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Abstract

The present master thesis is based on the recently presented doctoral thesis of Dr. Victor Hugo
Cantu Medrano, addressing multiobjective optimization problems in Process Engineering with
several alternative resolution methods using Evolutionary Computation.

In his thesis, a new algorithm to find the optimal design of the Hydrogen Supply Chain while
minimizing economic costs and environmental impact is presented. For its resolution, the
algorithm divides the problem into two subproblems or levels. The first level deals with the
design of the HSC structure (sizing and location of the facilities). A second level that solves the
subproblem corresponding to the operation of the supply chain (production and transportation).
The technique used for its resolution is a hybridization of the MOEA SMS-EMOA, for the first
level, with a linear programming solver that uses a scalarization function to address the two
objectives considered in the second level.

In this line, this master thesis consists of developing an extension of this same algorithm with
the objective of taking advantage of all the information generated in the second level to
increase its efficiency. To achieve this, the second level is executed several times for each
execution of the first level, using each time a different vector of weights in the scalarization
function. But this new logic implies the readaptation of the whole algorithm.

First, the Hydrogen Supply Chain problem is presented and the technique for solving the
original algorithm is discussed. Subsequently, the necessary modifications to the MOEA are
presented in order to be able to apply the new approach to the algorithm. With the new
algorithm implemented, a study is carried out for the definition of the weight vectors and
different scalarization functions are studied to try to increase its efficiency. Finally, the results
obtained with the new algorithm and those of the original algorithm are compared to determine
whether the new version is capable of solving the same problems using fewer computational
resources.
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Résumé

Cette these de master est basée sur la thése de doctorat recemment soutenue par Dr Victor
Hugo Cantl Medrano, dans laquelle il expérimente plusieurs méthodes de résolution
alternatives a l'aide méthodes évolutionnaires pour résoudre les problemes d'optimisation
multiobjectifs dans le domaine du génie des procédés.

Dans sathése, le Dr Cantu présente un nouvel algorithme permettant de trouver la conception
optimale de la chaine dapprovisionnement en hydrogéne tout en minimisant les co(ts
économiques et l'impact environnemental. Pour sa résolution, I'algorithme divise le probléme
en deux sous-problemes ou niveaux. Le premier niveau traite de la conception de la structure
de la chaine logistique hydrogéne (dimensionnement et emplacement des installations). Un
second niveau résout le sous-probléme correspondant a I'exploitation de la chaine logistique
(production et transport). La technique utilisée pour sa résolution est une hybridation du MOEA
SMS-EMOA, pour le premier niveau, avec un solveur de programmation linéaire qui utilise une
fonction de scalarisation pour traiter les deux objectifs considérés dans le second niveau.

Dans cette lignée, ce mémoire de master consiste a développer une extension de ce méme
algorithme avec I'objectif de tirer profit de toute l'information générée dans le deuxiéme niveau
pour augmenter son efficacité. Pour ce faire, le second niveau est exécuté plusieurs fois pour
chaque exécution du premier niveau, en utilisant a chaque fois un vecteur de poids différent
dans la fonction de scalarisation. Mais cette nouvelle logique implique la réadaptation de
I'ensemble de l'algorithme.

Tout d'abord, le probléme de la chaine logistique hydrogéne est présenté et la technique de
résolution de l'algorithme original est discutée. Ensuite, les modifications nécessaires au
MEOA sont présentées afin de pouvoir appliquer la nouvelle approche a l'algorithme. Avec le
nouvel algorithme implémenté, une étude est réalisée pour la définition des vecteurs de poids
et différentes fonctions de scalarisation sont étudiées pour essayer d'augmenter son efficacité.
Enfin, les résultats obtenus avec le nouvel algorithme et ceux de l'algorithme original sont
comparés pour déterminer si la nouvelle version est capable de résoudre les mémes
problemes en utilisant moins de ressources informatigques.
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Resumen

Este Trabajo Final de Master parte de la tesis doctoral recientemente presentada del doctor
Victor Hugo Canti Medrano, donde se abordan problemas de optimizacion multiobjetivo en
Ingenieria de Procesos experimentando con varios métodos de resolucion alternativos
haciendo uso de la Computacion Evolutiva.

En su tesis, el doctor Cantl presenta un nuevo algoritmo para encontrar el disefio 6ptimo de
la Hydrogen Supply Chain minimizando los costes econdmicos y el impacto ambiental. Para
su resolucion, el algoritmo divide el problema en dos subproblemas o niveles. Un primer nivel
gue aborda el disefio de la estructura de la HSC (dimensionamiento y ubicacion de las
instalaciones). Un segundo nivel que resuelve el subproblema correspondiente a la operacion
de la cadena de suministro (produccién y transporte). La técnica empleada para su resolucién
es una hibridacion del MOEA SMS-EMOA, para el primer nivel, con un solver de programacion
lineal que utiliza una funcién de escalarizacion para tratar los dos objetivos considerados en
el segundo nivel.

En esta linea, este trabajo consiste en desarrollar una extension de este mismo algoritmo con
el objetivo de aprovechar toda la informacién que se genera en el segundo nivel para
aumentar su eficiencia. Para lograrlo se ejecuta varias veces el segundo nivel por cada
ejecucion del primer nivel, utilizando cada vez un vector de pesos diferente en la funcién de
escalarizacion. Pero esta nueva légica implica la readaptacion de todo el algoritmo.

En primer lugar, se presenta el problema de la Hydrogen Supply Chain y se discute la técnica
de resolucion del algoritmo original. Posteriormente se presentan las modificaciones
necesarias en el MOEA para poder aplicar el nuevo enfoque al algoritmo. Ya con el nuevo
algoritmo implementado se realiza un estudio para la definicion de los vectores de peso y se
estudian diferentes funciones de escalarizacion para tratar de aumentar su eficiencia. Por
ltimo, se comparan los resultados obtenidos con el nuevo algoritmo y los del original para
determinar sila nueva version es capaz de resolver los mismos problemas utilizando un menor
ndmero de recursos computacionales.
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Resum

Aquest Treball Final de Master té el seu origen en la tesis doctoral recentment presentada del
doctor Victor Hugo Cantu Medrano, en la qual s’aboren problemes d’optimitzacié multiobjectiu
en enginyeria de processos, experimentant amb diversos métodes de resolucio alternatius
fent Us de la Computacié Evolutiva.

En la seva tesis, el doctor Cantu presenta un nou algorisme per a trobar el disseny optim de
la Hydrogen Supply Chain minimitzant els costos econdmics i I'impacte ambiental. Per a la
seva resolucio, I'algoritme divideix el problema en dos subproblemes o nivells. Un primer nivell
aborda el disseny de l'estructura.de la HSC (dimensionament i ubicacio de les instal-lacions).
Un segon nivell resol el subproblema corresponent a l'operacié de la cadena de
subministrament (produccié i transport). La técnhica empleada per a la seva resolucio és una
hibridacié6 del MOEA SMS-EMOA, per al primer nivell amb un solver de programacio lineal
que utilitza una funcié d’escalaritzacié per a tractar els dos objectius considerats en el segon
nivell.

En aquesta linia, aquest treball consisteix a desenvolupar una extensié d’aquest mateix
algorisme amb l'objectiu d’aprofitar tota la informacié que es genera en el segon nivell per a
augmentar la seva eficiencia. Per a aconseguir-ho s’executa diverses vegades el segon nivell
per cada execucio del primer nivell, utilitzant cada vegada un vector de pesos diferent en la
funcié d’escalaritzacio. Perd aquesta nova logica implica la readaptacio de tot I'algorisme.

En primer lloc, es presenta el problema de la Hydrogen Supply Chain i es discuteix la técnica
de resolucié de I'algorisme original. Posteriorment es presenten les modificacions necessaries
en el MOEA per a poder aplicar el nou enfocament a I'algorisme. Ja amb el nou algorisme
implementat es realitza un estudi per a la definicié dels vectors de pes i s’estudien diferents
funcions d’escalaritzacio per a tractar d’augmentar la seva eficiencia.

Ja amb el nou algorisme implementat es realitza un estudi per a la definicié dels vectors de
pes i s’estudien diferents funcions d’escalaritzacié per a tractar d’augmentar la seva eficiéncia.
Finalment, es comparen els resultats obtinguts amb el nou algorisme i els de I'original per tal
de determinar si es possible obtenir els mateixos resultats fent us d’'un menor nimero de
recursos computacionals.
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1. Introduction

In a world increasingly aware of environmental issues, alerted to the need for changes in the
use of energy, engineering must be able to respond to these future challenges and continue
to meet our needs.

This project presents an algorithm from the Evolutionary Computing branch aimed at designing
a Hydrogen Supply Chain in the French region of Midi-Pyrénées optimizing the economic and
environmental costs, since, in order for hydrogen to be considered as an alternative energy
source, economic efficiency must be achieved. At the same time the carbon footprint produced
by fossil fuels must be reduced.

The objective of the project is the development and experimentation of an algorithm based on
evolutionary techniques that provides the different optimal configurations of the design of the
Hydrogen Supply Chain for the territory. More precisely, the algorithm provides a set of
solutions belonging to a Pareto Front, i.e., the types and size of the production and storage
facilities and the mode of transport used from a variety of energy sources.

To achieve this objective, the current situation of hydrogen as an energy source has been
investigated and the literature on multi-objective optimization problems has been analyzed.
Specifically, the algorithm has been built as an extension of the original proposal developed
by Victor Hugo Cantu in the work "A Novel Matheuristic based on Bi-Level Optimization for the
Multi-Objective Design of Hydrogen Supply Chains"[1].

In order to propose the new algorithm, it has been necessary to carry out a study of Victor's
proposal, propose a readaptation of the algorithm, develop a computer program that
implements it, make improvements on the new proposal and finally submit it to a computational
experimentation to be able to draw conclusions.

The project has been structured along the following lines:

Study of hydrogen as an energy source

Literature review of the MOP

Definition of the HSC problem

Presentation of the resolution used with the original algorithm
Development and implementation of the new algorithm
Computational experimentation

N o ok wbdhpE

Conclusions

The process of evolution exists in all aspects of life. Species have evolved, society has
evolved, technology has evolved, the same must happen with the use of energies.
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2. Related work and basic concepts

2.1. The Hydrogen Supply Chain

Despite that the effects in the raise of Earth temperature produced by the presence of carbon
dioxide in the atmosphere was first pointed out in 1896 by Svante Arrhenius [2], the idea of
global warming being caused by the combustion of fossil fuels did not gain strength until the
late 1980s, where some effects could be measured [3]. Today, it is a well-established theory
to the extent that it is present in our daily basis, it to be in the news, laws, taxes or even personal
decisions. The relevance of this theory can be noted in the Paris Agreement of 2015 [4], where
195 countries agreed on controlling the carbon dioxide emissions in order to keep the global
temperature rise of the XXI century below 2 degrees Celsius.

To achieve this goal, however, it is not expected to be an easy task, since the world will need
to make dramatic changes year after year and decrease energy-related CO, emissions by
58% until 2050 (from 30,6 Gt in 2020 to 13 Gt in 2050). To this, must be added the difficulty
that final energy consumption is expected to continue growing in the coming years [5]. This
future scenario represents a problem for the reduction of CO2 emissions, since the versatility,
cost and abundance of fossil fuels make them highly dependent in practically all sectors and
very difficult to replace.

Given the need to reduce the effects produced by the use of fossil fuels, three branches of
research have been promoted in recent years: increasing efficiency in the process of obtaining
utile energy, reducing pollutants in the gases expelled during combustion or their treatment,
and the seek for alternative energy sources, this last one being the most effective in the long
term.

Renewable energies seem to be a promising option as an alternative to fossil fuels. But this
transformation presents new challenges, such as managing the intermittency of some
renewable energy sources or the difficulty of electrifying certain end users.

Therefore, in recent years, and parallel to renewable energies, there has been a growing
interest in hydrogen, that can be seen as a versatile, clean, and safe energy carrier that can
be used as fuel for power or in industry as feedstock. This interest has been motivated mostly
since it can be produced from electricity and from carbon-abated fossil fuels, produces zero
emissions at point of use, can be stored and transported at high energy density in liquid or
gaseous form, and it can be combusted or used in fuel cells to generate heat and electricity

[6].

But, for this to become a reality, hydrogen will first have to meet a number of challenges to



Pag. 12

make it a competitive option. Chief among these challenges is the design and construction of
a hydrogen supply chain (HSC) to meet end-consumer demand in a localized, cost-effective
and secure manner.

2.1.1. Generalities on hydrogen

Hydrogen, represented by the symbol H, is a chemical element with atomic number 1. It is the
lightest of all elements and it is also the most abundant in the universe. On Earth, it is present
mostly in the form of chemical compounds such as water or hydrocarbons.

Under standard conditions of temperature and pressure its elemental form is the gas molecule
dihydrogen and is found in the atmosphere, in very low proportions. Its very low density
(0.08988 kg/Nm3 at 273°K) enables it to escape the Erath gravity more easily than denser
gases like oxygen [7]. From an energetic point of view, dihydrogen is the form in which
hydrogen can be used as fuel; either by the energy given off at the combustion of the gas or
by using fuel cells to obtain electricity.

