AN APPROACH TO VALIDATION OF DEDUCTIVE
CONCEPTUAL MODELS

(preliminary version)

Dolors Costal

Universitat Politécnica de Catalunya
Facultat d'Informatica
Pau Gargallo 5
08028 Barcelona
Catalunya
Tel. 34-3-4017324
Fax. 34-3-4017040
e-mail: dolors@lsi.upc.es

ABSTRACT

We propose an approach to validation of deductive conceptual models. This
validation is performed through plan generation. The objective of plan generation
is to determine sequences of events that lead to a certain goal state from a certain
initial state. Our approach generates a plan in n stages obtaining at each of them
the events of the plan that occur at each time point. At each stage, we use the
internal events model, obtained from the deductive conceptual model, which
explicitly defines insertions and deletions of information induced by previous
occurrence or absence of external events. An extension of SLDNF procedure can

then be used to obtain sequences of external events that lead to the goal state.
This work has been partially supported by PRONTIC program project TIC 680
KEYWORDS

Deductive Conceptual Models, Requirements Validation, Plan Formation

july 1991

50

The paper is organised as follows. Next section defines basic concepts of DCMs and
introduces a typical planning example (the blocks world example) that will be used throughout the
paper. Section 3 presents the IEM. Section 4 describes our approach. Finally, section 5 gives

some conclusions.

2. DEDUCTIVE CONCEPTUAL MODELS

There are several languages for deductive conceptual modelling of information systems.
Among them are CIAM [GKB 82], DADES [Oli 82] and IPL [Gri 82]. These languages differ in
many aspects, but all share a common approach. In this paper, we will abstract from the details of
specific languages and try to characterize the deductive conceptual modelling approach in a first
order logic framework.

Time plays a major role in this approach. Every possible information i about the Universe of
Discourse (UoD) is associated with a time point T(i), which states when the information holds in
the UoD. It can be called the occurrence or observation time. This time point is a component of the
information proper, so informations are self-describing in this respect. We will assume that
occurrence times are always expressed in a unique time unit (such as second, day, etc.) small
enough to avoid ambiguities.

By life span T of an information system we mean the time interval in which the system
operates. It is defined as an ordered set of consecutive time points T = {Tj,...,Tf}, where Ty and
Tf are the initial and final times, respectively, and where each te T is expressed in the given time
unit. We can then say that, for any information i, T(i)e T.

A DCM consists of a set B of base predicates, a set D of derived predicates, a set DR of
deduction rules, a set IC of integrity constraints, and a set OR of output requirements. Each of
them except OR is described in the following, and illustrated with references to the DCM example
of figure 1. We do not describe, nor give examples of OR because they are not needed for our
purposes.

52

I. INTRODUCTION

This paper deals with the problem of validation of information systems requirements. By
validation we mean checking that the specification really reflects user needs and his intended
statements about the information system, that is, checking that the specification corresponds to

user's requirements.

There are different approaches to the validation problem. One of them is the automatic
generation of prototypes. Another approach, that we will study in this paper, is to provide a tool
that facilitates reasoning about the information system specification through plan generation. The
objective of plan generation is to determine sequences of events that lead to a certain goal state
from a certain initial state. This tool will be able to answer questions about the specification, such
as: Is it possible to reach a state where the stock of a product is negative?, or in another context, is
it possible to reach a state where the number of students enrolled in a course is greater than its
capacity?. It will be possible to validate the specification by making the appropriate questions.

There are two basic approaches in the area of conceptual modeling of information systems:
operational and deductive. Here we will focus on the validation of Deductive Conceptual Models
(DCMs). A detailed comparison of the operational and deductive approaches can be found in [BuO
86] and [Oli 86]. The deductive approach presents many advantages over the operational one but
DCMs are much more difficult to implement.

There are works similar to ours but in the operational approach: [VeF 85], [FuM 84], [FuC
90]. In these papers a tool is described that given a state checks whether there exists a sequence of
operations leading to that state.

Our problem is strongly related with that of "Plan formation” in the Artificial Intelligence area,
[Kow 79], [Esh 88]. We are interested on the aplication of planning techniques to DCMs

validation.

In this paper, we present an approach to the validation of DCMs by planning. The approach
generates a plan in n stages obtaining at each of them the events of the plan that occur at each time
point. At each stage we use the Internal Events Model (IEM) that can be derived from the DCM
and that was developed [Oli 89] for the design of information systems from DCMs. The IEM
explicitly defines insertions and deletions of information induced by previous occurrence or
absence of external events. An extension of SLDNF procedure can then be used to obtain
sequences of external events that lead to the goal state. The problem to solve at each stage is
similar to that of view updating in deductive databases, [Dec 89], [KaM 90], [TeO 91]. Our
approach is an adaptation of the method introduced in [TeO 91].

