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Appendix B

Heat transfer equations in
cylindrical coordinates

Conduction

In order to derive the differential equation of conduction heat transfer in cylindrical coordi-
nates, one must first define an infinitesimal control volume (CV) of the elemental surroundings
of an arbitrary point in space. Then, the heat fluxes entering and leaving the CV must be
drawn as well, as shown in figure B.1. In this case, the control volume is static.

The surfaces and volume of the elemental CV are the following:

dV = rdrdθdz

Sr = rdθdz

Sθ = drdz

Sz = rdrdθ
(B.1)

Figure B.1: Cylindrical elemental control volume and its respective heat fluxes (Source:
[22]).

Since in conduction heat transfer there is no fluid flow, the internal energy variation of
the CV must be equal to the heat flow

∂

∂t

∫
V
ρu dV = Q̇ (B.2)
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From the left hand side (LHS) of equation (B.2), the integral can be omitted, since the
volume is infinitesimal, the volume differential can get out of the derivative, since it is not
time dependent (the volume does not change) and, the density does not depend on time
either.

∂

∂t

∫
V
ρu dV =

∂(ρudV )

∂t
= ρ

∂u

∂t
dV

From the right hand side (RHS) of equation (B.2), the heat flux can be expressed as the sum
of the different heat flux components in each direction.

Q̇ = Q̇r − Q̇r+dr + Q̇θ − Q̇θ+dθ + Q̇z − Q̇z+dz + q̇vdV

where q̇vdV stands for the internal sources of heat.

The substitution of this two expressions yields

ρ
∂u

∂t
dV = Q̇r − Q̇r+dr + Q̇θ − Q̇θ+dθ + Q̇z − Q̇z+dz + q̇vdV (B.3)

By substituting the following expressions in the above equation, one obtains equation
(B.4). 

Q̇r+dr = Q̇r +
∂Q̇r

∂r
dr

Q̇θ+dθ = Q̇θ +
∂Q̇θ

∂θ
dθ

Q̇z+dz = Q̇z +
∂Q̇z

∂z
dz

ρ
∂u

∂t
dV = −∂Q̇r

∂r
dr − ∂Q̇θ

∂θ
dθ − ∂Q̇z

∂z
dz + q̇vdV (B.4)

Introducing the Fourier Law (equation (B.5)) and the expression that relates internal
energy with temperature (equation (B.6)), one obtains equation (B.7).

(Fourier Law)


Q̇r = −λ∂T

∂r
Sr

Q̇θ = −λ1
r

∂T

∂θ
Sθ

Q̇z = −λ∂T
∂z

Sz

(B.5)

du = cpdT (B.6)

ρcp
∂T

∂t
dV =

∂

∂r

(
λ
∂T

∂r
Sr

)
dr +

∂

∂θ

(
λ
∂T

r∂θ
Sθ

)
dθ +

∂

∂z

(
λ
∂T

∂z
Sz

)
dz + q̇vdV (B.7)

Finally, by replacing the surfaces and the volume by its expressions, one obtains the
differential equation for conduction heat transfer

Differential equation for conduction heat transfer

ρcp
∂T

∂t
=

1

r

∂

∂r

(
λr
∂T

∂r

)
+

1

r2
∂

∂θ

(
λ
∂T

∂θ

)
+

∂

∂z

(
λ
∂T

∂z

)
+ q̇v (B.8)

where λ stands for the thermal conductivity of the material and, cp as the specific heat
coefficient at constant pressure of the material.
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Convection

In the following section, the main equations of convective heat transfer in integral and differ-
ential form will be presented [23].

Mass conservation

The mass conservation or continuity equation of an open system for a static control volume
is the following

∂

∂t

∫
CV

ρ dV +

∫
CS

ρv · n dS = 0 (B.9)

where CV stands for control volume, CS for control surface, ρ is the density of the fluid, v
is the fluid velocity vector and n is the normal unit vector of the CS.

Mass conservation equation

∂ρ

∂t
+∇·(ρv) = 0 (B.10)

Analysis of the terms in equation (B.10) from left to right:

(i) Accumulated mass in the CV

(ii) Net flux of mass through the CV surfaces

Linear momentum conservation

The linear momentum conservation equation of an open system for a static control volume
is the following

∂

∂t

∫
CV

vρ dV +

∫
CS

vρv · n dS =

∫
CS

fn dS +

∫
CV

f b dV (B.11)

where fn represents the superficial forces and f b represents the body forces (per unit surface
and volume, respectively).

Linear momentum conservation equation

∂(ρv)

∂t
+∇·(ρvv) = −∇p+∇ · τ + ρg + f e (B.12)

where p is the pressure applied to the control volume surfaces, τ is the viscous stress
tensor of the viscous forces applied to the control volume surfaces

τ =

 τrr τrθ τrz
τrθ τθθ τθz
τrz τθz τzz

 = µ(∇v +∇vT )− 2

3
µ(∇ · v)δ

g is the gravitational acceleration vector and, f e = j ×B is the electromagnetic force
vector.