As a fuel, it has extremely benefit qualities: its lower heating value is 141,88 MJ/kg [8], three
times more than Diesel; it can be produced from electricity and carbon-abated fossil fuels and
the only emissions generated at the point of use are water molecules. In a world concerned
with reducing the environmental footprint, the low impact of hydrogen and its high energy
capacity make hydrogen one of the energy sources of the future.

As there are neither mines nor hydrogen deposits, but rather it is found in the atmosphere,
hydrogen cannot be extracted directly from nature, so it must be produced. Currently, the most
competitive ways to obtain hydrogen are:

e Steam methane reforming (SMR): by reacting natural gas with high-temperature steam
a mixture of hydrogen, carbon monoxide, and a small amount of carbon dioxide are
generated. Currently, it is the cheapest, most efficient, and most used method to
produce hydrogen.

e Electrolysis: subjecting water to an electric field induces an electric current that causes
the water molecules to split between hydrogen and oxygen. If the electricity used
comes from renewable font, it can be considered as a renewable energy. It can also
be used to transform the excess of electricity produced by the variable renewable
energy, such as wind or solar, in to hydrogen, that can then be stored for a later use.

e Gasification of biomass and coal: reacting coal or biomass with high-temperature
steam and oxygen in a pressurized gasifier, results in a synthesis gas that contains
hydrogen and carbon monoxide. That is later reacted with steam to separate the
hydrogen.
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¢ Fermentation: biomass is converted into sugar-rich feedstocks that can be fermented
to produce hydrogen.

There are other methods in a developing phase, like High-Temperature Water Splitting,
Photobiological Water Splitting or Photoelectrochemical Water Splitting. All this these three
methods have the same scientific basis, that consists in splitting the water molecules to
separate the hydrogen from the oxygen of the water molecules [9].

Although hydrogen contains a lot of energy per unit weight, it also occupies a large volume per
unit weight making it very difficult to store it. To overcome this problem, a hydrogen
conditioning process is necessary. There are three main alternatives: the first one is
liqguefaction. It is the way that hydrogen gets more concentrated, reducing up to 800 times the
initial volume. By this method, hydrogen reaches a Net Calorific Value per weight unit much
higher than Diesel [8]. Another way to store hydrogen is by compression. In this process
hydrogen is compressed to pressures between 35 MPa to 70 MPa. The last alternative is
based on metal hydrides. Those consists of materials that absorb hydrogen under certain
conditions and allow reversible reaction, acting as charge carriers [10]. These methods are
complex and require special storage equipment next to production facilities or demand points.

2.1.2. Presentation of the HSC main goals and challenges

Although the technology to produce, distribute and consume hydrogen is known, it still in an
early phase. The lack of infrastructures, initial large-scale investments and the cost associated
to it treatments make it very difficult to enter on today’s market. For these reasons, today,
hydrogen has a restricted use and is used mainly in industrial processes. So, a horizon of 10
to 20 years should be contemplated for creating a “hydrogen society”. The Council of
Hydrogen, a global consortium of 92 energy companies, consider the role of hydrogen as a
game changer in energy transition, accentuating seven major roles that hydrogen will have in
the energy transition:

¢ Enabling large-scale renewable energy integration and power generation. It can be
used as a leveler between electricity generation and demand, due to imbalances in the
electricity generation sector caused by variable renewable energy sources. Hydrogen
produced by electrolysis could function as energy storage to overcome seasonality.

e Distributing energy across sectors and regions. As a method of exchange across
borders, securing a safe way to transfer storage energy by ships, trucks or pipes.
Transporting hydrogen seems to be very efficient and it is not limited to small distances
like electricity.

e Acting as a buffer of the energy system, in addition to fossil fuels. It is necessary as
backup capacity to ensure the smooth functioning of the energy system. As energy
consumption will still raise, more amount of buffering is expected.


https://www.linguee.es/ingles-espanol/traduccion/scientific+basis.html
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e Decarbonize transport. Fuel cell electric vehicles (FCEVs) have an important role to
play in decarbonizing transport. As an alternative to battery electric vehicles (BEVS),
FCEVs are expected to achieve longer distance, refuel quickly (3 to 5 minutes), and
weight less due to no need of batteries. It would also make it possible to decarbonize
other types of vehicles such as ships and airplanes in which the use of batteries is
limited by their high weight.

e Decarbonize industry energy use. Combusting hydrogen for low-grade heating (below
400 °C) or as an electricity supply using fuel cells.

e Serve as feedstock using captured carbon. Carbon capture and utilization is a
technology that will need hydrogen to convert captured carbon into usable chemicals
like methanol, methane, formic acid, or urea.

e Help decarbonize building heating. Today, this activity is responsible for 12% of the
total global carbon dioxide emissions, and hydrogen could substitute fossil fuels
currently used.

However, the current problem hydrogen is facing is cost competition. In the paper “Path to
hydrogen competitiveness” [11] a realistic approach of the future competitiveness of the
hydrogen cost is presented. In this study, 35 possible applications of hydrogen and more than
40 technologies are analyzed and compared to other rival goods with the aim of giving a
reasonable cost perspective. As a result of the study, it concludes that more than 22
applications would be cost competitiveness before 2030, first becoming competitive in
transportation, particularly for large vehicles with long range. Even this, in the short term, all
application will struggle due to the higher cost of hydrogen technology and limited infrastructure
and scale. This problem is expected to be overcome after 2030.

2.1.3. The HSC design as an optimization problem (single/multi-obj)

Various works can be found in the literature that formulate the design of the HSC as an
optimization problem.

A first work was introduced in [12], where a general demand-driven model was proposed to
determine the optimal design of a network for the production, transport and storage of
hydrogen in the UK with a Mixed Integer Linear Programming (MILP) approach, and a single-
objective of minimize the total operating and infrastructure costs. Later, the same authors
expanded this model by adding new parameters to consider, such as the availability of raw
material and its logistical cost, the variation in hydrogen demand along a planning horizon that
leads to the development of infrastructure by phases, and the possibility of selecting different
scales for the production and storage facilities [13].

The same model has been extended and replicated in other works readapting it in other
territories like Germany [14], France [15], Korea [16] or Portugal [17], adding new parameters
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and considering the minimization of environmental impact or risks derived from the installation
and activity of the infrastructure as objectives in the model. Some of these models even
consider the uncertainty in the hydrogen demand and look for the best possible configuration
of the HSC for a set of demand scenarios.

Due to the large number of variables used, and in order to keep the numerical complexity
limited, the proposed models tend to be single-objective (considering only the cost) or bi-
objective (cost + another objective). Usually, the approach used to solve them is by exact
technics, like e-constrain.

This project replicates the model of [18], which in turn is based on the models of [13] and [19],
and seeks to optimize the design of a supply chain in the Midi-Pyrénées region of France by
minimizing two objectives:

e Total daily cost (TDC) of the supply chain, considering the investment costs related to
plant installation and transportation routes, operational costs for production, storage
and transportation, and also constraints for plant capacity, mass balance between grids
and demand satisfaction.

e Global warning potential (GWP), computed as a mathematical relation for Greenhouse
Gas emissions due to production, storage and transportation.

2.2. Multi-objective Optimization

2.2.1. General presentation and formulation

Multi-objective optimization can be defined as the search for the best solution(s) to a problem,
i.e. the optimal solution(s), among a set of solutions that meet certain specifications, by
evaluating two or more independent criteria called objectives.

Each solution is a unique combination of n decision variables and constitutes the input to the
problem. The way to express them is with its vector of decision variables .

X =[xy, x50 ,x,] T

The decision variables of a solution cannot adopt any value, but are subject to constraints that
limit and correlate them to ensure that they comply with the problem specifications. Thus, when
the value of any of the variables of a solution is altered to construct another one, the other
variables might be modified accordingly in order to meet the constraints.

There are two types of constraints:

¢ Inequality constraints:
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g <0 i=1,.,m
¢ Equality constraints:

The set of solutions that satisfy all constraints is called set of feasible solutions, 2, and only
these solutions are candidates to be considered.

In order to evaluate a solution, one or several objective function(s) is (are) applied, returning a
numerical value(s) (output), therefore allowing to compare two solutions. In some cases, an
output as low as possible is desired and, in others, as high as possible (maximization problem).
Here, k = 2 objectives are contemplated, so that each solution is evaluated k times, once for
each objective, ultimately obtaining a vector of objective functions:

f@ =L@, L@, DT

In general, these objectives are conflicting /meaning that improving some objective leads to
the deterioration of another one). Therefore, in many cases, when comparing two solutions,
one may solutions have better values for some objectives and worse values for others. In these
cases, it is not possible to determine the best candidate solution. In order to formalize this
observation, the dominance relationship is established: assuming that all objectives are to be
minimized, a solution ¥; is said to dominate another solution %, if X, is not worse (i.e., lower
or equal to) than x, for all objectives and strictly better (lower) than X, for at least one objective:

vs3fi(X1) : (X)) S (X)) AT fi(%y) : i(R) < fi(%) s, l=1,..k

Accordingly, the definition of Pareto-optimality (for Multi-objective Optimization Problems,
MOPs) is based on the dominance relationship: a solution is Pareto-optimal if it is not
dominated by any other solution in Q. The set of all non-dominated solutions is called the
Pareto set and its mapping onto the objective space is called the Pareto front.

The ideal point, f *, contains the optimal values of 2 for each objective individually, regardless
the value of the other objectives. This vector denotes the lower bound for each objective and
is in general (when objectives are conflicting) infeasible, but it can serve as a reference. With
15" representing the optimal value of each objective foralls =1, ..., k, the ideal point it is defined
as follow:

fr=1 0 fiT

The nadir point, fnad, represents the worst individual values of each objective among all the
solutions that build the Pareto front. The following figure shows the ideal and nadir point for
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the Pareto front of a bi-objective optimization problem (where the feasible space is denoted
here by Z).

|-
; <
9] nadar i
‘,/

1deal

Figure 1. Representation of the ideal and nadir point of a set of
solutions Z. Source:[20]

These points give a reference of the quality of the solutions obtained and allow to normalize
the objectives. For most cases, it is necessary to carry out this normalization because the
objectives have different units and magnitudes, since, they can evaluate very different
concepts, such as for example the manufacture cost of a product and a customer’s satisfaction
degree. One way to normalize a target is as follows:

fs = (%)

d
f:s* - Sna

fs' () =

2.2.2. Different classes of solution techniques

In the previous section, basic concepts such as the Pareto-optimality definition were stated for
MOPs. However, this new definition of optimality involves the need for specific solution
techniques and algorithms, in order to find an approximation of the Pareto set. These
techniques are based on different paradigms in order to identify efficiently a defined number
of Pareto-optimal solutions, i.e. in the shortest possible time.

A traditional way to approach a MOP is by transforming it into a single-objective problem
through scalarizing (or utility) functions. These functions combine the vector of normalized
objectives and obtain a single output for each solution. The scalarizing functions used relate
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the objective vector to a predefined weight vector w := (w1, w, .., wix), Where each weight
represents the importance given to an objective. Generally, the weight vector is normalized
(even if not necessary). Assuming that all objectives are to be minimized, the new single
objective problem has the following form:

minimize u(f’(f);w)
subjectedto X € Q

Where,

ZWS=1|WS€[0,1] s=1,..,k
S

Any single-objective optimization technique adapted to the mathematical features of the above
problem can be used. The solution represents one single Pareto-optimal point. An
approximation of the whole Pareto front can be obtained by varying the objective weights, thus
exploring different regions of the objective space.

There is a wide variety of scalarizing functions that combine the objectives in different manners.
Some of them are described in details in the following subsection because they are employed
in this work, but the reader is referred to [26] for a complete overview on this topic. The
scalarizing strategy, however, has three major drawbacks: (1) since only one point is obtained
for each combination of weights, if one wants to obtain an approximation of the whole Pareto
front, multiple runs must be performed with different weight vectors (a number that should
increase with the number of objectives considered), (2) the approximation of the Pareto front
may not be well distributed, especially in concave parts of the front, and (3) this technique is
sensitive to the selection of the weight coefficients, the problem treated must be well known so
that the selection of the weight vector provides a satisfying result [21].

Another way to address these MO problems is evolutionary computation, in particular
multiobjective evolutionary algorithms (MOEA). These algorithms have a working mode based
on biological evolution, where only the best adapted individuals survive to gradually approach
the Pareto front in a well-distributed manner. Their structure is usually as follows:

e The starting point is a set of p individuals (solutions), called population.

e Each individual is evaluated for each k = 2 objectives.

e Variation operators such as crossover and mutation are performed on individuals from
the current population, to obtain a new generation of individuals. The crossover, which
reproduces sexual recombination, determines the individuals that will be able to
transmit their qualities and how they transmit them to the new generation. On the other
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hand, mutation involves random variation of individual's genotype. Both these
operators usually introduce a degree of randomness in the offspring. Examples of such
operators are the SBX crossover and the polynomial mutation, which are classical
operators adapted to real-point encoded variables. Both these operators are described
in this chapter, since they will be used in this work.

e From the total population, obtained from combining the current population (parents)
with the offspring population produced through variation operators (so that total
population size is now greater than ), the best p individuals are selected according to
a selection operator that assigns a fithess to each individual according to the algorithm
paradigm (see next paragraphs). While a stopping criterion has not been reached,
these selected individuals form the current population and the above process is
repeated iteratively. The individuals that were not selected are discarded from the
population. In general, the stopping criterion is related with resource usage, measured
in terms of generations, objective evaluations or computational time. When the
algorithm stops, the last population constitutes the output of the algorithm.

