycle	$\begin{aligned} & \text { LTC6992-1/LTC6992-4, POL }=0, D=100 \% \\ & \text { LTC6992-2/LTC6992-3, POL }=0, D=95 \% \end{aligned}$				$\begin{aligned} & 0.90 \cdot V_{\text {SET }} \\ & 0.86 \cdot V_{\text {SET }} \end{aligned}$	$0.936 \cdot V_{\text {SET }}$	V
$\mathrm{V}_{\text {MOD,L0 }}$	$V_{\text {MOD }}$ Voltage for Minimum Duty Cycle	$\begin{aligned} & \text { LTC6992-1/LTC6992-3, POL }=0, D=0 \% \\ & \text { LTC6992-2/LTC6992-4, POL }=0, D=5 \% \end{aligned}$			$0.064 \bullet V_{\text {SET }}$	$\begin{aligned} & 0.10 \cdot V_{\text {SET }} \\ & 0.14 \cdot V_{\text {SET }} \end{aligned}$		V
VIIV	DIV Pin Voltage				0		V^{+}	V
$\Delta V_{\text {DIV }} / \Delta \mathrm{V}^{+}$	DIV Pin Valid Code Range (Note 5)	Deviation from Ideal $\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}=($DIVCODE +0.5$) / 16$					± 1.5	\%
	DIV Pin Input Current						$\pm 10 \mathrm{nA}$	
Digital Output								
IOUT(MAX)	Output Current	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5.5 V				± 20		mA
V_{OH}	High Level Output Voltage (Note 7)	$\mathrm{V}^{+}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-16 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & \hline 5.45 \\ & 4.84 \end{aligned}$	$\begin{aligned} & 5.48 \\ & 5.15 \end{aligned}$		V
		$\mathrm{V}^{+}=3.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 3.24 \\ & 2.75 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.27 \\ & 2.99 \end{aligned}$		V
		$\mathrm{V}^{+}=2.25 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=-8 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 2.17 \\ & 1.58 \end{aligned}$	$\begin{aligned} & 2.21 \\ & 1.88 \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage (Note 7)	$\mathrm{V}^{+}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=16 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.02 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.54 \end{aligned}$	V
		$\mathrm{V}^{+}=3.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & \hline 0.03 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.46 \end{aligned}$	V
		$\mathrm{V}^{+}=2.25 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=8 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & \hline 0.03 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.54 \end{aligned}$	V
t_{r}	Output Rise Time (Note 8)	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=\infty \\ & \mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=\infty \\ & \mathrm{V}^{+}=2.25 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=\infty \\ & \hline \end{aligned}$				$\begin{aligned} & 1.1 \\ & 1.7 \\ & 2.7 \\ & \hline \end{aligned}$		ns ns ns
t_{f}	Output Fall Time (Note 8)	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V}, \mathrm{R} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V}, \mathrm{P} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V}, \end{aligned}$				$\begin{aligned} & \hline 1.0 \\ & 1.6 \\ & 2.4 \end{aligned}$		ns ns ns

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC6992C is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 3: The LTC6992C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LTC6992C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but it is not tested or QA sampled at these temperatures. The LTC6992l is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LTC6992H is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LTC6992MP is guaranteed to meet specified performance from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: Frequency accuracy is defined as the deviation from the fout equation, assuming $R_{S E T}$ is used to program the frequency.
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation of how the DIV pin voltage selects the value of DIVCODE.
Note 6: Duty cycle settling time is the amount of time required for the output to settle within $\pm 1 \%$ of the final duty cycle after a $\pm 10 \%$ change in the setting ($\pm 80 \mathrm{mV}$ step in $\mathrm{V}_{\text {MOD }}$).

Note 7: To conform to the Logic IC Standard, current out of a pin is arbitrarily given a negative value.
Note 8: Output rise and fall times are measured between the 10% and the 90% power supply levels with 5 pF output load. These specifications are based on characterization.
Note 9: Jitter is the ratio of the peak-to-peak deviation of the period to the mean of the period. This specification is based on characterization and is not 100\% tested.
Note 10: Long-term drift of silicon oscillators is primarily due to the movement of ions and impurities within the silicon and is tested at $30^{\circ} \mathrm{C}$ under otherwise nominal operating conditions. Long-term drift is specified as $\mathrm{ppm} / \sqrt{\mathrm{kHr}}$ due to the typically nonlinear nature of the drift. To calculate drift for a set time period, translate that time into thousands of hours, take the square root and multiply by the typical drift number. For instance, a year is 8.77 kHr and would yield a drift of 266 ppm at $90 \mathrm{ppm} / \sqrt{\mathrm{kHr}}$. Drift without power applied to the device may be approximated as $1 / 10$ th of the drift with power, or $9 \mathrm{ppm} / \sqrt{\mathrm{kHr}}$ for a $90 \mathrm{ppm} / \sqrt{\mathrm{kHr}}$ device.

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

6992 G01

6992 G02

6992 G03
 otherwise noted.

$\mathrm{N}_{\text {DIV }}=1$ Duty Cycle Error vs R RET

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

$\mathrm{N}_{\text {DIV }}=1$ Duty Cycle Error vs Temperature

$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Error vs R RET

$\mathrm{N}_{\text {DIV }}=1$ Duty Cycle Error vs Temperature

$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Error vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{~K}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Clamps vs Temperature

6992 G25
$\mathrm{N}_{\text {IIV }}>1$ Duty Cycle Error vs Temperature

6992 G23

6992624

Duty Cycle Error vs DIVCODE

Duty Cycle Error vs DIVCODE

699227

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

6992632

Linearity Near 0\% Duty Cycle

$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Error vs Ideal

699263

Linearity Near 5\% Duty Cycle

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Supply Current vs Frequency, 2.5V

699247

TYPICAL PGRFORMARCG CHARACTERISTICS $\quad \mathrm{V}^{+}=3.3 \mathrm{v}, \mathrm{R}_{\text {Sti }}=200 \mathrm{k}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless
otherwise noted.