51

Base predicates
place(object,time)
manip(object,time)
init(object,on-object,time)

transfer(object,from-object,to-object,time)

Derived predicates

DR.1 on(x,z,t) « go(x,z,t1) A t1<t A =leave(x,tl,t)

DR.2 leave(x,tl,t) « go(x,z,t1) A tl<t A go(x,w,t2) A t2>t1 A t2<t
DR.3 clear(x,t) « object(x,Ty) A —under(x,t)

DR.4 under(x,t) « object(y,Ty) A on(y,x,t)

DR.5 object(x,t) « manip(x,t)

DR.6 object(x,t) « place(x,t)

DR.7 go(x,z,t) « init(x,z,)

DR.8 go(x,z,t) « transfer(x,y,z,t)

Integrity constraints

IC.1 icl(t) « transfer(x,y,z,t) A —on(x,y,t-1)

IC.2 ic2(t) « transfer(x,y,z,t) A —clear(x,t-1)

IC.3 ic3(t) « transfer(x,y,z,t) A —clear(z,t-1)

IC.4 ic4(t) « transfer(x,y,z,t) A x=z

IC.5 ic5(t) « transfer(x,y,z,t) A transfer(u,v,w,t) A x#u
IC.6 ic6(t) « transfer(x,y,z,t) A transfer(u,v,w,t) A y#v
IC.7 ic7(t) « transfer(x,y,z,t) A transfer(u,v,w,t) A z#w
IC.8 ic8(t) « transfer(x,y,z,t) A —manip(x,Ty)

IC.9 ic9(t) « transfer(x,y,z,t) A —object(z,Ty)

IC.10 iclO(t) « transfer(x,y,z,t) A t<T, 0

IC.11 icll(t) « init(x,y,t) A init(u,v,t) A x#u A y=v
IC.12 icl2(t) « init(x,y,t) A init(u,v,t) A x=u A y#V
IC.13 icl3(t) « init(x,y,t) A —manip(x,Tg)

IC.14 icl4(t) « init(x,y,t) A —object(y,Ty)

IC.15 icl5(t) « init(x,y,t) A t£Ty

IC.16 icl6(t) < manip(x,t) A t£T,

IC.17 icl17(t) « place(x,t) A t=T,

IC.18 ic(t) « icl(t)

IC.34 ic(t) « icl7(t)

Figure 1. Example of Deductive Conceptual Model

53

2.1 Base predicates

Base predicates model the external event types of the UoD. They are the inputs to the
information system. Each fact of a base predicate, called base fact, corresponds to an occurrence
of an external event. We assume, by convention, that the last term of a base fact gives the time
when the external event occurred. If p(ay,...,ap,t;) is a fact we say that p(ay,...,ap) is true or
holds at t;.

In the example of figure 1 we have four base predicates: place, manip, init and transfer. Place,
manip and init can only happen at the initial time (this will be enforced by IC.17, IC.16 and
IC.15, respectively). A base fact place(o1,T,) means that at the initial time, ol is a place. A base
fact manip(o1,Ty) reports that at the initial time, ol is manipulatable. A base fact init(o1,02,Ty)
means that at the initial time, object ol is on object 02. A base fact transfer(o1,02,03,t1) indicates
that object o1 that was on object 02 has been transferred from 02 to 03 at time t1.

2.2 Derived predicates

Derived predicates model the relevant types of knowledge about the UoD. Each fact of a
derived predicate, called derived fact, represents an information about the state of the UoD, at a
particular time point. We will also assume that the last term of a derived fact gives the time when
the information holds. The semantics of a derived predicate is given by its deduction rules.

In the example there are six derived predicates: on, leave, clear, under, object and go. For
instance: on(o1,02,t1) means that object ol is on object 02 at time t1 and clear(ol,t1) indicates that
object ol has no object on it at time t1.

2.3 Integrity constraints

Integrity constraints are closed formulae that base and/or derived facts must satisfy to be
consistent. An integrity constraint can only be falsified by the presence (or absence) of new base
facts, and it is assumed that some mechanism of integrity constraints enforcement will reject (or
require) those facts to maintain the informations consistent.

54

We deal here with constraints that have the form of a denial « Ly A ...A L where the L are
literals, and variables are assumed to be quantified over the whole formula. For the sake of
uniformity we associate to each integrity constraint an inconsistency predicate "icn". The above
denial would be rewritten as: icl«— L] A ...A L . The semantics of an integrity constraint is given

by its deduction rules.

In the example, there are seventeen integrity constraints. For instance: ic1(t) means that if there
is a transfer of object x from object y to object z at time t then x should be on y at time t-1, ic2(t)
and ic3(t) mean that if there is a transfer of object x from object y to object z then x and z should
be clear at t-1, respectively. An additional inconsistency predicate ic is defined in order to simplify
the reference to the whole set of inconsistency predicates. Thus, ic(t) holds at time t if some icj(t),
j=1...17, holds at t.

2.4 Deduction rules

There are one or more deduction rules for each derived or inconsistency predicate. Let
p(X1,....Xp,t) be a derived or inconsistency predicate, with n+1 terms. A deduction rule for p has
the form p(x1,...,xp,t) <¢ where ¢ is a literal or a conjunction of (positive or negative) literals,
and all variables are assumed to be universally quantified over the whole formula.

The terms in the rule head must be distinct variables. The terms in ¢ (rule body) must be
constants or variables. We assume every rule to be range-restricted, i.e. every variable occurring
in the head, or in a negative literal in ¢, occurs in a positive literal in ¢ as well. We also assume
every rule to be time-restricted. This means that, for every base or derived predicate q occurring in
the body as a positive literal g(...,t1), the condition ¢ — t1 <t must hold. This condition ensures
that p(x1,..-,Xp,t) is defined in terms of g-facts holding at time t or before.

