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Abstract 

The present master thesis is based on the recently presented doctoral thesis of Dr. Victor Hugo 

Cantu Medrano, addressing multiobjective optimization problems in Process Engineering with 

several alternative resolution methods using Evolutionary Computation. 

In his thesis, a new algorithm to find the optimal design of the Hydrogen Supply Chain while 

minimizing economic costs and environmental impact is presented. For its resolution, the 

algorithm divides the problem into two subproblems or levels. The first level deals with the 

design of the HSC structure (sizing and location of the facilities). A second level that solves the 

subproblem corresponding to the operation of the supply chain (production and transportation). 

The technique used for its resolution is a hybridization of the MOEA SMS-EMOA, for the first 

level, with a linear programming solver that uses a scalarization function to address the two 

objectives considered in the second level. 

In this line, this master thesis consists of developing an extension of this same algorithm with 

the objective of taking advantage of all the information generated in the second level to 

increase its efficiency. To achieve this, the second level is executed several times for each 

execution of the first level, using each time a different vector of weights in the scalarization 

function. But this new logic implies the readaptation of the whole algorithm. 

First, the Hydrogen Supply Chain problem is presented and the technique for solving the 

original algorithm is discussed. Subsequently, the necessary modifications to the MOEA are 

presented in order to be able to apply the new approach to the algorithm. With the new 

algorithm implemented, a study is carried out for the definition of the weight vectors and 

different scalarization functions are studied to try to increase its efficiency. Finally, the results 

obtained with the new algorithm and those of the original algorithm are compared to determine 

whether the new version is capable of solving the same problems using fewer computational 

resources. 
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Résumé 

Cette thèse de master est basée sur la thèse de doctorat récemment soutenue par Dr Víctor 

Hugo Cantú Medrano, dans laquelle il expérimente plusieurs méthodes de résolution 

alternatives à l'aide méthodes évolutionnaires pour résoudre les problèmes d'optimisation 

multiobjectifs dans le domaine du génie des procédés. 

Dans sa thèse, le Dr Cantú présente un nouvel algorithme permettant de trouver la conception 

optimale de la chaîne d'approvisionnement en hydrogène tout en minimisant les coûts 

économiques et l'impact environnemental. Pour sa résolution, l'algorithme divise le problème 

en deux sous-problèmes ou niveaux. Le premier niveau traite de la conception de la structure 

de la chaîne logistique hydrogène (dimensionnement et emplacement des installations). Un 

second niveau résout le sous-problème correspondant à l'exploitation de la chaîne logistique 

(production et transport). La technique utilisée pour sa résolution est une hybridation du MOEA 

SMS-EMOA, pour le premier niveau, avec un solveur de programmation linéaire qui utilise une 

fonction de scalarisation pour traiter les deux objectifs considérés dans le second niveau. 

Dans cette lignée, ce mémoire de master consiste à développer une extension de ce même 

algorithme avec l'objectif de tirer profit de toute l'information générée dans le deuxième niveau 

pour augmenter son efficacité. Pour ce faire, le second niveau est exécuté plusieurs fois pour 

chaque exécution du premier niveau, en utilisant à chaque fois un vecteur de poids différent 

dans la fonction de scalarisation. Mais cette nouvelle logique implique la réadaptation de 

l'ensemble de l'algorithme. 

Tout d'abord, le problème de la chaîne logistique hydrogène est présenté et la technique de 

résolution de l'algorithme original est discutée. Ensuite, les modifications nécessaires au 

MEOA sont présentées afin de pouvoir appliquer la nouvelle approche à l'algorithme. Avec le 

nouvel algorithme implémenté, une étude est réalisée pour la définition des vecteurs de poids 

et différentes fonctions de scalarisation sont étudiées pour essayer d'augmenter son efficacité. 