Analysis of the terms in equation (B.12) from left to right:

(i) Accumulated momentum in the CV

(ii) Net flux of momentum through the CV surfaces

(iii) Pressure forces on the CV surfaces
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(iv) Viscous forces on the CV surfaces

(v) Gravitational force in the volume

(vi) Electromagnetic force in the volume

Energy conservation

The total energy conservation equation of an open system for a static control volume is the
following

∂

∂t

∫
CV

eρ dV+

∫
CS

eρv · n dS = −
∫
CS

q̇(c+r)·n dS+
∫
CS

v · fn dS+
∫
CV

ρv · g dV+

∫
CV

E · j dV

(B.13)
where e is the total energy, q̇(c+r) is the heat flux of the combined effects of conduction and
radiation and, the last term takes into account the heat losses of the Joule effect.

Total energy equation

∂(ρe)

∂t
+∇·(ρve) = −∇ · q(c+r) −∇·(pv) +∇·(v · τ ) + ρv · g +E · j (B.14)

Analysis of the terms in equation (B.14) from left to right:

(i) Accumulated energy in the CV

(ii) Net flux of energy through the CV surfaces

(iii) Convection and radiation heat flux (through molecular interaction and electromagnetic
radiation, respectively).

(iv) Work of the pressure forces

(v) Work of the viscous forces

(vi) Work of the gravitational forces

(vii) Heat losses through the Joule effect

Since the total energy can be expressed as the sum of the internal and kinetic energy
(e = u+ ec), one can derive also the kinetic and thermal energy conservation equations.

The kinetic energy conservation equation of an open system for a static control volume is
the same as equation (B.12) but multiplied by the velocity vector.

v· [eq. (B.12)] (B.15)

However, the kinetic energy can be expressed as ec = v · v/2

Kinetic energy equation

∂(ρec)

∂t
+ρv·∇ec = −∇·(pv) +p∇ · v +∇·(v · τ ) −τ : ∇v +ρv · g +v · f e (B.16)

Analysis of the terms in equation (B.16) from left to right:

(i) Accumulated kinetic energy in the CV
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(ii) Net flux of kinetic energy through the CV surfaces

(iii) Work of the pressure forces

(iv) Term related to the expansion/compression of the CV

(v) Work of the viscous forces

(vi) Viscous dissipation term. From Plank postulate (τ : ∇v ≥ 0), this term will always
dissipate energy, since it appears with a negative sign in the equation.

(vii) Work of the gravitational forces

(viii) Work of the electromagnetic forces

The thermal energy conservation equation of an open system for a static control volume
is derived when (B.16) is introduced in equation (B.14).

Thermal energy equation

∂(ρu)

∂t
+ ρ v· ∇u = −∇ · q(c+r) − p∇ · v + τ : ∇v +Φe (B.17)

where u is the internal energy of the CV and, Φe is the heat loss due to the Joule effect

Φe = E · j = j · j/σe

Analysis of the terms in equation (B.17) from left to right:

(i) Accumulated internal energy in the CV

(ii) Net flux of internal energy through the CV surfaces

(iii) Convection and radiation heat flux (through molecular interaction and electromagnetic
radiation, respectively).

(iv) Term related to the expansion/compression of the CV

(v) Viscous dissipation term. In this case appears with a positive sign, since this term will
always increase the internal energy.

(vi) Heat losses through the Joule effect
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Appendix C

Transport properties computation

The thermal transport properties such as specific heat at constant pressure Cp, thermal con-
ductivity λ and viscosity η are needed to develop the heat transfer calculations, since the
properties of the working fluid must be known. This appendix presents the methodology
employed to compute such properties based on tabulated data and analytic expressions.

Reference [24] presents three expressions to compute the thermal transport properties of
the mixture, based on the properties of each individual species, their molecular weights, and
their respective molar fractions.

Cp,mix =

∑NM
i=1 xiC

◦
p,i∑NM

i=1 xiMi

(C.1)

ηmix =

NM∑
i=1

xiηi

xi +
∑NM

j=1 xjϕij
(C.2)

λmix =

NM∑
i=1

xiλi

xi +
∑NM

j=1 xjΨij

(C.3)

where

ϕij =
1

4

[
1 +

(
ηi
ηj

)1/2(Mj

Mi

)1/4
]2(

2Mj

Mi +Mj

)1/2

(C.4)

and

Ψij = ϕij

[
1 +

2.41 (Mi −Mj) (Mi − 0.142Mj)

(Mi +Mj)
2

]
(C.5)

The individual properties of the species have been computed through the tabulated coeffi-
cients publishe by NASA in [25], where the properties are computed as

Co
p(T )

R
= a1 + a2T + a3T

2 + a4T
3 + a5T

4 (C.6)

ln(η)
ln(λ)

}
= A ln(T ) +

B

T
+
C

T 2
+D (C.7)

Figures C.1 and C.2 show as an example, the coefficients used to compute the cp, λ and
η of the CO2 present in a mixture.
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Figure C.1: Specific heat coefficients of CO2 highlighted in blue. Source: [25].

Figure C.2: Viscosity and thermal conductivity coefficients of CO2 highlighted in yellow and
green, respectively. Source: [25].
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Appendix D

Lineal elastostatic equations in
cylindrical coordinates

The governing equations of lineal elastostatics are presented in this appendix for an axisym-
metric body in the cylindrical coordinate form.