55

3. THE INTERNAL EVENTS MODEL

In [Oli 89] and [San 90] it is presented a formal method to derive from a DCM a new model
called the Internal Events Model (IEM). In this section we will shortly review the concepts and
terminology of internal events predicates and internal events rules which form the IEM. In next

section, IEM will be used for generating plans.

3.1 Internal events predicates

There are two classes of internal events: insertion and deletion. To each base, derived or
inconsistency predicate p corresponds an insertion internal event predicate 1p, with the same
number of terms, and to some of the derived predicates q corresponds a deletion internal event 8q,
with the same number of terms.

If p is a base predicate then 1p(...,t) fact represents the occurrence of an external event at time t.
There are no deletion internal events for base predicates.

If p is a derived predicate then ip(...,t) and dp(...,t) facts represent insertions and deletions of p
at time t induced by the occurrence or absence of external events at times < t. A derived predicate
may be defined in such a way that when it has become true, it remains true forever. For this
derived predicate, corresponding deletion internal event is not defined.

If p is an inconsistency predicate then 1p(...,t) fact represents violation of an integrity
constraint. For inconsistency predicates 8p is nonsense and thus it is not defined.

We say that an internal event predicate, 1p or dp, is base, derived or inconsistency if p is base,
derived or inconsistency, respectively.

3.2 Internal events rules

There are internal events rules defined for each derived or inconsistency internal event
predicate. In [Oli 89] a formal method is shown to derive internal events rules. Internal events

rules allow us to deduce at any time which internal events occur at that time.

The body of internal events rules obtained is a conjunction of (positive or negative) literals.
Each literal can be a current literal corresponding to an internal event predicate, a past literal
corresponding to a base, derived or inconsistency predicate or a literal corresponding to an
evaluable predicate. We understand by past literals those whose time variables range over a set not

including t and by current literals those whose time variables range only over {t}.

56

Figure 2 shows the IEM that corresponds to the DCM of our example.

IDR.1
IDR.2
IDR.3
IDR.4
IDR.5
IDR.6
IDR.7
IDR.8
IDR.9
IDR.10
IDR.11
IDR.12
IDR.13
IDR.14
IDR.15
IDR.16
IDR.17
IDR.18
IDR.19
IDR.20
IDR.21
IDR.22
IDR.23
IDR.24
IDR.25
IDR.26
IDR.27
IDR.28
IDR.29

IDR.45

on(x,z,t) < 1go(x,z,t)

don(x,z,t) « ttransfer(x,z,w,t)

Ueave(x,tl,t) « ttransfer(x,z,w,t)

tclear(x,t) « Son(y,x,t)

dclear(x,t) « 1on(y,x,t)

tunder(x,t) ¢ ton(y,x,t)

dunder(x,t) ¢ don(y,x,t)

object(x,t) « tmanip(x,t)

tobject(x,t) « tplace(x,t)

180(X,z,t) « tinit(x,z,t)

1g80(x,z,t) « itransfer(x,y,z,t)

lic1(t) « itransfer(x,y,z,t) A —on(x,y,t-1)

1ic2(t) « transfer(x,y,z,t) A —clear(x,t-1)

lic3(t) « transfer(x,y,z,t) A —clear(z,t-1)

lic4(t) « ttransfer(x,y,z,t) A x=z

uc5(t) « utransfer(x,y,z,t) A wtransfer(u,v,w,t) A x#u
1ic6(t) « ttransfer(x,y,z,t) A wransfer(u,v,w,t) A y#v
uc7(t) « itransfer(x,y,z,t) A ttransfer(u,v,w,t) A z#w
lic8(t) & itransfer(x,y,z,t) A —manip(x,Tp)

1ic9(t) « itransfer(x,y,z,t) A —object(z,Ty)

1ic10(t) « transfer(x,y,z,t) A t<Ty

licl1(t) « unit(x,y,t) A linit(u,v,t) A X#u A y=V
UCc12(t) & unit(x,y,t) A tinit(u,v,t) A X=u A y#v
lic13(t) « unit(x,y,t) A ~manip(x,Tp)

lic14(t) « unit(x,y,t) A —object(y,Tg)

lcl5(t) « unit(x,y,t) A t#T

lic16(t) <« tmanip(x,t) A t#Ty

1icl17(t) « iplace(x,t) A t#T,

lic(t) « ticl(t)

lic(t) « ticl7(t)

Figure 2. IEM of the example

57

4. OUR APPROACH

Returning to our problem, we want to generate a plan that leads to a goal state, that we want the

information system to reach, from a certain initial state.

The goal state should be characterized as a set of informations that must or must not hold in that
goal state. In a DCM this is defined as a conjunction of literals corresponding to base, derived,
inconsistency or evaluable predicates, that can be negated or not. Terms in those literals are
constants or variables. We assume the goal to be range-restricted, i.e. every variable occurring in a
negative literal, occurs in a positive literal as well. A time point, tg, is associated to any goal state,
such that, tg is the minimum time that for every positive literal, p(...,t1), in the goal state, t1<tg
holds. For example:

on(A,B,t) A on(B,F,t)
where on is a derived predicate and tg=t.

It is important to remark that if the generated plan has to satisfy the integrity constraints, the
goal state should include that none of the inconsistency predicates holds. This will ensure that the
plan generated satisfies the integrity constraints. From this, the example above should be
reformulated in order to obtain a plan without integrity constraint violation:

on(A,B,t) A on(B,F,t) A = ic(t)

We will use this example, represented in figure 3, throughout the paper.

