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Abstract

A Field-Programmable Gate Array (FPGA) is a general re-configurable device for implementing logic cir-
cuits. This technology is extensively used for prototyping circuits due to its cost and speed. The underlying
implementation consists of Lookup Tables (k-LUT), logic functions that can implement any function up to
k variables. And-Inverter graphs (AIG) are multi-level networks composed of two input ANDs and inverters
and are the standard format for describing Boolean functions in practical applications of logic synthesis.

In this thesis, we present an orthogonal technique that, interleaved with already known high-effort
area mapping, outperforms previous best work on technology mapping. This technique, named AIGROT,
explores several ways to exploit the commutativity and associativity of the AND operation, thereby reducing
the number of LUTs needed to represent the Boolean functions. Experimental results show a substan-
tial circuit minimization on several large public benchmarks without practically increasing the runtime or
memory requirements. The proposed scheme is a blend of alternating techniques throughout the logic
synthesis flow that provides tangible results at least as good as previous ones. In particular, using our
technique, we are able to improve the best known area of four circuits from the EPFL benchmark library,
which is considered the most comprehensive and diverse set of benchmarks, where all recently developed
logic synthesis algorithms are tested.
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1. Introduction

Integrated circuits (IC) are present in every electronic device, from personal computers to light bulbs. From
a theoretical point of view, integrated circuits consist of a network of logic gates that compute a Boolean
function. From a practical perspective, the pieces that assemble integrated circuits and logic gates are
transistors (metal–oxide–semiconductor field-effect transistor or MOSFET) a revolutionary replacement for
vacuum tubes in 1960s. These transistors are made of silicon, a semiconductor material that grants them
the physical property of acting as either an electrical conductor or an insulator, depending on another
electrical signal. Gordon Moore predicted in 1975 that the number of transistors in an IC would double
every year[1], this hypothesis known as Moore’s law has been proved right in the last few years. Nowadays,
the number of these tiny devices is immense, for instance, in a consumer class 16GB DRAM there are
over 144 billion transistors. However, Moore’s law is expected to break sooner than later, due to physical
limitations, including the size of silicon atoms and electronic instability. For this reason, efforts to reduce
energy consumption and increase computing power are aimed at optimizing the Boolean functions in
order to reduce the size of electronic circuits. Unfortunately, no efficient algorithms are known for circuit
minimization. This problem is usually referred as Minimum Circuit Size Problem (MCSP) that asks whether
there exists a circuit of size k that computes a particular truth table. MCSP complexity is still unknown
and any progress in this direction would have deep consequences in computer science [2].

First designs of IC were done exclusively by hand, quickly becoming a problem for large circuits.
The number of transistors and manual mistakes conducted the development and usage of automated
methods. Electronic Design Automation (EDA) is a research area that was introduced in 1980 and added
an abstraction layer between circuit design and implementation. The first revolutionary change of IC was
the introduction of Very High-Speed Integrated Circuit Hardware Description Language (VHDL) whose
purpose is to automate the construction of large and complex integrated circuits. Years of research in
EDA lead to the development of several intermediary steps to tackle down the task of compiling code
into hardware. Logic synthesis is the step that translates low level hardware definitions into logic gates for
Integrated circuits or FPGAs. This scope, logic synthesis, is where the research of this project belongs.

x0 x1 x2 x3 x4 ... xn

andk

...

Figure 1: General And-Inverter graphs
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Figure 2: AIG representing the function f = (i0 +
i1)(i2 + i3)

An important aspect in logic synthesis is the representation of the Boolean function. Desired properties
of such a representation include that the size of the structure does not grow uncontrollably, that any
Boolean function can be represented, and that there exist efficient algorithms to access and modify it.
Along the history of EDA, several structures have been used, including Truth Tables (TT) Figure 4,
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AIG transformations

Product of Sums (PoS), Sum of Products (SoP) and Binary Decision Diagrams (BDD) Figure 3. Each
structure has its advantages and disadvantages, for instance, truth tables work really good but only for
a small number of variables, SoP is a better choice than truth tables as there exist fast algorithms like
EXPRESSO for minimizing the representations. BDD and Reduced Ordered Binary Decision Diagram
(ROBDD) are also good for representing Boolean functions as they are canonical, which is a desired property
for several algorithms, for instance, equivalence checking, but both structures grow exponentially with
common functions. In the last few years And-Inverter graphs[3] have been the preferred choice, they scale
properly because structural hashing (strashing Figure 6) removes redundant nodes and produces a sort of
”canonical” representation for each function, however they are not unique. In Figure 1 and Figure 2 we have
examples of And-Inverter graphs. Another interesting property of AIG is combinatorial equivalence checking
with SAT solvers, which is explained in subsection 2.1. Additionally, the implementation of algorithms over
AIG structures is easier and faster. Nowadays, nanotechnology enables the manufacturing of devices with
physical properties that revolutionise previous computing paradigms such as quantum cellular automatons.
To take advantage of these technologies more powerful representations are needed, e.g. Majority-Inverter-
Graphs (MIG)[4] or Biconditional Binary Decision Diagrams (BBDD)[5], these representations are out of
the scope of this thesis.

x0

x1 x1

x2 x2

0 1

0 1

0 0

0 0

1

1 1

1

Figure 3: BDD representation: XOR of x0, x1, x2

x0 x1 x2 x0 ⊕ x1 ⊕ x2

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 4: Truth Tables: XOR of x0, x1, x2

14

10

16

12

i0 i1

Figure 5: AIG without strashing

14

10

16

i0 i1

Figure 6: strashed AIG
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An And-Inverter graphs is a Directed Acyclic Graph (DAG) that can represent any multi-output Boolean
function using only 2-input ANDs and inverters. AIGER[3] is a library that defines the AIG file format and
allows to store and retrieve AIGs represented in binary and ASCII. For large circuits the binary format is
preferred because the file is orders of magnitude smaller and it is much faster to read and write. AIG is
the Boolean function representation used in this project, in section 2 there is an in-depth analysis.
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Figure 7: FPGA Island-style Architecture

A Field-Programmable Gate Array (FPGA) is a general purpose electronic device that can be pro-
grammed to implement any circuit where the limiting constraints depend on the size and characteristics
of that particular FPGA model. Informally, a FPGA is a device that allows the emulation of an integrated
circuit. In general, most commercial FPGAs can be reprogrammed as many times as needed, allowing the
user to try several implementations or completely repurpose the device, for instance, a device used to train
machine learning neural networks can be reprogrammed to perform image processing tasks. Usually the
time needed to reprogram a FPGA, when it is possible, is between hundreds of milliseconds and a couple of
seconds. A quick comparison between integrated circuits and FPGAs is that producing integrated circuits
is really expensive but on a large scale those costs are offset by their speed and power efficiency, on the
other hand, FPGAs are cheaper but slower and more power demanding. FPGAs are designed to perform
specific repetitive tasks faster than a general purpose CPU, in the same way that GPUs are used to per-
form parallel graphics computing, FPGA can also be used to offload the CPU and speed up the computing.
The underlying technology in FPGAs is a network of programmable lookup tables, that can compute any
function up to k variables, the connections between LUT can also be rewritten, meaning that in general
the output of one LUT can be used in any other LUT as an input. Notice that an AIG is unable to uniquely
represent this type of network, and as we will see later other formats are used.