With some exceptions, the distinction between different classes of MOEAs are mostly due to
differences in the paradigm used to define the selection operator, while the choice of the
variation operator is generic and problem dependent [22]. There are currently three main
paradigms for MOEA selection operator designs. These are:

1. Pareto based MOEAs: this type of algorithms uses a two-level selection process. First,
the dominance relationship governs as a selection criterion to assign a first fithess
value to each individual. In a second level, diversity indicators are used to promote the
even distribution of non-dominated solutions along the Pareto front. This second level
is applied only to individuals who share the same dominance-based fithess and is
therefore used as a tie-breaker. A popular algorithm in this category is NSGA-II [23].

2. Decomposition based MOEAs: these algorithms decompose the problem into several
scalar (single-objective) optimization subproblems, each one focusing on different
regions of the Pareto front. To create these subproblems, a scalarizing function is used
as an objective function and different values of the weight vector are assigned to each
subproblem. Then, one individual from the population is assigned to each subproblem,
i.e. searches a different region of the objective space, and interactions among
individuals (either due to crossover or offspring sharing) allow a collaborative search
mechanism. MOEA/D [24] is a classical decomposition-based algorithm.

3. Indicator based MOEAs: these MOEAs are guided by an indicator that measures the
performance or quality of an approximation set. The selection procedure depends
directly on the contribution of each individual to this indicator, which allows establishing
a ranking among individuals in order to select. A state-of-the-art example of such
algorithms is the SMS-EMOA [25], which uses the hypervolume indicator to determine
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the quality of an approximation set. This algorithm, which is employed in this work, is
described in details in section 2.2.4.

2.2.3. Different scalarizing technics

Scalarization (or utility) functions transform the MOP into a single-objective optimization
problem through some kind of distance metric between each solution and a reference point
(typically, the ideal point). These functions use a weight vector, defined by the user, to
determine the priorities between objectives. In general, this weight vector is normalized. By
varying the weight vector, different sub-regions of the objective space are explored, so that a
uniformly distributed set of weights supposedly allows to describe the entire Pareto front of the
MOP. A variety of scalarization functions have been developed, each with its own properties.
A complete review of these functions is proposed in [26]. Four of them, particularly important
for the present work, are presented below:

- Weighted sum (WS): is one of the most commonly used in multiobjective optimization.
However, with this function it is not possible to find solutions in the concave regions of the
Pareto front. Its expression is as follows:

uws(f; W) = EWS “fe

- Augmented Chebyshev (ATCH): this function is an extension of the Chebyshev function
(TCH), which adapts to all types of front shapes. The augmented version corrects the defect
of TCH of finding weakly dominated solutions through an additional term that allows it to
discard these solutions. This term is weighted by a coefficient a and the authors of [26]
recommend using a value between [0.001, 0.01]. It is defined as:

uatch(f; W) = mSaX{Wslfsl} + «a Z | fs]

- Modified Chebyshev (MTCH): is a variant of the TCH, formulated as:
wmer(f; w) = msaX{Ws(lﬁl ¥ aZlst}
N

For this function a small and positive a coefficient is also recommended as suggested in [26].

- Augmented Achievement Scalarizing Function (AASF): unlike the TCH function, the
objectives are here divided by the weights. As ATCH, it is an augmented version through an
additional term to discard weakly dominated solutions and the authors of [26] recommend
using a value of the coefficient a = 10-4. It is expressed as indicated below:
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uaasf(f; W) = max{vj;—s} + «a ZV];—S

2.2.4. The SMS-EMOA algorithm

As noted above, the SMS-EMOA is based on the optimization of a performance indicator (third
paradigm). In particular, this algorithm seeks to maximize the hypervolume indicator.

The hypervolume is a widely used indicator in multi-objective optimization to evaluate the
quality of a front. This indicator, denoted as HV, is calculated as the hyper-area dominated by
a set of solutions and bounded by a reference point. Therefore, the larger the hypervolume,
the better the produced approximation of the actual Pareto front. The coordinates of the
reference point (in the objective space) are the worst values found within the solution set
according to each objective, to which a small arbitrary quantity is added. The hypervolume is
one of the most widely used indicators since it is the only one that is Pareto-compliant, i.e., it
meets the definition of Pareto optimality in the sense that the maximum hypervolume is
obtained only for the actual Pareto front. Furthermore, the hypervolume measures the
simultaneous convergence of the solutions to the real Pareto front, as well as their extent and
the uniformity of their distribution along the front, as illustrated in figure 2.

Figure 2. Hypervolume of three different sets A, B and C. Source:[1]

In the figure above, three solution sets, A, B and C, can be observed, corresponding to three
approximations of the front of a classical bi-objective test function (both objectives are to be
minimized). The gray colored area between the different solutions and the reference point r
represents the hypervolume of each approximated front and the curve where the solutions
converge to is the Pareto optimal (PF) front. The hypervolume values for the three sets are:
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HV(A) = 0.5808, HV(B) = 0.8101 and HV(C) = 0.8237. In front A, the hypervolume penalizes
the poor convergence to PF and, in front B, the poor dispersion along PF. The value of the C
front is the greatest one because the solutions converged to PF and the solutions are uniformly
distributed.

However, the main drawback of the hypervolume is the high cost associated with its
computation. In particular, the complexity grows rapidly with the number of objectives. But, for
the two-objective case of interest in this work, its computation is trivial and very efficient.

SMS-EMOA is a MOEA that from a population of p individuals generates one new solution at
each iteration, through crossover and mutation operators. Its working mode prevents from a
deterioration of the hypervolume covered by the current population. This implies that new
candidate solutions can only be integrated into the current population if their replacement of a
current member allows increasing the hypervolume. Also, dominance is accounted for the
formation of successive fronts, such as in NSGA-II [23]. Then, the rules that define when one
individual is preferred over another are:

- Asolution belonging to lower fronts (i.e., more likely to be non-dominated) is always
preferred at any point in the evolutionary process. This rule is extracted from the
popular algorithm NSGA-II [23].

- Incase the first rule does not occur, the contribution to the hypervolume AS of each
individual is measured as a criterion for selecting individuals from the last
considered front (according to the non-dominating sorting procedure in NSGA-II).
That is, the individual contributing the least to the hypervolume is discarded from
the worst ranked front.

In the bi-objective case, f = (f1, f>), the contribution to the hypervolume (4S) of a set of
individuals R = {sy, ..., 5|}, With |R| > 2, is computed as:

AS(si,R) = (f1(5i+1) —f1(5i)) : (f2(52—1) - fz(si)) vn €{2,..,|R| -1}

Note that extreme points are excluded from this procedure. The SMS-EMOA only considers
the possibility of substituting interior points and its calculation is only possible if non-dominated
solutions are found in the set R.

The main drawback of SMS-EMOA is due to the computation of AS, which, as the
hypervolume, is resource-consuming for more than two objectives, which undermines the
algorithm’s efficiency for many objectives or large sets [27].
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2.2.5. SBXcrossover operator

Like any crossover operator, this is a binary operator which, starting from two parent solutions
x!, X2, generates two offspring solutions y!, y?, which integrate the characteristics of their
parents according to the following expression:

yit =05 (1= B) xt + A+ B) x;?)
yi* =05 ((1+B) x* + (1= B) x%)

Where i € {1, ..., n} corresponds to the position of each of the parental decision variables in a
population of n individuals, and B; to a parameter calculated according to the following
probability distribution function (polynomial):

1
(2u)nc*1, ifu<0.5

Bi = 1
(m)nc“, otherwise

Where u is a random number between 0 and 1, and 7. is a polynomial distribution index
defined by the user. This operator is applied to each pair of parents to obtain the new offspring.

2.2.5.1. Polynomial Mutation

The polynomial mutation was proposed in the same work as the SBX crossover operator. A
mutant is obtained by adding to the value of the variable under consideration a random
perturbation with polynomial distribution, generated according to the following equation:

! U L —
=+ (0 -2) - &

Where x" and x are respectively the lower and upper bounds on variable x; and §; is the
disturbance, computed as:

1
- ) @r)mtT—1, if 1, <05
- 1
1—2-(1—r)m*I, ifr, =205

>

Likewise, the mutation operator is applied to each variable with a probability equal to pm = 1/n
(where n is the number of decision variables).
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3. Problem statement and existing solution
schemes

The problem to be solved consists in designing a Hydrogen Supply Chain (HSC) capable of
supplying the growing demand for hydrogen over a given territory (the case study is the French
region of Midi-Pyrénées), with the objective of simultaneously minimizing the total costs and
environmental impact. The solution strategy developed here is based on the strategy
introduced in [1] and proposes maodifications in view of improving the algorithm efficiency. In
particular, this chapter focuses on the detailed description of the HSC design problem and on
the definition of the mathematical bi-level optimization model proposed in [1].

3.1. Problem description

The problem takes into account a territory for which a hydrogen demand can be predicted in
the future years. In order to meet this demand, an HSC must be designed considering both
installation and operation aspects. In particular, the installation feature involves making
decisions that affect the following areas: the selection of hydrogen generation technologies,
the energy sources used for generation and the location and sizing of both production
equipment and storage facilities. On the other hand, with regard to the operational aspect of
the supply chain, the following must be determined: the production levels of the installed
generation equipment, the means used to transport hydrogen from the generation plants to
the customers and the distribution routes and flows of transported hydrogen. Each of these
decision levels will have an impact on the economic and environmental cost of the HSC, so
the optimization problem tackled here is bi-objective.

In more detail, to solve this problem, the territory is assumed to be divided into sub-regions,
called grids, which can refer to cities, administrative districts, communities, etc., of the
considered territory. This division implies a possible representation of the HSC as a graph, in
which each grid represents a node (which constitutes a potential hydrogen production area
with its own corresponding demand) and where the potential distribution routes are the edges.
To account for demand growth over the lifetime interval of the HSC, this time horizon is divided
into periods, within which the demand is considered to be static. The model is therefore of the
multi-period type.

Regarding the installation issue, the technologies used for hydrogen generation have to be
selected, taking into account their cost and environmental impact. In general, these parameters
are influenced by the "maturity” of each technology, i.e., the experience accumulated over the
years, which for example allows economic or performance improvements. In this work, the
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following potential generation technologies are considered: steam methane reforming (SMR),
central and distributed electrolysis. In addition, and according to the chosen generation
technologies, a choice has to be made between the different energy sources that can be used
as feedstock: solar photovoltaic, wind, hydro, nuclear (as electricity from the grid) and natural
gas. It is worth mentioning that, in case of needing to import the raw materials because they
are not available in the territory, importation costs will also be taken into account. On the other
hand, production plants can have different sizes, associated with production capacities.
Therefore, a discrete (and reduced) number of sizes available for each type of technology is
considered. Finally, the optimal location of production plants must also be determined, which
will have an impact on distribution aspects.

At the operation level, decisions focus on production and transportation aspects. According to
the sizes of the installed production equipment, the corresponding minimum/maximum
production capacities can be known. The production rate should be determined between these
two bounds. On the other hand, the transportation means between a production area and a
consumption area have to be determined. In this work, the following options are considered:
pipelines, tanker trucks or trucks with trailers. To use each of these transports, the hydrogen
must be preconditioned in a specific way (gaseous or liquid form), which also conditions the
storage technology. Storage facilities can be of different sizes, as can production facilities, and
are deduced from the quantities produced/transported in each grid. Finally, the distribution
routes between the hydrogen generation plants and the final customers (refueling stations for
consumers) are to be established.

Energy Production technology (p) Transportation Storage technology (s)
source (e€) mode (1)

. Technology p; __ —~ Technology s,
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.. Product form i —
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Figure 1: Superstructure of the hydrogen supply chain.