A

B

C F G
Figure 3. Goal state

The initial state is defined as a set of literals corresponding to base predicates. Terms in those
literals must be constants. A time point, ti, is associated to any initial state, such that, ti is the
minimum time that for every literal, p(...,t1), in the initial state, t1<ti holds. The initial state may
be empty, in that case, the associated time point is Ty, in which the life of the system begins. The
initial state of our example, represented in figure 4, is:

{place(C,Ty), place(F,Ty), place(G,Ty), manip(A,Tg), manip(B,Ty), init(B,C,Ty), init(A,B, T}
In our case, the associated time point is Ty,

58

B
C F G

Figure 4. Initial state

A plan is a set of external events of the UoD that leads to the goal state at time tg from the initial
state at time ti. In a DCM these external events are modeled by base predicates so the plan to
generate will be a set of literals corresponding to base internal events predicates. The plan we
should obtain in our example is:

P= {utransfer(A,B,G,Ty+1), utransfer(B,C,F,Ty+2), uransfer(A,G,B,Tg+3)}

Once defined the departure and arrival elements of our problem, we are going to present the
strategy chosen to solve it.

A plan evolves through some consecutive time points, beginning at ti+1 and ending at the time
of the final state, tg. We will look at it as n consecutive smaller plans (T 1,...,Ttg-2,Ttg-1Ttg)
that consider only the transition from an state at time t to an state at the following time. Each T;
contains base predicates that must happen at time j. We illustrate this in figure 5.

(statcattg | state at tg

state at tg-1

d

Ttg

IS
o7
=

-
J

P state at tg-2

Ttg-2

(initial state at ti | initial state at ti

Figure 5

59

From this point of view we can reduce the problem of generating a general plan to the n smaller
problems of given a goal state, G, at a current time to find the previous goal state, PG, at the
previous time and the piece of plan, T, that makes the transition from that previous goal state to the
current goal state.

In other words, our problem will be solved in n stages. At each of them we depart from a
current goal state G and we obtain a previous goal state PG and a transition T. G is a conjunction
of literals corresponding to base, derived, inconsistency or evaluable predicates that can be
negated or not, and whose time variables range over a set including t, being t the time at the
current state. PG is a set of literals corresponding to base, derived, inconsistency or evaluable
predicates that can be negated or not, and whose time variables range over a set not including t
(past), being t the time at the current state. T is a set of literals, corresponding to base internal
event predicates whose time variables range only over current time {t}, that makes the transition
from one state to the other. This will be done n times until the previous goal reached, PG, holds at
the initial state.

Note that we will generate a plan in the inverse order it should be executed. For example, for
plan P={uransfer(A,B,G,Ty+1),utransfer(B,C,F,To+2),ttransfer(A,G,B,Ty+3)}, we will obtain
at first stage: Ttg={1transfer(A,G,B,To+3)}, at second stage: Ttg_l={1transfer(B,C,F,T0+2)} and
at third stage: Ttg_2={1transfer(A,B,G,T0+1)}

The problem' we have to solve at each stage has strong similarities with that of view updating in
deductive databases. (We can identify G to the update request, T to the transaction obtained to
perform the update and PG to the deductive database state before the update). Solutions
discovered in that field can be of help if adapted to the context of DCMs [Dec 89], [KaM 90],
[TeO 91]. Our approach is an adaptation of the events method for view updating in deductive
databases introduced in [TeO 91].

At each stage we will do the following steps:
1) Check satisfaction of the current goal state G at the initial state.
2) Obtain transition rules of G.
3) Generate T and PG.
4) Ensure the consistency of T.
5=1) Check satisfaction of PG at the initial state.

These steps are described in the following subsections.

60

4.1 Check satisfaction of the current goal state G at the initial state

Current goal state G and initial state are already determined. From this and from deduction rules
of the DCM, we can deduce by SLDNF resolution whether current goal state holds at the initial
state. If G holds at the initial state, it means that we have completed the plan, otherwise we

continue with following steps.

At first stage, terms in G may be variables. It is possible that G holds at the initial state for

certain values of those variables.

In our example, at first stage, we should check the satisfaction of the following goal: on(A,B,t)
A on(B,F,t) A — ic(t), which does not hold at the initial state.

4.2 Obtain transition rules of G

Transition rules of a rule P <~ L A ...A Ly is a set of equivalent rules obtained replacing each
literal L; (i=1...n) corresponding to a base, derived or inconsistency predicate and whose time
variable ranges over a set including t by an equivalent expression containing internal events
predicates whose time variables range only over {t} (current) and base, derived or inconsistency
predicates whose time variables range over a set not including t (past). This transformation was
introduced in [Oli 89] where a full description of it is given.