Rise and Fall Time vs Supply Voltage

Typical Start-Up, POL = 1

125kHz Full Modulation

PIn functions (0ciss)

\mathbf{V}^{+}(Pin 1/Pin 5): Supply Voltage (2.25V to 5.5 V). This sup-ply should be kept free from noise and ripple. It should be bypassed directly to the GND pin with a $0.1 \mu \mathrm{~F}$ capacitor.
DIV (Pin 2/Pin 4): Programmable Divider and Polarity Input. The DIV pin voltage (V $V_{\text {DIV }}$) is internally converted into a 4-bit result (DIVCODE). V DIV may be generated by a resistor divider between V^{+}and GND. Use 1% resistors to ensure an accurate result. The DIV pin and resistors should be shielded from the OUT pin or any other traces that have fast edges. Limit the capacitance on the DIV pin to less than 100pF so that $V_{\text {DIV }}$ settles quickly. The MSB of DIVCODE (POL) determines if the PWM signal is inverted before driving the output. When POL = 1 the transfer function is inverted (duty cycle decreasing as $\mathrm{V}_{\text {MOD }}$ increases).

SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage on the SET pin ($\mathrm{V}_{\text {SET }}$) is regulated to 1 V above GND. The amount of current sourced from the SET pin (ISET) programs the master oscillator frequency. The I $\mathrm{I}_{\text {SET }}$ current range is $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$. The output oscillation will stop if ISET drops below approximately 500nA. A resistor connected between SET and GND is the most accurate way to set the frequency. For best performance, use a precision metal or thin film resistor of 0.5% or better tolerance and $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better temperature coefficient. For lower accuracy applications an inexpensive 1% thick film resistor may be used.

Limit the capacitance on the SET pin to less than 10pF to minimize jitter and ensure stability. Capacitance less than 100 pF maintains the stability of the feedback circuit regulating the $\mathrm{V}_{\mathrm{SET}}$ voltage.

MOD (Pin 4/Pin 1): Pulse-Width Modulation Input. The voltage on the MOD pin controls the output duty cycle. The linear control range is between $0.1 \cdot \mathrm{~V}_{\text {SET }}$ and $0.9 \cdot \mathrm{~V}_{\text {SET }}$ (approximately 100 mV to 900 mV). Beyond those limits, the output will either clamp at 5% or 95%, or stop oscillating (0% or 100% duty cycle), depending on the version.

GND (Pin 5/Pin 2): Ground. Tie to a low inductance ground plane for best performance.
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings from GND to V^{+}with an output resistance of approximately 30Ω. The duty cycle is determined by the voltage on the MOD pin. When driving an LED or other low-impedance load a series output resistor should be used to limit the source/sink current to 20 mA .

BLOCK DIAGRAI (S6 Package Pin Numbers Shown)

OPERATION

The LTC6992 is built around a master oscillator with a 1 MHz maximum frequency. The oscillator is controlled by the SET pin current ($\mathrm{I}_{\text {SET }}$) and voltage ($\mathrm{V}_{\text {SET }}$), with a $1 \mathrm{MHz} \cdot 50 \mathrm{k}$ conversion factor that is accurate to $\pm 0.8 \%$ under typical conditions.

$$
f_{\text {MASTER }}=\frac{1}{t_{\text {MASTER }}}=1 \mathrm{MHz} \cdot 50 \mathrm{k} \cdot \frac{I_{\text {SET }}}{\mathrm{V}_{\text {SET }}}
$$

A feedback loop maintains $\mathrm{V}_{\text {SET }}$ at $1 \mathrm{~V} \pm 30 \mathrm{mV}$, leaving $\mathrm{I}_{\text {SET }}$ as the primary means of controlling the output frequency. The simplest way to generate ISET $^{\text {is to }}$ connect a resistor $\left(R_{\text {SET }}\right)$ between SET and GND, such that $I_{\text {SET }}=V_{\text {SET }} / R_{\text {SET }}$. The master oscillator equation reduces to:

$$
\mathrm{f}_{\text {MASTER }}=\frac{1}{\mathrm{t}_{\text {MASTER }}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{R}_{\text {SET }}}
$$

From this equation, it is clear that $\mathrm{V}_{\text {SET }}$ drift will not affect the output frequency when using a single program resistor ($\mathrm{R}_{\text {SET }}$). Error sources are limited to $\mathrm{R}_{\text {SET }}$ tolerance and the inherent frequency accuracy $\Delta \mathrm{f}_{\text {Out }}$ of the LTC6992.
$R_{\text {SET }}$ may range from 50 k to 800 k (equivalent to $\mathrm{I}_{\text {SET }}$ between $1.25 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A})$.
The LTC6992 includes a programmable frequency divider which can further divide the frequency by $1,4,16,64$, $256,1024,4096$ or 16384 before driving the OUT pin. The divider ratio $\mathrm{N}_{\text {IIV }}$ is set by a resistor divider attached to the DIV pin.

$$
\mathrm{f}_{\text {OUT }}=\frac{1}{\mathrm{t}_{\text {OUT }}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{~N}_{\text {DIV }}} \cdot \frac{\mathrm{I}_{\text {SET }}}{\mathrm{V}_{\text {SET }}}
$$

With $\mathrm{R}_{\text {SET }}$ in place of $\mathrm{V}_{\text {SET }} / I_{\text {SET }}$ the equation reduces to:

$$
\mathrm{f}_{\text {OUT }}=\frac{1}{\mathrm{t}_{\text {OUT }}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{~K}}{\mathrm{~N}_{\text {DIV }} \cdot R_{\text {SET }}}
$$

DIVCODE

The DIV pin connects to an internal, V^{+}referenced 4-bit A/D converter that determines the DIVCODE value. DIVCODE programs two settings on the LTC6992:

1. DIVCODE determines the output frequency divider setting, $\mathrm{N}_{\mathrm{DIV}}$.
2. DIVCODE determines the output polarity, via the POL bit.
$V_{\text {DIV }}$ may be generated by a resistor divider between V^{+} and GND as shown in Figure 2.