On Figure 1 we observe the island-style architecture of FPGAs that consists in a matrix of connected
Configurable Logic Blocks (CLB). As we can see, there are two types of controllers for signal routing,
Connection blocks, that manage the I/O between the FPGA and other devices and the connections between
CLBs, and that are able to connect any pair of tracks, including those that are in the same channel. In
this architecture, the lookup tables are placed inside CLBs.
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AIG transformations

Prior to the existence of FPGAs, the available technologies were Programmable Array Logic (PAL), a
device that allows to implement functions using SoP, and Complex Programmable Logic Devices (CPLD)
that are able to store more complex functions than SoP using Read-Only Memory (ROM). Both devices are
still extensively used in combination of FPGA, however, for complex functions FPGAs are the only choice.
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Figure 8: 2-LUT Mapping with area 5 and delay 3.
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Figure 9: 3-LUT Mapping with area 4 and delay 2.

Technology mapping is the process of implementing a circuit using only a certain type of logic gates.
In the scope of this project, the goal of technology mapping is to implement an AIG that uses inverters
and 2-AND using k-LUT. In Figure 8 and Figure 9 we observe how the size of LUTs, in terms of number
of variables, produces mappings with different area and delay. Notice that Figure 9 can be mapped using
just 2 3-LUTs, as it is possible to join the LUTs of nodes 10 and 12, that use the inputs i1,i2 and i3 using
one LUT of three variables, this is the optimization problem that we analyze in this project.

1.1 Motivation

In the last few years, computer scientists have been warning that physical properties of transistors, such
as the thickness of the insulator gate and the voltage cannot be further reduced and will set a hard lower
limit on the size of transistors[6]. These bad news have a major impact in computing, for instance, power
consumption is directly correlated with the size of transistors, which in turn limits the computation power
and overheats the circuit. Assuming that these limitations do not allow to build smaller transistors, the
only possibility left to lower the power consumption and increase the computational power is to further
optimize the circuit, reducing as much as possible the implementation of the Boolean function with the
minimum number of logic gates.

In FPGAs, the circuit is represented as a set of k-LUTs. Technology mapping is the last step of logic
synthesis that performs the conversion from an AIG into k-LUTs. The two most common metrics for
evaluating the quality of a mapping are the area, which is the overall number of LUT, and the delay, which
is the number of LUT in the critical path. The critical path is the longest path, in terms of nodes, between
primary inputs and primary outputs.

In this project, our efforts are towards minimizing the area, but as we will see later, in most cases,
reducing the number of LUT also reduces the circuit delay. The problem of deciding if there exists a circuit
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mapping of at most m LUTs is known to be NP-Complete for k ≥ 5, and whether there exists an efficient
algorithm for k = 2, 3, 4 is still an open question[7]. In general, the size of circuits is large and the problems
that appear are complex, the usage of randomized algorithms and heuristics is a must. Exact solutions
that rely on SAT solvers are computationally expensive and used only on crucial parts, such as equivalence
checking.

1.2 Contributions

Despite the advancements in technology mapping for FPGA in the last few years, there is still a lot of
room for improvement. Proof of this is the continuous appearance of new methods that improve particular
circuits of the EPFL benchmark[8]. A summary of these techniques is provided in section 2.

The fundamental idea in our contribution is to segregate k-AND inputs, in such a way that the nodes that
use similar variables become closer and those which are unrelated become isolated. This idea has a strong
relation to k-LUT, where the limiting factor is not the complexity of the function, but rather the number
of variables. This process can also be thought of in terms of logic sharing, there exist several techniques
to merge and optimize similar nodes, when performing this process we also unlock new opportunities that
would pass undetected. We propose and implement the algorithm AIGROT, which takes an AIG as input
and outputs an equivalent AIG with reordered AND gates, without changing the number of ANDs, the
number of inverters nor the number of connections between nodes. In the following Figure 10 we observe
two equivalent AIGs with different structure. The AIG on the left has a shorter critical path than the one
on the right, this is possible because AIG are not canonical representations of Boolean functions. This
is an example of reordering AND gates, as we can see, the number of AND, inverters and connections are
invariants.

14

10 12

i0 i1 i2 i3

14

12

10

i0 i1 i2 i3

Figure 10: AIGs representing the function f = AND(i0, ī1, i2, i3)

An AND cluster is basically a collection of nodes which may or may not be inverted, connected through
ANDs without any inverter in-between, that act like a k-input AND or k-AND. AIGROT takes advantage of
the commutativity and associativity properties of the AND operation and reorders the nodes in the cluster
according to different heuristics, with the objective of segregating and ordering the nodes by their similarity,
it is a simple but transversal technique that can be applied to any AIG, before and after other techniques
as the ones explained in the following section 2. This technique is technology independent, as it does not
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AIG transformations

restrict or depend on the mapping logic gates, in this case we analyze the effects of using it in k-LUT
mapping.

Figure 11: Example two overlapping AND clusters

When dealing with large AIG circuits, clusters can overlap each other. On Figure 11 we observe how
two clusters delimited by negated and multiple fan-out nodes overlap. The dashed lines cover the cluster’s
inputs. Notice that the root of the blue cluster is an input of the green one. It is possible to swap the
position of any two nodes inside the dashed region of the same colour, which reorders the inputs of the
k-AND, and it is also possible to reorder the colored ANDs without changing the Boolean function of any
output. These modifications are completely local and performing them does not have an impact on other
parts of the AIG, this is good for speed and memory usage as it only needs a small subgraph of large AIG,
however this also means that AIGROT is structurally biased, meaning that the original AIG determines
excessively its effectiveness. Structural bias is minimized using an iterative process of a collection of
techniques detailed in section 4.

This algorithm is implemented in C++ and uses the AIGER library developed in C for reading and writing
the AIG files. We choose a low level language, because its interoperability with C and the performance and
memory management in this type of applications are important. Large circuits have millions of nodes and
efficiently modifying data structures becomes too expensive on high level languages. In section 3 there is
a detailed discussion about the algorithm and design.

ABC is a System for Sequential Synthesis and Verification [9] that contains most state-of-the-art
algorithms for logic synthesis. Our results in section 5 show that using AIGROT in combination of already
implemented state-of-the-art techniques, we are able to obtain better results with the usage of AIGROT
than without it. Our results show an improvement in the minimum area needed for the representation of
several circuits over the best known results in the EPFL Benchmark[8].

1.3 Thesis structure

This thesis is organized as follows:

• Background and Related work A gentle introduction to state-of-the-art technology mapping and AIG
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optimization techniques.

• AIG Rotation An in-depth explanation with examples of AIGROT, used heuristics and pseudo-code.

• Methodology Integration of AIGROT with other tools and definition of the pipeline of experiments.

• Results Evaluation of AIGROT with other techniques against the EPFL Dataset.

• Conclusions and future work Final conclusions and proposals for further research.
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AIG transformations

2. Background and related work

Traditional flow for FPGA programming begins by implementing the description of the circuit using a
hardware definition language, typically VHDL or Verilog, which is then translated into logic gates and
processed using logic synthesis. Technology mapping is the final step of logic synthesis, logic gates are
mapped into target gates, which in FPGA are look-up tables of up to k variables. These steps are usually
independent of each other, this is problematic because past decisions may impede to obtain better solutions
in future steps, efforts are being made to merge these steps in such a way that it is always possible to reach
the best mappings [10]. AIG with choices are a step in this direction, it is possible to define equivalent
implementations of a node and let the technology mapping choose the implementation that better fits the
goal, this is commonly referred as loss-less technology mapping.

