AN APPROACH TO MONITORING CHANGES
IN DEDUCTIVE DATABASES

(preliminary version)

Toni Urpi

Universitat Politécnica de Catalunya
Facultat d'Informatica
Pau Gargallo 5
08028 Barcelona
Catalunya

Tel. 34-3-4017004

Fax. 34-3-4017040
e-mail: urpi@Isi.upc.es

ABSTRACT

We propose a method to monitor changes in deductive databases. The
method augments a database with a set of transition and events rules, which
explicitly define the insertions, deletions and modifications induced by a
database update. The main advantage of the method is that it allows a high
degree of expressiveness in the representation of derived predicates. The
method also uses the classical concept of key in order to obtain a set of rules
which are semantically richer.

KEYWORDS

Monitoring, Deductive databases

June 1991

87

1. INTRODUCTION

In deductive databases, predicates are either base or derived. Facts of base predicates are
explicitly stored. Facts of derived predicates can be deduced from base and/or derived predicates
using deductive rules. When base facts are modified by update operations, derived facts may also
change. The problem addressed in this paper is the efficient monitoring of these changes.

There are many database areas that require to monitor database changes: condition monitoring in
active databases [RCB 89]; integrity constraints enforcement [Oli 91, SaK 88]; maintenance of
materialized views [BLT 86] and production rules systems in general [Han 89, MD 89, Sto 90,
WiF 90]. The efficient monitoring of these changes can be useful in all of these areas.

There is a simple but inefficient way to do this: if we deduce the derived facts before and after the
update operations, we can easily obtain the differences and then the changes induced by the

transition. In order to overcome this obvious inefficency the existent methods propose more
efficient ways.

We propose to use an extension of the events method to improve monitor performance.
Originally, the events method was introduced as an approach for the design of information systems
from deductive conceptual models [Oli 89]. As a particular application, the method was also
applied for integrity checking in deductive databases [Oli 91]. The method augments a database

with a set of rules, called transition and events rules, which explicitly define the insertions and
deletions induced by a database update.

We propose an extension to the events method that incorporates a new event: the modification.
The introduction of this new event leads us to introduce the concept of key, used to relate facts that
hold values of the same object before and after the modifications. We also use keys as knowledge

that we incorporate into our transition and events rules, allowing us to obtain a set of rules which
are semantically richer.

The paper is organized as follows. The second section defines basic concepts of deductive
databases, and presents an example that will be used throughout the paper. Section 3 defines the
concept of event, and presents a method for deriving transition and events rules. In section 4 we
compare our method with [RCB 89]. Finally, in section 5 we present our conclusions.

88

2. DEDUCTIVE DATABASES

A deductive database D consists of three finite sets: a set F of facts, a set R of deductive rules,
and a set I of integrity constraints. A fact is a ground atom. The set of facts is called the Extensional
Database, and the set of deductive rules is called the Intensional Database.

We assume that database predicates are either base or derived. A base predicate appears only in
the extensional database and (eventually) in the body of the deductive rules. A derived predicate
appears only in the intensional database. Every database can be defined in this form [BaR 86].

We also assume that database predicates (base or derived) can have two types of arguments:
those (k) that form a key for the predicate, and those (x) that do not. We use the classical concept
of key, and so each database predicate must have key arguments. We have, then, two types of
predicates: either P(k,x) or P(k). To enforce the concept of key we assume that associated to each
P(k,x) there is a key integrity constraint:

« P(k,x) A P(kx)A x#x'

We show in figure 1 the database example that will be used throughout the paper. In this
example, there are five base predicates, five derived, five deductive rules and nine key integrity
constraints. We underline the key components in each predicate.

2.1 Deductive rules
A deductive rule is a formula of the form:
AeLiA .. ALy withn21

where A is an atom denoting the conclusion, and the Ly, ... ,.Ly are literals representing

conditions. Each L is either an atom or a negated atom. Any variables in A, Ly .. ,Ljare

assumed to be universally quantified over the whole formula. The terms in the conclusion must be

distinct variables, and the terms in the conditions must be variables or constants.

Condition predicates may be evaluable ("built-in") or ordinary (non-evaluable). The latter are
base or derived predicates, while the former are predicates, such as the comparison or arithmetic

predicates, that can be evaluated without accessing the database.

As usual, the database must be allowed before and after any update, that is, any variable that

89

occurs in a deductive rules has an occurence in a positive condition of the rule. This ensures that all
negative conditions can be fully instantiated before they are evaluated by the "negation as failure
rule.

2.2 Integrity constraints

An integrity constraint is a closed first-order formula that the database is required to satisfy. We
deal with constraints that have the form of a denial:

«LiA..AL; withn21

where the L are literals, and variables are asumed to be universally quantified over the whole
formula.

In this paper we are specially interested in key integrity constraints that we define as:
« P(k,x) A P(k,x)A x#x'

Normally, keys of derived predicates can be deduced from the deductive rules of these predicates.
However, in figure 1, we declare their keys for clarity.

Note that x and x' are vectors of variables, and so the inequality x # x' could be more precisely
defined with the "different" predicate:

different(xy,...,xp, X']5..0X'n) € X1 # x'1
different(x1,...,Xp, X'15--sX'n) € Xp # X'n
For the same reason if we have an expression like x = x', we define it more precisely as:

(x1=x1A..AXp=Xp)

90

Base predi

Emp(e,n,s) employee e has name n and salary s

Userl1(u,n) user u has name n and he is a user of system 1
User2(u,n) user u has name n and he is a user of system 2
Ed(e.d) employee e works in the department d

Dept(d,n) department d has name n
D ive rul

DR.1 Emp32(e,n,s) < Emp(en,s) A s>32

DR.2 Pemp(e,s) « Emp(e,n,s)

DR.3 Edn(e.d,n) « Ed(e.d) A Dept(d,n)

DR.4 Userln2(y,n) « Userl(u,n) A =User2(u,n)
DR.5 Userlemp(u,n) « Userl(u,n) A Emp(e,n,s)

Inteeri rdin

< Emp(e,n,s) A Emp(e,n';s') A different(n,s,n's")

« Userl(u,n) A Userl(y,;n) A n#n'

« User2(u,n) A User2(y,n’) A n#n'

« Dept(d,n) A Dept(d,n’) A n#n'

< Emp32(e,n,;s) A Emp32(e,n',s") A different(n,s,n',s")
« Pemp(e,s) A Pemp(g,s’) A s#s'

<« Edn(ed,n) A Edn(e.d,n’) A n#n'

< Userln2(y,n) A Userln2(y,n) An#n'

< Userlemp(u,n) A Userlemp(u,n) An=#n'

Figure 1. Example of deductive database

91

3. TRANSITION AND EVENTS RULES

In this section we define the events, a key concept in our method. We also explain how to derive
the transition and events rules for a given database. These rules depend only on the deductive rules
and integrity constraints. They are independent from the particular base facts stored in the database,
and from any particular update.