Figure 3. Problem diagram. Source: [1]

In conclusion, developing an HSC involves taking into account the above aspects and
determining the set of most efficient solutions for the corresponding bi-objective optimization
problem.
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3.2. Mathematical model

The hypotheses and operational modes stated in the previous section have been formalized
through different models of Mixed Integer Linear Programming (MLEP), in particular in the
works of [13] and [19]. However, these models were reformulated in [1] as a bi-level
mathematical programming problem, which takes advantage of the distinction between
installation and operation issues to decompose the global problem into two sub-problems to
reduce its original complexity. The first sub-problem (master, or upper-level) focuses on the
installation aspects, while the slave sub-problem (lower-level) deals with the operation aspects
(production and transportation). The same approach is used here to solve the overall HSC
design problem, so the bi-level formulation is presented below:

min[TDC (x), GWP ()]"

s.t. Z Z Z PCap!™i® NPy jig: — Z Dige <0 Vi €LVt €T

PEP jE] gEG gea
Z Dy — ZZ Z PCap)¥* NPyjige <0 Vi €LVt €T
geeG DPEP jE] gEG

ZZSCap;;%ii" NSyjige —SL, <0 Vi €1,¥g €G,Vt €T

SiTthZSCap;;%;” NSyige <0 Vi €1,¥g €G VL €T

NP,jige, NSsjige EN  Vp €P,Vs €S,Vj €],Vi €,¥g €G,Vt €T

myin[TDC(y), cwprP]T

s.t. PCap)i" NP,;,c—<0 Vp€PVj €],Vi €,Vg €G,Vt €T

Ppjige — PCapyii* NPpjige <0 Vp€EP,Vj €],Vi €I,Vg €G,Vt €T

ZZ Ppﬁgt—z Z (Qilgg't — Qilg'gt) — Digt =0 Vi €l,Vvg €G,Vt €T

pPEP jEJ l€eL g'eG,gr#g
Ppjigt: Quiggr € Rsg  Vp €P,Vj €],Vi €Vl €L,Vg €G,Vt €T
Bi-level mathematical model of the HSC, for more details see [1].

As above-mentioned, the sub-problem of the upper-level (master) focuses on defining the
structure of the HSC, which involves determining the type (generation technology), location
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and size of the production and storage equipment. The corresponding decision variables are
x = [NPpjige, NSsjige], both integers. NP, j;4; corresponds to the number of production facilities
of type p, size j, which uses hydrogen in its physical form i, installed on the grid g during period
t. Besides, the variable NS;;;,; corresponds to the number of storage facilities of type s, size j,
which uses hydrogen in its physical form i, installed in grid g during period t. The constraints
ensure that, with the installed production and storage capacity, the hydrogen required can be
supplied in the whole territory and for each period. In the lower-level sub-problem (slave), the
aim is to determine the production rate of the installed plants and the transport flows between
grids, for the structure imposed at the upper-level. The corresponding decision variables are
Y = [Ppjige Quigg'], DOth continuous. P, ;. corresponds to the production ratio in kg-d* of the
installations of type p, size j, which uses hydrogen in its physical form i, installed in grid g during
period t. On the other hand, Q;,4, corresponds to the amount of transported hydrogen in
kg-d™* according to its physical condition i, through the transportation means I, from grid g to
grid g’ during period t. The constraints ensure that production capacities and demand
requirements are respected in each grid, adjusting production levels and transported flows.

As observed, the variables of the sub-problem at the lower-level are not present in the sub-
problem at the upper-level, i.e., the decisions made at the upper-level are independent of the
lower-level. In contrast, the lower-level depends directly on the decision variables of the upper-
level. Thus, an upper-level solution can be seen as a partially defined solution that can be
complemented by solving the lower-level sub-problem: once the values of the upper-level
decision variables are known, they are introduced into the slave problem which treats them as
constants.

The objectives for both problems are conceptually the same ones:

o Total daily cost (TDC) of the supply chain, considering the investment costs related to
plant and storage installation and transportation routes, operational costs for
production, storage and transportation.

e Global warning potential (GWP), computed as a mathematical relation for gas
emissions due to production, storage and transportation.

The difference between the two levels is that both the TDC and GWP are calculated only
regarding the generation and storage equipment installed at the upper-level (TDC only
depends on x = [NPyj;4:, NSsjige]); While they are calculated on the basis of production rates
and transported flows at the lower-level (TDC depends only ony = [Pyjigt, Qiigg'e])-

Thus, the bi-level reformulation introduced here results in two optimization sub-problems: the
master sub-problem is MILP since it involves integer variables, while the slave sub-problem
belongs to the Linear Programming (LP) class (since it involves only continuous variables).
This observation motivates the use of optimization techniques adapted for each level, as
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proposed in [1]. This solution mechanism is described in the next subsection

3.3. Current resolution strategy for the HSC bi-level problem

The strategy used by the author of [1] to solve the problem consists of a hybrid approach,
namely, a MOEA for the upper level coupled with a linear programming solver at the lower
level. The iterative process is described as follows.

The upper level uses the algorithm SMS-EMOA (see section 2.2.4) to determine the
configuration of the HSC production and storage facilities. A population of p individuals is
evolved, each one defined by the variables NPy ¥ NSgjige V 0, J, 5,1, g, t. These variables
represent the technology, size, energy source used, location and opening period of the
production and storage facilities, respectively. Due to the stochastic nature of the algorithm
(initial population and variation operators), these solutions may not meet the constraints of the
master problem, in particular those regarding the ability to supply the total demand of the
territory considered. In this case, the solutions are repaired by randomly adding or removing
facilities one by one, until the solution is feasible.

For its evaluation, each individual, i.e. each upper level partial solution, needs the resolution
of the lower level sub-problem to determine the optimal values of inter-grid transportation flow
and plant production rate (variables Q;;44¢ Y Ppjige, respectively). The sub-problem is also bi-
objective (minimizing the total costs and environmental impact associated with the operation
of the SC) and it is solved exactly and efficiently through a LP solver and a scalarizing function
to deal with both objectives (the author recommends the use of AASF, see section 2.2.3, with
a randomly generated vector of weights associated to each objective). Note, however, that the
corresponding LP has to be solved for each time period, which may imply a great
computational effort (since every partial solution of the upper-level, i.e. every individual of the
used MOEA, requires solving this LP sub-problem). Thus, to simplify the problem, a heuristic
is used in order to drastically reduce the number of variables: according to the values of the
variables of the upper-level, NP, ;;,;, only grids with an installed production capacity higher
than their demand in a period are able to export, while those with a capacity lower than their
demand can only import hydrogen. In this way, the number of potential transport flows
decreases, which allows short computational times for solving each lower-level sub-problem.

Once the partial solution of the slave sub-problem has been calculated, the MOEA gets the
value of the continuous variables Py ;¢ Y Q;447¢ Of the slave problem, integrates them to the
corresponding individual of the master sub-problem and computes the associated objectives
(TDC and GWP). It is of particular relevance to this work that, in the original version of the
algorithm, the lower-level sub-problem is solved only once for a single vector of weights,
yielding a single partial solution for the upper-level. Thus, the SMS-EMOA algorithm can be



Pag. 30

used in its canonical form: through classical genetic operators (SBX crossover and polynomial
mutation), offspring are generated. The combined population of parents (current generation)
and children is composed of 2- individuals. The selection operator is that of SMS-EMOA.: after
generating successive fronts of non-dominated solutions and assigning a ranking to each
individual, the next population is filled starting with the lowest ranked fronts. For the last front
for which solutions are to be selected, the contribution of each individual to the hypervolume
indicator is measured. The algorithm discards the individual with the lowest value for this
contribution, repeating this process until the population is reduced to p individuals. These
generational stages are repeated iteratively, until the stopping criterion is reached, in this case
a maximum number of generations of the evolutionary process (user-defined parameter).

Hybrid strategy procedure

1 | initialize MOEA

2 | while not terminate do

3 generate offspring through variation operators

4 for all individuals in population do

5 for all t € T do {for each period}

6 if offspring solution violates upper level constrains then
7 repair infeasible solution

8 end if

9 build LP problem (identify sink and source grids)
10 solve transportation problem (LP solver)

11 end for

12 compute master problem’s objective functions

13 assign fitness value according to MOEA’s working paradigm

14 evolve population according to MOEA’s working paradigm

15 end for

16 | end while

17 | return current Pareto set approximation

Algorithm 1. Pseudocode of the hybrid algorithm developed in [1].

The results obtained through an experimentation carried out over different instances of the
HSC design problem demonstrate that this algorithm is able to identify a set of solutions that
have converged to the optimal front (they lie on the Pareto boundary) and well distributed along
the front, in a single run [1]. Despite these satisfactory conclusions, the author of [1] himself
insists in his work perspectives on the need to develop a method able to work with several
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solutions of the lower-level sub-problem associated to a partial solution of the upper-level.
Indeed, since the LP sub-problem is also bi-objective, different solutions could be obtained
using different weight vectors.

This is what is intended to do in the present work: to solve the LP sub-problem with several
weight vectors and thus generate several lower-level solutions associated to a single upper-
level partial solution; and, consequently, to modify the upper-level algorithm to adapt it to the
operational mode of the former. The developed strategy is presented in the following section.
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4. A new hybrid algorithm for the HSC design
problem.

4.1. Proposed improvement strategy

The HSC design problem is a bi-objective optimization problem. In its bi-level formulation, both
levels consider the same objectives (TDC and GWP), but for the lower-level it focuses on the
operation sub-problem (production and transportation) corresponding to each individual
defined at the upper-level, i.e., a configuration of production and storage facilities. Since the
objectives are conflicting at both levels, the slave sub-problem admits several equivalent
solutions, in the sense of non-dominated.

The above is illustrated in figure 4, where the installed production and storage infrastructures
are shown in black and blue respectively (NP, ;4 and NS;;;4:), associated with a single upper-
level individual. For this partial solution, two combinations of plant production level and
transport flows (P, jigc and Q;;4,47,) are examined, as illustrated by the arrows, whose thickness
represents the amount of hydrogen transported and the color, the physical form in which it is
transported. Considering their respective objectives, these two solutions to the slave sub-
problem are non-dominated.

GWP

Figure 4. Example of two non-dominated solutions at the lower-level of
an upper-level individual

Generalizing, one cannot say that there is only one optimal solution of the sub-problem at the
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lower-level, but rather a set of Pareto-optimal solutions, whose image in the objective space is
a Pareto frontier, i.e., a sub-front associated to the “parent” upper-level partial solution. Thus,
the optimal front of the global problem can be composed of different sub-fronts, each one
corresponding to (part of) the Pareto-optimal frontier of an individual of the upper-level. This
behavior is illustrated in figure 5.

individual sub-front
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Figure 5. The problem front seen as a combination of sub-fronts
associated with the upper-level solutions

Therefore, if a linear problem is solved for each individual using a scalarizing function with a
single vector of weights, just as in the original algorithm presented in the previous section, only
one of the sub-front points associated with an individual is known. This solution strategy can
generate a loss of information regarding the individuals of the upper-level, since the selection
of the best individuals by the evolutionary algorithm is made according to the point of the front
obtained, without taking into account the sub-front as a whole.

For the above reasons, the aim of this work is to develop a new algorithm that generates the
lower-level sub-front associated to each individual of the upper-level, through the repeated
resolution of the same linear problem with a certain number of different weight vectors. The
realization of this general objective raises several issues, denoted in what follows as particular
objectives of the present work:

1. Perform a preliminary comparative study on different scalarizing functions to determine the
most appropriate one to solve the lower-level sub-problem.

2. Propose an adaptation of the selection operator in the SMS-EMOA, since, in the new
algorithm, the individuals are sub-fronts (composed of the lower-level PL solutions obtained
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with different weight vectors) and not a single solution as in the original version. The
comparison between individuals must therefore be adapted to this new operational mode.

3. Implement the proposed algorithm in a program to solve the HSC design problem.

4. Develop a strategy for a smart management of the weight vectors used for the generation
of the sub-front associated to each individual, in order to reduce the number of PLs solved in
case they are not all necessary.

5. Conduct an experimentation on several instances of the HSC design problem, to compare
the two developed versions of the new algorithm (using all weight vectors or smart
management) with the base algorithm proposed in [1].

4.2. Selecting the scalarizing function

In this project, an approximation of the entire sub-front associated with each individual (or
rather, a representative discretization of this sub-front) is to be generated, using a defined set
of weight vectors to solve the lower-level sub-problem. From this perspective, one of the
important points is to determine the most appropriate scalarizing function to be optimized in
the PL. In order to make a justified choice, preliminary experiments have been carried out with
four different scalarizing functions. The functions tested are classical ones (see [26] for more
details) and were described in section 2.2.3 : Weighted Sum (WS), Augmented Tchebychev
(ATCH), Madified Tchebychev (MTCH) and Augmented Achievement Scalarizing Function
(AASF). It should be recalled that, in the original algorithm [1], AASF is used.

The experimentation consisted in randomly generating a sample of Sy, € {500, 2000, 3000,
5000} upper-level feasible individuals (as done for the initial MOEA population). For each
individual, the corresponding linear problem is solved Ay € {55, 10, 25, 50} times, i.e., using 5,
10, 15, or 50 different weight vectors. To generate the weight vectors, the Simplex Lattice
Design (see [28]) is used, which becomes trivial in two dimensions.