Before technology mapping, most efforts are towards AIG optimization, which consists of AIG transfor-
mations that preserve functionality but help the technology mapper to produce better quality results with
less delay and area. It is difficult to know ahead which AIG modifications will improve or decrease quality
of the resulting technology mapping, naive heuristics such as the number of AIG nodes or the depth of the
critical path are good estimators, but not perfect. This reinforces the idea of using loss-less technology
mapping, preserving intermediary optimizations as equivalent nodes can improve the mapping.

This section is organized in five parts, first we introduce SAT solvers, that are a fundamental part
of state-of-the-art logic synthesis and the basic concepts of And-Inverter graphs, then we enumerate fast,
effective and commonly used algorithms for AIG optimization, then, we describe other techniques that work
on already mapped networks. The last two sections include an introduction to ABC along with a summary
of the commands that will be used to describe the optimization pipeline in section 4 and a detailed list of
the best mappings of the EPFL benchmark library.

2.1 SAT and SAT solvers

The Boolean Satisfiability Problem or SAT is the decision problem that given a Boolean formula asks
whether there exists an assignment of the input variables such that the evaluation of the formula is
true. Usually SAT instances are represented in Conjunctive Normal Form (CNF): an AND of ORs. i.e.
(x1 ∨ x2) ∧ (x1 ∨ ...) ∧ ..., each chunk of ORs is called a clause. The hardness of an instance is not directly
tied to the number of clauses or variables, however, the formulation of a particular problem can help the
SAT solver dramatically.

SAT was the first problem to be proven NP-Complete and no polynomial-time algorithms are known for
solving it, however, by means of heuristics and efficient implementations such as Minisat[11] or Glucose[12],
large instances of more than a million clauses can be solved by commercial CPUs. SAT is closely related
to logic synthesis and most optimization problems that appear in logic synthesis can be expressed nicely
in terms of SAT. The principal usage is combinatorial equivalence checking, which consists on given two
circuits decide if there exists an input that outputs different values, in a similar way, they are used for
property checking and circuit minimization.

Reducing the time to solve SAT instances is crucial to achieve better circuits and technology mappings.
Research for custom solvers and algorithms for cleverly translating circuit constraints into easier to solve
CNF clauses is being done [13]. SAT Modulo Theories (SMT) are a generalization of SAT that asks whether
a mathematical formula is satisfiable, these instances are at least as hard as SAT, but this approach is
useful for problems such as placement optimization[14] as they are easy to represent as instances of SMT.
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2.2 And-Inverter Graphs

module example(a, b, c, d, z);

input a, b, c, d;

output z;

wire x, y, w, v;

assign x = a & b;

assign y = ~c & d;

assign v = ~a & c;

assign w = x | y;

assign z = w | v;

endmodule
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Figure 12: Example AIG from Verilog. f = (ab) ∨ (c̄d) ∨ (āc).

An AIG is a DAG of AND nodes where each node has two childs (fan-in) and an index that uniquely
identifies it. There are no restrictions in the number of parents of a particular node (fan-out). Each node
has two literals, the positive l and the inverted or negative l̄ , these literals are represented in binary using the
least significant bit as the sign, the whole index is left shifted before adding the sign bit, so no information
is lost, if indexi is the i-th bit of index and s is the sign, then indexn ...index0s is the respective literal. For
instance, literal 10 represents node 5 with positive sign and literal 11 represents the negation of the output
of node 5. As we can see in Figure 12, when the AIG is plotted, the number inside the nodes is the positive
literal of the node. This trick for representing inverted literals facilitates the implementation of algorithms
as they do not have to deal with inverter gates. Primary Input (PI) and Primary Output (PO) are also
treated as nodes, hence they also have an index and two literals. PI/PO are specified as a list of literals
apart from the network as we can see in Figure 12.

The human-readable ASCII representation of the AIG (AAG) on the right of Figure 12 is not the
standard representation, instead the AIGER format defines a binary representation[3] that uses several
tricks to encode the AIG in order to produce smaller files that are easier to read and write. Experimental
results show that the improvement is better than just using general compression algorithms.

Dealing with large AIG of millions of nodes and connections can be cumbersome for most algorithms,
next we describe the techniques windowing, cuts and MFFC that allow to divide the circuit using sub-
graphs. The downside of these techniques is that they are structurally biased, meaning that it could be the
case that not knowing all pieces of information prevent the algorithm from doing further improvements.
However, repeating these algorithms in different sub-graphs of the AIG until convergence usually is enough
to reduce structural bias.
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N

m

n

Leaf set

Root set

Figure 13: Window n ×m at node N

Windowing [15] is a technique useful when dealing with large circuits, it is based on the idea of using
a subgraph of the original AIG. A pair of nodes are at distance k if the number of edges that form the
shortest path between them is k . The window n × m of a node N is the set of nodes that are in a path
between the root set and the leaf set. The leaf set is the set of nodes below N at distance m, similarly the
root set are the nodes above N at distance n. Typically, algorithms use windows of at most m, n ≤ 10.

MFFC Maximum Fan-out Free Cone[15] of a node N is the set of nodes that contain N and all the
nodes that always pass through N to reach the circuit outputs. This is useful specially when a node N
is removed or substituted, because its MFFC can also be removed, this is a common technique in AIG
optimization. Informally, the MFFC of a node is the logic that is not shared and is only used to compute
the partial Boolean function of such node.
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Figure 14: Examples of 3-Feasible and 2-Feasible cuts for node with literal 20 in blue and green respectively.
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Cuts and k-Feasible Cuts [16] A cut of a node N is a set of nodes below N such that any path from
inputs to N passes at least through one node in the cut. k-Feasible Cuts are cuts of at most k nodes.
k-Feasible cuts are important because of their role in k-LUT mapping and AIG rewriting, the main issue is
that there are too many, in a network of n nodes there are nk k-Feasible cuts[16]. Recent techniques can
reduce the number of k-Feasible Cuts[16] by keeping only a representative subset.

Functionally Reduced AIG (FRAIGs)[17] are AIG where no two nodes n1, n2 compute the same
function fn1(x) ̸= fn2(x) and fn1(x) ̸= fn2(x). The underlying idea behind FRAIGs is to restrict the AIG
representation removing functionally equivalent nodes so it is more canonical. FRAIG representations of
AIG can also contain choices, equivalent representations of nodes, usually coming from intermediate steps
of logic synthesis. This information is useful for other steps of logic synthesis, from equivalence checking
to technology mapping. The number of nodes and lengths of paths are good estimators to predict the
quality of technology mapping, but in some cases reducing the number of nodes increases the area and in
the same way, reducing the height of the AIG can increase the delay of the mapping. Using FRAIGs to
keep the original representation and adding as choices the functionally equivalent nodes is a procedure that
guarantees that technology mapping will not be worse after modifying the AIG.

AIG1 AIG2

Figure 15: Miter from AIG1 and AIG2

Combinatorial Equivalence Checking (CEC)[18] Checking that two circuits are equivalent is a crucial
part of EDA, unluckily this problem is intractable, but still possible to solve for circuits of millions of nodes
using specific SAT solvers. A randomized algorithm is also used to speed up the detection of non-equivalent
circuits, a random input is fed as input to both AIG and the circuit is simulated. In case that both circuits
output the same value for all random inputs, a SAT solver is used to check if any other input can produce
different output values, this is a resource intensive task and the number of SAT calls should be minimized.
By means of a SAT solver it is possible to get the inputs that give different outputs in two supposedly
equivalent circuits, to do so a miter Figure 15 is used, a miter consists of an OR of the XOR of all outputs
with the same name in both circuits. Converting this circuit to clauses and feeding them to the SAT solver
will output UNSAT if there is no input that produces a different output in both AIG, hence confirming the
hypothesis that both are equivalent. The idea behind this procedure is that the XOR of two inputs is one
if and only if they are different.
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AIG transformations

2.3 Common optimization techniques

Figure 16: Equivalent unbalanced AIG with depth 4 and balanced AIG with depth 3, from left to right.