If we associate a goal predicate GP to the current goal state G, we can obtain transition rules of
this predicate. In general, we obtain m transition rules corresponding to predicates GP1, ...,GPm,
such that, G GPj, i=1...m. Each GPj expresses G in terms of past base, derived or
inconsistency predicates and current internal event predicates. GP;j of the example are shown
below:

GP « on(A,B,t) A on(B,F,t) A —ic(t)

GP1 « 1on(A,B,t) A 1on(B,F,t) A —ic(t-1) A —tic(t)

GPy « 10n(A,B,t) A on(B,F,t-1) A =8on(B,F,t) A —ic(t-1) A —tic(t)

GP3 < on(A,B,t-1) A =d0on(A,B,t) A 1on(B,F,t) A —ic(t-1) A —tic(t)

GP4 « on(A,B,t-1) A =8on(A,B,t) A on(B,F,t-1) A =8on(B,F,t) A =ic(t-1) A —tic(t)

In GP;j past and current information appears in different literals. In the rules of the IEM, that
will be used in following steps, past and current information also appears separately. Due to this,
at each stage we will be able to concentrate on obtaining the piece of the plan corresponding to the

current time without interferences from goals that must be satisfied at previous times.

61

Each GP;j is a different transformation of the current goal state G. For example, GPq states that
we could reach GP (and hence G) by inserting A on B at t (ton(A,B,t)), B on F at t (lon(B,F,t)),
provided that the previous state is consistent (—ic(t-1)) and no violations of the integrity
constraints happen in the transition (—tic(t)). Each GP; may lead to different plans. In our
example, we will show the case of selecting GP».

4.3 Generate T and PG

T and PG are sets of literals such that using SLDNF resolution, the goal {«GP;} succeeds
from input set IEM U T U PG.

The transition T and the previous goal PG can be obtained by having some failed derivation of
IEM U {«GP;j} succeed. This is effected by including in T a ground instance of each current and
positive literal corresponding to a base internal event predicate selected during the derivation and
by including in PG each past literal corresponding to a base, derived or inconsistency predicate or
literal corresponding to an evaluable predicate, selected during the derivation.

A condition set C will also be obtained during the derivation process. It will contain the denials
<D such that =D is a current and negative literal corresponding to an internal event predicate
selected during the derivation. C is only necessary to know which conditions T must satisfy. In

the step described in section 4.4 the consistency of T and C is ensured by additions to T, PG and
C when necessary.

We will call this derivation "constructive derivation" and a formal description of it is given in
this section.

Skolemisation

As mentioned before, depending on the literal selected during the derivation, a ground instance
of that literal may have to be added to T or PG.

If the selected literal is not ground we would have to add to T or PG an existentially quantified

literal that we cannot use directly in a resolution based system. For example, a selected literal
1P(x,y,t) means adding 3x,y,t tP(x,y,t).

Thus we have to skolemise the literal [Esh 88], that is, replace all existentially quantified
variables in it with skolem constants (in the rest of the paper symbols as XS, YS, TS, ... will be
skolem constants and s(L) will be the result of skolemising literal L). For example:
s(p(x,y,1))=1p(X3,YS,TS). Note that if the selected literal L is ground then s(L)=L.

62

Example

In the previous section, we selected GP as the transformation of G, that we would use to
generate T and PG. We continue the example with the constructive derivation from GP7):

« 1on(A.B.t) A on(B,F,t-1) A =don(B,F,t) A mic(t-1) A —tic(t)
1 | (IDR.1)
«1go(A.B.tH) A on(B,F,t-ll) A =don(B,F,t) A —ic(t-1) A —tic(t)
2 I (IDR.11)
« uransfer(A.y.B.t) A ongB,F,t-l) A =don(B,F,t) A —ic(t-1) A —tic(t)
3 I T={itransfer(A,YS,B,TS)}
—on(BETS-1) A —|80n(1%,F,TS) A —ic(TS-1) A —ic(TS)

4 | PG={on(B,F,TS-1)}
« =0on(B.ETS) /|\ —ic(TS-1) A —1ic(TS)
5 { C={« don(B,F,TS)}
«— =ig(!S-1|) A =lic(TS)
6 ll PG={on(B,F,TS-1), —ic(TS-1)}
 =ie(m)
7 I C={« Son(B,F,TS),« 1ic(T$)}

|
[

Steps 1 and 2 are SLDNF resolution steps where rules of IEM act as input clauses. At step 3
the selected literal is ttransfer(A,y,B,t). It is current and it corresponds to a base internal event
predicate. In order to make the derivation succeed we should include a ground instance of it in the
input set and resolve using it as input clause. As we mentioned before, this kind of literals is

included in the transition set T. Before the inclusion it is necessary to skolemise the literal
obtaining ttransfer(A,YS,B,TS).

At steps 4 and 6 selected literals are on(B,F,TS-1) and —ic(TS-1), respectively. These are past
literals. To make the derivation succeed we should include a ground instance of them in the input

set and resolve using them as input clauses. Past literals are included in the previous goal set PG.
In this case, skolemisation of these literals does not change them.

63

At steps 5 and 7 selected literals are —8on(B,F,TS) and —ic(T$). These are current and
negative literals. They must be included in the condition set C because they are conditions that the
transition set T should satisfy. At the step "ensure the consistency of T, described in next section,
this satisfaction will be verified and necessary additions to T, C and PG will be done if they are

necessary to enforce it.
Constructive derivation description

A constructive derivation from (G T1 C1 PG1) to (G Ty Cp PGp) via a safe selection rule R,
that selects literals not corresponding to evaluable predicates with priority, is a sequence:
(G Ty C1 PGy), (G2 T2 C2 PG2),..., (Gn Tn Cp PGp)
such that for each i>1, Gj has the form <-LjA...A Lx, R(Gj)=L, and (Gj+1 Tis1 Ci+1 PGi41) s
obtained according to one of the following rules:

Al) If Lj is current, positive and it corresponds to a derived or inconsistency internal event
predicate then Gj,.1= S, Ti+1=Tj, Ci+1= Ci and PG;; 1=PG;, where S is the resolvent of some
clause in IEM with G; on the selected literal L;.