Figure 1. Simple Technique for Setting DIVCODE

LTC6992-1/LTC6992-2/
 LTC6992-3/LTC6992-4

operation

Table 1. DIVCODE Programming

DIVCODE	POL	$\mathbf{N}_{\text {DIV }}$	RECOMMENDED $f_{\text {OUT }}$	$\mathbf{R 1}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{R 2}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{V}_{\text {DIV }} / \mathbf{V}^{+}$
0	0	1	62.5 kHz to 1 MHz	Open	Short	$\leq 0.03125 \pm 0.015$
1	0	4	15.63 kHz to 250 kHz	976	102	0.09375 ± 0.015
2	0	16	3.906 kHz to 62.5 kHz	976	182	0.15625 ± 0.015
3	0	64	976.6 Hz to 15.63 kHz	1000	280	0.21875 ± 0.015
4	0	256	244.1 Hz to 3.906 kHz	1000	392	0.28125 ± 0.015
5	0	1024	61.04 Hz to 976.6 Hz	1000	523	0.34375 ± 0.015
6	0	4096	15.26 Hz to 244.1 Hz	1000	681	0.40625 ± 0.015
7	0	16384	3.815 Hz to 61.04 Hz	1000	887	0.46875 ± 0.015
8	1	16384	3.815 Hz to 61.04 Hz	887	1000	0.53125 ± 0.015
9	1	4096	15.26 Hz to 244.1 Hz	681	1000	0.59375 ± 0.015
10	1	1024	61.04 Hz to 976.6 Hz	523	1000	0.65625 ± 0.015
11	1	256	244.1 Hz to 3.906 kHz	392	1000	0.71875 ± 0.015
12	1	64	976.6 Hz to 15.63 kHz	280	1000	0.78125 ± 0.015
13	1	16	3.906 kHz to 62.5 kHz	182	976	0.84375 ± 0.015
14	1	4	15.63 kHz to 250 kHz	102	976	0.90625 ± 0.015
15	1	1	62.5 kHz to 1 MHz	Short	0 pen	$\geq 0.96875 \pm 0.015$

Table 1 offers recommended 1% resistor values that accurately produce the correct voltage division as well as the corresponding $\mathrm{N}_{\text {DIV }}$ and POL values for the recommended resistor pairs. Other values may be used as long as:

1. The $V_{\text {DIV }} /{ }^{+}$ratio is accurate to $\pm 1.5 \%$ (including resistor tolerances and temperature effects).
2. The driving impedance ($\mathrm{R} 1 \mid$ R2) does not exceed 500k Ω.
If the voltage is generated by other means (i.e. the output of a DAC) it must track the V^{+}supply voltage. The last
column in Table 1 shows the ideal ratio of $\mathrm{V}_{\text {DIV }}$ to the supply voltage, which can also be calculated as:

$$
\frac{V_{\text {DIV }}}{\mathrm{V}^{+}}=\frac{\text { DIVCODE }+0.5}{16} \pm 1.5 \%
$$

For example, if the supply is 3.3 V and the desired DIVCODE is $4, \mathrm{~V}_{\text {DIV }}=0.281 \cdot 3.3 \mathrm{~V}=928 \mathrm{mV} \pm 50 \mathrm{mV}$.
Figure 2 illustrates the information in Table 1, showing that $\mathrm{N}_{\text {DIV }}$ is symmetric around the DIVCODE midpoint.

Figure 2. Frequency Range and POL Bit vs DIVCODE

OPERATION

Pulse Width (Duty Cycle) Modulation

The MOD pin is a high impedance analog input providing direct control of the output duty cycle. The duty cycle is proportional to the voltage applied to the MOD pin, $\mathrm{V}_{\mathrm{MOD}}$.

$$
\text { Duty Cycle }=\mathrm{D}=\frac{\mathrm{V}_{\text {MOD }}}{0.8 \cdot \mathrm{~V}_{\text {SET }}}-\frac{1}{8}
$$

The PWM duty cycle accuracy $\Delta \mathrm{D}$ specifies that the above equation is valid to within $\pm 4.5 \%$ for $\mathrm{V}_{\text {MOD }}$ between 0.2 • $V_{\text {SET }}$ and $0.8 \cdot V_{\text {SET }}$ (12.5% to 87.5% duty cycle).

Since $\mathrm{V}_{\mathrm{SET}}=1 \mathrm{~V} \pm 30 \mathrm{mV}$, the duty cycle equation may be approximated by the following equation.

$$
\text { Duty Cycle }=\mathrm{D} \cong \frac{\mathrm{~V}_{\mathrm{MOD}}-100 \mathrm{mV}}{800 \mathrm{mV}}
$$

The $\mathrm{V}_{\mathrm{MOD}}$ control range is approximately 0.1 V to 0.9 V . Driving $\mathrm{V}_{\text {MOD }}$ beyond that range (towards GND or V^{+}) will have no further affect on the duty cycle.

Duty Cycle Limits

The only difference between the four versions of the LTC6992 is the limits, or clamps, placed on the output duty cycle. The LTC6992-1 generates output duty cycles ranging from 0% to 100%. At 0% or 100% the output will stop oscillating and rest at GND or V^{+}, respectively.
The LTC6992-2 will never stop oscillating, regardless of the $\mathrm{V}_{\mathrm{MOD}}$ level. Internal clamping circuits limit its duty cycle to a 5% to 95% range (1% to 99% guaranteed). Therefore, its $\mathrm{V}_{\mathrm{MOD}}$ control range is $0.14 \bullet \mathrm{~V}_{\text {SET }}$ to $0.86 \bullet$ $V_{\text {SET }}$ (approximately 0.14 V to 0.86 V).
The LTC6992-3 and LTC6992-4 complete the family by providing one-sided clamping. The LTC6992-3 allows 0\% to 95\% duty cycle, and the LTC6992-4 allows 5\% to 100\% duty cycle.

Output Polarity (POL Bit)

The duty cycle equation describes a proportional transfer function, where duty cycle increases as $\mathrm{V}_{\text {MOD }}$ increases. The LTC6992 includes a POL bit (determined by the DIVCODE as described earlier) that inverts the output signal. This makes the duty cycle gain negative, reducing duty cycle as $\mathrm{V}_{\text {MOD }}$ increases.

Figure 3. POL Bit Functionality

OPERATION

POL = 1 forces a simple logic inversion, so it changes the duty cycle range of the LTC6992-3 (making it 100\% to 5\%) and LTC6992-4 (making it 95\% to 0\%). These transfer functions are detailed in Figure 4.