Balancing [19] is technique used to reduce the circuit delay reorganizing nodes of the AIG in such a way
that the distance from any node to the output is minimized. As we will explain in subsection 3.3, balancing
is a technique similar to the opposite of AIGROT as one technique cancels out the other. Balance uses
the AND commutativity to reduce all paths from inputs to outputs, this procedure, in some cases prevents
the LUT mapping from reaching an optimal solution in terms of area, as we will show in section 3. On
Figure 16 we observe how AIG balancing can reduce the delay of the critical path.

Rewriting is a greedy algorithm that runs in linear time to optimize AIGs. The goal of rewriting is
to reduce the number of nodes while preserving the depth of the circuit. It works by replacing cuts of
4 variables with optimal precomputed sub-graphs [20][21] using their NPN equivalence class[22]. Two
functions belong to the same NPN class if one can be obtained from the other negating or permuting
the inputs or negating the output. Using SAT solvers it is possible to quickly check NPN equivalence of
functions with hundreds of inputs[23].

Refactor is a technique similar to rewrite, conceptually and in terms of time, but performs deeper
and less structurally biased adjustments[21]. Refactor heuristically selects cuts of at least 10 nodes, then
increases the window size and after some heuristics to select only windows that can be optimized, it is
transformed to SoP and factored, after that, the sub-graph is processed using rewriting and if the resulting
AIG is better in terms of nodes and depth, the cut is substituted with the new representation[22].

Resubstitution implements the function of a particular node using other available nodes in the circuit
[21]. When a node is replaced, the whole MFFC of that particular node can be removed, in most cases
this is not entirely possible, however using other nodes and a bit of logic, it is often possible to reduce the
number of nodes in the MFFC, this process is called k-resubstitution, a generalization of resubstitution
that partially replaces the MFFC.

2.4 Technology mapping optimization

All techniques discussed in previous sections are technology independent and can be applied to any AIG
regardless of the technology library. In this section, we present just one technique that we experimentally
got good results with, that is employed on already mapped circuits.
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SAT LUT[24] is a SAT based technique that takes a circuit already mapped as k-LUT and tries to
reduce its area without increasing the delay. This procedure uses windows of LUTs, starting with only one
LUT and at each step adding the adjacent LUT that adds the least possible number of nodes. When the
maximum window size is reached, then it defines a set of constraints in CNF restricting the number of
LUTs to be one less, if the SAT solver is able to find a solution, the restriction is lowered again until the
minimum number of LUTs is reached. This is done for all windows of LUTs in the mapped circuit. This
process seems very slow, specially considering the fact that is calling a SAT solver multiple times for each
window, however, for small windows of at most 128 nodes it is reasonable and the results are usually good.

2.5 ABC

ABC[9] is an open source software for logic synthesis and formal verification widely used in academic
research. ABC incorporates state-of-the-art algorithms for AIG optimization and technology mapping,
including every technique presented in this section. In practice, most algorithms are not independently
used, and an iterative process repeatedly applies them until no improvements are made. The alias resyn3
(resynthesis) command performs area optimization without increasing delay, its defined as b; rw; rf; b;

rw; rwz; b; rfz; rwz; b which is a combination of the following commands b: Balance, rw: Rewrite
and rf: Refactor, the z is a parameter that allows zero-replacements for further optimization [15].

The package ABC9 is the new version of ABC that it is available from within ABC, it is possible to
share AIGs and mappings between both versions without exiting the program. ABC9 has optimizations
that run faster and new methods for logic synthesis, typically ABC9 commands start with & for instance
&if, &read, &satlut. The SAT LUT command is only available in ABC9. Another improvement of
this version of ABC is allowing technology dependent mapping using custom properties for each type of
LUT, but in the scope of this work, all LUTs are assumed to be equal.

2.6 EPFL Benchmark results

In this section, we show the best currently known mapping for all circuits in the EPFL benchmark library,
along with the technique used to obtain it. As we can see, each technique is capable to improve only a
few circuits. This is to be expected as they use heuristics that might perform well in a particular case, but
produce poor results on others.
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Filename Area Delay Tool

Divisor 3248 1194 HIMap
Sine 1205 61 LUT-optimization

Decoder 264 2 Support-Reducing Decomp
int to float converter 24 4 Resubstitution

Barrel shifter 512 4 ABC Extreme Mapper
Priority encoder 100 26 HIMap

Lookahead XY router 50 5 Support-Reducing Decomp
Square-root 3027 1096 HIMap

Alu control unit 27 2 PIMap
Square 3232 76 LUT-optimization

Memory controller 2019 21 LUT-optimization
Adder 185 119 scaleSyn mapper

i2c controller 200 10 Support-Reducing Decomp
Hypotenuse 39826 4492 LUT-optimization

Voter 1279 19 scaleSyn mapper
Multiplier 4792 114 scaleSyn mapper

Max 522 189 Boolean Methods
Coding-cavlc 68 3 Support-Reducing Decomp

Log2 6513 132 LUT-optimization
Round-robin arbiter 304 80 scaleSyn mapper

Figure 17: Best currently known 6-LUT mappings for EPFL benchmark library. Source[25]

Several methods mentioned in Figure 17 combine different techniques in an iterative process, in a similar
manner, our solution AIGROT also exploits the benefits of performing multiple optimization rounds. On
the next Figure 18, we include a list of these techniques and their description.
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Tool Authors Description

HIMap Xing Li et al. Based on heuristic and iterative
mapping combined with im-
proved logic optimization and
post-mapping methods in ABC.

LUT-optimization L. Amaru et al. Based on LUT optimization[26]
Support-Reducing Decomp L. Machado and J. Cortadella Based on the algorithm [27]
Resubstitution I. Lemberski et al. Based on the resubstitution

method presented in [28]
ABC Extreme Mapper Robert K. Brayton & Alan

Mishchenko
Interactive optimization using a
variaty of optimization scripts
in ABC

PIMap Gai Liu & Zhiru Zhang Based on parallelized itera-
tive improvement mapping pre-
sented in[29]

scaleSyn mapper Longfei Fan and Chang Wu Area-oriented technology map-
ping combined with pre- and
post-mapping logic optimiza-
tion methods in ABC

Boolean Methods E. Testa et al. Algorithm presented in[30]

Figure 18: Authors and summary of techniques that improve current best known mappings of the EPFL
Benchmark library. Source[25]
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3. AIG Rotation

AIGROT is a technology-independent clustering algorithm that rewrites internal connections of k-AND that
are present in AIGs aiming to improve the quality of technology mapping in terms of number of LUTs.
AIGROT is not the opposite of balancing, they share one fundamental idea that is gate reordering, that
takes advantage of the associative and commutative properties (x1x2)x3 → x1(x2x3), but with a crucial
difference which is that there is only one way place the internal AND gates in a balanced AIG and multiple
ways of placing them in an unbalanced one. Gate reordering in AIGs is fast, and in case of balancing the
computation is minimal, on the other hand the number of possible binary trees of size n is large as we
can see in Figure 19. Enumerating all possible binary trees of a particular cluster it is not feasible even
for small circuits, especially considering the fact that AIGROT is meant to be used multiple times in the
optimization process.