Definitions

As a reminder, the cylindrical reference system defines the position in space of an arbitrary
point P by the following three real numbers: (r, θ, z). Where r denotes the radial distance
from a chosen reference axis, θ denotes the azimuth angle with respect to a chosen reference
direction and z denotes the height from a chosen reference plane (perpendicular to the refer-
ence axis). This can be easily seen in figure D.1 (note that the radial distance r is presented
with the letter ρ).

Figure D.1: Cylindrical coordinate reference system (Source: [26]).

By applying this reference system to the elemental vicinity of a point P, one can de-
fine the elemental parallelepiped of length dr, rdθ and dz (see figure D.2) and, define the
corresponding stress and strain tensors acting on it.

σ =

 σrr τrθ τrz
τrθ σθθ τθz
τrz τθz σzz

 (D.1)

ε =

 εrr εrθ εrz
εrθ εθθ εθz
εrz εθz εzz

 =

 εrr
1
2γrθ

1
2γrz

1
2γrθ εθθ

1
2γθz

1
2γrz

1
2γθz εzz

 (D.2)
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Figure D.2: Cylindrical stresses acting on the faces of the infinitesimal parallelepiped in the
elemental vicinity of a point P (Source: [26]).

However, for an axisymmetric body with axisymmetrical boundary conditions, the stresses
and strains become independent of the θ coordinate, thus, simplifying the problem from three
dimensions to only two (see figure D.3).

The stress and strain tensors would then become

σ =

 σrr 0 τrz
0 σθθ 0
τrz 0 σzz

 (D.3)

ε =

 εrr 0 εrz
0 εθθ 0
εrz 0 εzz

 =

 εrr 0 1
2γrz

0 εθθ 0
1
2γrz 0 εzz

 (D.4)

Figure D.3: Simplification from a 3D to a 2D analysis of an axisymmetric body by
analyzing the cross-section only. Note that an axisymmetric body can be seen as a

structure of revolution, generated by rotating the cross-section around a revolution axis.
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In the vast majority of the literature, the principal terms of the above tensors receive
specific names such as:

- σrr: radial stress

- σθθ: hoop/circumferential/azimuthal stress

- σzz: axial/longitudinal stress

- εrr: radial strain

- εθθ: hoop/circumferential/azimuthal strain

- εzz: axial/longitudinal strain

The displacement field can also be expressed with cylindrical coordinates in the form of

u =

[
ur
uz

]
(D.5)

Strain-displacement Relations

The strain-displacement relations, or also called compatibility equations, relate the strain
tensor (ε) with the displacement field (u) in the form of 4 partial differential equations (with
6 unknowns) [27].

Compatibility equations

εrr =
∂ur
∂r

εθθ =
1

r

(
∂uθ
∂θ

+ ur

) εzz =
∂uz
∂z

εrz =
1

2
γrz =

1

2

(
∂ur
∂z

+
∂uz
∂r

) (D.6)

Generalized Hooke’s Law

The generalized Hooke’s law, or the also called constitutive equations, relates the strain (ε)
and the stress (σ) tensor through 4 simple equations [26][28][29]. Those are the same in
cylindrical and Cartesian coordinates, the only thing that changes is the nomenclature.

Constitutive equations

εrr =
1

E
[σrr − ν (σθθ + σz)]

εθθ =
1

E
[σθθ − ν (σrr + σzz)]

εzz =
1

E
[σzz − ν (σrr + σθθ)]

γrz =
τrz
G

(D.7)

where E is the longitudinal elastic modulus (also Young modulus) and ν is the Poisson
coefficient of the material.

However, equations (D.7) are only valid for isotropic materials.
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Equations (D.7) can also be expressed in a more compact form such as equations (D.8)
or (D.10). In the first case, the C−1 term is called the compliance matrix, while the C term
is called the elasticity matrix.

ε = C−1σ (D.8)

C−1 =


1
E − ν

E − ν
E 0

− ν
E

1
E − ν

E 0
− ν

E − ν
E

1
E 0

0 0 0 1
G

 (D.9)

σ = Cε (D.10)

C =


λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ

 (D.11)

Those equations can also be expressed with the Lamé parameters λ and µ, which relate to E
and ν through equations (D.12)

λ =
νE

(1 + ν)(1− 2ν)
µ = G =

E

2(1 + ν)
(D.12)

where G is the transverse elastic modulus (also shear modulus).

Equilibrium

The 2 partial differential equations of equilibrium of linear elastostatics in cylindrical coor-
dinates (with 4 unknowns) are presented below [26][27]

Equilibrium equations

∂σrr
∂r

+
σrr − σθθ

r
+
∂τrz
∂z

+ fr = 0

∂σzz
∂z

+
∂τrz
∂r

+
τrz
r

+ fz = 0

(D.13)

where (fr, fz) are body force components per unit volume.

Boundary Conditions

There are two types of boundary conditions applied on the boundary Γ.

The first ones are the Dirichlet boundary conditions, in which the displacements ūi are
prescribed on boundaries Γi

u (i = r, z) [29].{
ur = ūr

uz = ūz
on Γr

u

on Γz
u

(D.14)

The second ones are the Neumann boundary conditions, in which the tractions t̄i are
prescribed on boundaries Γi

σ (i = r, z) [27][29].{
σrn̂r + τrθn̂θ + τrzn̂z = t̄r

τrzn̂r + τθzn̂θ + σzn̂z = t̄z
on Γr

σ

on Γz
σ

(D.15)
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Boundary Value Problem

There are two ways to formulate the boundary value problem, one of them is through the
Strong Form and the other one is through the Weak Form.
The former is the easiest one to derive and groups all the equations seen at the moment
in this appendix. The latter is employed in Finite Element Method (FEM) softwares, as it
is easier to solve numerically since it implies first-order derivatives (unlike the strong form,
which has second derivatives of the displacement).