This procedure is repeated with the four scalarizing functions, computed using the same set
of weight vectors. In this way, with every scalarizing function, a sub-front composed of Ay
solutions is generated for each individual. Once the sub-fronts associated to all individuals with
the different functions have been obtained, the results are analyzed using the hypervolume
indicator as a criterion to measure the quality of each sub-front to compare the solutions
obtained with each scalarizing function. In particular, for each function, the number of
individuals obtaining the maximum hypervolume value (calculated using the A, weight vectors)
are counted. For example, if, for individual #1, the results are as follows: HV(WS)= 0.368,
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HV(MTCH) = 0.46, HV(ATCH) = 0.447, HV(AASF) = 0.46, then this individual is counted for
MTCH and AASF, which obtained the maximum hypervolume value. Based on these results,
a ranking of the four functions is established, where that one with the highest number of
individuals with maximum hypervolume obtains the best ranking. Then, the worst function
according to this ranking is eliminated and the above procedure is repeated iteratively until
only one scalarizing function remains and is selected as the best one.

This preliminary experimentation was carried out with only one small-size instance (the
smallest one of those described in section 5), In order to avoid high computational times and
assuming that the results obtained can be generalized to other instances.

4.2.1. Reference point for hypervolume computation

In order to perform a fair comparison of the four scalarizing functions considered, the
hypervolume associated with each individual is computed with the same reference point,
regardless of the function used. This implies, in a first step, normalizing the objectives. In this
perspective, each single-objective problem is solved first (i.e., each objective is optimized
separately, which is independent from any scalarizing function), making it possible to
determine the coordinates of the ideal and Nadir points (denoted as p,* y p,"*¢ for individual
e € Q. p,* contains the minimum values of the objectives encountered when solving the single-
objective problems and p,™%¢ the corresponding values of the non-optimized objective. Then,
each objective vector found for individual e € Q is normalized according to the following
formula:

p " Pe — pe*
¢ penad _pe*

The reference point chosen for the hypervolume calculation has the following coordinates (in
the target space) 17 = 1.1-p,"**, as is recommended in the literature for many classical
problems. These reference points are the same for each individual, regardless of the
scalarizing function optimized.

4.2.2. Results and discussion

The number of individuals (among the Sy, considered) for which the maximum hypervolume
has been obtained by applying the scalarizing function to solve the Ay LPs, as well as the
corresponding ranking, are shown in table 1. As explained above, the ranking process is
repeated several times to iteratively eliminate the functions with the worst results, which is
reflected in the 3 "iterations" presented in the table.
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Case Iteration AASF WS MTCH ATCH
S:1=1000 1 516 (1) 265 (4) 292 (3) 445 (2)
A1 =50 2 575 (1) X 132 (3) 488 (2)
3 579 (2) X X 616 (1)
S,=2000 |1 1084 (1) 657 (4) 669 (3) 870 (2)
A2=25 2 1242 (1) X 796 (3) 1012 (2)
3 1246 (2) X X 1278 (1)
S;3=3000 1 1600 (1) 1118 (4) 1144 (3) 1272 (2)
As=10 2 1972 (1) X 1461 (3) 1577 (2)
3 1979 (2) X X 2022 (1)
S4,=5000 |1 2690 (1) 2210 (2) 2083 (4) 2176 (3)
Az=5 2 2694 (2) 2216 (3) X 2781 (1)
3 3347 (2) X X 3516 (1)

Table 1. Number of individuals with the maximum hypervolume rating according to the
scaling function and iteration.

For the parameter sets tested, the function that consistently obtains the best sub-fronts (in
terms of hypervolume) is ATCH, but always with a very similar rating to AASF, regardless of
the number of weight vectors used. Practically, half of the best results (i.e., individuals with
maximum hypervolume) is obtained with ATCH and the other half with AASF. In contrast, WS
and MTCH are never the best choice. Note that the sum of best solutions per iteration is not
egual to the total number of individuals examined, because there are sub-fronts for which the
hypervolume valuation is the same regardless of the scalarizing function used.

Although the ATCH is always the best rated, the fact that it is not clearly distinguished from the
AASF as the best solution makes the choice non-trivial. Therefore, a second study has been
carried out, for the same solution sets, now evaluating the differences between the solutions
obtained with the ATCH and AASF functions.

4.2.2.1. Analysis of the differences with respect to the best hypervolume

Since the first result analysis highlighted the fact that the ATCH and AASF functions achieve
a similar number of “maximum hypervolume individuals”, this second analysis focuses on the
differences, for each individual, between the hypervolume obtained by a scalarizing function
and the best hypervolume found (this difference is logically 0 when the function achieves the
best hypervolume for an individual). The mean and standard deviation of these differences
with respect to the maximum hypervolume are presented in table 2.
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AASF ATCH
Case Mean Std Dev Mean Std Dev
S1=1000, A1 =50 0,0405 0,0764 0,0413 0,0831
S,=2000, A, =25 0,0620 0,1032 0,0500 0,0901
S3=3000, A3 =10 0,0993 0,1195 0,0857 0,0995
S4=5000,A3=5 0,1718 0,1672 0,1444 0,1348

Table 2. Results of differences with respect to the best solution

The obtained results show that, except for case {S1, A1}, the ATCH function consistently obtains
differences that are lower than those obtained with AASF. This means that, when the sub-front
identified by ATCH is not the best one (in terms of hypervolume), it lies anyway closer to the
best approximation than it happens when using AASF. Indeed, this trend is even clearer when
the population size increases. Simultaneously, the standard deviation of the ATCH sub-front
hypervolumes is also lower than that achieved with AASF, except for case {Si, A1}, highlighting
the consistency of the better quality of the solutions found with ATCH. Finally, it can be noted
that, in the only case for which AASF provides better results ({S1, A1}) the differences between
both functions are insignificant. Therefore, it can be concluded that the best scalarizing function
for solving the lower-level sub-problem is the Augmented Chebyshev, which is used in the
remainder of this work.

4.3. Adaptation of the upper-level MOEA selection operator

4.3.1. Context

The MOEA used here for the upper-level maintains the same structure as in the original work
of [1]. In the evolutionary algorithm, the variables NP, ;;,; and NS;;,. are generated for each
individual, on the basis of which the linear lower-level sub-problem can be solved, obtaining
variables Py j;s; and Q;;447¢, Which are constant parameters for the upper-level. But, unlike the
original algorithm, for every combination of variables NP, ;;,; and NSgj;4. (individual) of the
master problem, A solutions are obtained here in the slave problem, where A is a parameter
set by the user to define the number of weight vectors used to approximate the lower-level
sub-front. The resulting solutions are optimal for the lower-level PL, with the scalarization
function selected in the previous section. Thus, the output of the lower-level consists of A
solutions associated to each of the u individuals of the MOEA.

For ease of understanding, in the following, an individual refers to the production and storage
infrastructure defined in the upper-level (as a partial solution). On the contrary, speaking of a
solution refers to a complete solution, i.e., obtained by solving the slave sub-problem for the
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upper-level variables NP, ;;;; and NS ;4 associated with an individual and with a given weight

vector. Therefore, in the remainder of this work, it will be considered that each individual has
a set of corresponding solutions.

The above is visualized in figure 6, which shows the value of the objectives (TDC on the
horizontal axis and GWP on the vertical axis) obtained for a population of p = 4 individuals with
A =20 different weight vectors. There should therefore be 4x20 = 80 solutions in total, denoted
with dots in figure 6 (each color identifies the solutions of the same individual). It can be
observed, however, that there are actually fewer than 80 distinct solutions. This behavior is
due to the fact that several solutions, associated with the same individual but generated with
different weight vectors, are identical (for example, in an extreme case, only one solution is
obtained for the individual identified in pale violet in figure 6).

Figure 6. Value of the solutions obtained in the first generation from a
sample of four individuals with 20 weight vectors each

This new working mode involves a remodeling of the selection operator governing the MOEA
at the upper-level. The original algorithm [1] uses SMS-EMOA, but this algorithm only
considers that each individual is equivalent to a (completely defined) solution whereas, in the
present work, several solutions are taken into account for each individual. Therefore, a
maodification is proposed in what follows, considering each individual as a sub-front, i.e., a set
of solutions, when selecting the best individuals. These changes are therefore concentrated in
lines 10 (solution of the A PLs of operation for each individual) and 13-14 (fitness assignment
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and generation of the next population) of Algorithm 1 (see page 30).
4.3.2. The proposed operator design

In particular, once evaluated the offspring individuals resulting from applying the genetic
operators and computing, for each new individual, the A solutions of the PL parameterized by
different weight vectors, the combined population having 2-u individuals (u parents and p
offspring) should be reduced to p individuals, selected for the next generation. Accordingly, it
is necessary to design a selection criterion that maintains those individuals with the best genes
in the population, making them able to transmit their genetic background to the next
generation. It is worth mentioning that, to the best of our knowledge, there is no operator in the
devoted literature for evaluating and selecting individuals characterized by several solutions.
The new selection operator proposed in this work is based on the same SMS-EMOA paradigm,
but it was adapted to allow the evaluation of an individual according to its set of associated
solutions.

This new criterion consists of two steps. In the first step, the combined population
{Parentsh {Offspring} is divided into layers of equal dominance ranks, as in the popular NSGA-
Il genetic algorithm. Note that this non-dominated sorting procedure is carried out over
solutions (and not over individuals, which have several solutions associated). Then, individuals
are copied to the new population according to the rankings of its corresponding solutions. In a
second step, for the individuals having solutions that belong to the last layer likely to be inserted
into the next population, the contribution of these individual to the hypervolume indicator is
used as a selection criterion to determine those individuals that are to survive. are discarded
(thus following the SMS-EMOA paradigm). These two steps are explained in detail below. This
explanation is illustrated with an example of 6 individuals, where 3 must be selected. At first,
their distribution in the objective space is as shown in figure 7, where each color identifies the
solutions corresponding to the same individual. Note that all individuals do not have the same
number of solutions, since, as explained previously, some individuals may have fewer
solutions than the number of weight vectors used for solving the LP sub-problem.
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Figure 7. Initial population compose of 6 individuals

Step 1: First, all the solutions are classified according to the dominance operator, regardless
of the individual to which they belong. The population is thus divided into different layers, where
those of lower rank dominate those of higher rank. Each individual is assigned the ranking of
its lowest-ranked solution (i.e., the the contribution of each individual to the hypervolume
indicator of the lowest layer in which the individual has at least one solution). In this way,
individuals with solutions in lower-ranked layers are ranked above (better) those with solutions
in higher-ranked layers.

f2 s

v

f1

Figure 8. Segmentation of the solutions in non-dominated ranks

The ranking thus obtained constitutes the first rule of preference amongst individuals. Those
individuals with solutions occupying a lower layer have preference over other individuals to
survive and be selected for the next generation. Therefore, similarly to what happens in NSGA-
Il or SMS-EMOA, starting with the lowest layer (with rank i = 1), the individuals of the rank i are
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considered. Being n; the number of individuals present on the layer i, if =1, nj < , all the
individuals of ranking i are selected and the process continue with the next layer, i+1. It is
important to note here that, in layer i, there may exist solutions belonging to individuals with
ranking j < i, which were already selected previously when examining lower-ranked layers.
These individuals are not considered here, since they were already selected. Otherwise, if
Y=1,...i N > 1, then the n; individuals of ranking i do not all “fit” in the remaining space in the next

generation's population. It is therefore necessary to select p — =1, i1 nj individuals of the n;

that have their best solutions in layer i, denoted as critical layer in the following. This is done
in Step 2 of the selection process. In the example, as the first layer is composed of only two

individuals, the critical layer is the one with ranking 2.

The above explanations can be illustrated with the example of figure 8. The first layer has
solutions from the “orange” and “green” individuals, so that both these individuals are selected.
Then, the first layer is discarded and the individuals having solutions in the second layer are
considered. Only one individual should be selected (since two are already chosen), while four
individuals have solution in this second layer, which is therefore the critical layer. Among this
four individuals, one is the “green” individual, already selected and, thus, not considered
anymore. The three remaining individuals in the critical layer are the “red”, the “blue” and the
“lilac” ones (see figure 9), from which only one should be selected, as explained in what follows.

f2

f1

A 4

Figure 9. Critical layer

Step 2: In this step, a number of individuals is to be selected from those having ranking i (i.e,
having their best solution in the critical layer i). This number is that necessary to complete the

population of the following generation (1 — Zj=1,...i1 N;). To this end, and in agreement with the
classic SMS-EMOA operating mode, those individuals who contribute the least to the total
hypervolume of this critical layer are discarded here. Note that, in this critical layer, there may

be solutions belonging to individuals with a ranking lower than i (i.e, these individuals have
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solutions in lower-ranked layers) and, therefore, have already been selected. The
corresponding solutions in the critical layer i are anyway considered for the calculation of the
total hypervolume of this layer i and of the contribution to the hypervolume of the solutions
belonging to other individuals (of ranking i), which are candidates to be discarded.

Then, an iterative process that computes the contribution to the hypervolume of the solution(s)
associated to each individual of rank i is performed. Since, for a same individual, there can be
several solutions in the rank i layer, the total contribution of an individual is computed as the
sum of the partial contributions due to all of its solutions that belong to the critical layer. Note
that the contribution of each solution to the hypervolume is calculated as the area dominated
by this solution and bounded by the areas dominated by its two neighboring solutions, as
illustrated in figure 10. With only two objectives, the corresponding computational process is
very efficient, as it only consists of ordering the layer solutions according to the first objective
and, for each solution, calculating the area bounded by the area dominated by the two
neighboring solutions. Therefore, there is no need for a reference point associated to the
classical hypervolume computations.