AIG has an ordering property that establishes that input literals of ANDs are in ascending ordering. This
ordering removes redundancy and does not have an impact in technology mapping, but it does reduce the
search space as we can see on the following Figure 19. As we will see in the details of the algorithm, for
internal ANDs, this property is ignored and literals are recomputed at the end.

Figure 19: Examples of reordering of ANDs of a 3-size cluster. Black nodes are the internal ANDs, coloured
nodes represent the distinct inputs of the 4-AND. Notice that for any pair of inputs of the cluster in the
same AND the order does not change. In this case, the ordering is red < orange < cyan < blue.

In logic synthesis there is always a trade-off between area and delay, the technique presented in this
thesis aims only at reducing the area of the resulting mapping. However, experimental results show that
when the size is reduced the depth of the circuit also decreases. In any case, the delay will be much worse
than the minimum depth equivalent circuit which usually has a critical path orders of magnitude smaller,
at the cost of a much larger area.

For purposes of evaluating the time performance of AIGROT, clustering detection and AIG processing
can be ignored as it is negligible and unavoidable, the principal variable is the selected heuristic. Our
proposal is really fast, it runs in a couple seconds even on largest networks from the EPFL benchmark.
This property makes it suitable to be used with other logic synthesis algorithms, in our experiments we
used an iterative process until convergence detailed in section 4.
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3.1 Motivating example

In this section we present one example of a situation where current technology mapping with 3-LUT does
not produce the optimal result with 2 LUTs and instead uses 3 LUTs. Common techniques for logic
synthesis such as rewriting, resubstitution or refactoring are not able to produce an AIG that can be
mapped using only 2 LUT, which is the optimum. In Figure 22 and Figure 21 we represent the function
f (i0, i1, i2, i3, i4) = (i4 + i0)(ī1 + ī2)(ī3 + i1)(i2 + i3) using two equivalent AIGs. Notice that nodes 22, 14
and 20 behave like a 4-input AND, and the only difference between them is that the inputs are reordered.

22

14

10 12

20

16 18

i0i4 i1 i2 i3

Figure 20: Balanced AIG

22

10 20

12 14

16 18

i0i4 i1 i2 i3

Figure 21: Rotated AIG

Technology mapping using 3-LUT produces the following results:

2-LUT
1 1 | 1

3-LUT
-00 | 1

0-0 | 1

3-LUT
-11 | 1

1-0 | 1
2-LUT
0 0 | 1

i4 i0 i1 i2 i3

Figure 22: Balanced AIG with area-driven technology
mapping if -a -K 3

3-LUT
1-1 | 1

-11 | 1

3-LUT
001 | 1

110 | 1

i0 i1i4 i2 i3

Figure 23: Rotated AIG mapping with if -a -K 3
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AIG transformations

As we can see in Figure 23 and Figure 22 the ordering of the 3-AND clustering has an impact in the
number of LUT needed in technology mapping, the balanced AIG on the left has a mapping with 4 LUT,
on the other hand the unbalanced AIG has a better mapping with size 2. This result can be accomplished
using our implementation of AIGROT. There is an step-by-step explanation of AIGROT over this example
in the following subsection 3.3.

3.2 Statistics of AND clusters on the EPFL benchmark

We have shown that this technique can improve technology mapping, in this section we evaluate the
possible impact of using it in real circuits. To do so, we use the circuits of the EPFL Benchmark[8], and
analyze the quantity and size of AND clusters of at least 3 inputs that are present in each one.

Filename No. k-ANDs No. of internal ANDs
(mean)

Divisor 300 2.16
Sine 663 3.67

Decoder 0 0
int to float converter 52 2.21

Barrel shifter 384 2.84
Priority encoder 26 2.23

Lookahead XY router 19 10.37
Square-root 3083 2.08

Alu control unit 12 2.08
Square 334 2.0

Memory controller 9466 2.06
Adder 0 0

i2c controller 246 2.24
Hypotenuse 8135 2.0

Voter 457 2.0
Multiplier 1462 2.85

Max 294 2.42
Coding-cavlc 89 2.15

Log2 3902 3.83
Round-robin arbiter 129 2.47

Figure 24: Number of k-ANDs of k ≥ 2 in EPFL Benchmark circuits

We observe that multiple fan-in ANDs are common in most circuits, and that the number of possibilities
of rearranging their inputs is large, hence trying all combinations would be too time consuming. In cases
adder and dec the number of multiple fan-in ANDs is zero, this does not mean that this technique can
not do anything to improve this particular circuit mapping. Our proposal in section 4 consists in applying
AIGROT in an iterative sequence of algorithms such as rewriting, refactoring and it is highly probable that
the number of clusters increases or at least is more than zero in an intermediary step.
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3.3 Algorithm and Implementation

In this section we define AIGROT and the data structures used to compute the proposed heuristic. This
section is divided in two parts, first we introduce definitions and perform overview of the algorithm applied
to the motivating example in subsection 3.1. Afterwards, we formally define the algorithm and detail the
data structures used.

n

Figure 25: AND cluster of node n. Notice that node n is not necessarily the root, which is represented as
the green node. Blue nodes are not part of the AND cluster, they have multiple outputs and can not be
reordered freely, instead they are part of the input.

We define the input set of node n as the subset of primary inputs that are in the cut of node n, in
the previous Figure 25 we want to know the primary inputs that are in the cuts of blue nodes. Similarly, we
are interested in the other set of node n, which is the set of primary inputs that are still used if the the
cut of node n is removed from the circuit, in other words, the other set of a node n is the union of the
input set of all other nodes in the circuit that are not in the cut of n. Technically, for each AND cluster
we only consider the subset of nodes and primary inputs that are present in the cut of the root node. If
there is not any path between a primary input and a particular k-AND, that input is not considered as it
does not provide any information for reordering the gates and reorganizing the gates does not have any
impact on that primary input. This means that the other set of a node n in a particular k-AND cluster
can be computed as the union of all the input set of the rest of the k inputs.

The algorithm starts by finding all k-ANDs that are present the circuit. The first step to process a cluster
is to remove internal ANDs, these nodes have exactly one fan-out and are not outputs of the circuit, with
the exception of the root node which is a special case that can break both rules. These two mentioned
properties are what allows to freely move and interchange the nodes without fear of modifying the function
of any primary output of the circuit.

10 12 16 18

i0i4 i1 i2 i3

Figure 26: Before clustering
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AIG transformations

Essentially, AIGROT is a hierarchical agglomerate clustering (HAC) algorithm, hence we must define
a node merging operation and a selection criterion, also known as distance between pairs of nodes. When
two nodes are merged, an AND is placed in the circuit with those nodes as children, then input set and
other set are computed for the new AND node.

When a pair of nodes p, q are merged, the input set of the union is the union of their input set.
The other set is not that trivial to compute, as it depends on the input set of other nodes, there
are more efficient ways to do this, but we do so applying the definition, we compute the union of all
input set skipping nodes p and q. For the heuristic criteria, we store how these sets evolve between
iterations, we define ∆I = |input setpq| −max(|input setp|, |input setq|) and ∆O = |other setp

⋃
other setq| − |other setpq|. ∆I is the increase of the input set and ∆O is the decrease of the
other set. Both variables are positive integers. On the following Figure 27 we see an example of these
variables in our motivating example.