3.1 Events

Let D be a database, U an update and D' the updated database. We say that U induces a transtion
from D (the current state) to D' (the new, updated state). We assume for the moment that U
consists of an unspecified set of base facts to be inserted, deleted or modified.

Due to the deductive rules, U may induce other updates on some derived predicates. Our objective
is to monitor these derived predicates updates efficiently. Let P be a derived predicate and P' the
same predicate evaluated on D'. Assuming that P(K,X) holds on D, where K and X are vectors of
constants, three cases are possible in D':

1. P'(K,X) also holds we say that nothing has occurred
2. —3Y such that P'(K,Y) also holds " a O0P(K,X) has occurred
3. 3X' such that P'(K,X) also holds and X=X " a WP(K,X,X) has occurred

and assuming that P'(K,X) holds in D/, three cases are possible in D:

1. P(K,X) also holds we say that nothing has occurred
2. —3Y such that P(K,Y) also holds " a \P(K,X) has occurred
3. 3X' such that P(K,X') also holds and X#X' " a uP(K,X ,X) has occurred

Formally, we associate three meta predicates to each base or derived predicate P: an insertion

events predicate 1P, a deletion events predicate 8P and a modification events predicate uP, defined
as:

(1) Vk,x (1P(k,x) © P'(k,x) A —3yP(k,y))

(2) Vk,x (8P(k,x) & P(k,x) A —3yP'(k,y))
3) Vkx,x' (BPk,x,x") > Pk,x) A P'(k,x') A X#X')

92

Examples:

Emp32(e, n,) Emp32'(e, n, s)

1 Joan 60 1 Joan 40 => HEmp32(1,Joan,60,Joan,40)
2 Enric 50 => OEmp32(2,Enric,50)
4 Anna 70 => 1Emp32(4,Anna,70)

From (1), (2) and (3) we have:

4) Vk,x (P'(k,x) & (Pk,x) A —0P(k,x) A—{P(k,x,x") V
WPk,x) v
HP(k,x',x))

) Vk,x (=P'(k,x) € (=P(k,x) A —P(k,x) A—pP(K,X',X) V
3P(k,x) v
HP(k,x,x"))

If P is a base predicate, \P facts, 8P facts and UP facts represent insertions, deletions and
modifications of base facts, respectively. Therefore, we assume from now on that U consists of an
unspecified set of insertion, deletion and/or modification events of base predicates.

From (1), (2) and (3) we require that

(6) Vk,x (1P(k,x) = —3yP(k,y)) and
@) Vk,x (8P(k,x) = P(k,x)) and
8 Vk,x,x' (UP(k,x,x") = P(k,x) A x # x')

also hold for base predicates.

Furthermore, from (1), (2) and (3) we deduce that 1P(k,x), 8P(k,x) and puP(k,x,x") are
mutually exclusive (we will require this also for base predicates):

9) Vk,x (1P(k,x) — —3y dP(k,y))

Vk,x (1P(k,x) — —3y,y' uPk,y,y"))
(10) Vk,x (OP(k,x) — —3y 1P(k,y))

Vk,x (dP(k,x) = —3y,y' uPk,y,y"
(11) Vi, x,x' (uP(k,x,x") = =3y dP(k,y))

Vikxx' (Pk, x,x) — — 3y 1PKk,y))

93

In [Oli 917 we can find the analogue rules for tne case of predicates with only key arguments:

(1) Vk (1P(k) © P'(k) A —P(k))

(2) Vk(8P(k) & P(k) A =P'(k))

39 Not defined. We can only modify predicates with non-key arguments.
4" Vk (P'(k) & (P(k) A =8P(k)) Vv 1P(k))

(59 Vk (=P'(k) &> (=P(k) A - 1P(k)) v 8P(k))

(6 Vk (1P(k) — —P(k))

(7 Vk (8P(k) — P(k))

(89 Not defined. We can only modify predicates with non-key arguments.
9 Vk (1P(k) —» —6P(k))

(10") Vk (8P(k) —» —1P(k))

(11Y Not defined.

Additionally, we note two more things. First, we assume that U and the induced facts by U do
not violate any integrity constraint. In particular, key integrity constraints are not violated. So, we
assume that integrity constraints are checked in a previous step. Second, as we have observed,
some of the rules - (1), (2),.. - do not satisfy the allowedness property. In our particular case, this

is not worrying because we can rewrite these rules in order to satisfy that property. For instance:
rule (1) Vkx (1P(k,x) > P'(k,x) A =3yP(k,y)) can be rewritten as:

(1") Vk,x (1P(k,x) & P'(k,x) A —someP(k))
(2") someP(k) & P(k,y)

Up to now, we have defined 1P(k,x), 8P(k,x), HP(k,x,x"), 1P(k) and S8P(k) as a particular
first-order formula in which P and P' intervene. The evaluation of these events would need a
complete extension of P and P' to be obtained. First, we would have to apply U over D (current
state) to obtain D' (new state), and then, we would get P This is particulary inefficient. We will
show a way in which this evaluation can be improved.

3.2 Transition rules

Let P be a derived predicate of the database. The definition of P consists of the rules in the
database having P in the conclusion. Assume that there are m (m>1) such rules. For our purposes,
we require to rename the conclusions of the m rules by Pj ...Pp,, change the implication by an
equivalence and add the set of clauses:

PP i=1.m

Thus, refering to rule DR.3:

Edni(ed,n) < Ed(e.d) A Dept(d,n)
Edn(e.d,n) « Ednj(e.d,n)

94

Given a rule Pj(k,x) &> Li A ... AL, (where x can be empty), we will denote by U(P;) the
conjunction of the literals in the body having a vector of variables k; (kj key) such that k 2 k;j, and
we will denote by E(P;) the conjunction of the literals in the body such that their keys have some
variable which is not in k. Thus, refering to rules DR.3 and DR.5, we have:

DR.3 U(Edn;) = { Ed(e.d) A Dept(d,n) } E(Edny) =9
DR.5 U(Userlnempy) = { Userl(u,n) } E(Userlnemp) = { Emp(e,n,s) }

Consider now one of the rules Pj(k,x) > Lj A ... ALy (where x can be empty). When the rule
is to be evaluated in the updated state its form is P'j(k,x) <> LiA.A L'n . Now if we replace
each literal in the body by its equivalent definition in terms of the current state and the events, we
get a new rule, called a transition rule, which defines predicate P'i (new state) in terms of current
state predicates and events.