1

v

Figure 10. Contribution to the hypervolume of the critical layer per
individual represented by colors

Also, it is worth highlighting the fact that the extreme points of the layer are exempted from this
calculation: as in SMS-EMOA, these points are considered to have an infinite hypervolume
contribution, to ensure that the corresponding individuals are selected. If the number of
individuals to be selected from layer i is 2, then the individual(s) corresponding to these
extreme points are automatically selected. If only one individual is to be selected from layer i,
and the two endpoints correspond to two different individuals, then one of these two individuals
is randomly selected.
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Once all the contributions to the hypervolume of the individuals of ranking i have been
computed, the individual with the lowest contribution value is discarded. In case of a tie, one
is discarded at random. If, at this point, more individuals need to be discarded, the process is
repeated iteratively (recalculating the contributions of each individual) until the required
number of individuals remains. Thus, by integrating this new selection operator, the fitness
assignment and selection parts of the original algorithm are modified (lines 13-14 of the
Algorithm 1, presented in section 3.3).

4.3.3. Parents population selection

In the same way as for the canonical version of SMS-EMOA, the environmental selection
operator (which determines the survival of individuals from one generation to the next) has its
consequence in the selection of the parents subsequently used for the recombination
(crossover) process. Here as in NSGA-II, the selection of parents is performed by a binary
tournament: a pair of individuals is chosen randomly and then compared to select the individual
that will act as a parent. The comparison criterion follows the same logic as the selection
operator: first, it prefers individuals having a solution in lower dominance layers. Otherwise
(both individuals have the same ranking), they are compared according to the second criterion,
i.e., the contribution of each individual to the hypervolume of the layer. It is worth mentioning
that this contribution value was not necessarily calculated in previous iterations (when the layer
considered is not the critical one). In these cases, the contribution to hypervolume is calculated
following the indications of Step 2 described in the previous section. For each instance of the
crossover process, this tournament is repeated twice to select two parents. Once the parents
are selected, the next generation is generated by applying the SBX crossover and polynomial
mutation (see section 2.2.5).

4.4. Implementation of the algorithm

The above-described algorithm was implemented in MATLAB. The code development first
involved reading the input data defining the specifications of the HSC design problem. These
datasets, called instances, include the following parameters:

e The different options available regarding: energy sources for production, type of
production facility, means of transportation and type of storage facility.

e The available production and storage plant sizes.

e The economic and environmental costs associated with each of the options in each
period.

e The number of periods considered.

e The number of grids into which the territory is divided and their corresponding hydrogen
demand for each period.
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Different datasets have been used to test the proposed algorithm (see Appendix A).
Depending on the number of input variables considered in each instance, their resolution
complexity will be different. Also, the working parameters of the algorithm have to be defined,
in particular:

e The population size (l).

e The number of weight vectors (A), whose optimal value can vary depending on the
treated instance.

e The crossover (n.) and mutation (n,,) distribution indexes. In this work, n. = 20 and
nm = 20, as recommended by the authors of [29].

e The stopping criterion (Ip,qx)- Since the computational time is almost entirely
concentrated by the solution of the lower-level LP, it has been decided that the number
of calls to the LP solver is the stopping criterion (rather than the number of generations).

e The scalarizing function of the lower-level sub-problem: being consistent with the
results obtained in section 4.2, the ATCH scalarizing function is chosen.

Once the problem and algorithm parameters have been defined, the algorithm designed in the
previous sections is implemented. The architecture of the computer program consists of a main
function that requires the above-described necessary inputs and the name of the problem
instance to be solved, which is imported from an external file. This main function establishes
the order of execution of the algorithm, which consists of calling various sub-functions that
create and alter the population, and also collects the data associated with the population at
each moment. In particular:

1. A sub-function initializes the algorithm, which includes the generation of a population
of individuals; repairing those individuals that do not meet the upper-level constraints;
the creation of a set of weight vectors to be used for solving the LP lower-level sub-
problems.

2. A sub-function that computes the TDC and GWP objectives for a (complete
solution), i.e., including the lower-level variables.

3. A sub-function performing the genetic variation (crossover and mutation operators).
4. A sub-function generating the LP sub-problem associated to an upper-level
individual and a specified weight vector.

5. A sub-function implementing the selection operator proposed in this work.

At the end of an execution, the program reports the value of the decision variables and
objective functions of each individual in the last population (corresponding to the generation
when Ip,,4, 1S reached). In addition, further data associated with each generation are also
saved, in order to analyze the any-time performance of the algorithm, such as the number of
LP calls of the sub-problem at the lower-level up to that instant. In particular, the hypervolume
of the front generated by the non-dominated solutions in each population is reported. Please
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note that the hypervolume computation is performed considering a fixed reference point, in
order to be able to fairly evaluate the dynamics of the hypervolume indicator evolution during
the evolutionary process. This reference point was obtained from the single-objective solution
of the instance with CPLEX for each objective.

4.5. Smart management of weight vectors

45.1. Weight generation

In the first experiments, the same weight vectors were used for all the individuals that
integrated A values uniformly distributed between 0 and 1. This experimentation revealed two
issues. The first one is that due to the similarity between different individuals, regions of highly
concentrated solutions appeared in the objective space, forming staggered structures (see
figure 11). The second is that since the weight vectors are limited to specific values, weight
vectors that could provide better information may be omitted.

11 B o

107 .

Figure 11. Population distribution after executing the program with the
same weight vectors to all individuals

This results in a loss of information about how individuals are actually distributed, which may
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lead to inefficient selection in future generations. To avoid this issue, the weight vectors were
generated including a random component: the segment [0, 1] is divided into A uniform intervals
and one random value is randomly generated within each interval. These values constitute the
first element of the weight vectors, while the second one is trivially deduced (since the problem
has only two objectives).

This process allows maintaining a “globally uniform” distribution of the weight vectors but
introduces a random component which showed empirically its validity for solving the above-
mentioned issue. Indeed, this new approach corrects the accumulation of points in certain
areas of the objective space, as can be seen in figure 12, which shows the same case as in
figure 11 but with the new weight vector generation technique.

Figure 12. Population distribution after executing the randomized
weiaht vector aeneration approach

45.2. Weight selection

As already mentioned in section 4.3.1, the fact that A weight vectors are assigned to an
individual does not imply that A distinct solutions are obtained by the solution of the A PLs with
different parametrizations. Two different weight vectors may indeed result in the same solution.
Actually, this observation turned out to be a recurring situation for all the treated instances of
the HSC design problem. In some cases, the number of distinct solutions obtained for an
individual is lower than A /3, meaning that more than 60% of the resources used to solve the A
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sub-problems were useless. This fact is especially critical, since the resolution of the LP
(solution generation) accounts for more than 90% of the computational time of the algorithm.
Therefore, it seemed necessary to design a heuristic for weight vector selection, to reduce the
computation of repeated solutions.

A detailed observation of the solutions obtained for each weight vector showed that the non-
repeated solutions are generated only within a continuous interval of the first element of the
weight vector. The remainder of the solutions, obtained for extreme values of the weight
vectors, are repeated solutions. For instance, if wi is the first element of the weight vector,
distinct solutions are obtained when w; € [0.4, 0.8], while the solutions obtained for w; e [0,
0.4] are identical and so are the solutions obtained for w; € [0.8, 1]. Thus, the procedure
proposed here first solves the LP sub-problems corresponding to the two extreme weight
vectors ([0,1]" and [1,0]). If the solutions obtained are identical, there is no need to try with
other weight vectors (the individual has only one associated solution). Otherwise, for a weight
vector [w1°, w2°]" such that O<w;°,w.°<1, if the obtained solution is the same as that found for
an extreme weight vector (for instance, [0,1]"), then there is no need to further explore the
interval bounded by these weight vectors (in our example, there is no need to perform LP
optimizations for 0<w;<w;° (equivalent to w-°<w,<1) since the same solution will be repeatedly
found. On the other hand, if the solution found for [w:°, w-"]" is different from that found for an
extreme weight vector, it is worth further generating intermediate weight vectors in order to
(maybe) identify new solutions of the LP sub-front.

According to the above strategy, the following heuristic is proposed and applied to each
individual, when A > 2:

1. A user-defined number of candidate weight vectors is generated as detailed in 4.5.1,
obtaining a matrix, W, that stores the values of the weight vectors.

2. The LP of the lower-level linear sub-problem is solved for the vectors of extreme
weights ((Wy 1, Wy ,]" and [W, 1, W, 5]7). If the extreme values of the objective functions
coincide, this means that all the points will yield the same solution, therefore, the
solution obtained is copied to the 4 — 2 remaining solutions, the process is stopped
and proceeds with the following individual. If, on the other hand, the two solutions found
are not equal, the variables a = 1 and b = A are defined and the process continues to
step 3.

3. The weight vector [W, 1, W, ,]", such as ¢ = ceil (azi) is selected. If the value of the
objective function is the same as that of the extreme solution found with [W; 1, W; ,]7,
go to step 3a. Otherwise, if the solution found is the same as the extreme solution
found with [W; 1, W 1", go to step 3b. Finally, if the solution found for [W,;, W, ,]" is
different from both extreme solutions, setr = ¢+ 1 and go to step 4.
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a. The value of the variables in position ¢ is copied to those in the position
betweena + 1 and c — 1, ais updated such as a = c. Return to step 3.

b. The value of the variables in position ¢ is copied to those in the position
between c + 1 and b — 1, b is updated such as b = c . Return to step 3.

4. The LP is solved for the weight vector at position r. If the value obtained is different
from the value of solution b, this step is repeated with r = r + 1. If, reversely, the value
coincides with b, set [ = ¢ — 1 and go to next 5.

5. The LP is solved for the weight vector at position i. If the value obtained is different
from the value of solution a, this step is repeated with | = [ — 1. If, reversely, the value
coincides with a, the iterative process stops and moves on to the next individual.

Therefore, this heuristic may allow to save a significantly high number of calls to the LP solver
when A > 2 and will be particularly relevant when A increases, as shown in the next section.

By computing the algorithm with this heuristic, the unnecessary calls to the LP solver are
greatly reduced, avoiding the need to perform calculations in situations where the solver would
yield a repeated solution. It starts to be effective when A =3, and its effectiveness is
immediate. For A = 3 it reduces the total number of calls to the linear problem by 15% per
generation compared to a version where the heuristic is not applied; as the number of weight
vectors increases, this value increases logarithmically, reaching a reduction in the number of
calls to the LP solver of more than 70% for values of lambda greater than 20.

Due to the clear improvement in computational performance when using this heuristic, it is
incorporated in the final algorithm and used in the experimentation of block 5.
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5. Experimental computations

In this section the numerical experiments performed to analyze the performance levels of the
proposed algorithm are presented. First, the instances and parameter settings are defined in
section 5.1. Then, global results are provided in section 5.2 and finally, an any-time analysis is
proposed in section 5.3.

5.1. Experimental methodology

Once the algorithm has been developed, implementing the new functionalities such as the
reconditioning of the upper-level selection process, the creation strategy of weight vectors and
the selection of ATCH as the scalarizing function to be optimized at the lower-level, a numerical
experimentation was carried out to provide results for analysis, comparison and conclusions.

The objective of this experimentation has been to check if the new algorithm allows for an
improvement over the original one [1] and, if so, to determine the optimal humber of weight
vectors that should be associated to each individual. The HSC design problem has been
solved for five instances: HSC08g001p, HSC08g01lp and HSCg22g01p (single-period) and
HSCO08g04p, HSCO08g07p that contemplates 4 and 7 periods (see Appendix A). All instances
have been solved considering a population of p = 100 individuals (as in [1]). Six numbers of
weight vectors were tested, these being 1, = {1,2,3,5,11, 19}. To account for the stochastic
nature of the solution technique (due to the MOEA at the upper-level), each instance has been
solved nine times for each number of weight vectors. The case 4, = 1 is equivalent to the
original algorithm, so its results have been used as a basis for comparing whether the
modifications provided an improvement. The stopping criterion was the same for all instances,
i.e. 100.000 - T calls to the subproblem, where T is the number of periods of the instance. This
number has been taken from [1] where it is considered to be a sufficient number to ensure
convergence to the Pareto front.

It is worth mentioning that maintaining the stopping criterion means that the total number of
generations is considerably reduced each time the number of weight vector is increased, which
has the drawback of reducing the genetic mixing among individuals, allowed by the crossover
operator of the MOEA. On the other hand, the use of more weight vectors will give more
comprehensive information regarding the sub-fronts of the individuals. In order to evaluate this
relationship, the evolution of the population has been followed through the dynamic output
parameters described in section 4.4, analyzing the hypervolume generated by the non-
dominated solutions of each generation and keeping track of the number of calls to the LP
solver at each generation. When making comparisons using the hypervolume indicator, it is
desirable that the number of points on each approximated front is the same. Thus, to ensure
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fair comparisons the hypervolume calculation has been performed on a reduced set of 21
solutions. The selection of these sub-sets is obtained by applying a heuristic that selects those
points that are best distributed along the non-dominated solution front of a population, selected
by iteratively discarding one by one those that contribute the least to the hypervolume until the
21 solutions are reached.