22

14

10 12

20

16 18

i0i4 i1 i2 i3

4-AND

Node input set other set

10 {i0, i4} {i1, i2, i3}
12 {i1, i2} {i0, i4, i1, i2, i3}
16 {i1, i3} {i0, i4, i1, i2, i3}
18 {i2, i3} {i0, i4, i1, i2, i3}

Pair input set other set ∆I ∆O β

10,12 {i0, i4, i1, i2} {i1, i2, i3} 2 2 2
10,16 {i0, i4, i1, i3} {i1, i2, i3} 2 2 2
10,18 {i0, i4, i2, i3} {i1, i2, i3} 2 2 2
12,16 {i1, i2, i3} {i0, i4, i2, i3} 1 1 2
12,18 {i1, i2, i3} {i0, i4, i1, i3} 1 1 2
16,18 {i1, i3, i2} {i0, i4, i1, i2} 1 1 2

Figure 27: Computing the sets of each node and the heuristics of all pairs of nodes.

On the previous Figure 27 there is a last colum β, this is the last parameter of the heuristic and is
defined as β = |other setpq∩input setpq|. Our goal is that the intersection of the input set and the
other set is minimum, the underlying idea is to increase the isolation between parts of the circuit that
do not share variables.

Finally, having ∆I , ∆O and β the heuristic first selects the pairs that have the minimum ∆I , remember
that a k-LUT can compute any circuit of k variables, hence the most prioritary operation is to not increase
the number of variables. If there is more than one node that has the minimum ∆I , the heuristic checks
∆O, hence adding the minimum number of variables that decrease the complexity of other nodes. Again,
if there is still more than one pair to choose, it uses β to pick the pair that isolates the most the variables
between the input set and the output set. If there is still more than one node to choose, it takes the
last.

On Figure 27 the first step can pick any of the pairs {12,18}, {16, 18}, {12, 18} as they have the
same priority, we pick the last one for the following step, but in terms of technology mapping it would be
the same if we choose any other one.
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22

14

10 12

20

16 18

i4 i0 i1 i2 i3

4-AND
Node input set other set

10 {i0, i1} {i1, i2, i3}
12 {i1, i2} {i0, i4, i1, i2, i3}

(16,18) {i1, i2, i3} {i0, i4, i1, i2}

Pair input set other set ∆I ∆O β

10,12 {i0, i4, i1, i2} {i1, i2, i3} 2 2 2
10,(16,18) {i0, i4, i1, i2, i3} {i1, i2} 2 3 2
12,(16,18) {i1, i2, i3} {i0, i4} 0 3 0

Figure 28: Second step of the clustering with computed heuristics

As we can see on Figure 28, the heuristic for the last pair 12, (16, 18) is perfect, ∆I is zero, meaning
that we do not add new variables, we decrease the other set as much as possible and the intersection
between the input set and the other set is zero, hence this cluster is fully isolated from the rest.
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14

10 12

20

16 18

i4 i0 i1 i2 i3

4-AND

Node input set other set

10 {i0, i4} {i3, i1, i2}
(12,16,18) {i1, i2, i3} {i0, i4}

Pair input set other set ∆I ∆O β

(12,10,16,18) All {∅} 2 5 0

Figure 29: Third step of the clustering with computed heuristics

On Figure 29 the last step is computed, there is only one choice that is to merge the nodes 10 and
(12, 16, 18). Notice that on the last step the other set is empty and β is zero. The result is presented
on the following Figure 30.
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22

14

10 12

20

16 18

i4 i0 i1 i2 i3

4-AND

Figure 30: Final result

Now that we have seen how does it work on an example and how accomplishes its task, we formally
describe how this is computed and implemented.

First we need the input set of all inputs of the k-AND, A naive approach that works well is to store in
all nodes a vector of bits, called the input set of length equal to the number of inputs of the circuit. Bit
k of node n is 1 if and only if there is path from input k to node n or in others words, the primary inputs
of cut n.

Algorithm 1 Compute input set of all nodes

1: function ComputeInputSet(node)
2: if node.type = input then ▷ Recursion base case
3: node.inputSet = node.input
4: return
5: if node.inputSet.size > 0 then ▷ Avoid recomputing all childs if called again
6: return
7: l ← node.leftChild
8: r ← node.rightChild
9: ComputeInputSet(l)

10: ComputeInputSet(r)
11: node.inputSet ← l.inputSet ∨ r.inputSet
12: return

The previous algorithm is called for all nodes in the AIG, in some cases starting from all outputs is not
enough as there are nodes without parents that should also be computed, for example, if using choices. In
fact, we do not need the input set of all nodes, only for the inputs of super ANDs, but in terms of time and
space it is not a big deal, and in any case, more than enough for the EPFL benchmark circuits.

Finding all AND clusters can also be done in linear time, similarly to finding the primary inputs of nodes,
we visit each node that does not already belong to a cluster and start searching a cluster from there. This
is done using the function Expand.

The function Expand obtains the largest cluster of nodes containing n. First, it traverses up the AIG
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Algorithm 2 Find all AND clusters

1: function FindAndClusters(node)
2: ands ← Set of all ANDs
3: clusters ← ∅
4: while ands.size > 0 do
5: a ← ands.first
6: c ← Expand(a)
7: if c.size > 1 then ▷ If the cluster only contains a it is not a super AND
8: clusters.append(c)

9: ands.remove(c)

until an inverter, an output or multiple parents are found. It then traverses down adding all nodes that are
not outputs, do not have multiple parents and are connected without inverters in-between. The function
returns all the nodes that form the k-AND including n. Notice that the top-most node in the cluster is the
only one that can have multiple outputs and that the inputs of the k-AND are not included in the cluster.

The following algorithm Expand receives an AND node and traverses the AIG up until it reaches the top
node in the cluster, this node is important because it is unique and contains the output of the k-AND (See
the green node in Figure 25). Then it goes back, from the top node to the leafs of the cluster.

Algorithm 3 Expanding the cluster that contains an AND

1: function Expand(node, direction = up)
2: if direction is up then
3: parents ← getParents(node) ▷ The sign function is 1 if the literal is inverted 0 otherwise
4: while parents.size = 1 and !sign(edge between node and parent) do
5: node ← node.parents[0]
6: parents ← getParents(node)
7: if node is output then break

return Expand(node, direction = down)
8: else
9: cluster ← Set(node)

10: if !(node.left is output) and getParents(node.left).size = 1 and !SIGN(node.left) then
11: leftNodes ← Expand(node.left, direction=down)
12: cluster ← merge(cluster, leftNodes)

13: if !(node.right is output) and getParents(node.right).size=1 and !SIGN(node.right) then
14: rightNodes ← Expand(node.right, direction=down)
15: cluster ← merge(cluster, rightNodes)

return cluster

At this point we have the ANDs and the input set of their inputs. Using this information and an
heuristic we reorganize the clusters. At this point we introduce the output set(n) which is the set
of PI that are present in the AIG if we cut node n. When rearranging a cluster the input set and
other set change, the following function merges the input set when merging two nodes and recomputes
the other set as the union of all input set of other nodes.
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Algorithm 4 Reorganizing Cluster

Require: All nodes have their input set already computed

1: function Reorganize(inputs, ands) ▷ inputs of the k-AND, internal ANDs that form the k-AND
2: groups ← inputs ▷ groups contains the set of nodes to be merged
3: for i ∈ groups do ▷ Compute the other set as the union of input set

4: for j ∈ groups where i ̸= j do
5: groups[i].other set ← Merge(groups[i].other set, groups[j].input set)

6: for i ∈ ands.size do
7: pair ← PickPair(groups)
8: new element ← MergePair(pair)
9: groups ← groups.remove(pair)

10: for j ∈ groups do ▷ The pair is already removed from groups
11: new element].other set ← Merge(new element.other set, groups[j].input set)

12: groups ← groups.add(new element)

On the previous algorithm there are two new functions PickPair and MergePair. The first one chooses
which pair of nodes of the cluster should be merged by using an AND. The function MergePair joins the
input set of both nodes and creates a new node with properties to use in the heuristic. The function
MergePair can not compute the other set, as it does not have access to other nodes, this is why the
other set is computed afterwards in lines 10-11.