More precisely:
if L'j is positive and has non-key variables [Qj(kj,Xj)] we apply (4) and replace it by:

(Qjk;j,xj) A—8Qj(kij.xj) A—HQj(kixj,x' 1)) v 1Q(K}xj) v HQUK}X'Xj)
if L'j is positive and does not have any non-key variables [Qj (kj)] we apply (4") and replace
it by:
(Qjkj) A=3Qj(kj)) v 1Q(k;j)
if L'j is negative and has non-key variables [—|Qj(kj,x]')] we apply (5) and replace it by:
(=Qj(kj.xj) A= 1Qj(kjxj) A—HQjkjx'jx))) v 8Q(K;jx;) v HQky,xj,x))

if L'j is negative and does not have any non-key variables [—Qj(kj) 1 we apply (5) and
replace it by:
(=Qj(kj) A= 1Qj(kj) v dQ(k;)

if L; is an evaluable predicate, we just replace L'j (positive or negative) by its current state
version L;.

Note that when we introduce variables x'j, we are refering to new variables, not used

previously.

It will be easier to refer to the resulting expresion if we denote it by:

95

M(L'j) = uQ(kj,x'j,xj) if L'j = Q'j(kj,x_i)

= uQ(kj,xJ',x'j) if L'j = ﬁQ'j(kj,xJ')
N(L'j) = lQ(kj,xj) if L'j = Q'j(kj,xj')

=1Q(k;) if Lj=Qjlk;))

= 5Q(kj,Xj) if L'j = Qj(kjxj)

= 8Q(kj) if Lj=-Qjk;j)
O = (Qjlkjxj) A=8Qj%}) A=HQj(kjxj,x'}) if Lj=Qjkjx))

= (Qj(kj) A—8Qj(k;)) if Lj=Qjk;)

= (—‘Qj(kj,xj') A 1Qj(kj,xJ') /\ﬂqu(kj,xlj,Xj)) if L'j = —lej(kj,xJ')

= (2Qjkj) A—1Qj(k;)) if L'j =—Qjk;)

=L; if Lj is evaluable

With this notation we then have:
12) Pikx) o :7{1‘ [O(Lp) v N(Lp) v M(Ly) | O(Ly) v N(Lp) | O(Ly)]

where the first option is taken if L} is an ordinary literal with non-key variables, the second one if
L'r is an ordinary literal without non-key variables, and the third one if L'r is evaluable. After

distributing A over v, we get an equivalent set of transition rules, each of them with the general
form:

(13) P} ,j(k,x)e—)Z{l’ [OL) | NLY | MLp] forj=1..a

where o = 21K 4 31nk; Ik is the number of ordinary literals in Pj(k,x) with only key
variables and Ink is the number of ordinary literals with non-key variables, and

(14) Pilx) « Pijkx) j=1..a
Figure 2 shows the transition rules of the example.

In the above set of rules (13) it will be useful to assume that the rule corresponding to j = 1 is:
Pi1(kx) « OL])A...AOLp)

For each derived predicate, we have obtained a set of rules, the transition rules, which define P}

(new state) in terms of current state predicates and events. Applying these results to the definition

of events predicates, we get the insertion, deletion and modification events rules.

96

T.1 Emp32'1'1(g,n,s) & Emp(e,n,s) A =0Emp(g,n,s) A ~pEmp(e,n,s,n',s") A s>32
T.2 Emp32'1'2(§,n,s) < 1Emp(e,n,s) A §>32
T.3 Emp32'1'3(Q,n,s) < pemp(e,n',s’,n,s) A §>32

T.4 Pemp'm(Q,S) < Emp(e,n,s) A —~8Emp(e,n,s) A =HEmp(e,n,s,n',s")
T.5 Pemp'u(g,s) < 1Emp(e,n,s)
T.6 Pemp'1'3(§_,s) < pemp(e,n',s',n,s)

T.7 Edn 1,1(e.d,n) & Ed(ed) A ~8Ed(e.d) A Dept(d,n) A —~3Dept(d,n) A —uDept(d,n,n’)
T.8 Edn,(edn) < Ed(ed) A —8Ed(e.d) A 1Dept(d,n)

T.9 Edn'js(edn) < Ed(ed) A -0Ed(e.d) A pDept(d,n’,n)

T.10 Edn') 4(e.d,n) > 1Ed(e.d) A Dept(d,n) A =8Dept(d,n) A —~Dept(d,n,n’)

T.11 Edn'} s(e.d,n) <> 1Ed(e.d) A Dept(d,n)

T.12 Edn'1.6(9_\g1,n) < 1Ed(e.d) A uDept(d,n’,n)

T.13 User1n2'1.1(,u,n) <> Userl(u,n) A =8User1(u,n) A —pUser1(u,n,n") A ~User2(y,n) A

= 1User2(u,n) A ~User2(u,n",n)
T.14 User1n2'1_2(g,n) <> Userl(u,n) A =8User1(y,n) A —puUserl(y,n,n') A dUser2(y,n)
T.15 User1n2'1’3(g,n) <> Userl(u,n) A =dUser1(u,n) A =pUserl(u,n,n') A pUser2(u,n,n")
T.16 User1n2'1'4(g,n) <> Wserl(y,n) A —User2(u,n) A — WUser2(u,n) A —pUser2(u,n',n)
T.17 Userln2'; s5(u,n) > tUser1(u,n) A 8User2(y,n)
T.18 User1n2'1v6(1;,n) <> Wserl(u,n) A pUser2(u,n,n")
T.19 Uscr1n2'1,7(n,n) > uUserl(u,n',n) A =User2(u,n) A = 1User2(u,n) A —pUser2(u,n",n)
T.20 User1n2'1'8(u,n) & puUserl(u,n';n) A 8User2(u,n)
T.21 User1n2'1_9(g,n) < pUserl(u,n',n) A pUser2(y,n,n")