Table 2. Duty Cycle Ranges

PART NUMBER	DUTY CYCLE RANGE vs $V_{\text {MOD }}=\mathbf{O V} \rightarrow \mathbf{1 V}$	
	POL $=\mathbf{0}$	POL $=\mathbf{1}$
LTC6992-1	0% to 100%	100% to 0%
LTC6992-2	5% to 95%	95% to 5%
LTC6992-3	0% to 95%	100% to 5%
LTC6992-4	5% to 100%	95% to 0%

Figure 4. PWM Transfer Functions for AII LTC6992 Family Parts

OPERATION

Changing DIVCODE After Start-Up

Following start-up, the A / D converter will continue monitoring V ${ }_{\text {DIV }}$ for changes. Changes to DIVCODE will be recognized slowly, as the LTC6992 places a priority on eliminating any "wandering" in the DIVCODE. The typical delay depends on the difference between the old and new DIVCODE settings and is proportional to the master oscillator period.

$$
\mathrm{t}_{\text {DIVCODE }}=16 \cdot(\Delta \mathrm{DIVCODE}+6) \bullet \mathrm{t}_{\text {MASTER }}
$$

A change in DIVCODE will not be recognized until it is stable, and will not pass through intermediate codes. A digital filter is used to guarantee the DIVCODE has settled to a new value before making changes to the output. Then the output will make a clean (glitchless) transition to the new divider setting.

Figure 5. DIVCODE Change from 3 to 1

Start-Up Time

When power is first applied, the power-on reset (POR) circuit will initiate the start-up time, $\mathrm{t}_{\text {start }}$. The OUT pin is held low during this time. The typical value for tstart ranges from 0.5 ms to 8 ms depending on the master oscillator frequency (independent of $\mathrm{N}_{\text {DIV }}$):

$$
\mathrm{t}_{\text {START }} \text { (TYP) }=500 \bullet \mathrm{t}_{\text {MASTER }}
$$

The output will begin oscillating after $\mathrm{t}_{\text {START }}$. If $\mathrm{POL}=0$ the first pulse has the correct width. If POL = 1 (DIVCODE ≥ 8), the first pulse width can be shorter or longer than expected, depending on the duty cycle setting, and will never be less than 25% of tout.
During start-up, the DIV pin A/D converter must determine the correct DIVCODE before the output is enabled. The start-up time may increase if the supply or DIV pin voltages are not stable. For this reason, it is recommended to minimize the capacitance on the DIV pin so it will properly track V^{+}. Less than 100 pF will not affect performance.

1ST PULSE WIDTH MAY BE INACCURATE
Figure 6. Start-Up Timing Diagram

APPLICATIONS InFORMATION

Basic Operation

The simplest and most accurate method to program the LTC6992 is to use a single resistor, $\mathrm{R}_{\text {SET }}$, between the SET and GND pins. The design procedure is a four step process. After choosing the proper LTC6992 version and POL bit setting, select the NDIV value and then calculate the value for the $\mathrm{R}_{\text {SET }}$ resistor.
Alternatively, Analog Devices offers the easy to use TimerBlox Designer tool to quickly design any LTC6992 based circuit. Use the free TimerBlox LTC6992: PWM Web-Based Design Tool.

Step 1: Selecting the POL Bit Setting

Most applications will use POL $=0$, resulting in a positive transfer function. However, some applications may require a negative transfer function, where increasing $\mathrm{V}_{\text {MOD }}$ reduces the output duty cycle. For example, if the LTC6992 is used in a feedback loop, POL = 1 may be required to achieve negative feedback.

Step 2: Selecting the LTC6992 Version

The difference between the LTC6992 versions is observed at the endpoints of the duty cycle control range. Applications that require the output to never stop oscillating should use the LTC6992-2. On the other hand, if the output should be allowed to rest at GND or $\mathrm{V}^{+}(0 \%$ or 100% duty cycle), select the LTC6992-1.

The LTC6992-3 and LTC6992-4 clamp the duty cycle at only one end of the control range, allowing the output to stop oscillating at the other extreme. If POL $=1$ the clamp will swap from low duty cycle to high, or vice-versa. Refer to Table 2 and Figure 4 for assistance in selecting the proper version.

Step 3: Selecting the N NIV Frequency Divider Value

As explained earlier, the voltage on the DIV pin sets the DIVCODE which determines both the POL bit and the $N_{\text {DIV }}$ value. For a given output frequency, $\mathrm{N}_{\text {DIV }}$ should be selected to be within the following range.

$$
\begin{equation*}
\frac{62.5 \mathrm{kHz}}{\mathrm{f}_{\text {OUT }}} \leq \mathrm{N}_{\text {DIV }} \leq \frac{1 \mathrm{MHz}}{\mathrm{f}_{\text {OUT }}} \tag{1a}
\end{equation*}
$$

To minimize supply current, choose the lowest $\mathrm{N}_{\text {DIV }}$ value (generally recommended). For faster start-up or decreased jitter, choose a higher N NIV setting. Alternatively, use Table 1 as a guide to select the best $\mathrm{N}_{\text {DIV }}$ value for the given application.
With POL already chosen, this completes the selection of DIVCODE. Use Table 1 to select the proper resistor divider or $\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}$ratio to apply to the DIV pin.

Step 4: Calculate and Select RSET

The final step is to calculate the correct value for $\mathrm{R}_{\text {SET }}$ using the following equation.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SET}}=\frac{1 \mathrm{MHz} \bullet 50 \mathrm{k}}{\mathrm{~N}_{\mathrm{DIV}} \bullet \mathrm{f}_{\mathrm{OUT}}} \tag{1b}
\end{equation*}
$$

Select the standard resistor value closest to the calculated value.

Example: Design a PWM circuit that satisfies the following requirements:

- $\mathrm{f}_{\text {OUT }}=20 \mathrm{kHz}$
- Positive $\mathrm{V}_{\mathrm{MOD}}$ to duty cycle response
- Output can reach 100% duty cycle, but not 0%
- Minimum power consumption

Step 1: Selecting the POL Bit Setting

For positive transfer function (duty cycle increases with $\mathrm{V}_{\mathrm{MOD}}$), choose POL $=0$.