5.2. Global Results

To analyze the quality of the final fronts obtained for each instance and the impact of varying
the number of weight vectors used to solve the lower-level sub-problem, table 3 shows the
average and the standard deviation (over the of the nine executions performed in each case),
of the value of the hypervolume of the last population, computed after reducing the solutions
of the front to 100. The best mean value obtained for each instance is underlined.

Instancia A=1 A=2 A=3 A=5 A=11 A=19
HSC08g001p 0,9846 0,9846 0,9848 0,9843 0,9844 0,9844
(0,0010) (0,0004) (0,0002) (0,0011) (0,0003) (0,0004)
HSC08g01p 0,9905 0,9911 0,9911 0,9903 0,9896 0,9899
(0,0012) (0,0010) (0,0008) (0,0026) (0,0026) (0,0011)
HSC08g04p 0,7781 0,7656 0,7544 0,7471 0,7447 0,7470
(0,0063) (0,0055) (0,0087) (0,0073) 0,0045 (0,0052)
HSC22901p 0,9869 0,9862 0,9846 0,9840 0,9827 0,9823
(0,0021) (0,0098) (0,0027) (0,0007) (0,0020) (0,0020)
HSC08g07p 0,7871 0,7862 0,7832 0,7806 0,7817 0,7799
(0,0019) (0,0013) (0,0027) (0,0036) (0,0012) (0,0027)

Table 3. Hypervolumes of the latest generation for a population reduced to 100 solutions

These results demonstrate that, for the two instances of lower complexity (HSC08g01p and
HSCO08g01p), the best hypervolume averages are obtained with A equal to 2 or 3 weight
vectors. However, the differences among the different values of 1 seems insignificant. On the
other hand, for the more complex instances, the best results are obtained with A = 1 (original
case). In these cases, the differences between different number of weight vectors increase
and consistently, it can be observed that the greater the number of weight vectors used, the
worse the hypervolume of the final front. Therefore, these global results seem to indicate that
increasing the number of weight vectors does not provide benefits, even though values such
as 1 =,2 or three obtains very good results, close to those found when using one single weight
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vector. In what follows, an any-time analysis is provided to verify if these conclusions are true
during the whole search process.

5.3. Any-time analysis

This study following consists in analyzing, for the five instances, the evolution of the
hypervolume value in each generation. The result obtained for the HSC08g01p instance is
illustrated in figure 13. It can be considered as a representative example of the trends obtained
for the rest of the instances.
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Figure 13. Variation of the hypervolume for the reduced population in the instance
HSC08g01p

In this figure, the curves do not have the same length since, when using higher numbers of
weight vectors, the number of generations computed to reach the stopping criterion (which is
the number of calls to the LP solver) evolves in an inversely proportional manner. For this
instance, all hypervolumes converge to similar values (as already mentioned previously), but
larger differences between curves can be observed in the first generations of the algorithm. In
order to have a better visibility of this period of the search process, the evolution of the
hypervolume between generations [1 and 200] has been plotted for each instance in figure 14.
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Figure 14. Evolution of the hypervolumes between generations 1 and 200

In all instances it is observed that, independently from the value of 4, all the curves show similar
trends: the hypervolume grows quickly and, after a point close to generation 50, the increase
is steadier. Before reaching that point, there is a clear difference can be observed among the
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curves corresponding to 1 > 2 when compared to the trend when A = 1. More in details, for
the smallest instances, during this first period of the search, the best hypervolume values are
obtained if A is high. Subsequently, for a number of generations between 50 and 200, the best
option clearly seems to be A = 2, as illustrated in figure 15.
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Figure 15. Search process after 50 generations (HSC22g01p on left and HSC08g04p
on right)

During this second period of the search (between 50 and 200 generations) the results obtained
with the other values A > 5, are very similar, resulting in almost indistinguishable curves. This
observation suggests that, from five weight vectors per individual, the extra information
obtained from the sub-fronts do not generate significant differences to improve the search
process. Also, as stressed when analyzing the global results, high values of 1 do not allow the
algorithm to converge to the optimal Pareto front for the instances of higher complexity.

In order to provide further insights regarding the behavior of the algorithm according to the
value of A, the variation of the hypervolume according to the computational resources
allocated, i.e., the number of iterations or calls to the LP solver, is studied in what follows. In
this perspective, the final number of iterations (the stopping criterion is 100,000 iterations) has
been divided into 11 instants, indicated in the headers of table 4, where T is the number of
periods of the instance. At each instant, the average value of the hypervolume for each value
of 4 is used to establish a ranking among these different parameter settings and the results
are presented in table 4 where the value noted in each cell corresponds to the number of
weight vectors for which the hypervolume is maximum at that instant.

The results obtained show that, at the beginning of the search the best results are always
obtained with A = 1. However, for the first two instances, after approximately 30,000 iterations,
the best hypervolumes using 1 = 2 or A = 3, which is consistent with the results presented in
section 5.2.
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5e3-T 1le4d-T 2e4-T

3e4-T

4e4 - T 5e4-T 6e4-T 7e4-T 84 -T 94-T 1le5-T

HSC08g0 1 1 1 3 1 3 3 3 3 3 3
01p

HSC08g0 1 1 1 2 2 2 2 2 2 2 2
1p

HSCO08g0 1 1 1 1 1 1 1 1 1 1 1
4p

HSC22g0 1 1 1 1 1 1 1 1 1 1 1
1p

HSC0890 1 1 1 1 1 1 1 1 1 1 1
p

Table 4. Best rated case at each time and instance

Thus, from the above study, it can be concluded that the best results are consistently obtained
A = 1. However, it can also be observed that there are other competitive number of weight
vectors (A = 2 and A = 3), in particular for small instances, but the differences with 2 = 1 do
not seem significant. On the other hand, the any-time analysis show that, at the beginning of
the search, the intensive search procedures performed at the lower-level (with more weight
vectors) allows for quick improvements of the hypervolume, but this trend is compensated by

the genetic mixing produced during the last part of the evolutionary process, when fewer weight
vectors are used.
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6. Conclusions

This master thesis had the clear objective of developing a novel hybrid algorithm for bi-level
bi-objective optimization and to evaluate its performance level through the application to the
problem of hydrogen supply chain deployment and design. In order to achieve this, the
structure of the solution strategy presented recently by Canta et al. [1], has been used as a
starting point and enriched through a new approach based on a finer evaluation of the sub-
front corresponding to each lower-level sub-problem associated to the upper-level variables.
In this perspective, a higher number of weight vectors are used for solving the lower-level sub-
problems, aiming to provide a greater amount of information to improve the selection of future
generations in the evolutionary process. As a consequence, the MOEA used at the upper-level
had to be significantly modified to enable the algorithm to handle individuals constituted by
sub-fronts and not single solutions.

During the development of the project and when carrying out preliminary experiments, some
difficulties have appeared, such as not uniform distributions when using non-randomized
weight vectors, or obtaining repeated solutions for the same individual in the lower-level sub-
problem when too much weight vectors were computed. These early observations led to
introduce randomness in the generation of the weight vectors associated to each individual,
and to design a heuristic process selecting the worthy weight vectors in a smart way, improving
the efficiency of the global algorithm.

From the design and experimentation performed over with different instances of the HSC
design problem, the following conclusions can be drawn.

1- The comparative study of the sub-fronts generated by the different scalarizing functions
has shown that the best alternative is the Augmented Chebyshev (ATCH) function,
slightly better than the Augmented Achievement Scalarizing Function (AASF)
proposed in [1] and, therefore, subsequently used in the algorithm developed here.

2- The proposition first of a random selection criterion of the weights of the individuals and
then the intelligent management in the selection of which weights should be used to
obtain the different solutions are crucial for the efficient construction of the sub-fronts
and the competitiveness of the algorithm, especially for large number of weight vectors.

3- No evidence has been obtained, with the selection operator proposed in this work,
regarding the benefits of working with more weight vectors at the lower-level. In other
words, getting a more complete information on the sub-fronts associated to each
combination of upper-level variables did not lead to a more efficient genetic selection
within the MOEA used at the upper-level.

4- Inthe most complex instances, using more than two weight vectors and equal resource
usage (calls to the LP solver) can even deteriorate the convergence to the true Pareto
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front. Note, however, that convergence is observed in any case for equal numbers of
generation.

5- The latter indicates that the genetic mixing produced by letting the population evolve a
during a greater number of generations (with 1 or a small number of weight vectors)
outperforms the more accurate description of lower-level sub-front (with many weight
vectors) but over a shorter evolutionary process.

In summary, when evaluating the algorithm according to computational resources, the original
algorithm proposed in [1] (using a single weight vector) is consistently more efficient for
obtaining a good approximation of the Pareto front. However, these conclusions should be
balanced considering two observations. First, the obtained results are valid for the particular
formulation of the HSC design problem treated here. It would be worth evaluating the proposed
solution strategy over a wider range of problems, in order to confirm the above-mentioned
conclusions regarding the use of one or several weight vectors. On the other hand, the new
selection procedure of the MOEA, designed and developed in this work, might be seen as a
first attempt and it may, for some reason, be responsible for the adverse results found in the
present study. It is reasonable to think that the design of this new operator could be improved
in order to overcome possible drawbacks.

Accordingly, both these observations are likely to constitute perspectives for future work, i.e.:
(1) extending the application of the proposed algorithm to different bi-level bi-objective
optimization problems and (2) modifying the selection operator of the upper-level MOEA, in
order to determine if improvements can be obtained, in the perspective of a world where
hydrogen is getting closer to become an environmental-friendly and economically viable
alternative to conventional energy source.
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Appendix A. Data instances

The data instances used are the same as those proposed in the paper [1], with the exception
of HSC08g001p which was not included in that paper. Differs from the other instances because
only three types of production technology, three possible sizes of production facilities, two sizes
of storage facilities and three types of primary energy forms are considered as opposed to nine
production technologies, three possible sizes of production facilities, four sizes of storage
facilities and five different primary energy sources considered in the other instances.

Table A.1: costs associated with primary energy sources.

Primary energy source, ¢ MNatural gas PV-elect Wind-elect Hydro-elect Nuclear elect
Unit cost of energy source, UEC, ($/unit) 012 053 0.05 0.05 0.05
Unit import cost of energy source, U IC, (5/unit) 0.012 0.005 0.005 0.005 0.005

Table A.2: production capacities and costs of hydrogen plants.

Plant type, p

| Steam methane reforming

Centralized electrolysis

Distributed electrolysis

Plant size, | Small Medium Large | Small Medium Large | Small Medium
PCapyin(t/d) 0.3 10 200 0.3 1.05 10 0.05 0.45
PCapyi(t/d) 9.5 150 960 25 9.5 150 0.4 1

Y epj 4.02 3.34 3.16 52.49 52.49 5249 | 5249 52.49
PCC,;i (5 x10°) | 29 224 903 | 20.198 61 663 4.03 9.02
UPC,i ($/kg) 3.36 1.74 1.43 4.94 4.69 459 | 624 5.38

Table A.3: costs and characteristics of transportation modes.

Transportation mode, [ Tanker truck

Transport unit capacity, TCap;; (t/mode) 3.5
Fuel economy between grid, FE ,L(km /L) 2.30
Average speed between grid, SPF(km/hr) 66.8
Mode availability between grids, TM A (hr/d) 18

Load/unload time, LUT; (hr) 2

Driver wage, DW; ($/hr) 14.57
Fuel price, FP; ($/L) 1.5
Maintenance expenses, ME; ($/km) 0.126
General expenses, GE; ($/d) 8.22
Transport mode cost, TMCj; ($/mode) 500,000
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Table A.4: storage capacities and costs of liquid hydrogen storage facilities.

Storage type, s Liquid hydrogen storage
Storage size, | Mini Small Medium Large
Minimum storage capacity, SCapi"(t) 0.05 05 10 200
Maximum storage capacity, SCa p_{,‘,‘;"‘(t) 0.45 9.5 150 540
Storage capital cost, SCC;j; (million $)  0.802 5 33 122
Unit storage cost, USC;;; ($/kg/d) 0.064 0.032 0.010 0.005

Table A.5: global warming potential.

Type Value
GWP due to transportation (g CO2 per tonne-km) Tankertruck 62
GWP due to storage (g CO2 eq per kg H2) Liquid hydrogen 704
SMR 10100
PV-elect 6206
GWP due to production (g CO2 eq per kg H2) Wind-elect 1034

Hydro-elect 2068
Nuclear-elect 3100

Table A.6: local and regional delivery distances for 8 grid instances.