A2) If L is past, positive and it corresponds to a base, derived or inconsistency predicate then
Gis1= S, Ti41=Tj, Ci+1=C;j and PG, 1=PGjU{s(L;)}, where S is the resolvent of s(L;) with Gj
on the selected literal L;. '

A3) If L; is past, ground, negative and it corresponds to a base, derived or inconsistency predicate
then Gj; 1= «LiA.. ALj-1A Lj1A.0A Li, Ti+1=T}, Ci+1=C; and PGj;1=PGjU{L;}.

A4) If L is ground and it corresponds to an evaluable predicate then Gj, 1= L1 A..ALj1A
Lj+1A..A L, Tip1=T;, Gi41=Cj and PG, 1=PGj{L;}-

AS) If Lj is current, positive and it corresponds to a base internal event predicate then G, 1= S,
Ti+1=Tj V{sL}, Cj4+1=C; and PG, 1=PG;, where S is the resolvent of s(L;j) with G; on the
selected literal L;.

A6) If L; is current, ground, negative and it corresponds to a base, derived or inconsistency

internal event predicate "—P" then Gj 1= < LiA.ALj-1ALj11A.A L, Ti+1=Ti, Ci+1=Ci
U{«P} and PGj, 1=PG;.

64

The step corresponding to rule A1) is an SLDNF resolution step. At steps corresponding to
rules A2), A3) and A4), past and evaluable literals are added to the previous goal set PG and used
as input clauses. This is done in order to have a failed derivation of [EM U {«GP;} succeed. In
case AS5) base internal events are added to the transition set T and used as input clauses. This is
also done in order to have a failed derivation of IEM U {«GP;} succeed. In case A6) current

negative literals are added to the condition set C, these will be conditions that T should satisfy.

There are different ways in which a constructive derivation can succeed. Each one may lead to

different plans.

Let G be the current goal state and GPj a transition rule of G. T will be part of the transition
from previous goal state PG to G if there exists a constructive derivation from («GPj {} {} {})
to ([1 T C PG). At next step, which ensures the consistency of T with conditions in C, the rest of
the transition will be determined. This step ensures consistency by additions to T, PG and C when
necessary.

4.4 Ensure the consistency of T

From the constructive derivation we have obtained the transition T, the previous goal PG and
the set of conditions that T must satisfy, C. However, a constructive derivation does not ensure
that T satisfies conditions in C. To ensure this, SLDNF-search space for [IEM U T U PG U
{«C;} must fail finitely for each C; belonging to C.

This is effected by including in PG a negated ground instance of each past selected literal
corresponding to a base, derived or inconsistency predicate or selected literal corresponding to an
evaluable predicate, by dropping branches where the selected literal is current, positive,
corresponds to a base internal event predicate and does not unify with any factin T, and finally,
by having a constructive derivation for each current and negative selected literal. Notice that in the
constructive derivation new elements may be added to T, C or PG. We will call this "consistency

derivation" and a formal description of it is given in this section.
A consistency derivation can add new elements to T, C and PG in order to ensure the

consistency of T. If new elements are added to T or C obtaining T' or C' then this step is

reinitiated to ensure the consistency of T' and C'.

65

Homogenisation

In a consistency derivation, facts in T act as input clauses. Terms of these facts may be skolem
constants as explained in section 4.3. At the time of the generation a skolem constant such as X8
stands for an unknown object, however, in later processing we may wish to force that object to be
a particular object such as A. The only way we can do this is by adding the assumption XS=A.

To be able to deal with these assumptions, facts in T with skolem constants should be
homogenised before used as input clauses. A clause is homogeneous if and only if there are no
constant symbols in its head atom and no variable symbol occurs more than once in its head atom.
For example, transfer(A,YS, Z8, TS) is not homogeneous but transfer(x,y,z,t) ¢ x=A Ay=YS A
z=75 A t=TS is homogeneous [Esh 88].

Example

In the example of the previous section, we have obtained:
T={1transfer(A,YS,B,TS)}
PG={on(B,F,TS-1), -ic(TS-1)}

C={« don(B,F,TS),« 1ic(TS)}

To ensure the consistency of T and C we must obtain a consistency derivation for each element
of C: « don(B,F, TS) and « 1ic(TS).

« don(B.F.TS)

|

1 | IDR2
|

« uransfer(B.F.w.TS)
|
2 |
l
{}

Step 1 is an SLDNF resolution step where a rule of IEM acts as input clause. At step 2 the
selected literal is current, positive and it corresponds to a base internal event but it can not be
unified with any fact in T. From this, we conclude that the branch fails and it can be dropped.

66

IDR12
i
« transfer(x.y.z. TS) A —on(x,y, TS-1)
I
3 | T={1transfer(A,YS,B,TS)}

|
«— —on(A.YS, TS5-1)

4 } PG={on(B,F,T$-1),-ic(TS-1),0n(A,YS, TS-1)}
{1}

In this case a branch in the SLDNF-search space appears for every integrity constraint of the
example but only one is shown here.