T.22 Userlemp'l.l(g,n) &> Userl(u,n) A ~8User1(u,n) A ~pUserl(y,n,n") A Emp(g,n,s) A

- OEmp(e,n,s) A —uEmp(e,n,s,n",s")
T.23 Userlemp'l_z(u,n) &> Userl(u,n) A ~dUser1(y,n) A -pUserl(u,n,n’) A tEEmp(g,n,s)
T.24 Userlcmp'l,—_;(u,n) &> Userl(u,n) A ~8User1(u,n) A —uUserl(y,n,n') A pEmp(g,n",s",n,s)
T.25 Uscrlemp'1'4(g,n) © Wserl(y,n) A Emp(e,n,s) A— SEmp(g,n,s) A ~pHEmp(e,n,s,n",s")
T.26 Uscrlemp'l_S(g,n) <> Wserl(y,n) A tEmp(g,n,s)
T.27 Userlemp'm(u_,n) & WUserl(u,n) A tEmp(eg,n",s",n,s)
T.28 Uscrlemp'm(g,n) < UWUserl(u,n',;n) A Emp(e,n,s) A— SEmp(e,n,s) A —uEmp(e,n,s,n",s")
T.29 Userlemp'l_g(g,n) & pUserl(u,n',n) A tEmp(e,n,s)

T.30 Userlemp'l'g(g,n) &> uUser1(u,n',n) A LkEmp(g,n",s",n,s)

Figure 2. Transition rules of the example

97

3.3 Insertion events rules

Let P be a derived predicate. Insertion events for P were defined in (1) as:
Vk,x (1P(k,x) & P'(k,x) A =JyP(k,y))

If there are m rules for predicate P, then P (k,x) & P 1kx) v. P'm(k,x), and replacing
P (k,x) we obtain the set of rules:

P(k,x) < P(k,x) A —3yP(k,y) withi=1 .. m
and replacing again P'i(k,x) by its equivalent definition given in (14) we get:
(15) P(k,x) P jkx) A—~FyP(ky) fori=1..mandj=1..o

or the analogous rule:
(15) P(k) & P () A=P(k) fori=1..mandj=1.. o

Rules (15, 15') are called insertion events rules of predicate P. They allow us to deduce which (P
facts (induced insertions) happen in a transition.

We can remove some of these rules and, in some cases, simplify them (see [Urp 91]):

RI 1 For any i, the rule corresponding to j =1 cannot produce 1P facts, since in this case
1 1k,x) - P(k,x) or P1 1&) — P(k). We can then reduce the set (15) to:

(15") P(k,x) ¢ P (k;x) A—JyP(ky) fori=1..mandj=2..a

and similarly for the case of 1P(k).

SI.1 Rules in (15) for which the transition rules corresponding to P i J(k x) have some literal
N (L p) in U(P1 J) of type 1Q(k,x), 1Q(k) or 8Q(k) can be simplified by removing P; from P and

becoming the rule (assuming that y has an existencial quantifier) :

(16) P(k,x) — P (%) AmP1(Ky) A .. A=Pi_(ky) A =Pi,1(ky) A . A
P (ky) fori=1.. mandj=2..

and similarly for the case of 1P(k). Note that we can always substitute P'i,j(k,x) by its equivalent

definition given in (13).

98

SI.2 Rules in (15") for which the transition rules corresponding to P'i,j(k,x) do not have a
literal N(L'y) in U(P'; ;) of type 1Q(k,x), 1Q(k) or 3Q(k), with U(P'; ;) # &, can be rewritten as:

(17) P(k,X) & P'i,j(k,x) A=P1kYy) A ... A=Pil1ky) A simpl(=Piky)) A
=P 1ky) A ... A=Ppk,y)

where simpl(—Pj(k,y)) is obtained as follows:
For each literal L'y in U(P'jj) of type:

- [Qj(kjx'j,xj) | HQj(kj,xj,x'j)], we can substitute the corresponding literal from —Pj(k,y),
which is of the form [Qj(kj,yj) = Qj(kj,yj)], by [yj= x'j | yj# Xj]

- Qj(kj,Xj), we can substitute the corresponding literal from —P;(k,y), Qj(kj,yj), by Yj=X
- [Qj(kj) | = Qj(kj)] we can remove the corresponding literal from —Pj(k,y), [Qj(k;) | —~ Qj(k;)]
- 8Qj(kj,x_]') we can substitute the corresponding literal from —P;(k,y), —|Qj(kj,yj), by ¥j #X;

and P'i,j(k,x) is subtituted by its equivalent definition given in (13).

FSP. Final simplification process

After applying SI.2, —P;(k,y) will contain the boolean expressions that we have incorporated.
From these boolean expressions, their satisfactibility or insatisfactibility can sometimes be deduced
for any value. For instance:

Pi(k,y) & (n#n) is insatisfiable for any value
Pikk,y) & (ny =n) where ny is not used anywhere, is satisfiable for any value

Furthermore, P'i’j(k,x) can contain literals of type [qu(kj,x'j,xj)]. From these kind of literals
we know that x'j is different of x;. It will be very useful to take this information into account. For
instance:

Pik,y) & (ny=n ANy = n') is insatisfiable for any value if we know that d'ifferent(n,n')
Pi(k,y) <> (n'# n) is satisfiable for any value if we know that different(n,n).

Additionally, in some cases, we can also reduce the rule. For instance:

Pi(k,y) <> (sy = §' A $y>32) where sy is not used anywhere, can be reduced to
Pik,y) & (s»32)

99

We give in figure 3 the insertion events rules corresponding to the example of figure 1. As an
example, we detail the steps to obtain Rule 1.2:

First we apply the definition of tEmp32 and we get:

-

lEmp32(e,n,s) « Emp32'l'3(§,n,s) A —\Emp32(§_,ny,sy)
then we apply SI.2 getting:
lEmp32(g,n,s) < UEmp(e,n’,s',n,s) A 532 A —(ny=n' A sy=s' A sy>32)

and, finally, FSP is applied obtaining L.2.