Algorithm 5 Merge pair of nodes in a clustering context

1: function MergePair(pair)
2: n ← EmptyNode
3: n.input set ← Merge(pair[0].input set, pair[1].input set)
4: n.input set increase ← |n.input set| - max(|pair[0].input set|, |pair[1].input set|)

return n

To choose a good pair of nodes to merge, we use the naive approach that takes all possible pairs
and by means of an heuristic it selects the best candidate. This implementation can be further optimized
caching the heuristic values of each pair, but practical experiments show that current implementation is
quick enough for our tests and large AIGs.
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Algorithm 6 Select a pair of nodes to merge in a clustering context

1: function PickPair(groups)
2: best ← Pair
3: found ← False
4: for i ∈ groups do
5: for j ∈ groups where i < j do ▷ Merging groups (i , j) is the same as merging (j , i)
6: n ← MergePair(groups[i],groups[j])
7: for k ∈ groups where k ̸= i and k ̸= j do ▷ Compute other set of node n
8: n.other set ← Merge(n.other set, groups[k].input set)

9: count ← |Merge(groups[i].other set, groups[j].other set)| ▷ (1)
10: n.other set decrease ← count - |n.other set|
11: n.beta ← |n.input set ∩ n.other set|
12: if !found or IsBetter(n, best) then
13: best ← n
14: found ← True

return best

(1) Here we compute the number of nodes that would be in other set if these nodes where on different
clusters. For example, if we have two nodes in a cluster and both have {2,3} as their input set, then their
output set will also have {2,3}. If we assume that there are no other nodes with {2,3} in their input set,
then joining them decreases the other set by 2, this is in fact what we are computing: The union of the
nodes will have other set merge = other set 1

⋃
other set 2 - {2,3}. Then other set decrease is

2.

At this point, we already have the solution space with all the possible combinations of choices of pairs
of elements to join. The next step is to define a heuristic that joins the pair of nodes that produces the
best mapping. In this case the heuristic is to first do not increase the input set of the two nodes, and if
there are more than one solution, pick the one that reduces the most the other set. In case that there are
still more than one solution, it chooses the one with lower β, which is the node that better separates the
internal function from the outside node’s functions. If there are multiple options available it chooses the
last one.

Algorithm 7 Heuristic

1: function IsBetter(a, b) ▷ If true, pair a is better than b
2: if a.input set increase < b.input set increase then return True

3: if a.input set increase > b.input set increase then return False

4: if a.other set decrease > b.input set decrease then return True

5: if a.other set decrease > b.input set decrease then return False

return b.beta > a.beta
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4. Experiment Design

AIGROT is a transversal technique and its performance increases when used in combination of others
state-of-the-art synthesis algorithms. After analyzing the available algorithms in ABC and trying several
combinations that have shown to provide good results against the EPFL benchmarks, we developed the
following iterative process Figure 31.

Original BLIF

Optimization process

Resyn3
choice
ifraig

AIGROT

R
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t
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Best AIG Best BLIF

Final BLIF

&
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u
t

Combinatorial Equivalence Checking

(*) Technology mapping

Figure 31: Experiment design

The process is divided in four principal blocks, the first one starts loading the original BLIF from
EPFL Benchmarks, the second block is an iterative sequence of logic synthesis optimization, the third
one is technology mapping optimization and the last step consists in checking that the final mapping is
equivalent to the original circuit.

For some circuits, performing this experiments on the entire EPFL Benchmark is a bit slow, especially
commands &satlut with a large window and cec for hyp circuit, however in a personal computer it is
possible to run all the benchmark in a couple of hours.
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4.1 Converting BLIF to AIG

Berkeley Logic Interchange Format (BLIF) it is the common format in academic research to represent
k-LUT mappings, to improve any circuit we first undo the mapping in order to obtain an equivalent
AIG to perform logic synthesis. Using ABC this is a straightforward process, first load the BLIF using
read filename.blif, then convert it to AIG using the strash command, and write the AIG file using
write aiger filename.aig.

4.2 Logic synthesis

This is the iterative part of logic optimization, the steps of actions that are repeated is resyn3, choice,
ifraig and AIGROT. As explained in section 2, the number of nodes and depth of the circuit is not a
perfect estimator of the quality of the mapping. To not lose intermediary AIG that produce good mappings,
we cache the best circuit at each iteration before and after applying AIGROT. ABC allows different types
of technology mapping, area oriented and delay oriented. We use both techniques as in some cases we
reach better area using delay optimization. The commands in ABC to perform the technology mapping are
if -a -K 6 for area driven technology mapping and if -K 6 for delay technology mapping optimization.

4.3 Technology mapping

At this point, we already have the best AIG for technology mapping, we map the circuit to 6-LUT and use
the command &satlut for further optimization of the circuit. The size of the window is set to 128, and
the number of conflicts is limited to 10.000. As the authors of this techniques comment on their paper,
often using such large window is not worth the effort and using windows of size 32 produces similar results,
but for the sake of the experiment we used 128.

4.4 Combinatorial Equivalence Checking

The last step is checking that everything works and that the final circuit is equivalent to the original one.
This task is performed using the command cec from ABC.
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5. Results

The method performs 10 iterations of optimization but usually after 3 or 4 full iterations the AIG stops
improving. In the following Figure 32 we observe how the mapping of Square root circuit keeps improving
until convergence. The number of steps is 20 because we store the AIG before and after applying AIGROT,
this is what causes the small peaks and valleys.
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Figure 32: LUT mapping improvement on the sqrt circuit using if -K to get the statistics at each iteration,
before and after AIGROT.

Previous Figure 32 shows how applying this technique improves both logic synthesis and technology
mapping. In this particular case, we observe how AIGROT decreases the number of LUTs needed to map
the circuit and then the next pass of resyn3,choice,ifraig deteriorates the solution, creating these small
peaks. On other examples of these dataset, the peaks are made by AIGROT. This behaviour is anecdotal,
as the usage of AIGROT usually improves the best solutions found or helps the other tools to find new
local minimums.

In the following two tables we present the results of applying AIGROT among the techniques described
in the previous section to the EPFL Benchmark. We split the results in two tables, the first one is area
driven technology mapping and the second one is standard technology mapping. It’s important to remark
that best known results do not come from the same algorithm, in fact it is quite the opposite, most
algorithms are specific and only improve a couple of mappings.