Steps 1 and 2 are SLDNF resolution steps where rules of IEM act as input clauses. Step 3 is
also an SLDNF resolution step but in this case the input clause is a fact from the transition set T.
At step 4 the selected literal is past. The negation of it is included in PG and thus SLDNF-search
space fails finitely.

After completing the example, T and C remain unchanged and final PG is {on(B,F,TS-1),
—ic(TS-1), on(A,YS,TS-1), clear(A,TS-1), clear(B,TS-1), manip(A,Ty), object(B,Tp), TS>To}.
As T and C have no additions this step is finished. Otherwise, this step should be reinitiated to
ensure consistency of new T and C.

Consistency derivation description

A consistency derivation from (F] T1 C1 PGy) to (F, Tp Cp PGy,) via a safe selection rule R,
that selects literals not corresponding to evaluable predicates with priority, is a sequence:
(F1 Ty Cy PGy), (F2 T2 C2 PG)),..., (Fp T Cp PGp)
such that for each i>1, Fj has the form {<Lia..ALg} U F;and for some j=1..k, (Fi;1 Ti+1
Ci+1 PGj41) is obtained according to one of the following rules:

B1) If Lj is current, positive and it corresponds to a derived or inconsistency internal event

predicate then Fj 1= §'U F'j where S' is the set of all resolvents of clauses in IEM with
<LjA..A Ly on the literal L, Ti+1=Tj, Ci;1= Cj and PG, 1=PG;.

67

B2) If L; is past, ground and it corresponds to a base, derived or inconsistency predicate then
Fi11=F}, Ti+1=Tj, Cj;+1=Cj and PGj; 1 =PGju{-L;}.

B3) If Lj is ground and it corresponds to an evaluable predicate then Fi, 1=F', Ti+1=Ti, Ci+1=C;
and PGi+1=PGiu{—|Lj}.

B4) If Lj is current, positive and it corresponds to a base internal event predicate then Fj 1= S' U
F'j where S' is the set of all unhomogenised resolvents of homogenised facts in T with «LjA...A
L on the literal Lj,and [] & S', Tj;1=Tj, Cj;+1= Cj and PGj, 1=PG;.

BS) If L; 1s current, positive, it corresponds to a base internal event predicate and there are no
homogenised facts in T that can be unified with L;, then Fj 1= Fj, Tj;1=Tj, Cj+1=Cj and
PGi,1=PG;.

B6) Iij is current, ground, negative, it corresponds to a base, derived or inconsistency internal
event predicate "—P" and there exists a constructive derivation from ({«P} T; C; PG;) to ([] T'
C' PG’) then Fj, 1= F}, Tj4+1=T', Cij;1=C' and PG;,1=PG".

Steps corresponding to rules B1) and B4) are SLDNF resolution steps. In case B2) and B3) the
negation of past or evaluable literals is added to the previous goal set PG. This is done in order to
make a successful SLDNF branch fail. The branch can be dropped because failure for it is
ensured. In case B5) the current branch already fails and thus it can be dropped. In case B6) the
selected literal is current and negative, the current branch will be dropped if there exists a
constructive derivation for the negation of the selected literal. This ensures failure for it.

Consistency derivations do not rely on the particular order in which selection rule R selects
literals, since in general, all the possible ways in which a conjunction « L{A...A Ly can fail
should be explored.

Let T, C and PG be the transition, condition and previous goal sets, respectively. T and C will
be consistent if there exists a consistency derivation from (¢« C; T C PG) to ({} T C PG') for
each «—C; belonging to C. This can be obtained after a number of iterations of this step.

In some cases, we can have a past and not ground selected literal in a consistency derivation
although that case is not defined in the rules above. A transformation is being studied that permits
to incorporate them to PG. Hopefully, this case will be introduced in a next version of the
approach.

68

4.5 Check satisfaction of PG at the initial state

This step is the same as the step described in section 4.1. At the end of each stage, the
conjunction of elements obtained in PG, becomes our new goal state G for next stage so its
satisfaction at the initial state must be checked as already explained.

From second stage on, as shown in section 4.3, terms in the new goal state, may be skolem
constants, which stand for unknown objects. At this step they are treated as variables. It is
possible that the new goal state holds at the initial state for certain values of those skolem

constants.

For the rest of steps we have only shown the example at first stage because of its length. For
this one, the result obtained at each stage is the following:

At first stage we obtain:
T={1transfer(A,YS,B,TS)}
PG={on(B,F,T8-1), —ic(TS-1), on(A,YS,TS-1), clear(A,TS-1), clear(B,TS-1), manip(A,Ty),
object(B,Ty), TS>Ty}
which does not hold at the initial state.

At second stage we obtain:
T={1transfer(B,ZS,F,T5-1)}
PG={—ic(T$S-2), on(A,YS,TS-2), clear(A,TS-2), clear(B,TS-2), manip(A,Tg), object(B,Ty),
T5>Ty, on(B,Z8,TS-2), clear(F,TS-2), manip(B,Ty), object(F,Tg), TS-1>Tg}
which does not hold at the initial state.