L1 1Emp32(e,n,s) « tEmp(e,n,s) A $>32

L2 1Emp32(e,n,s) « LEmp(e,n',s’,n,s) A $:32A —(s' > 32)

L3 Pemp(e,s) « tEmp(g,n,s)

L4 1Edn(edn) « Edn'q j(e.dn) where j = 2,4,5,6

L5 Userln2(u,n) « Userl(y,n) A =8Userl(y,n) A —pUserl(u,n,n") A 8User2(u,n)

L6 1Userln2(u,n) « Userl(u,n) A =8User1(u,n) A —-pUserl(u,n,n') A pUser2(uy,n,n")

L7 WUserln2(u,n) « User1n2'1’j(u,n) where j = 4,5,6

I8 1Userln2(u,n) « pUserl(u,n';n) A =User2(u,n) A —tUser2(u,n) A
—pUser2(u,n",n) A User2(u,n’)

L9 Userlemp(u,n) « Userl(u,n) A ~8Userl(u,n) A —pUserl(y,n,n') A tEmp(e,n,s) A
—aEmp(gl,n,sy)

I.10 wWserlemp(u,n) ¢ Userl(u,n) A =8Userl(u,n) A —pUserl(y,n,n’) A
HEmp(e,n",s",n,s) A ~Emp(ey,n,sy)

L11 1Userlemp(u,n) « Userlempll,j(g,n) where j = 45,6

L12 1Userlemp(u,n) « pUserl(u,n',n) A Emp(e,n,s) A =0Emp(g,n,s) A
—HEmp(e,n,s,n",s") A —\Emp(g_y_,n',sy)

L13 1Userlemp(u,n) « pUserl(u,n',;n) A tEmp(e,n,s) A —Emp(gy,n’,sy)

I.14 1Userlemp(u,n) < pUseil(u,n',n) A uEmp(e,n",s",n,s) A ﬁEmp(Ql,n',sy)

Figure 3. Insertion events rules of the example

100

3.4 Deletion events rules

Let P be a derived predicate. Deletion events were defined in (2) as:
Vk,x (8P(k,x) & P(k,x) A —3yP'(k,y))
if there are m rules for predicate P, we then have:

8P(k,x) « Pj(k,x) A —IyP'(k,y) fori=1

and replacing P'(k,y) by its equivalent definition P'(k,y) <> P'1(k,;y) v ... v P'm(k,y) we obtain

(18) 8P(k,x) « Pi(k,x) A —IyP'1(k,y) A ... A=IyP'i(k,y) A ... A =IyP'(k,y)

or the analogous

(18) 8P(k) « Pi(k) A —P'{(K) A ... A —Pik) A ... A —~P (k) fori=1..m

Rules (18,18 are called deletion events rules of predicate P. They allow us to deduce which &P

facts (induced deletions) happen in a transition.

If E(Pj) = @, then after a number of tranformations described in [Urp 91], we can rewrite these
rules, obtaining a simplified form of them (assume that there is an existencial quantifier for y):

Fori=1..m

if UPj) =L1A ..ALpA ..ALq where 1.p literals with

non-key variables

For j=1..p p+l.q literals without non-key variables

(19) 8P(k,x) «— Lj A... A Li-1A 8Qj(kj,Xj) ALji1 A ALgA
—P'1(k,y) A ... A=P1(k,y) A =P 1Y) A
if Lj is a positive literal

(20) 8P(k,x) « L1 A... A Lj-1 AMQjkjxj) ALjy1 Ao ALg A
—P'1(6y) A . A-PiLKY) A =Py 1(ky) A
simplif(—uP'i,h(k,y)) whereh=2 ... a
if L] is a negative literal

101

. A=P (k,y)

e A —|P'm(k,y) A

(21) 8P(k,x) « L A... A Li-1A [[le(kj,Xj,X'j) | },le(k',X'j,Xj)]/\ Lit1 A alga
—P1KY) A e ASPLIGY) A —Pip1(KY) A oo A =P mKy) A
simplif(—=P'j h(ky)) whereh=2 ..o

where the first option is taken if L; is positive and the second one if L;is not

For j=p+1 ... q

(22) 6P(k,x) < L1 A... A Lj-l A [SQj(kj) | le(kj)]A Lj_,_] A A Lq A
—P106Y) A o AmPL1KGY) A =P 1Y) A .. A =P m(K,y)
where the first option is taken if L; is positive and the second one if L; is not

And the same for the analogous rules (18').

Now we are going to see how to construct the simplification of ﬂP'i,h(k,y).
=P h(ky) & =P 2(ky) A ... A =P glky)
step 1. if we have substituted L; by:

1. le(kj,Xj):
We can remove —\P'i,j(k,y) containing qu(kj,yj,y'j) or SQj(kj,yj)
we can simplify —.P'i’j(k,y) containing ﬁQj(kj,yj) /\—ﬂQj(kj,)/j) /\"‘I“Qj(kj,y'j,yj)
replacing this literal by ¥j #Xj
2. qu(kj,xJ',x'j):
We can remove ﬁP'i’j(k,y) containing Qj(kj,yj) A—|8Qj(kj,yj) /\’ﬂqu(kj,yj,ylj)
or 1Q;(k;.y;)
we can simplify —.P'i’j(k,y) containing HQj(kj,y';yj) replacing this literal by
Yj=XjAYi=X]
3. qu(kj,x'j,Xj):
Wwe can remove —1P'i’j(k,y) containing 8Qj(kj,yj)
we can simplify ﬂP'i’j(k,y) containing qu(kj,yj,y'j) replacing this literal by
Yj=XjAYi=X%
we can simplify —-.P'i’j(k,y) containing —1Qj(kj,yj) A—.tQj(kj,yj) A—quj(kj,y'j,Yj)
replacing this literal by Yi#X) A Yj#EX

102

step 2. For each literal Lj that we have not substituted if this literal is:
1. Qi(k,x)) we can substitute from —\P'i’j(k,y) the corresponding literal
LL Qulkp,yD A =8Qilkp,y) A ~pQIKLYLY'D) by y1=1x]
1.2.1Qq(ky,y;) by false and so remove this —P i,jy)
L3, pQiky'Ly) by mQykpxiyp

2. =Qq(ky,x)) we can substitute from —1P'i,j(k,y) the corresponding literal
2.1 8Qukyp by y1#x1 A8QukLy))
2.2, uQikLyry'p by yi#xp A LQukLyLy'D

3. Qu(kkp) we can substitute from ﬁP'i’j (k,y) the corresponding literal
3.1 Qikp) A —3Qj(k;) by nothing
3.2 1Qi(kp) by false and so remove this —P; ’j(k,y)

4. —Q(k]) we can substitute from ﬂP'i’j(k,y) the corresponding literal

4.1 —Qik;) A ~1Qq(kp) by nothing
4.2 8Qq(k)) by false and so remove this —\P'i,j(k,y)

step 3. Apply the simplification final process.

