
XFEATUR: Hardware Feature Extraction
for DNN Auto-tuning

Jorge Sierra Acosta
Universitat Politècnica de Catalunya

Barcelona, Spain
jorge.sierra@upc.edu

Andreas Diavastos
Universitat Politècnica de Catalunya

Barcelona, Spain
andreas.diavastos@upc.edu

Antonio Gonzalez
Universitat Politècnica de Catalunya

Barcelona, Spain
antonio@ac.upc.edu

Abstract—In this work, we extend the auto-tuning process
of the state-of-the-art TVM framework with XFEATUR; a tool
that extracts new meaningful hardware-related features that
improve the quality of the representation of the search space and
consequently improve the accuracy of its prediction algorithm.
These new features provide information about the amount of
thread-level parallelism, shared memory usage, register usage,
dynamic instruction count and memory access dependencies.
Optimizing ResNet-18 with the proposed features improves the
quality of the search space representation by 63% on average
and a maximum of 2× for certain tasks, while it reduces the
tuning time by 9% (approximately 1.1 hours) and produces
configurations that have equal or better performance (up to
92.7%) than the baseline.

I. INTRODUCTION

Recent advancements in Deep Neural Networks (DNNs)
are driven by important improvements in algorithms and new
compute capabilities in modern hardware. New algorithms
are being developed constantly to efficiently and accurately
solve challenging applications such as autonomous driving,
natural language processing, etc. However, the vast number of
features and parameters that need to be explored to improve the
performance of such algorithms on different hardware devices
poses a new optimization challenge. Auto-tuning frameworks
are being used to automatically search the parameter space and
find the best software optimizations for a given application.
The result of such a search highly depends on the quality of
the representation of the optimization (search) space.

With this work, we introduce XFEATUR, a software tool
that is integrated within the auto-tuning process of TVM
(AutoTVM) to take advantage of the knowledge we have over
the underlying hardware and include certain hardware metrics
(e.g. shared memory allocation, register usage, number of
threads) and hardware specs (e.g. number of processing units,
memory hierarchy) in the description of the search space. In
this work, we propose a new set of hardware-related features
that improve the quality of the search space representation of
different CNN tasks for a GPU platform and consequently
improve the outcome of the search space exploration.

The main contributions of this work are:

• A pre-processing tool, called XFEATUR, that analyzes
the target application source code and extracts several
hardware-related features to be used by the auto-tuner;

• A new set of hardware-related features that combined
with the current software-based features from AutoTVM
improve the quality of the search space representation by
63% on average, with a maximum of 2×, according to the
Pearson Coefficient. Thus, reducing the tuning time of an
application by 9%, that translates to 1.1 hours; besides,
the solutions found by XFEATUR achieve equal or better
performance (up to 92.7% in our benchmarks) than the
ones encountered by the baseline AutoTVM.

II. MOTIVATION

Most popular Deep Learning (DL) frameworks such as
TensorFlow [1], MXNet [2], Caffe [3] and PyTorch [4] rely
on a computational graph intermediate representation that
requires manual tuning and can perform only high-level opti-
mizations unless they make use of special device instructions
or hand-tuned optimizations. New optimization frameworks
offer tools to automatically fine-tune (auto-tune) specific nodes
in the computational graph to increase performance. Older
techniques [5], [6] make use of analytical methodologies
for automatic optimization, while more modern solutions
employ evolutionary algorithms to perform an optimization
search for the best DNN-to-hardware mapping, considering
tiling, computation order and exploiting multiple levels of
parallelism [7]–[9]. Recently, several solutions turned to more
intelligent, machine learning, techniques such as supervised
learning and reinforcement learning to refine the search space
exploration and improve the performance of the search [10]–
[14]. One such popular framework is TVM [15], an automated
end-to-end compiler and auto-tuner with different sets of fea-
tures to generate a search space that is explored with Simulated
Annealing (SA) [16] and finally predicts the performance of
various configurations with XGBoost [17].

Previous works are mostly focused on improving the search
heuristics using software- and algorithm-specific features to
represent the search space. We observe that there is a lack
of hardware-related information being used in auto-tuning
tools. The growing diversity of the available hardware devices
increases the number of parameters that can be explored,
but at the same time, it offers new features that can be
correlated with performance metrics to help the auto-tuning
process. We argue that a search space that is not represented
with meaningful hardware features makes the search space

1

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. DOI 10.1109/ISPASS55109.2022.00013



explorer likely to miss-interpret the performance difference
among different data points, resulting in a slow and potentially
inaccurate auto-tuning process. The target of this work is to
provide a tool that can seamlessly and effortlessly extract
hardware-related features from the application source code and
the target hardware, in an effort to improve the already existing
application feature set of TVM. Our goal is to improve the
overall accuracy and performance of the AutoTVM tuning
process by improving the search space representation and
allowing for better prediction accuracy using the same cost
model.