At third stage we obtain:

T={1transfer(A,VS,YS TS-2), itransfer(XS,B,WS T5-2)}

PG={—ic(T$-3), clear(A,TS-3), manip(A,Ty), object(B,Ty), TS>T,, on(B,Z8,TS-3),
clear(F,TS-3), manip(B,Ty), object(F,Tp), TS-1>Ty, on(A,VS,TS-3), on(XS,B,TS-3),
clear(X8,TS-3), clear(YS,TS-3), clear(WS,TS-3), A=YS, XS2WS, A=XS, VS=B, YS=WS,
manip(X$,Ty), object(YS,Ty), object(WS,Ty), TS-2>T,, A WS, B£XS, FxYS, FxWS}

which holds at the initial state for XS=A, V8=B, Z5=C, WS=G, Y5=G and TS-3=T,,.

From above, the plan obtained is:
P= {utransfer(A,B,G,Ty+1), utransfer(B,C,F,To+2), ttransfer(A,G,B, Ty+3)}

69

5. CONCLUSIONS

We have presented our approach to the problem of validation of DCMs. The approach
generates a plan in n stages obtaining at each of them the events of the plan that occur at each time
point. At each stage we use the IEM which explicitly defines insertions and deletions of
information induced by previous occurrence or absence of external events. An extension of
SLDNF procedure has then been used to obtain sequences of external events that lead to the goal
state. The generated plan satisfies integrity constraints if the goal state is adequately formulated.

As we have already mentioned, our problem is strongly related to that of plan formation.
Kowalski shows in [Kow 79] how to deal with this problem in logic and using the operational
approach. In our case, we also deal with the problem in logic but we take the deductive approach
for the conceptual modelling of information systems. In the operational approach, external events
or actions are defined in terms of its preconditions and its postconditions (informations added or
deleted by the action). Due to this, in Kowalski's method an additional frame axiom is needed to
deal with informations that were true in the previous state and have not been deleted. In the

deductive approach, the truth value of informations is given by its deduction rules and the frame
axiom is implicit in them.

On the other hand, in Kowalski's method, it is possible to use simple SLDNF resolution to
generate the plan because preconditions of actions are explicit and only one action may be
performed in the transition from one state to another. In the deductive approach, preconditions are
not explicit and it is permitted that several actions occur at the same time.

Kowalski presents two ways of generating the plan: bottom-up, from the initial state to the goal

state, or top-down, from the goal state to the initial state. From this point of view, our approach is
top-down.

A direction of future work is to study optimizations in order to implement the approach
efficiently.

ACKNOWLEDGEMENTS

We would like to thank Enric Mayol, Antoni Olivé, Joan Antoni Pastor, Carme Quer, Maria
Ribera Sancho, Jaume Sistac, Ernest Teniente, Carme Torras and Toni Urpi for many useful
comments and discussions.

70

REFERENCES

[BuO 86] Bubenko, J.; Olivé, A. "Dynamic or temporal modelling?. An illustrative
comparison”, SYSLAB Working Paper No.117, University of Stockholm, 1986.

[Dec 89] Decker, H. "Drawing updates from derivations" Proc. of the ICDT 90, Springer 1990,
pp- 437-455.

[Esh 88] Eshghi, K. "Abductive Planning with Event Calculus", Proc. of the Fifth International
Logic Programming Conference, MIT Press, 1988.

[FuC 90] Furtado, A.L.; Casanova, M.A. "Plan and schedule generation over temporal
databases", Proc. of the 9th International Conference on Entity-Relationship Approach,

Lausanne, 1990, pp. 235-248.

[FuM 84] Furtado, A.L.; Moura, C.M.O. "Expert helpers to data-based Information Systems”,
First International Workshop on Expert Database Systems, 1984.

[GKB 82] Gustaffson, M.; Karlsson, T.; Bubenko, J. "A declarative approach to conceptual
information modelling", In [OSV 82], pp. 93-142.

[Gri 82] van Griethuysen, J.J. (Ed.) "Concepts and terminology for the conceptual schema and
the information base", ISO/TC97/SC5/WG3/, March 1982.

[KaM 90] Kakas, A.C.; Mancarella, P. " Database Updates Through Abduction”, Proc. of the
16th VLDB, Brisbane, pp. 650-661.

[Kow 79] Kowalski, R.A. "Logic for problem solving", North-Holland, 1979.

[Oli 82] Olivé, A. "DADES: A methodology for specification and design of information
systems"”, In [OSV 82], pp. 285-334.

[Oli 86] Olivé, A. "A comparison of the operational and deductive approaches to conceptual
information systems modelling", Proc. IFIP-86, Dublin, pp. 91-96.

[Oli 89] Olivé, A. "On the design and implementation of information systems from deductive
conceptual models", Proc. of the 15th VLDB, Amsterdam, 1989, pp. 3-11.

71

[OSV 82] Olle, T.W.; Sol, H.G.; Verrijn-Stuart, A.A. (Eds.) "Information systems design
methodologies: A comparative review", North-Holland, 1982.

[San 90} Sancho, M.R. "Deriving an internal events model from a deductive conceptual model”,
Proc. of the International Workshop on the Deductive Approach to Information
Systems and Databases, S'Agar6 (Catalonia), 1990, pp. 73-92.

[TeO 91] Teniente, E; Olivé, A. "The Events Method for View Updating in Deductive
Databases", Internal Report.

[Vef 85] Veloso, P.A.S.; Furtado, A.L. "Towards simpler and yet complete formal

specifications”, Proc. of the IFIP Working Conference on Theoretical and Formal
Aspects of Information Systems, 1985, pp. 175-189.

72