In order to define the domain of the problem, let Ω ⊂ R3 be an open set with piecewise
smooth boundary Γ, where the union of the set with its boundary is Ω̄ = Ω ∪ Γ.
The boundary Γ admits the decomposition

Γ = Γi
u ∪ Γi

σ

where
Γi
u ∩ Γi

σ = ∅

The formulation of the problem can be stated as follows:

Strong formulation

Given fi: Ω → R, ūi: Γi
u → R, t̄i: Γi

σ → R, find ui: Ω̄ → R such that
∂σrr
∂r

+
σrr − σθθ

r
+
∂τrz
∂z

+ fr = 0

∂σzz
∂z

+
∂τrz
∂r

+
τrz
r

+ fz = 0

in Ω (D.16)

ui = ūi on Γi
u (D.17)

σijnj = t̄i on Γi
σ (D.18)

where σ follows constitutive equations (D.10) and ε follows compatibility equations
(D.6).

To understand the weak formulation, one must first introduce the following concepts
[30][31]:

- Test functions

V =
{
vi : Ω̄ → R| continuous with square-integrable derivative, vi = 0 on Γi

u

}
- Trial functions

S =
{
ui : Ω̄ → R| continuous with square-integrable derivative, ui = ūi on Γi

u

}
where i = r, z.

- Voigt notation

This notation simplifies the writing of symmetric second-order tensors by writing them
as column vectors through a process called Voigt rule. This rule depends on whether
the tensor represents a kinetic or kinematic quantity:
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– Kinetic Voigt Rule

σ =

 σrr 0 τrz
0 σθθ 0
τrz 0 σzz

 =


σrr
σθθ
σzz
τrz

 (D.19)

– Kinematic Voigt Rule

ε =

 εrr 0 εrz
0 εθθ 0
εrz 0 εzz

 =

 εrr 0 1
2γrz

0 εθθ 0
1
2γrz 0 εzz

 =


εrr
εθθ
εzz
γrz

 (D.20)

Note that the shear strains are multiplied by 2.

Now, the equilibrium equations, which are the starting point of the process, will be
rewritten in vectorial notation for the ease of the procedure.

∂σrr
∂r

+
σrr − σθθ

r
+
∂τrz
∂z

+ fr = 0

∂σzz
∂z

+
∂τrz
∂r

+
τrz
r

+ fz = 0

=⇒

{
∇ · σr −

σθθ
r

+ fr = 0

∇ · σz + fz = 0
(D.21)

where σr =

 σrr
0
τrz

 and σr =

 τrz
0
σzz

.
To obtain the Weak Form, the equilibrium equations must be multiplied by the test

function and integrated over the domain as follows
∫
Ω
vr(∇ · σr −

σθθ
r

+ fr) dΩ = 0∫
Ω
vz(∇ · σz + fz) dΩ = 0

(D.22)

Rearranging the terms
∫
Ω
vr(∇ · σr) dΩ−

∫
Ω
vr
σθθ
r

dΩ+

∫
Ω
vrfr dΩ = 0∫

Ω
vz(∇ · σz) dΩ+

∫
Ω
vzfz dΩ = 0

(D.23)

and applying Green’s theorem to the first terms of the above equations, yields
∫
Γ
vr(σr·n) dΓ−

∫
Ω
∇vr ·σr dΩ−

∫
Ω
vr
σθθ
r

dΩ+

∫
Ω
vrfr dΩ = 0∫

Γ
vz(σz·n) dΓ−

∫
Ω
∇vz ·σz dΩ+

∫
Ω
vzfz dΩ = 0

(D.24)

Combining the two equations and recalling the definition of the test function that states
that v vanishes on Γi

u, the following is obtained∫
Ω
(∇vr·σr+∇vz·σz) dΩ =

∫
Γσ

[vr(σr·n) + vz(σz·n)] dΓ+
∫
Ω
(vrfr + vzfz) dΩ−

∫
Ω
vr
σθθ
r
dΩ

(D.25)
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Applying the Neumann boundary condition, this can be rewritten as∫
Ω
(∇vr ·σr +∇vz·σz) dΩ =

∫
Γσ

v · t̄ dΓ +

∫
Ω
v · f dΩ−

∫
Ω
vr
σθθ
r

dΩ (D.26)

where, rearranging the terms gives∫
Ω
(∇vr ·σr +∇vz ·σz +vr

σθθ
r

) dΩ =

∫
Γσ

v · t̄ dΓ +

∫
Ω
v · f dΩ (D.27)

At this point, the symmetric gradient operator using Voigt notation will be introduced,
through a new definition of the strain tensor.