III. HARDWARE-RELATED OPTIMIZATION FEATURES

We examine a new set of hardware-related features that
extends the AutoTVM feature set to improve the quality of
the search space representation. We separate the proposed
feature set into two categories: the Explicit features that
have a direct relation to measurable hardware values and the
Implicit features that are hardware-related and can be inferred
with reasonable approximation. To automate the process of
extracting these new features, we developed a pre-processing
tool, called XFEATUR, that integrates with AutoTVM and
extracts the new features at the pre-compile stage.

A. Explicit Features

1) Number of threads and number of threadblocks: On a
GPU these are directly correlated with workload balancing
and memory access latency by leveraging parallelism and
warp scheduling. These two features can be easily obtained as
they are defined by the kernel that will be executed. Analysis
reveals that too few threads result in under-utilization of the
system and too many threads saturate shared resources (e.g.
too many registers per thread, shared memory overuse).

2) Shared memory usage: The shared memory offers one of
the lowest memory access latency on a GPU. For this reason,
it is commonly used for storing data that will be used and
shared many times during the computation between threads in
the same threadblock. Alternatively, using the caches that have
a higher latency. Therefore, under-utilization of the shared
memory when executing an application with high data reuse
can be an early indication of low application performance.

3) Register usage: The number of registers used in each
threadblock is also a good indicator of performance. Compiler-
generated code that has more live variables than the GPU has
registers to allocate, register spilling occurs and live variables
must use the local memory, leading to longer access latency.
We can approximate the number of registers with reasonable
precision by calculating the number of local variable allo-
cations it will perform and use this feature to represent the
probability of register spilling during the execution.

B. Implicit Features

1) Dynamic instruction count: The number of dynamic
instructions provides important information on the ratio of
various types of instructions that could stall the execution
compared to useful progress (compute instructions). In this

0 1 2 3 4 5
Predicted performance (TFlops)

0

1

2

3

4

5

Re
al
 p
er
fo
rm

an
ce

 (T
Fl
op

s)

Pearson coefficient=0.17

0

20

40

60

80

Ha
rd
wa

re
 S
te
p

0 1 2 3 4 5
Predicted performance (TFlops)

0

1

2

3

4

5

Re
al

 p
er

fo
rm

an
ce

 (T
Fl

op
s)

Pearson coefficient=0.38

0

20

40

60

80

Ha
rd

wa
re

 S
te

p

(a) Task 4: AutoTVM (left), XFEATUR (right)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Predicted performance (TFlops)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
al

 p
er

fo
rm

an
ce

 (T
Fl

op
s)

Pearson coefficient=0.37

0

20

40

60

80

Ha
rd

wa
re

 S
te

p

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Predicted performance (TFlops)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
al

 p
er

fo
rm

an
ce

 (T
Fl

op
s)

Pearson coefficient=0.57

0

20

40

60

80

Ha
rd

wa
re

 S
te

p

(b) Task 13: AutoTVM (left), XFEATUR (right)

Fig. 1: The search space representation for various tasks of
ResNet-18 with plan size 8, expressed according to the Pearson
Correlation Coefficient [20]. The color map represents the
iterations of the auto-tuning process (measured in hardware
steps). Note that the predicted performance is not bounded by
the minimum (0 TFlops) or maximum possible performance.

work, we use an approximation method to extract the dynamic
number of instructions from the source code with static anal-
ysis and interpretation of the loops and conditional branches
and categorize the instructions based on their type.

2) Number of cycles between data-dependent instructions:
The number of instructions and the number of cycles spent
between memory accesses and their dependent instructions are
good indicators of how well a given application configuration
can hide the latency of costly memory accesses. Using the
categorization from the previous feature we build a histogram
of the number of working cycles between a memory access
instruction and its first dependent consumer.

IV. EXPERIMENTAL EVALUATION

XFEATUR is developed in Python and integrated into TVM
v0.8.dev0. ResNet-18 [18] was used for the evaluation be-
cause of it’s diverse set of compute- and memory-intensive
convolutional layers, and it’s fast enough to allow us to run
multiple tests in a reasonable amount of time. All tests were
evaluated on an Nvidia GeForce RTX 2070 SUPER GPU
that implements the Turing architecture with 40 Streaming
Multiprocessors [19].