Step 2: Selecting the LTC6992 Version

To limit the minimum duty cycle, but allow the maximum duty cycle to reach 100\%, choose LTC6992-4. (Note that if POL = 1 the LTC6992-3 would be the correct choice.)

Step 3: Selecting the $\mathrm{N}_{\text {DIV }}$ Frequency Divider Value

Choose an N NIV value that meets the requirements of Equation (1a).

$3.125 \leq \mathrm{N}_{\text {DIV }} \leq 50$

Potential settings for $N_{\text {DIV }}$ include 4 and 16. N $_{\text {DIV }}=4$ is the best choice, as it minimizes supply current by using

APPLICATIONS INFORMATION

a large $R_{\text {SET }}$ resistor. POL $=0$ and NDIV $=4$ requires DIVCODE = 1. Using Table 1, choose the R1 and R2 values to program DIVCODE $=1$.

Step 4: Select RSET

Calculate the correct value for $\mathrm{R}_{\text {SET }}$ using Equation (1b).

$$
\mathrm{R}_{\mathrm{SET}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{4 \cdot 20 \mathrm{kHz}}=625 \mathrm{k}
$$

Since 625k is not available as a standard 1% resistor, substitute 619k if a 0.97% frequency shift is acceptable. Otherwise, select a parallel or series pair of resistors such as 309 k and 316 k to attain a more precise resistance.
The completed design is shown in Figure 7.

Figure 7. 20kHz PWM Oscillator

Duty Cycle Sensitivity to $\Delta V_{\text {SET }}$

The output duty cycle is proportional to the ratio of $\mathrm{V}_{\mathrm{MOD}} /$ $V_{\text {SET }}$. Since $V_{\text {SET }}$ can vary up to $\pm 30 \mathrm{mV}$ from 1 V it can effectively gain or attenuate $\mathrm{V}_{\text {MOD }}$, as shown below when $\Delta V_{S E T}$ is added to the equation.

$$
\mathrm{D}=\frac{\mathrm{V}_{\mathrm{MOD}}}{0.8 \cdot\left(\mathrm{~V}_{\mathrm{SET}}+\Delta \mathrm{V}_{\mathrm{SET}}\right)}-\frac{1}{8}
$$

For many designs, the absolute $\mathrm{V}_{\mathrm{MOD}}$ to duty cycle accuracy is not critical. For others, making the simplifying assumption of $\Delta V_{\text {SET }}=0 \mathrm{~V}$ creates the potential for additional duty cycle error, which increases with $\mathrm{V}_{\text {MOD }}$, reaching a maximum of 3.4% if $\Delta \mathrm{V}_{\text {SET }}=-30 \mathrm{mV}$.

$$
\Delta \mathrm{D} \cong-\frac{\mathrm{V}_{\mathrm{MOD}}}{800 \mathrm{mV}} \cdot \frac{\Delta \mathrm{~V}_{\text {SET }}}{\mathrm{V}_{\mathrm{SET}}} \cong-\left(\mathrm{D}_{\text {IDEAL }}+\frac{1}{8}\right) \cdot \frac{\Delta \mathrm{V}_{\mathrm{SET}}}{\mathrm{~V}_{\mathrm{SET}}}
$$

Figure 8 demonstrates the worst-case impact of this variation (if $\mathrm{V}_{\text {SET }}$ is at its 0.97 V or 1.03 V limits).
This error is in addition to the inherent PWM duty cycle accuracy spec $\Delta \mathrm{D}(\pm 4.5 \%)$, so care should be taken if accuracy at high duty cycles ($\mathrm{V}_{\text {MOD }}$ near 0.9 V) is critical.
Sensitivity to $\Delta V_{\text {SET }}$ can be eliminated by making $V_{\text {MOD }}$ proportional to $\mathrm{V}_{\mathrm{SET}}$. For example, Figure 9 shows a simple circuit for generating an arbitrary duty cycle. The equation for duty cycle does not depend on $\vee_{\text {SET }}$ at all.

Figure 8. Duty Cycle Variation Due to $\Delta V_{\text {SET }}$

Figure 9. Fixed-Frequency, Arbitrary Duty Cycle Oscillator

APPLICATIONS INFORMATION

$I_{\text {SET }}$ Extremes (Master Oscillator Frequency Extremes)
When operating with I ISE outside of the recommended $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$ range, the master oscillator operates outside of the 62.5 kHz to 1 MHz range in which it is most accurate.
The oscillator will still function with reduced accuracy for $I_{\text {SET }}<1.25 \mu$ A. At approximately 500 nA , the oscillator output will be frozen in its current state. The output could halt in a high or low state. This avoids introducing short pulses while frequency modulating a very low frequency output.
At the other extreme, it is not recommended to operate the master oscillator beyond 2MHz because the accuracy of the DIV pin ADC will suffer.

Pulse Width Modulation Bandwidth and Settling Time
The LTC6992 has a wide PWM bandwidth, making it suitable for a variety of feedback applications. Figure 10 shows that the frequency response is flat for modulation frequencies up to nearly $1 / 10$ of the output frequency. Beyond that point, some peaking may occur (depending on $N_{\text {DIV }}$ and average duty cycle setting).
Duty cycle settling time depends on the master oscillator frequency. Following a $\pm 80 \mathrm{mV}$ step change in $\mathrm{V}_{\text {MOD }}$, the duty cycle takes approximately eight master clock cycles ($8 \bullet \mathrm{t}_{\text {MASTER }}$) to settle to within 1% of the final value. Examples are shown in Figure 11a and Figure 11b.