Grid, g | 01 02 03 04 05 06 07 08

01 0 111 1055 583 1336 2202 1107 194
02 111.1 0 71.8 1269 2148 287.7 146.5 2287
03 1065 718 0 751 1521 225 745 156.7
04 583 1269 75.1 0 8 1609 51 1355
05 133.6 2148 1521 88 0 738 796 1379
06 220.2 287.7 225 1609 738 0 152.8 156.9
07 110.7 1465 745 51 79.6 1528 0 84.6
08 194 2287 156.7 1355 1379 1569 84.6 0
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Table A.7: local and regional delivery distances for 22 grid instances.
Grid,g| 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22
01 0 63 46 97 128 197 198 175 102 139 148 191 222 306 338 297 243 174 155 222 246 240
02 |63 0 70 34 65 134 146 103 133 170 220 226 293 341 373 332 278 205 186 253 277 242
03 |46 70 0 59 112 173 156 133 60 97 127 148 180 264 295 254 201 132 113 180 204 198
04 |97 34 59 0 53 114 111 69 76 113 192 165 197 280 312 271 218 148 131 197 220 232
05 [128 65 112 53 0 70 115 71 131 208 287 230 262 309 341 300 247 177 151 216 249 234
06 |197 134 173 114 70 0 135 104 186 261 339 266 300 345 377 336 289 216 187 312 292 330
07 |198 146 156 111 115 135 0 43 99 140 214 157 189 226 258 217 164 94 71 124 180 141
08 |175 103 133 69 71 104 43 0 75 133 187 155 186 234 266 225 172 102 75 141 174 158
09 |[102 133 60 76 131 186 99 75 0 23 117 88 112 206 238 197 143 73 55 123 146 140
10 [139 170 97 113 208 261 140 133 23 0 83 75 100 218 250 209 156 87 68 135 159 152
1M | 148 220 127 192 287 339 214 187 117 83 0 43 54 102 137 125 141 135 146 188 169 205
12 191 226 148 165 230 266 157 155 88 75 43 0 24 73 108 91 86 83 80 147 124 136
13 (222 293 180 197 262 300 189 186 112 100 54 24 0 49 84 68 72 92 104 135 138 145
14 306 341 264 280 309 345 226 234 206 218 102 73 49 0 35 23 66 135 158 163 111 173
15 (338 373 295 312 341 377 258 266 238 250 137 108 84 35 0 35 99 168 191 19 144 206
16 297 332 254 271 300 336 217 225 197 209 125 91 68 23 35 0 58 134 150 155 103 165
17 |243 278 201 218 247 289 164 172 143 156 141 8 72 66 99 58 0 72 93 100 49 102
18 174 205 132 148 177 216 94 102 73 87 135 83 92 135 168 134 72 0 23 51 75 102
19 155 186 113 131 151 187 71 75 55 68 146 S0 104 158 191 150 93 23 0 70 94 &7
20 |22 253 180 197 216 312 124 141 123 135 188 147 135 163 196 155 100 51 M 0 55 20
21 246 277 204 220 249 292 180 174 146 159 169 124 138 111 144 103 49 75 9% 5 0 44
22 | 240 242 198 232 234 330 141 158 140 152 205 136 145 173 206 165 110 102 8 20 4 0




Pag. 63

Data for instance HSC08g01p & HSC08g001p

Table A.9: Hydrogen demand of each grid ad time period (kg/d) for instance HSC08g01p.

Time period, t

Grid,g 4 (2050
01 12610
02 21100
03 24770
04 17710
05 14610
06 16170
07 80620
08 10580

Table A.10: initial availability of energy sources (unit/d) for instance HSC08g01p.

Grid Primary energy source, ¢
& Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

01 0 661344 0 557061 0
02 0 674199 3626113 285325 0
03 0 423414 2917903 550197 0
04 0 430540 1813654 1112723 51210000
05 0 718353 1813654 0 0
06 0 0 0 3281233 0
07 0 493130 1230321 1914367 0
08 0 26575 0 1654163 0
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Data for instance HSC08g04p

Table A.11: Hydrogen demand of each grid ad time period (kg/d) for instance HSC08g04p.

Table A.12: initial availability of energy sources (unit/d) for instance HSC08g04p.

Time period, ¢

Crid g 4 (2020) 1, (2021-2030) #; (2031-2040) ¢, (2041-2050)
01 502 3780 8850 12610
02 843 6320 14750 21100
03 977 7410 17330 24770
04 709 5320 12400 17710
05 570 4420 10260 14610
06 639 4850 11310 16170
07 3221 24180 56470 80620
08 437 3150 7420 10580

Time

Primary energy source, ¢

period, t Grid 3 Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect
1 01 0 471278 0 557061 0
02 0 483634 2457909 285325 0
03 0 297382 2119665 550197 0
04 0 304231 1058296 1112723 51210000
05 0 526073 1058296 0 0
06 0 0 0 3281233 0
07 0 364574 840080 1914367 0
08 0 26575 0 1654163 0
2 01 0 635663 0 557061 0
02 0 477847 2922190 124022 0
03 0 406972 2804597 550197 0
04 0 413821 1743228 1112723 51210000
05 0 690458 1743228 0 0
06 0 0 0 3281233 0
07 0 474164 1182546 1914367 0
08 0 26575 0 1654163 0
3 01 0 648377 0 557061 0
02 0 660980 3555013 285325 0
03 0 415112 2860689 550197 0
04 0 422098 1778092 1112723 51210000
05 0 704268 1778092 0 0
06 0 0 0 3281233 0
07 0 483553 1206197 1914367 0
08 0 26575 0 1654163 0
4 01 0 661344 0 557061 0
02 0 674199 3626113 285325 0
03 0 423414 2917903 550197 0
04 0 430540 1813654 1112723 51210000
05 0 718353 1813654 0 0
06 0 0 0 3281233 0
07 0 493130 1230321 1914367 0
08 0 26575 0 1654163 0
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Data for instance HSC08g07p

Table A.13: Hydrogen demand of each grid ad time period (kg/d) for instance HSC08g07p.

X Time period, ¢
Grd2 & t f s ts o ty
(2020) (2021-2025) (2026-2030) (2031-2035) 2036-2040) (2041-2045) (2045-2050)

01 502 2141 3780 6315 8850 10730 12610
02 843 3581.5 6320 10535 14750 17925 21100
03 977 41935 7410 12370 17330 21050 24770
04 709 30145 5320 8860 12400 15055 17710
05 570 2495 4420 7340 10260 12435 14610
06 639 27445 4850 8080 11310 13740 16170
07 3221 13701 24180 40325 56470 68545 80620
08 437 1793.5 3150 5285 7420 9000 10580

Table A.14: initial availability of energy sources (unit/d) for instance HSC08g07p.

Time Grid Primary energy source, e
period, ¢ 8 Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

1 01 0 471278 0 557061 0
02 0 483634 2457909 285325 0
03 0 297382 2119665 550197 0
04 0 304231 1058296 1112723 51210000
05 0 526073 1058296 0 0
06 0 0 0 3281233 0
07 0 364574 840080 1914367 0
08 0 26575 0 1654163 0

2 01 0 553470 0 557060 0
02 0 480740 2690000 204670 0
03 0 352180 2462100 550200 0
04 0 359030 1400800 1112700 51210000
05 0 608270 1400800 0 0
06 0 0 0 3281200 0
07 0 419370 1011300 1914400 0
08 0 26575 0 1654200 0

3 01 0 635663 0 557061 0
02 0 477847 2922190 124022 0
03 0 406972 2804597 550197 0
04 0 413821 1743228 1112723 51210000
05 0 690458 1743228 0 0
06 0 0 0 3281233 0
07 0 474164 1182546 1914367 0
08 0 26575 0 1654163 0

4 01 0 642020 0 557060 0
02 0 569410 3238600 204670 0
03 0 411040 2832600 550200 0
04 0 417960 1760700 1112700 51210000
05 0 697360 1760700 0 0
06 0 0 0 3281200 0
07 0 478860 1194400 1914400 0
08 0 26575 0 1654200 0
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01 0 648377 0 557061 0
02 0 660980 3555013 285325 0
03 0 415112 2860689 550197 0
04 0 422098 1778092 1112723 51210000
05 0 704268 1778092 0 0
06 0 0 0 3281233 0
07 0 483553 1206197 1914367 0
08 0 26575 0 1654163 0
01 0 654860 0 557060 0
02 0 667590 3590600 285330 0
03 0 419260 2889300 550200 0
04 0 426320 1795900 1112700 51210000
05 0 711310 1795900 0 0
06 0 0 0 3281200 0
07 0 488340 1218300 1914400 0
08 0 26575 0 1654200 0
01 0 661344 0 557061 0
02 0 674199 3626113 285325 0
03 0 423414 2917903 550197 0
04 0 430540 1813654 1112723 51210000
05 0 718353 1813654 0 0
06 0 0 0 3281233 0
07 0 493130 1230321 1914367 0
08 0 26575 0 1654163 0
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Data for instance HSC22g01p

Table A.15: Hydrogen demand of each grid ad time period (kg/d) for instance HSC22g01p.

Grid, g Time period, t

t, (2050)
01 3050
02 3990
03 5570
04 4790
05 10810
06 5500
07 12820
08 11950
09 12170
10 5540
1 5210
12 6330
13 3070
14 10000
15 2850
16 3320
17 5010
18 12990
19 62620
20 4920
21 1990
2 3670

Table A.16: initial availability of energy sources (unit/d) for instance HSC22g01p.

Grid Primary energy source, ¢
1% 8 Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

1 0 211707 0 0 0
2 0 211707 0 177275 0
3 0 237930 0 379786 0
4 0 242919 906827 189923 0
5 0 219573 1069870 95402 0
6 0 211707 1649416 0 0
7 0 211707 1859149 0 0
8 0 211707 1058754 550197 0
9 0 218833 906827 92937 0
10 0 211707 906827 1019786 51210000
11 0 294939 906827 0 0
12 0 211707 906827 0 0
13 0 211707 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 225817 0 775129 0
19 0 262587 1230321 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0
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Data for instance HSC22904p

Table A.17: Hydrogen demand of each grid ad time period (kg/d) for instance HSC22g04p.

Time period, ¢

Grid 8 | (2050) 1> (2021-2030) t5 (2031-2040) t; (2041-2050)
1 124 910 2140 3050
2 157 1200 2800 3990
3 221 1670 3910 5570
4 19 1430 3340 4790
5 428 3230 7570 10810
6 219 1660 3840 5500
7 509 3840 8970 12820
8 468 3570 8360 11950
9 480 3660 8520 12170
10 229 1660 3880 5540
11 211 1570 3660 5210
12 243 1910 4440 6330
13 116 940 2160 3070
14 398 3000 7000 10000
15 115 850 1990 2850
16 126 1000 2320 3320
17 19 1500 3520 5010
18 518 3900 9110 12990
19 2507 18780 43840 62620
20 208 1470 3450 4920
21 93 590 1400 1990
2 136 1090 2570 3670

Table A.18: initial availability of energy sources (unit/d) for instance HSC22g04p.

Time

Primary energy source, ¢

period, ¢ Grd, g Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect
01 0 148691 0 0 0
02 0 148691 0 177275 0
03 0 173896 0 379786 0
04 0 178691 529148 189923 0
05 0 156252 685860 95402 0
06 0 148691 1242901 0 0
07 0 148691 1444490 0 0
08 0 148691 675175 550197 0
09 0 155540 529148 92937 0
10 0 148691 529148 1019786 51210000
1 11 0 228691 529148 0 0
12 0 148691 529148 0 0
13 0 148691 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 162253 0 775129 0
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S

19 0 197595 840080 120060 0
20 0 26575 0 B6575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0
01 0 203486 0 0 0
02 0 203486 0 177275 0
03 0 228691 0 379786 0
04 0 211047 1028326 95402 0
0s 0 63314 308497 28620 0
06 0 203486 1585367 0 0
07 0 203486 1786956 0 0
08 0 203486 1017641 550197 0
09 0 210335 871614 92937 0
10 0 203486 871614 1019786 51210000
11 0 283486 871614 0 0
12 0 203486 871614 0 0
13 0 203486 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 217048 0 775129 0
19 0 252390 1182546 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0
01 0 207556 0 0 0
02 0 207556 0 177275 0
03 0 233265 0 379786 0
04 0 238156 889046 189923 0
0s 0 215268 1048893 95402 0
0& 0 207556 1617074 0 0
07 0 207556 1822695 0 0
08 0 207556 1037994 550197 0
09 0 214542 889046 92937 0
10 0 207556 889046 1019786 51210000
11 0 289156 889046 0 0
12 0 207556 889046 0 0
13 0 207556 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 Q99726 0
17 0 4726 0 1019178 0
18 0 221389 0 775129 0
19 0 257438 1206197 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0
01 0 211707 0 0 0
0z 0 211707 0 177275 0
03 0 237930 0 379786 0
04 0 242919 906827 189923 0
(153 0 219573 1069870 95402 0
06 0 211707 1649416 0 0
07 0 211707 1859149 0 0
08 0 211707 1058754 550197 0
09 0 218833 906827 92937 0
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Memoria
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