The purpose of this work is to improve the quality of the
space representation that will allow us to converge to optimal
solutions faster during the auto-tuning process. To evaluate
the quality of the search space we use the Pearson Correlation
Coefficient [20]. Figure 1 shows the search space expressed
according to the Pearson Correlation Coefficient with predicted
performance on the x-axis and real performance achieved on
the y-axis. The color map represents the iterations of the auto-
tuning process (measured in hardware steps). The higher the
correlation coefficient, the better the space is represented. In
this paper, we show results only for plan size 8 and Tasks 4,

2



and 13, however, results for other tasks and with plan size 64
(AutoTVM default) show the same behavior. The improvement
in the correlation coefficient when using the hardware-related
features from Section III, extracted with XFEATUR, for Tasks
4, 13 is 2× and 54% respectively, compared to the baseline
AutoTVM implementation that uses only its default feature
sets. For all the tasks evaluated in ResNet-18 we achieve an
average improvement of 63%.

The improvement of the quality of the search space trans-
lates into performance gains during the auto-tuning process.
Our evaluation showed a reduction in the tuning time of an
application by 9%, that translates to 1.1 hours. In addition,
the solutions found by XFEATUR achieve equal or better
performance (up to 92.7% in our benchmarks) than the ones
encountered by the baseline AutoTVM.

ACKNOWLEDGMENT

This work has been supported by the CoCoUnit ERC
Advanced Grant of the EU’s Horizon 2020 program (grant No
833057), the Spanish State Research Agency (MCIN/AEI) un-
der grant PID2020-113172RB-I00, and the ICREA Academia
program and the FPU grant 2019-FPU-998758.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[2] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed
systems,” CoRR, vol. abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[5] R. Whaley and J. Dongarra, “Automatically tuned linear algebra soft-
ware,” in SC ’98: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, 1998, pp. 38–38.

[6] M. Frigo and S. Johnson, “Fftw: an adaptive software architecture
for the fft,” in Proceedings of the 1998 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat.
No.98CH36181), vol. 3, 1998, pp. 1381–1384 vol.3.

[7] S.-C. Kao and T. Krishna, “Gamma: Automating the hw mapping of
dnn models on accelerators via genetic algorithm,” in Proceedings of the
39th International Conference on Computer-Aided Design, ser. ICCAD
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3400302.3415639

[8] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor
comprehensions: Framework-agnostic high-performance machine
learning abstractions,” CoRR, vol. abs/1802.04730, 2018. [Online].
Available: http://arxiv.org/abs/1802.04730

[9] J. Mu, M. Wang, L. Li, J. Yang, W. Lin, and W. Zhang, “A history-
based auto-tuning framework for fast and high-performance dnn design
on gpu,” in 2020 57th ACM/IEEE Design Automation Conference (DAC),
2020, pp. 1–6.

[10] I. Baldini, S. J. Fink, and E. Altman, “Predicting gpu performance from
cpu runs using machine learning,” in 2014 IEEE 26th International Sym-
posium on Computer Architecture and High Performance Computing,
2014, pp. 254–261.

[11] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
859–873. [Online]. Available: https://doi.org/10.1145/3373376.3378508

[12] B. H. Ahn, P. Pilligundla, and H. Esmaeilzadeh, “Reinforcement
learning and adaptive sampling for optimized DNN compi-
lation,” CoRR, vol. abs/1905.12799, 2019. [Online]. Available:
http://arxiv.org/abs/1905.12799

[13] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu,
“Cross-architecture performance prediction (xapp) using cpu code to
predict gpu performance,” in Proceedings of the 48th International
Symposium on Microarchitecture, ser. MICRO-48. New York, NY,
USA: Association for Computing Machinery, 2015, p. 725–737.
[Online]. Available: https://doi.org/10.1145/2830772.2830780

[14] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind mappings: Enabling efficient algorithm-accelerator
mapping space search,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 943–958. [Online].
Available: https://doi.org/10.1145/3445814.3446762

[15] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and
A. Krishnamurthy, “TVM: An automated end-to-end optimizing
compiler for deep learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 578–594. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/chen

[16] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “A heuristic algorithm and
simulation approach to relative location of facilities,” Optim. Simulated
Annealing, vol. 220, pp. 671–680, 1983.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” CoRR, vol. abs/1603.02754, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02754

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[19] “Nvidia ampere ga102 gpu architecture whitepaper,” 2020. [Online].
Available: https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-
gpu-architecture-whitepaper-v2.pdf

[20] D. Freedman, R. Pisani, and R. Purves, “Statistics (international student
edition),” Pisani, R. Purves, 4th edn. WW Norton & Company, New
York, 2007.

3