Figure 10. PWM Frequency Response

Figure 11. PWM Settling Time

APPLICATIONS INFORMATION

Power Supply Current

The power supply current varies with frequency, supply voltage and output loading. It can be estimated under any condition using the following equation:

If $\mathrm{N}_{\text {DIV }}=1$ (DIVCODE $=0$ or 15):

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{S}(\mathrm{TYP})} \approx \mathrm{V}^{+} \bullet \mathrm{f}_{\text {OUT }} \bullet\left(39 \mathrm{pF}+\mathrm{C}_{\mathrm{LOAD}}\right) \\
& \cdots+\frac{\mathrm{V}^{+}}{320 \mathrm{k} \Omega}+\frac{\mathrm{V}^{+} \cdot \text { Duty Cycle }}{\mathrm{R}_{\text {LOAD }}}+2.2 \cdot \mathrm{I}_{\mathrm{SET}}+85 \mu \mathrm{~A}
\end{aligned}
$$

If $N_{\text {DIV }}>1$ (DIVCODE $=1$ or 14):

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{S}(\mathrm{TYP})} \approx \mathrm{V}^{+} \bullet \mathrm{N}_{\mathrm{DIV}} \bullet \mathrm{f}_{\text {OUT }} \bullet 27 \mathrm{pF} \\
& \cdots+\mathrm{V}^{+} \bullet \mathrm{f}_{\text {OUT }} \bullet\left(28 \mathrm{pF}+\mathrm{C}_{\mathrm{LOAD}}\right)
\end{aligned}
$$

SUPPLY BYPASSING AND PCB LAYOUT GUIDELINES

The LTC6992 is a 2.4% accurate silicon oscillator when used in the appropriate manner. The part is simple to use and by following a few rules, the expected performance is easily achieved. Adequate supply bypassing and proper PCB layout are important to ensure this.

Figure 12 shows example PCB layouts for both the TSOT23 and DFN packages using 0603 sized passive components. The layouts assume a two layer board with a ground plane layer beneath and around the LTC6992. These layouts are a guide and need not be followed exactly.

1. Connect the bypass capacitor, C 1 , directly to the V^{+}and GND pins using a low inductance path. The connection from C 1 to the V^{+}pin is easily done directly on the top layer. For the DFN package, C1's connection to GND is also simply done on the top layer. For the TSOT-23, OUT can be routed through the C1 pads to allow a good C1 GND connection. If the PCB design rules do not allow that, C1's GND connection can be accomplished through multiple vias to the ground plane. Multiple vias for both the GND pin connection to the ground plane and the C 1 connection to the ground plane are recommended to minimize the inductance. Capacitor C1 should be a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
2. Place all passive components on the top side of the board. This minimizes trace inductance.
3. Place $\mathrm{R}_{\text {SET }}$ as close as possible to the SET pin and make a direct, short connection. The SET pin is a current summing node and currents injected into this pin directly modulate the operating frequency. Having a short connection minimizes the exposure to signal pickup.
4. Connect R RET directly to the GND pin. Using a long path or vias to the ground plane will not have a significant affect on accuracy, but a direct, short connection is recommended and easy to apply.
5. Use a ground trace to shield the SET pin. This provides another layer of protection from radiated signals.
6. Place R1 and R2 close to the DIV pin. A direct, short connection to the DIV pin minimizes the external signal coupling.

APPLICATIONS INFORMATION

DFN PACKAGE

Figure 12. Supply Bypassing and PCB Layout

TYPICAL APPLICATIONS

Constant On-Time Modulator

*OPTIONAL RESISTOR ADJUSTS FOR DESIRED $V_{I N}$ RANGE.

IF $\frac{\mathrm{R}_{\mathrm{M} 2}}{\mathrm{R}_{\mathrm{M} 1}+\mathrm{R}_{\mathrm{M} 2}}=0.9$ THEN $\mathrm{t}_{\mathrm{ON}}=\mathrm{N}_{\mathrm{DIV}} \bullet 1.125 \mu \mathrm{~s} \cdot \frac{\mathrm{R}_{\text {SET }}}{50 \mathrm{k}}$
AS $V_{\text {IN }}$ INCREASES, $\mathrm{t}_{\mathrm{OUT}}$ INCREASES AND DUTY CYCLE
DECREASES (BECAUSE POL = 1) TO MAINTAIN A CONSTANT ton. FOR CONSTANT OFF-TIME, JUST CHANGE DIVCODE SO POL $=0$.

TYPICAL APPLICATIONS

Digitally Controlled Duty Cycle with Internal $V_{\text {REF }}$ Reference Variation Eliminated

Programming $\mathrm{N}_{\text {DIV }}$ Using an 8-Bit DAC

Changing Between Two Frequencies

NOTES

1. WHEN THE NMOSFET IS OFF, THE FREQUENCY IS SET BY RSET $=$ RSET1.
2. WHEN THE NMOSFET IS ON, THE FREQUENCY IS SET BY RSET = RSET1 || RSET2.
3. V^{+}SUPPLY VARIATION IS NOT A FACTOR AS THE SWITCHING RESISTOR IS EITHER FLOATING OR CONNECTED TO GROUND.

Simple Diode Temperature Sensor

TYPICAL APPLICATIONS

Motor Speed/Direction Control for Full H-Bridge (Locked Anti-Phase Drive)

Motor Speed/Direction Control for Full H-Bridge (Sign/Magnitude Drive)

TYPICAL APPLICATIONS

Ratiometric Sensor to Pulse Width, Non-Inverting Response

Ratiometric Sensor to Pulse Width, Inverting Response

TYPICAL APPLICATIONS

Radio Control Servo Pulse Generator

Direct Voltage Controlled PWM Dimming (0 to $15000 \mathrm{Cd} / \mathrm{m}^{2}$ Intensity)

TYPICAL APPLICATIONS

Wide Range LED Dimming (0 to $85000 \mathrm{Cd} / \mathrm{m}^{2}$ Brightness)

Isolated PWM (5\% to 95\%) Controller

DCB Package
6-Lead Plastic DFN ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1715 Rev A)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (TBD)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

S6 Package

6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

NOTE:

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$01 / 11$	Revised $\theta_{J A}$ value for TSOT package in the Pin Configuration. Added Note 7 for $V_{O H}$ and $V_{0 L}$ in the Electrical Characteristics table. Minor edit to the Block Diagram. Minor edit to the equation in the "Duty Cycle Sensitivity to $\Delta V_{\text {SET }} "$ section. Revised Typical Application drawings.	2
			Revised Description and Order Information sections Added additional information to $\Delta f_{0 U T} / \Delta V^{+}$and included Note 11 in Electrical Characteristics section Added Typical Frequency Error vs Time curve to Typical Performance Characteristics section Added text to Basic Operation paragraph in Applications Information section Corrected fout value in Typical Application drawing 6692 TA13
	$07 / 11$	19	
C	$01 / 12$	Added MP-Grade	25
D	$11 / 19$	Added AEC-Q100 Qualified Note to Front Page	1 to 3
Added W-Grade Order Information	3,4		