Symmetric gradient operator in Voigt notation (∇s)

ε =


εr
εθ
εz
γrz

 =


∂ur
∂r
ur
r

∂uz
∂z

∂ur
∂z + ∂uz

∂r

 = ∇su (D.28)

∇s :=


∂
∂r 0
1
r 0

0 ∂
∂z

∂
∂z

∂
∂r

 (D.29)

Then, by taking into account the operator that has just been introduced, the first term of
equation (D.27) can be rewritten as follows (note that it refers to the term inside the integral)

∇vr ·σr +∇vz ·σz +vr
σθθ
r

=

=
[
(∂vr∂r ) (vrr ) (∂vz∂z ) (∂vz∂r + ∂vr

∂z )
] 

σrr
σθθ
σzz
τrz

 = (∇sv)Tσ (D.30)

Therefore, equation (D.27) becomes∫
Ω
(∇sv)Tσ dΩ =

∫
Γσ

v · t̄ dΓ +

∫
Ω
v · f dΩ (D.31)

and, by taking into account the constitutive equation,

σ = Cε = C∇su (D.32)

the weak formulation of the problem states as follows

Weak formulation

Given f : Ω → R3, t̄: Γσ → R3, find u ∈ S such that∫
Ω
(∇sv)TC∇su dΩ =

∫
Ω
vTf dΩ+

∫
Γσ

vT t̄ dΓ ∀v ∈ V (D.33)
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Appendix E

ProPEP 3 combustion results

All the information obtained from the propellant evaluation program is presented in this
chapter of the appendix to support the results obtained throughout the thesis.

Figures E.1 and E.2 show snapshots of the program interface where the input data is
introduced.

Figure E.1: PN/Epoxy/Fe propellant input data in ProPEP software.
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Figure E.2: AP/HTPB/Al propellant input data in ProPEP software.

The program outputs are presented in figures E.3 (for the PN/Epoxy/Fe propellant) and
E.4 (for the AP/HTPB/Al propellant).

Figure E.3: Output file of the ProPEP software for the PN/Epoxy/Fe propellant.
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Figure E.4: Output file of the ProPEP software for the AP/HTPB/Al propellant.
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Appendix F

ANSYS Validation

The major concern when extracting results from numerical simulation software, like ANSYS,
is to validate the results obtained and ensure they are solid and make total sense.
Therefore, the main objective of this chapter is to validate the numerical results presented
in the report of this thesis by analyzing three problems of interest with an analytical solution.

The problems have been selected by taking into account several reasons such as simplic-
ity, the existence of analytic solutions, similarity in terms of geometry and reference system
concerning the solid rocket motor case, and resemblance in the theory involved.
The first case is an elastostatic problem, in which a long hollow cylinder is exposed to in-
ternal and external pressure. The second case is a thermal problem, which consists of the
same cylinder but is now exposed to forced convection in the interior surface and natural
convection in the exterior surface. Finally, the third case is a thermoelastic problem. In this
last case, the cylinder is exposed to the pressure and thermal loads of cases one and two, but
here, the coupling effects are analyzed.

The validation process consists in comparing the numerical results, obtained by simulating
the loads in a 2D axisymmetric analysis through the ANSYS software, with the analytical
solutions of the problems.

CASE 1. Elastostatics

The first case of study involves the elastostatic equations that were seen in appendix D.
As previously mentioned, the element of study is a long hollow cylinder with constant thick-
ness, inner radius a and outter radius b, in steady-state conditions and, with uniform pressure
load applied at both, the inner and the outer surfaces (pi and po, respectively). This is known
in literature as the Lamé theory or the Thick-walled Cylinder case, where a portion of the
cylinder remote from the ends is analyzed [32][12].
In this symmetric problem, the stresses and strains only vary radially, however, longitudinal
stress and strain remain constant along the wall of the cylinder.

The material selected for the cylinder in this problem has been the 6061-T6 Aluminium
alloy. The properties of the alloy are listed below [33].

E = 69.04 GPa

ν = 0.33

λ = 155.30 W/mK

α = 2.278× 10−5 K−1
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Analytical solution

The Lamé equations for any pressure conditions at any radius r are presented below [12].

σrr = C1 −
C2

r2
(F.1)

σθθ = C1 +
C2

r2
(F.2)

Given the following boundary conditions [32]:

r = a : σrr = −pi
r = b : σrr = −po

(F.3)

one obtains the coefficients C1 and C2 by substituting equations (F.33) in (F.1) and solving
the system of equations.

C1 =
a2pi − b2po
b2 − a2

C2 =
(pi − po)a

2b2

b2 − a2
(F.4)

Because the length of the cylinder has been considered to be much larger than its ra-
dius, the problem can be approached like a plane-stress case, since the nearby material of a
cross-section of the cylinder remote from the ends constrains the strains associated with the
longitudinal direction.

Therefore, εzz ≈ 0 and, the solutions in terms of stress and strain is presented below.