We give in figure 4 the deletion events rules corresponding to the example of figure 1. Note that the

simplification rules can not be applied to DR.S, since E(Userlemp) # &. As an example, we detail
the steps to obtain Rule D.2:

First we apply (21) and we obtain:

dEmp32(g,n,s) « HEmp(e,n,s,n's’) A $32 A simplif(—|Emp32'1,h(§’ny,5y))
then we apply step1.2 part one and we get:

SEmp32(e,n,s) « MEmp(e,n,s,n',s) A $32 A simplif(—lEmp32'1,3(§,ny,Sy))
applying step 1.2 part two we get:

SEmp32(e,n,s) « HEmp(e,n,s,n's) A $32 A ~(n'y=n A §'y=s Any=n' A sy=8'Asy>32)

103

finally, we apply FSP getting rule D.2

D.1
D.2
D3
D4
D5
D.6
D.7
D.8

D.9

SEmp32(g,n,s) « SEmp(e,n,s) A $32

OEmp32(e,n,s) « LEmp(e,n,s,n',s) A 32 A —(s532)

OPemp(e,s) « SEmp(e,n,s)

OEdn(e,d,n) « 8Ed(e.d) A Dept(d,n)

OEdn(e.d,n) « Ed(e.d) A dDept(d,n)

OUser1n2(u,n) < dUserl(y,n) A —User2(u,n)

OUser1n2(u,n) < Userl(u,n) A 1User2(u,n) A ﬁuUserl(u_,n,ny)

dUser1n2(u,n) « pUserl(u,n,n’) A —User2(wn) A
—(=User2(u,n") A —User2(u,n") A -.uUserZ(g,ny",n')) A
— 6User2(u,n') A
—‘uUsch(u_,n',ny"')

OUser1n2(u,n) « Userl(u,n) A uUser2(u,n',n) A —=pUserl(y,n,n’) A
—(uUserl(u,n,ny“) A ny" #n")

D.10 dUserlemp(u,n) « Userlemp(u,n) A —-Userlemp'l,h(u,ny) forh=2..9

Figure 4. Deletion events rules of the example

104

3.5 Modification events rules

Let P be aderived predicate. Modification events for P were defined in (3) as:
Vk,x,x' (LP(k,x,x") > P(k,x) A P'(k,x) A x # X"
If there are m rules for predicate P, then P'(k,x')) P'l(k,x') V..V P'm(k,x') and P(k,x) &
P1(k,x) v...v Pp(k,x). Replacing P'(k,x") and P(k,x), and distributing A over v, we obtain the
set of rules:

UP(k,x,x') « Pi(k,x") A Ph(k,x) A X # X' withih=1..m

Considering P'i(k,x') as a positive literal, replacing it by its equivalent definition given in (4) and

distributing A over v, we get:
(23) uP(k,x,x") « Pj(k,x") A —dPj(k,x") A—uP;k,x',x") APh(k,x) Ax#x'" withih=1..m
(24) uP(k,x,x") « uP;k,x",x") A Ph(k,x) A x # X' withih=1..m
(25) uP(k,x,x") « 1Pj(k,x") A Ph(k,x) A X #X' withih=1..m

Rules (23) can be removed since, due the key integrity constraint, Pj(k,x") is contradictory to
Phrlk,x) A x # X"

Rules (24), (25) can be simplified as (see [Urp 91]):

(26) HP(k,x,x") « uPj(k,x,x") withi=1..m
(27) pP(k,x,x") « 1Pj(k,x") A 8Ph(k,x) A X # X' withi=1..m;h=1..m,excepti

Rules (26), (27) are called modification events rules of predicate P. They allow us to deduce

which P facts (induced modifications) happen in a transition.
Replacing pP;(k,x,x") in (26) by its equivalent definition given in (3), we get:
(28) HP(k,x,x") « P'i(k,x') APjkx) Ax=x'" fori=1..m
and replacing again P'i(k,x) by its equivalent definition given in (14) we get:

(29) HP(K,X,X") P'i’j(k,x') A Pij(kx) Ax#x' fori=1..mandj=1..0

105

We can remove some of rules (29) and, in some cases, simplify them:

RM.1 For any i, the rule corresponding to j =1 cannot produce WP facts, since in this case we
have P'i’l(k,x') — Pj(k,x") which, due the key integrity constraint, is contradictory to the rest of
the body Pj(k,x) A x # x'. We can then reduce the set (29) to:

(30) HP(k,x,x") « P'i’j(k,x') A Pikx) Ax#x' fori=1..m andj=2..a

RM.2 Rules in (30) for which the transition rules corresponding to P'i,j(k,x) have some literal

N(L'}) in U(P'i’j) of type 1Q(k,x), 1Q(k) or 8Q(k) can be removed, since SL1, P'i’j(k,x') -
—JyPi(k,y).

SM.2 Rules in (30) for which the transition rules corresponding to P'i,j(k,x) do not have a
literal N(L'}) in U(P' ;) of type 1Q(k,x), 1Q(K) or 3Q(k), with U(P' j) # @, can be rewritten as:
(1) WP(kx,x") Pji(kx) A simpl(Pi(k,x)) Ax#x' fori=1..m andj=2.. o0
where the process for obtaining simpl(Pj(k,x)) is quite similar to that used in insertion events
rules and Pli,j(k’x) is subtituted by its equivalent definition given in (13). Finally, we also have to

apply the final simplification process.

Note that rules (27) can only be applied when there is more than one rule that defines P(k,x).
Also note that applying (1) to 1P;(k,x") we get:

WPj(k,x) © Pi(k,x") A -3yPj(k,y)
and applying (2) to 8P;(k,x):
8Pi(k,x) & Pik,x) A —3yP(k,y)),
and therefore, we can apply to 1Pj(k,x") and 8Pj(k,x) the simplification process described in 3.3

and 3.4, respectively. Thus, we can replace them by their corresponding simplified form.