TYPICAL APPLICATION

PWM Controller for LED Driver

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1799	1MHz to 33MHz ThinSOT Silicon Oscillator	Wide Frequency Range
LTC6900	1MHz to 20MHz ThinSOT Silicon Oscillator	Low Power, Wide Frequency Range
LTC6906/LTC6907	10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator	Micropower, ISUPPLY = 35 $\mu \mathrm{A}$ at 400kHz
LTC6930	Fixed Frequency Oscillator, 32.768kHz to 8.192MHz	0.09% Accuracy, 110 s Start-Up Time, 105 $\mu \mathrm{A}$ at 32kHz
LTC6990	TimerBlox, Voltage Controlled Oscillator	Frequency from 488Hz to 1MHz, No Caps, 2.2\% Accurate
LTC6991	TimerBlox, Very Low Frequency Clock with Reset	Cycle Time from 2ms to 9.5 Hours, No Caps, 2.2\% Accurate
LTC6993	TimerBlox, Monostable Pulse Generator	Resistor Set Pulse Width from 1 $\mu \mathrm{s}$ to 34sec, No Caps, 3\% Accurate
LTC6994	TimerBlox, Delay Block/Debouncer	Resistor Set Delay from 1 $1 \mu \mathrm{~s}$ to 34sec, No Caps Required, 3\% Accurate

Vincotech

fast PACK $\mathbf{0 ~ H}$
Features - H-bridge or $2 \times$ half-bridge - Sic MOS - fsw up to 250 kHz - Thermistor

Target applications
- Power Supply

Types
- 10-PC124PA040MR-L638F18Y

Maximum Ratings

$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Condition | Value |
| :--- | :---: | :---: | :---: | :---: |

Half-Bridge Switch

Drain-source voltage	$V_{\text {Dss }}$			1200	v
Drain current	ID	$T_{\mathrm{j}}=T_{\text {jmax }}$	$T_{\mathrm{s}}=80^{\circ} \mathrm{C}$	32	A
Peak drain current	$I_{\text {DM }}$	t_{p} limited by $T_{\text {max }}$		137	A
Total power dissipation	$P_{\text {tot }}$	$T_{\mathrm{j}}=T_{\text {jmax }}$	$T_{s}=80^{\circ} \mathrm{C}$	73	w
Gate-source voltage	$V_{\text {Gss }}$			-4/22	v
Maximum Junction Temperature	$T_{\text {max }}$			175	${ }^{\circ} \mathrm{C}$

Vincotech

Maximum Ratings

$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Condition	Value	Unit

Module Properties

Thermal Properties

Storage temperature	$T_{\text {stg }}$		$-40 \ldots+125$	${ }^{\circ} \mathrm{C}$
Operation temperature under switching condition	T_{jop}		$-40 \ldots\left(T_{\text {jmax }}-25\right)$	

Isolation Properties

Isolation voltage	$V_{\text {isol }}$	DC Test Voltage	$t_{\mathrm{p}}=2 \mathrm{~s}$	4000
Creepage distance			V	
Clearance			mm	
Comparative Tracking Index			9,61	mm

Vincotech

Characteristic Values

Parameter	Symbol	Conditions				Value			Unit
		$\begin{aligned} & V_{G E}[V] \\ & V_{G S}[V] \end{aligned}$	$\begin{aligned} & V_{\mathrm{CE}}[\mathbf{V}] \\ & V_{\mathrm{DS}}[\mathbf{V}] \end{aligned}$	$\begin{aligned} & I_{\mathrm{C}}[\mathrm{~A}] \\ & \mathrm{I}_{\mathrm{D}}[\mathrm{~A}] \end{aligned}$	$T_{\mathrm{i}}\left[{ }^{\circ} \mathrm{C}\right]$	Min	Typ	Max	

Half-Bridge Switch
Static

Drain-source on-state resistance	$r_{\text {DS(on) }}$		18		20	25 125 150		39 52 60	50	$\mathrm{m} \Omega$
Gate-source threshold voltage	$V_{\text {GS(th) }}$	$V_{G S}=V_{\text {DS }}$			0,01	25	2,7		5,6	V
Gate to Source Leakage Current	$I_{\text {css }}$		$\begin{aligned} & 22 \\ & -4 \end{aligned}$	0		25			$\begin{gathered} \hline 100 \\ -100 \\ \hline \end{gathered}$	nA
Zero Gate Voltage Drain Current	$I_{\text {DSS }}$		0	1200		25			10	$\mu \mathrm{A}$
Internal gate resistance	r_{g}							7		Ω
Gate charge	$Q_{\text {g }}$		18	600	20	25		107		nC
Gate to source charge	$Q_{\text {gs }}$							22		
Gate to drain charge	$Q_{\text {gid }}$							41		
Short-circuit input capacitance	$C_{\text {iss }}$	$f=1 \mathrm{MHz}$	0	800		25		1337		pF
Short-circuit output capacitance	Coss							76		
Reverse transfer capacitance	$C_{\text {rss }}$							27		

Reverse Diode Static

Forward voltage	Vsd	0	20	25	3,20	V

Thermal

Thermistor

Rated resistance	R				25		22		
Deviation of R_{100}	$\Delta_{\mathrm{R} / \mathrm{R}}$	$R_{100}=1484 \Omega$				100	-5		5
Power dissipation	P								
Power dissipation constant				25		5	mW		
B-value	$B_{(25 / 50)}$	Tol. $\pm 1 \%$			25		1,5		$\mathrm{~mW} / \mathrm{K}$
B-value	$B_{(25 / 100)}$	Tol. $\pm 1 \%$				25		3962	
Vincotech NTC Reference					K				

Vincotech

Ordering Code \& Marking											
Version				Ordering Code							
without thermal paste 12 mm housing with Press-fit pins				10-PC124PA040MR-L638F18Y							
NN-NNNNNNNNNNNNNN TITITTVV WWYY UL VIN LLLLL SSSS	Text	Name		Date code	UL \& VIN	Lot	Serial				
		Nn-NnNNNNNNNNNNNN-TTTTTV		WWYY	UL VIN	LLLLL	ssss				
	Datamatrix	Type\&Ver	Lot number	Serial	Date code						
		TTTTTTVV	LLLLL	ssss	WWYY						

Vincotech

Identification						
ID	Component	Voltage	Current	Function	Comment	
T11,T12,T13,T14	MOSFET	1200 V	$40 \mathrm{~m} \Omega$	Half-Bridge Switch		
Rt	Thermistor			Thermistor		

Vincotech

Packaging instruction						
Standard packaging quantity (SPQ)	$\mathbf{1 3 5}$		$>$ SPQ	Standard	<SPQ	Sample

Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.