σrr =
a2pi − b2po
b2 − a2

− (pi − po)a
2b2

r2(b2 − a2)
(F.5)

σθθ =
a2pi − b2po
b2 − a2

+
(pi − po)a

2b2

r2(b2 − a2)
(F.6)

σzz = 2ν
(a2pi − b2po)

b2 − a2
(F.7)

εrr =
1

E
[σrr − ν(σθθ + σzz)] (F.8)

εθθ =
1

E
[σθθ − ν(σrr + σzz)] (F.9)

Note that the stresses on an element at any point on the cylinder wall are principal
stresses, therefore, the maximum shear stress at any point will be given by

τmax =
σ1 − σ3

2
(F.10)

Moreover, the change of diameter and length of the cylinder at any radius r are given by

∆D = 2rεθθ (F.11)

∆L = Lεzz (F.12)

Numerical analysis

The numerical analysis of the first case has been done, as previously mentioned, by discretiz-
ing a portion of a cylinder into several finite elements and solving the finite element method
(FEM) through the ANSYS software.
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The first step to define is the type of analysis to be performed, in this case a static
structural analysis. Next to be defined is the geometry, which has been defined as the cross-
section of a cylinder (see figure D.3) with dimensions

a = 35 mm (inner radius)

b = 40 mm (outer radius)

L = 0.25 m (length)

The next step is to mesh the geometry defined, i.e. to divide the geometry into several
finite elements, defining the number of elements introduced and the type of elements used. In
this case, quadrilateral elements have been employed and the total number of elements used
are 2500, resulting from the partition of the wall along the radial direction into 50 divisions
and, along the axial direction into 50 divisions as well (see figure F.1).

Figure F.1: Image of the mesh employed in the numerical analysis of cases 1, 2 and 3 for
the validation process. Note that only a portion of the mesh is showed for clarity and

visualization purposes.

Once the geometry has been defined and meshed, the following step is the definition of
its boundary conditions (BC). A total of four boundary conditions have been applied, two
Dirichlet BC and two Neumann BC, and are listed below.

• Internal pressure. A constant and homogeneous pressure of pi = 2 MPa has been
applied over the internal surface.

• External pressure. A constant and homogeneous pressure of po = 101325 Pa (i.e.,
1 atm) has been applied over the external surface.

• Friction-less support. The bottom surface has been restricted in the axial direction
while left free from displacements and deformations in the radial direction.

• Prescribed displacement. The axial displacement of the top surface has been set to 0 m
while leaving free the radial direction for displacements and deformations. Note that
those last BC make reference to the plane-strain approach mentioned previously.
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Validation

Finally, the results obtained from both, the analytical and numerical analysis have been plot
and compared in figures F.2 to F.7, with a maximum relative error of 0.02%.

Figure F.2: Radial stress numerical vs analytical results as a function of the wall thickness.

Figure F.3: Hoop stress numerical vs analytical results as a function of the wall thickness.
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Figure F.4: Axial stress numerical vs analytical results as a function of the wall thickness.

Figure F.5: Radial strain numerical vs analytical results as a function of the wall thickness.
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Figure F.6: Hoop strain numerical vs analytical results as a function of the wall thickness.

Figure F.7: Radial displacement numerical vs analytical results as a function of the wall
thickness.
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CASE 2. Convective heat transfer

The second case of study involves heat transfer along the walls of the cylinder. In this case,
the inner surface is subjected to a forced convection (at low Mach number) and the outer
surface is subjected to a natural convection. The cylinder is at steady-state conditions and,
since the portion of cylinder studied is far from the edges of the cylinder, the heat flux can be
considered to vary radially. Constant thermal properties are also considered and, no internal
heat sources are present.

The fluids selected for this problem and their respective thermophysical properties are
the following:

Inside the cylinder, steam at Ti = 500 ◦C and pi = 2.0 MPa (same pressure as case 1)
[34].

µi = 2.8605× 10−5 kg/ms

cpi = 2206.2 J/kgK

λi = 0.068127 W/mK

ρi = 5.6921 kg/m3

Outside the cylinder, dry air at To = 20 ◦C and po = 101325 Pa (same pressure as case 1).

µo = 1.813× 10−6 kg/ms

cpo = 1006.021 J/kgK

βo = 3.411× 10−3 K−1

λo = 0.0257 W/mK

ρo = 1.204 kg/m3

Analytical solution

The equations of temperature and heat flux distribution at any radius r of the cylinder are
given by [22][23]

T = C1ln(r) + C2 (F.13)

q̇r = −λC1

r
(F.14)

Given the following boundary conditions:

r = a

{
T = Twi

q̇r = hi(Ti − Twi)
r = b

{
T = Two

q̇r = ho(Two − To)
(F.15)

where Twi is the wall temperature of the inner surface, Two is the wall temperature of the
outer surface, Ti is the temperature of the internal gas, To is the temperature of the outer
gas, hi is the convection heat transfer coefficient of the internal gas and, ho is the convection
heat transfer coefficient of the outer gas.

Then, one obtains the coefficients C1 and C2 by substituting equations (F.15) in (F.13)
and (F.14) and, solving the system of equations.

C1 =
To − Ti

λ
bho

+ ln(b) + λ
ahi

− ln(a) C2 =
To

(
λ
bho

+ ln(b)
)
+ Ti

(
λ
ahi

− ln(a)
)

λ
bho

+ ln(b) + λ
ahi

− ln(a)
(F.16)
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Therefore, the solution in terms of temperature and radial heat flux per unit surface at
any radius r of the cylinder are given by

T =
(To − Ti)

λ
bho

+ ln(b) + λ
ahi

− ln(a)
ln(r) +

To

(
λ
bho

+ ln(b)
)
+ Ti

(
λ
ahi

− ln(a)
)

λ
bho

+ ln(b) + λ
ahi

− ln(a)
(F.17)

q̇r = −λ
r

(To − Ti)(
λ
bho

+ ln(b) + λ
ahi

− ln(a)
) (F.18)

Note that both convective processes have the same expression in terms of heat flux (see
boundary conditions), however, the heat transfer coefficient differentiates between a forced
and a natural convection, since both coefficients will be obtained through experimental ex-
pressions [35].