In figure 5 we show the modification events rules corresponding to the example of figure 1. As
an example, we detail the steps to obtain Rule M.4:

106

First we apply (26) and we get:

KHUserln2(u,n,nl) « HUser1ln2,(u,nl)

applying (30) we obtain:

pUserin2(y,n,nl) « User1n2'1'7(g,n1) A Userln2i(u,n) An#nl

then we apply SM.2 getting:

MUser1n2(u,n,n1) « pUserl(u,n',n1) A =User2(unl) A — User2(u,nl) A
—1User2(u,n",n1) A n=n' A =User2(u,n) An#nl

and, finally, FSP is applied obtaining M.4.

M1
M.2
M.3
M4

M5
M.6
M.7

M.8
M.g

HEmp32(e,n,s,nl,s1) « PEmp(e,n,s,nl,s1) A s1>32 A 32

HPemp(e,s,s1) « HEmp(e,n,s,nl,s1) A s#5l

HEdn(e.d,n,nl) « Ed(e.d) A —8Ed(e.d) A uDept(d,n,nl)

KUserln2(u,n,nl) « pUserl(u,n,nl) A =User2(u,nl) A = 1WUser2(y,nl) A
—pUser2(u,n",n1) A =User2(u,n)

HUserln2(u,n,nl) « uUserl(y,n,nl) A 8User2(u,nl)

HUserln2(u,n,nl) « pUserl(u,n,nl) A pUser2(u,nl,n")

MUserlemp(u,n,nl) < pUserl(u,n,nl) A Emp(e,nl,s) A — SEmp(g,nl,s) A
—pEmp(e,n,s1,n"s") A Emp(gx,n,sy)

pUserlemp(yu,n,nl) ¢« pUserl(u,n,nl) A tEmp(e.nl,s) A Emp(;l,n,sy)

pUserlemp(u,n,nl) « pUserl(u,n,nl) A tPEmp(g,n",s",nl,s1) A Emp(gx,n,sy)

Figure 5. The modifications events rules of the example

107

4. COMPARISON WITH [RCB 89]

One of the problems addressed in the HiPAC project [MD 89] is condition monitoring in active
database systems [RCB 89]. Rosenthal, Chakravarthy and Blaustein study the expression and
evaluation of a single situation. A situation describes a logical condition to be evaluated when one or
more set of pre-defined events occur (for instance: database changes or temporal events). The
condition part of a situation is a relational expression whose inputs are information from events
(signal relations) and zero or more database relations. Each situation is associated with a set of
actions to be fired when the condition succeeds.

Each relation has a special attribute (denoted tid) that provides a unique immutable identifier. This
tid attribute is used to connect tuples that hold values of the same object before and after changes. In
our case, instead of tid attribute, we provide key attributes to obtain the same effect.

To express situations involving database changes, they introduce the concept of Arelation and
operators to manipulate it. The main use of AR is to represent the net effect of a collection of updates

to arelation. In such cases, if the "before value" is the relation R, the updates are represented as AR,
and the updated relation is denoted by R,

For each relation schema R = (tid, A1,, Ap) the schema of the AR associated relation is AR =
(‘tid, "Aq, ..., "Ap, tid", A1, ..., Ap). Tuples to be inserted into R are tuples from AR with all
~-prefix attributes null; tuples to be deleted from R are tuples from AR with all “-sufix attributes null;

tuples to be modified from R are tuples from AR with both "-prefix attributes and “-sufix attributes
non-null.

They introduce the changes operator to express how a derived relation changes when at least one of

its input relations changes. The output of the changes operator is a ARelation that expresses all net
changes produced in that derived relation.

As an example, assume the relation Emp and the view Emp32 defined as in DR.1. To monitor
changes to view Emp32, they define the following situation:

Event: Update to Emp
Condition: changes(Emp32; [Emp, AEmp])

The intended meaning is that when an update to relation Emp occurs, we have to test whether that
update affects the view Emp32.

108

In our method, changes produced in a derived or base predicates are captured by the insertion,
deletion and modification events predicates. So we can express the same situation as:

Event: Update to Emp
Condition: 1Emp32(e,n,s) or SEmp32(g,n,s) or pEemp32(g.n,s,nl,si)

of course, we can write any combination of sub-conditions. So, if we were only interested in
monitoring insertions to Emp32, we could write a condition in which only tEmp32(g,n,s) would
appear.

To improve the efficiency of the changes operator, they introduce an incrementa' implementation
of it when the expression that defines the derived relation contains a select, project or join operator.
They also present the concept of chain rule: a transformation that is used to create an incremental
form of the algebraic expression that defines a view. However, they only present the

transformation for the case where the root of the expression is an unary operator.

With the incremental project (where tid attribute must belong to the projected attributes) and
incremental select operators, they achieve an implementation of changes operator that does not
reference the base relation. In our method we achieve the same goal with key attributes belonging
to the projected attributes. As an example, consider the "Emp32" and "Pemp" derived predicates
defined as a select and project expressions, respectively. Note that the corresponding events rules
do not reference base predicates:

Rules corresponding to incremental select:

I.1 1{Emp32(g,n,s) « tEmp(e,n,s) A $>32

1.2 1Emp32(g,n,s) « HEmp(e,n',s',n,s) A §>32 A (s'>32)

M.2 uHEmp32(e,n,s,nl,s1) « uEmp(e,n,s,nl,s1) A s>32 A s1>32
D.1 3Emp32(g,n,s) « SEmp(e,n,s) A §>32

D.2 8Emp32(¢,n,s) « HEmp(e,n,s,n's") A §>32 A (s'>32)

Rules corresponding to incremental project:
1.3 1Pemp(e,s) « \[Emp(e,n,s)

M.3 pPemp(e,s,s1) « HEmp(ge,n,s,nl,s1) A s#sl
D.3 8Pemp(g,s) « SEmp(e,n,s)

109

The main advantage of the Events Method is that it allows more expressiveness in the
representation of derived predicates: we can apply our method to more general derived predicates.
As an example, we can have derived predicates defined:

- With the negation operator: DR.4 Userln2(u,n) « Userl(u,n) A —User2(u,n) and apply
our method obtaining rules 1.5, 1.6, 1.7, 1.8, M.4, M.5, M.6, D.6, D.7,D.8 and D.9.