	Package data
Package data for flow 0 packages see vincotech.com website.	

| UL recognition and file number |
| :--- | :--- |
| This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website. |

Document No.:	Date:	Modification:	Pages
10-PC124PA040MR-L638F18Y-T1-14	10 Jun. 2016		

Product status definition		
Datasheet Status	Product Status	Definition
Target	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Zero Recovery Silicon Carbide Schottky Diode

Final
January 2018

Contents

1 Revision History 1
1.1 Revision A 1
2 Product Overview 2
2.1 Features 2
2.2 Benefits 2
2.3 Applications 2
3 Electrical Specifications 3
3.1 Absolute Maximum Ratings 3
3.2 Electrical Performance 4
3.3 Performance Curves 5
4 Package Specification 7
4.1 Package Outline Drawing 7

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision A

Revision A was published in January 2018. It is the first publication of this document.

2 Product Overview

The silicon carbide (SiC) power Schottky barrier diodes (SBD) product line from Microsemi increases your performance over silicon diode solutions while lowering your total cost of ownership for highvoltage applications. The MSCO30SDA120B is a $1200 \mathrm{~V}, 30 \mathrm{~A} \mathrm{SiC} \mathrm{SBD} \mathrm{in} \mathrm{a} \mathrm{two-lead} \mathrm{TO-247} \mathrm{package}$ shown below.

$2.1 \quad$ Features

The following are key features of the MSCO30SDA120B device:

- Low forward voltage
- Low leakage current
- No reverse recovery current/no forward recovery
- Avalanche energy rated
- RoHS compliant

2.2 Benefits

The following are benefits of the MSCO30SDA120B device:

- Higher-reliability systems
- Minimizes heat sink requirements
- Higher efficiency

2.3 Applications

The MSC030SDA120B device is designed for the following applications:

- H/EV powertrain and EV charger
- Power supply and distribution
- PV inverter, converter, and industrial motor drives
- Smart grid transmission and distribution
- Aviation

3 Electrical Specifications

This section details the electrical specifications for the MSCO30SDA120B device.

3.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings for the MSCO30SDA120B device.
All Ratings: $\mathrm{Tc}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Table 1 • Absolute Maximum Ratings

Symbol	Parameter		Ratings	Unit
V_{R}	Maximum DC reverse voltage		1200	V
VRrM	Maximum peak repetitive reverse voltage			
VRWM	Maximum working peak reverse voltage			
If	Maximum DC forward current	$\mathrm{Tc}=25^{\circ} \mathrm{C}$	65	A
		$\mathrm{Tc}=135^{\circ} \mathrm{C}$	29	
		$\mathrm{T} \mathrm{C}=145^{\circ} \mathrm{C}$	24	
Ifrm	Repetitive peak forward surge current $\left(\mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=8.3 \mathrm{~ms}\right.$, half sine wave)		92	
Ifsm	Non-repetitive forward surge current ($\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=8.3 \mathrm{~ms}$, half sine wave)		165	
Ртот	Power dissipation	$\mathrm{Tc}=25^{\circ} \mathrm{C}$	259	W
		$\mathrm{Tc}=110^{\circ} \mathrm{C}$	112	
TJ, $\mathrm{Tstg}^{\text {sta }}$	Operating junction and storage temperature range		-55 to 175	${ }^{\circ} \mathrm{C}$
TL	Lead temperature for 10 seconds		300	
EAs	Single pulse avalanche energy (starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=0.22 \mathrm{mH}$, peak $\mathrm{IL}=30 \mathrm{~A}$)		100	mJ

The following table shows the thermal and mechanical characteristics of the MSC030SDA120B device.

Table 2 • Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Typ	Max
Unit				
Rөлс	Junction-to-case thermal resistance		0.4	0.58
$\mathrm{~W}_{\top}$	Package weight		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
		0.22		oz
Torque	Maximum mounting torque	5.9		g
			10	$\mathrm{lb}-\mathrm{in}$

Power Matters."

3.2 Electrical Performance

The following table shows the static characteristics of the MSCO30SDA120B device.

Table 3 • Static Characteristics

3.3 Performance Curves

This section shows the typical performance curves for the MSCO30SDA120B device.

Figure 1 • Maximum Transient Thermal Impedance

Figure 2 • Forward Current vs. Forward Voltage

Figure 3 • Max Forward Current vs. Case Temp

Power Matters."

Figure 4 • Max Power Dissipation vs. Case Temp

Figure 6 • Total Capacitive Charge vs. Reverse Voltage

Figure 5 • Reverse Current vs. Reverse Voltage

Figure 7 • Junction Capacitance vs. Reverse Voltage

4 Package Specification

This section outlines the package specification for the MSCO30SDA120B device.

4.1 Package Outline Drawing

This section details the TO-247 package drawing of the MSCO30SDA120B device. Dimensions are in millimeters and (inches).

Figure 8 • Package Outline Drawing

Power Matters."

Power Matters."
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com
© 2018 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace \& defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologie and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

[^0]: (table continues...)

[^1]: 1. ANSI/AAMI ES60601-1 recognition is currently pending for the MGJ2D241709SC, MGJ2Dxx1515SC, MGJ2Dxx1802SC, MGJ2Dxx1503SC and MGJ2Dxx2003SC variants.