For forced convection at low Mach number, the heat transfer coefficient can be found
by computing several adimentional groups such as the Reynolds number (Re), the Prandtl
number (Pr) and, the mean Nusselt number (Nu).

Pr =
µicpi
λi

(F.19)

Re =
ρiv̄D

µi
(F.20)

Nu = CRemPrnK (F.21)

hi =
Nuλi
D

(F.22)

where C, m, n and K are experimental parameters, D is the hydraulic diameter and, v̄ is the
mean inner fluid velocity. The expressions of which are

D = 4
S

P
v̄ =

ṁ

ρiS
(F.23)

where S is the inner cross sectional area, P is the inner wet perimeter and, ṁ is the mass
flow rate of the inner fluid.

For the natural/free convection of the exterior surface, the heat transfer coefficient can
be found also through adimentional groups, but in this case are the Grashof number (Gr),
the Prandtl number (Pr), the Rayleigh number (Ra) and, the mean Nusselt number (Nu).

Gr =
gβoρ

2
o|Two − To|X3

µ2o
(F.24)

Pr =
µocpo
λo

(F.25)

Ra = GrPr (F.26)

Nu = CRanK (F.27)

ho =
Nuλo
X

(F.28)

where C, n and K are experimental parameters and, X a reference distance (in the case of
natural convection with a vertical cylinder X = L).
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Numerical analysis

The procedure followed to perform the numerical analysis of the second case is similar to
the one followed in the elastostatic problem. In this case though, the analysis performed has
been a steady-state thermal.
The geometry employed in this analysis is exactly the same as in the previous case, and so
is the mesh. Regarding the boundary conditions, the following convective flows have been
applied:

• Forced convection. A forced convection of steam at 500 ◦C with a film coefficient of
hi = 3455.6 W/m2K has been applied over the inner surface of the cylinder.

• Natural or free convection. A natural convection of dry air at 20 ◦C with a film
coefficient of ho = 10.8061 W/m2K has been applied over the outer surface of the
cylinder.

Validation

The results obtained from the two approaches, the analytical and the numerical, are presented
in figures F.8 and F.9, with a maximum relative error of 0.06%.

Figure F.8: Temperature numerical vs analytical results as a function of the wall thickness.
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Figure F.9: Radial heat flux numerical vs analytical results as a function of the wall
thickness.

CASE 3. Thermoeslasticity

The third case of study is a thermoelastic analysis of the same cylinder of cases 1 and 2.
Here, the mechanical loads derived from the pressures applied in case 1 and, the thermal
loads derived from the convection of case 2 are coupled to account for both effects. The same
assumptions, materials and fluids of previous cases are applied as well.

Analytical solution

The strain equations that relate mechanical and thermal loads are presented below [28][30]

εrr =
1

E
[σrr − ν (σθθ + σzz)] + α∆T (F.29)

εθθ =
1

E
[σθθ − ν (σrr + σzz)] + α∆T (F.30)

εzz =
1

E
[σzz − ν (σrr + σθθ)] + α∆T (F.31)

where α is the thermal expansion coefficient and ∆T the change in temperature with respect
to a reference temperature (Tref ).

From reference [32], the expression of the radial stress before applying any boundary
condition is the following.

σrr =
E

1 + ν

(
−(1 + ν)

(1− ν)

1

r2

∫ r

a
α∆Tr dr +

C3

1− 2ν
− C4

r2
+

ν

1− 2ν
εzz

)
(F.32)

By applying the boundary conditions of a state with thermal load only

r = a : σrr = 0

r = b : σrr = 0
(F.33)
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one obtains the integration coefficients C3 and C4

C3 =
(1 + ν)(1− 2ν)

(1− ν)

1

(b2 − a2)

∫ b

a
α∆Tr dr − νεzz (F.34)

C4 =
(1 + ν)

(1− ν)

a2

(b2 − a2)

∫ b

a
α∆Tr dr (F.35)

With those coefficients, references [32] and [36] present the general expressions of the
principal stresses for a thermal load only condition.

σrr =
E

1− ν

(
− 1

r2

∫ r

a
α∆Tr dr +

r2 − a2

r2(b2 − a2)

∫ b

a
α∆Tr dr

)
(F.36)

σθθ =
E

1− ν

(
1

r2

∫ r

a
α∆Tr dr +

r2 + a2

r2(b2 − a2)

∫ b

a
α∆Tr dr − α∆T

)
(F.37)

σzz =
E

1− ν

(
2

b2 − a2

∫ b

a
α∆Tr dr − α∆T

)
(F.38)

By substituting the temperature distribution expression obtained in case 2,

∆T = T − Tref = C1ln(r) + C2 − Tref (F.39)

the thermal stresses generated during the steady-state convection are found.