- With more than one rule (with the binary union operator as a root of the expression). For
instance, if User(u,n) is defined with two rules:

User(u,n) « Userl(y,n)
User(u,n) « User2(u,n)

applying our method by:

first, renaming the conclusion of the rules, changing the implication and adding the
corresponding set of rules:

User,(u,n) & Userl(y,n)

User,y(u,n) & User2(u,n)

User(u,n) « User;(u,n)

User(u,n) ¢ - User,(u,n)

and then getting the transition rules:

User'l.l(g,n) <> Userl(u.,n) A —8User1(u,n) A—pUserl(u,n,n’)
User'l.z(g,n) > tUserl(u,n)

User'1,3(g,n) & pUserl(u,n',n)

User'2'1(1,n) <> User2(u.n) A —8User2(u,n) A—~pUser2(u,n,n")
User'z,z(g,n) & Wser2(u,n)

User'2'3(15n) &> pUser2(u,n',n)

we obtain the events rules:

WUser(u,n) « 1Userl(u,n) A ——1User2(u,ny)

tUser(y,n) « tUser2(u.n) A —User;(u,ny)

HUser(u,n,nl) « 1Userl(u,nl) A 8User2(u,n) An # nl

HUser(u,n,nl) « pUserl(u,n,nl)

HUser(u,n,nl) < 1User2(u,nl1) A dUserl(u,n) An #nl

pUser(u,n,n1) « pUser2(u,n,nl)

dUser(u,n) « 8Userl(u,n) A—User, jwny) j=1..3
dUser(u,n) « dUser2(u,n) A ﬁUser'ld(gl,ny) j=1..3

110

Furthermore, our rules incorporate the knowledge of keys of predicates. This allow us to obtain
a set of rules, which are semantically richer, that fit to each particular situation. We use the "Edn”
derived predicate to see this advantage:

When we have:

DR.3 Edn(g.d,n) « Ed(e.d) A Dept(d,n)
we have seen that the corresponding events rules are:

14 1Edn(e.dn) « Edn| (ed.n) i=2456
M.3 pEdn(e.d,n,nl) « Ed(e.d) A —8Ed(e.d) A puDept(d,n,n1)
D.4 8Edn(e.d,n) « 8Ed(e.d) A Dept(d,n)

D.5 8Edn(ed,n) « Ed(ed) A 8Dept(d,n)

now, assuming that our knowledge of keys changes:

DR.3 Edn(e.d.n) < Ed(e.d) A Dept(d.n)
the new events rules are:

R'.1 1Edn(e.d.n) « Ed(e.d) A —8Ed(e.d) A 1Dept(d.n)
R'2 1Edn(ed.n) « 1Ed(e.d) A Dept(d.n) A —8Dept(d.n)
R'3 1Edn(e.dn) « Ed(e.d) A Dept(d.n)

R 4 8Edn(e.dn) « SEd(e.d) A Dept(d.n)

R.5 SEdn(e.d.n) « Ed(e.d) A SDept(d.n)

As we can observe, not only there are less R i rules but these rules are either equal or simpler
than before.

In [RCB 89] the concept of key is not used and so the incremental forms generated for rule DR.3
and DR.3 are exactly the same. The implication of this fact is a loss of expressiveness, and also a

loss of efficiency, since the incremental form for DR.3 should be simpler than that generated for
DR.3.

Finally, as in [RCB 89], we can exploit the expected small number of facts of insertion, deletion
and modification events predicates in order to improve the efficiency. If we evaluated the rules in
Prolog, we could rewrite them in order to evaluate the events predicates first.

111

5. CONCLUSIONS

We have presented a method to monitor changes in deductive databases. The method is based on
the events and transition rules, which explicitly define insertions, deletions and modifications
induced by a database update.

Comparing our method with other works, we have shown that the use of the events method
allows us to have a high degree of expresiveness in the representation of derived predicates:
allowing more general derived predicates and incorporating the concept of key in their definition.

Futhermore, as we have shown, the expresiveness improvements can also result in
improvements of efficiency.

On the other hand, in order to obtain an even more reduced set of rules, we believe that new
simplifications can be found. Therefore, this will be a hopeful area for futur work.

Acknowledgements

I would like to thank A. Olivé who encouraged pursuance of this work and also D. Costal, E.

Mayol, J.A. Pastor, C. Quer, M.R. Sancho, J.Sistac and E. Teniente for many useful comments
and discussions.

This work has been partially supported by the CICYT PRONTIC program project TIC 680.

REFERENCES

[BaR 86] F.Bancilhom and R. Ramakrishan. "An amateur's introduction to recursive query
processing strategies”. Proc. ACM SIGMOD conf. on Management of data.
Washington D.C., May 1986, pp. 16-52.

[BLT 86] J.A. Blakeley, P. Larson and F.W. Tompa. "Efficiently updating materialized views".

Proc. ACM SIGMOD conf. on Management of data, Washington D.C., May 1986, pp.
61-71.

[Han 89] E.N. Hanson, "An initial report on the design of Ariel: a DBMS with an integrated
production rules system". SIGMOD RECORD, Special Issue on Rule Managament and
Processing in Expert Database Systems, Vol. 18, No. 3, September 1989, pp. 12-19.

[MD 89] D.R. McCarthy and U. Dayal, "The architecture of an active database management
system,” ACM SIGMOD Conf., San Francisco, California, May 1989, pp. 220-226.

[OLi 89] A. Olivé, "On the design and implementation of intormation systems from deductive
conceptual models," Proc. of the 15th VLDB Conf., Amsterdam, 1989, pp. 3-11.

112

[Oli91] A.Olivé, " Integrity constraints checking in deductives databases,” to appear in the
proc. of the 17th. VLDB , Barcelona, 1991.

[RCB 89] A.Rosenthal, S. Chakravarthy and B. Blaustein, "Situation monitoring for active
databases”, VLDB Conf., Arpsterdam, 1989, pp. 455-464.

[SaK 88] F. Sadri and R. Kowalski." A theorem-proving approach to database in.teg"rity". In
Minker, J (Ed.) " Foundations of deductive databases and logic programing -, Morgan
Kaufmann Pub., 1988, pp 313-362.

[Sto 90] M. Stonebraker et al., "On rules, procedures, caching and views in data base systems”,
ACM SIGMOD Conf., May 1990, pp. 281-290.

[Urp 91] T. Urpi, "An approach to monitoring changes in deductive databases”. Technical
Report LL.SI-91-23.

[WiF 90] J. Widom and S.J. Finkelstein, "Set-oriented production rules in relational database
systems", ACM SIGMOD Conf., May 1990, pp. 259-270.

113