As the final LUT optimization provides a substantial improvement, we distinguish between the best
mapping obtained using only logic synthesis (resyn3, choice, ifraig, AIGROT ) from the overall best mapping
using LUT optimization (&satlut).
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File Area Depth Area Area Depth Area improvement
AIG Optimization &satlut

Adder 185 119 244 192 64 -0.038
Barrel shifter 512 4 512 512 4 0.000
Divisor 3248 1194 4063 3159 1129 0.027
Hypotenuse 39826 4492 48051 39799 4931 0.001
Log2 6513 132 7473 6546 127 -0.005
Max 522 189 673 673 139 -0.289
Multiplier 4792 114 5672 4594 96 0.041
Sine 1205 61 1439 1240 65 -0.029
Square-root 3027 1096 3795 3104 1207 -0.025
Square 3232 76 3989 3241 67 -0.003

Round-robin arbiter 304 80 2599 2599 19 -7.549
Alu control unit 27 2 28 28 2 -0.037
Coding-cavlc 68 3 113 113 5 -0.662
Decoder 264 2 287 287 2 -0.087
I2c controller 200 10 285 283 10 -0.415
Int to float converter 24 4 46 46 8 -0.917
Memory controller 2019 21 10648 10532 48 -4.216
Priority encoder 100 26 237 197 56 -0.970
Lookahead XY router 24 5 71 71 10 -1.958
Voter 1279 19 1617 1252 17 0.021

Figure 33: Results using area driven technology mapping (6-LUT). The first two columns of area and depth
belong to the smaller implementation currently know for each EPFL Benchmark. The third column is the
number of 6-LUTs of the mapping of the best AIG that is obtained using logic synthesis. The following
two columns are the final area and depth after using &satlut on the best AIG. Finally the last column is
the improvement on the number of LUTs between columns 1 and 4.

On the previous Figure 33, we see that most results obtained by AIGROT are not far from best currently
known mapping. Actually, we were able to improve the mapping of four circuits Divisor, Multiplier, Voter
and Hypotenuse. However, it should be noted that in the case of Hypothenuse, our optimization pipeline is
not improving the AIG and as we can see on column ‘&satlut’ the improvement must be attributed to the
‘&satlut’ tool. It is possible to further improve these mappings using more than one iteration of &satlut,
but the improvement is a couple LUTs and we prefer to keep things simple. Notice also, that in all cases
where the technique presented in this thesis improves the solution the delay of the solution is also reduced.

On the following table we repeat the previous process but using standard technology mapping instead
of area driven technology mapping. One can expect to get worse values than before, since the goal is
to reduce the area. However, using this method, we are able to reach a new best mapping for circuit
Square-root. In general, results are worse, but still good considering that we are comparing against the
best known mapping.

31



AIG transformations

File Area Depth Area (Phase 1) Area (&satlut) Depth Area improvement

Adder 185 119 243 230 52 -0.243
Barrel shifter 512 4 512 512 4 0.000
Divisor 3248 1194 4672 4175 1091 -0.285
Hypotenuse 39826 4492 44625 40069 4328 -0.006
Log2 6513 132 7838 7272 101 -0.117
Max 522 189 757 735 88 -0.408
Multiplier 4792 114 5936 5480 71 -0.144
Sine 1205 61 1465 1386 47 -0.150
Square-root 3027 1096 3008 3008 1053 0.006
Square 3232 76 3967 3309 66 -0.024

Round-robin arbiter 304 80 2722 2722 18 -7.954
Alu control unit 27 2 28 28 2 -0.037
Coding-cavlc 68 3 118 115 5 -0.691
Decoder 264 2 287 287 2 -0.087
I2c controller 200 10 292 289 4 -0.445
Int to float converter 24 4 47 47 4 -0.958
Memory controller 2019 21 10964 10800 36 -4.349
Priority encoder 100 26 191 187 31 -0.870
Lookahead XY router 24 5 83 76 12 -2.167
Voter 1279 19 1489 1437 15 -0.124

Figure 34: Results using standard technology mapping (6-LUT). As in Figure 33, the first two columns of
area and depth belong to the smaller implementation currently know for each EPFL Benchmark. The third
column is the number of 6-LUTs of the mapping of the best AIG that is obtained using logic synthesis.
The following two columns are the final area and depth after using &satlut on the best AIG. Finally the
last column is the improvement on the number of LUTs between columns 1 and 4.
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6. Conclusions and future work

6.1 Conclusions

AIGROT technology independent clustering algorithm that improves current state-of-the-art technology
mapping by applying transformations to and-inverter graphs. Adding this technique to the set of algorithms
for AIG optimization reduced the size of several circuits of the EPFL benchmark with little impact on
runtime: The results improve the best known 6-LUT mapped circuits for Divisor reducing 2.7% the number
of LUTs, Multiplier reduced by 4.1%, Voter 2.1% and Square Root a 6%. Our results show that this
technique is not only useful to reduce the area, but that it can also reduce the delay. Additionally, in cases
where our method is not able to beat the best current mapping, our results show that our solution quality
approaches it.

Our contribution includes an heuristic to reorder the k-AND clusters using efficient data structures and
fast algorithms especially designed to perform well in large circuits of millions of logic gates. Although this
algorithm is specially locally biased, experimental results show that in an iterative process that contains
other techniques, it is able to perform deep improvements to the overall circuit.

6.2 Future work

The circuits of the EPFL Benchmark may not be the best examples for discovering the true potential
of this tool, most circuits are small and hard to further optimize using heuristics, since it is possible to
apply computationally intensive algorithms to enumerate most combinations. Large circuits that contain
larger than 10-AND clusters, are hard to optimize by the same means due to their intrinsic exponential
computational complexity. It would be interesting to apply AIGROT to such circuits and study if the
proposed heuristic improves the mappings. Along this path, it would also be interesting to implement this
process in parallel treating multiple clusters at the same time.

The approach in the experiment involves saving a copy of the best AIG between optimization steps.
However, AIG with choices can be used to store equivalent representations of each cluster and let the
technology mapper to chose the most convenient one. In combination with the above, it would be interesting
to implement other heuristics and store all results inside the same AIG.

Most tools that are being used in the optimization pipeline preserve the delay, it would be interesting
to combine AIGROT with other techniques that focus explicitly on reducing size and ignore the delay of
the circuit. Also, mixing standard technology mapping with area driven technology mapping is a path that
is worth researching.
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Acronyms

AIG And-Inverter graphs. 1, 3–8, 10–15, 18–20, 28–33

AIGROT AIG Rotation. 1, 7–9, 14, 16, 18, 20–22, 28–31, 33

BBDD Biconditional Binary Decision Diagrams. 4

BDD Binary Decision Diagrams. 4

BLIF Berkeley Logic Interchange Format. 28, 29

CB Connection blocks. 5

CEC Combinatorial Equivalence Checking. 13, 28

CLB Configurable Logic Blocks. 5

CNF Conjunctive Normal Form. 10, 15

CPLD Complex Programmable Logic Devices. 6

CPU Central Processing Unit. 5, 10

DAG Directed Acyclic Graph. 5, 11

EDA Electronic Design Automation. 3

FPGA Field-Programmable Gate Array. 1, 3, 5–7, 10

FRAIG Functionally Reduced AIG. 13

GPU Graphics Processing Unit. 5

HAC hierarchical agglomerate clustering. 22

IC Integrated circuits. 3

LUT Lookup Table. 1, 5–8, 13–16, 18–20, 29–33

MCSP Minimum Circuit Size Problem. 3

MFFC Maximum Fan-out Free Cone. 11, 12, 14

MIG Majority-Inverter-Graphs. 4

MOSFET metal–oxide–semiconductor field-effect transistor. 3

PAL Programmable Array Logic. 6

34



PI Primary Input. 11

PO Primary Output. 11

PoS Product of Sums. 4

ROBDD Reduced Ordered Binary Decision Diagram. 4

ROM Read-Only Memory. 6

SAT Boolean Satisfiability Problem. 7, 10, 13–15

SMT SAT Modulo Theories. 10

SoP Sum of Products. 4, 6, 14

SW Switching boxes. 5

TT Truth Tables. 3, 4

VHDL Very High-Speed Integrated Circuit Hardware Description Language. 3, 10
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