σrr =
αE

2(1− ν)
C1

[
a2(b2 − r2)

r2(b2 − a2)

(
ln(a)− 1

2

)
+
b2(r2 − a2)

r2(b2 − a2)

(
ln(b)− 1

2

)
− ln(r) +

1

2

]
(F.40)

σθθ =
αE

2(1− ν)
C1

[
−a

2(b2 + r2)

r2(b2 − a2)

(
ln(a)− 1

2

)
+
b2(r2 + a2)

r2(b2 − a2)

(
ln(b)− 1

2

)
− ln(r)− 1

2

]
(F.41)

σzz = − αE

1− ν
C1

[
a2(ln(a)− 1

2)− b2(ln(b)− 1
2)

b2 − a2
+ ln(r)

]
(F.42)

In order to obtain the total stresses of the cylinder, the mechanical stresses of case 1 are
superposed to the thermal stresses just found.

σrr = σmechanical
rr + σthermal

rr (F.43)

σθθ = σmechanical
θθ + σthermal

θθ (F.44)

σzz = σmechanical
zz + σthermal

zz (F.45)

Numerical analysis

The numerical analysis of this case has been also carried out with the ANSYS software
proceeding as follows: 1) A steady-state thermal analysis,identical as in case 2, has been
simulated. 2) Next, a steady-state structural analysis with the results of the thermal analysis
loaded, i.e. the temperature distribution, has been carried out to account for both, mechan-
ical and thermal loads.

The case has also been simulated in a 2D axysimmetric geometry with the same geometry,
mesh and boundary conditions as cases 1 and 2.
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Validation

The results obtained from the analytical and numerical methods are compared in the figures
below.

Figure F.10: Radial stress numerical vs analytical results as a function of the wall thickness.

Figure F.11: Hoop stress numerical vs analytical results as a function of the wall thickness.
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Appendix G

Thermomechanical results for
maximum chamber pressure instant

In this appendix, the results at maximum pressure instant of the separate effects of the me-
chanical and thermal loads from the seventh analysis are presented.

Note that stresses generated by thermal loads are showed only at the nozzle, since the rest
of the structure stays at room temperature and, therefore, no material expansion is produced
there.

Stresses from thermal loads

Equivalent Stress (Von Mises)

Figure G.1: Zoom-in view of the bottom end’s Von Mises stress distribution (Analysis 7).
Scale factor: 15.
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Radial Stress

Figure G.2: Zoom-in view of the bottom end’s radial stress distribution (Analysis 7). Scale
factor: 15.

Hoop Stress

Figure G.3: Zoom-in view of the bottom end’s hoop stress distribution (Analysis 7). Scale
factor: 15.
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Axial Stress

Figure G.4: Zoom-in view of the bottom end’s axial stress distribution (Analysis 7). Scale
factor: 15.

Stresses from mechanical loads

Equivalent Stress (Von Mises)

Figure G.5: Zoom-in view of the top end’s Von Mises stress distribution (Analysis 7). Scale
factor: 15.
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Figure G.6: Zoom-in view of the bottom end’s Von Mises stress distribution (Analysis 7).
Scale factor: 15.

Radial Stress

Figure G.7: Zoom-in view of the top end’s radial stress distribution (Analysis 7). Scale
factor: 15.
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Figure G.8: Zoom-in view of the bottom end’s radial stress distribution (Analysis 7). Scale
factor: 15.

Hoop Stress

Figure G.9: Zoom-in view of the top end’s hoop stress distribution (Analysis 7). Scale
factor: 15.
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Figure G.10: Zoom-in view of the bottom end’s hoop stress distribution (Analysis 7). Scale
factor: 15.

Axial Stress

Figure G.11: Zoom-in view of the top end’s axial stress distribution (Analysis 7). Scale
factor: 15.
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Figure G.12: Zoom-in view of the bottom end’s axial stress distribution (Analysis 7). Scale
factor: 15.
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Appendix H

Thermomechanical results for
maximum nozzle temperature
instant

This appendix contains the results at the maximum nozzle temperature instant with the
separate effects of the mechanical and thermal loads.

Note that only the nozzle distributions are presented, since the forward closure has already
proved to withstand the most harsh conditions, which arise when the maximum chamber
pressure is reached.

Stresses from thermal loads

Equivalent Stress (Von Mises)

Figure H.1: Zoom-in view of the bottom end’s Von Mises stress distribution (Analysis 8).
Scale factor: 15.
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Radial Stress

Figure H.2: Zoom-in view of the bottom end’s radial stress distribution (Analysis 8). Scale
factor: 15.

Hoop Stress

Figure H.3: Zoom-in view of the bottom end’s hoop stress distribution (Analysis 8). Scale
factor: 15.
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Axial Stress

Figure H.4: Zoom-in view of the bottom end’s axial stress distribution (Analysis 8). Scale
factor: 15.

Stresses from mechanical loads

Equivalent Stress (Von Mises)

Figure H.5: Zoom-in view of the bottom end’s Von Mises stress distribution (Analysis 8).
Scale factor: 15.
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Radial Stress

Figure H.6: Zoom-in view of the bottom end’s radial stress distribution (Analysis 8). Scale
factor: 15.

Hoop Stress

Figure H.7: Zoom-in view of the bottom end’s hoop stress distribution (Analysis 8). Scale
factor: 15.
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Axial Stress

Figure H.8: Zoom-in view of the bottom end’s axial stress distribution (Analysis 8). Scale
factor: 15.
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