Enfin, les résultats obtenus avec le nouvel algorithme et ceux de l'algorithme original sont 

comparés pour déterminer si la nouvelle version est capable de résoudre les mêmes 

problèmes en utilisant moins de ressources informatiques. 
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Resumen 

Este Trabajo Final de Master parte de la tesis doctoral recientemente presentada del doctor 

Víctor Hugo Cantú Medrano, donde se abordan problemas de optimización multiobjetivo en 

Ingeniería de Procesos experimentando con varios métodos de resolución alternativos 

haciendo uso de la Computación Evolutiva.  

En su tesis, el doctor Cantú presenta un nuevo algoritmo para encontrar el diseño óptimo de 

la Hydrogen Supply Chain minimizando los costes económicos y el impacto ambiental. Para 

su resolución, el algoritmo divide el problema en dos subproblemas o niveles. Un primer nivel 

que aborda el diseño de la estructura de la HSC (dimensionamiento y ubicación de las 

instalaciones). Un segundo nivel que resuelve el subproblema correspondiente a la operación 

de la cadena de suministro (producción y transporte). La técnica empleada para su resolución 

es una hibridación del MOEA SMS-EMOA, para el primer nivel, con un solver de programación 

lineal que utiliza una función de escalarización para tratar los dos objetivos considerados en 

el segundo nivel. 

En esta línea, este trabajo consiste en desarrollar una extensión de este mismo algoritmo con 

el objetivo de aprovechar toda la información que se genera en el segundo nivel para 

aumentar su eficiencia. Para lograrlo se ejecuta varias veces el segundo nivel por cada 

ejecución del primer nivel, utilizando cada vez un vector de pesos diferente en la función de 

escalarización. Pero esta nueva lógica implica la readaptación de todo el algoritmo. 

En primer lugar, se presenta el problema de la Hydrogen Supply Chain y se discute la técnica 

de resolución del algoritmo original. Posteriormente se presentan las modificaciones 

necesarias en el MOEA para poder aplicar el nuevo enfoque al algoritmo. Ya con el nuevo 

algoritmo implementado se realiza un estudio para la definición de los vectores de peso y se 

estudian diferentes funciones de escalarización para tratar de aumentar su eficiencia. Por 

último, se comparan los resultados obtenidos con el nuevo algoritmo y los del original para 

determinar si la nueva versión es capaz de resolver los mismos problemas utilizando un menor 

número de recursos computacionales. 
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Resum 

Aquest Treball Final de Màster té el seu origen en la tesis doctoral recentment presentada del 

doctor Víctor Hugo Cantú Medrano, en la qual s’aboren problemes d’optimització multiobjectiu 

en enginyeria de processos, experimentant amb diversos mètodes de resolució alternatius 

fent ús de la Computació Evolutiva.  

En la seva tesis, el doctor Cantú presenta un nou algorisme per a trobar el disseny òptim de 

la Hydrogen Supply Chain minimitzant els costos econòmics i l’impacte ambiental. Per a la 

seva resolució, l’algoritme divideix el problema en dos subproblemes o nivells. Un primer nivell 

aborda el disseny de l’estructura.de la HSC (dimensionament i ubicació de les instal·lacions). 

Un segon nivell resol el subproblema corresponent a l’operació de la cadena de 

subministrament (producció i transport). La tècnica empleada per a la seva resolució és una 

hibridació del MOEA SMS-EMOA, per al primer nivell amb un solver de programació lineal 

que utilitza una funció d’escalarització per a tractar els dos objectius considerats en el segon 

nivell. 

En aquesta línia, aquest treball consisteix a desenvolupar una extensió d’aquest mateix 

algorisme amb l’objectiu d’aprofitar tota la informació que es genera en el segon nivell per a 

augmentar la seva eficiència. Per a aconseguir-ho s’executa diverses vegades el segon nivell 

per cada execució del primer nivell, utilitzant cada vegada un vector de pesos diferent en la 

funció d’escalarització. Però aquesta nova lògica implica la readaptació de tot l’algorisme. 

En primer lloc, es presenta el problema de la Hydrogen Supply Chain i es discuteix la tècnica 

de resolució de l’algorisme original. Posteriorment es presenten les modificacions necessàries 

en el MOEA per a poder aplicar el nou enfocament a l’algorisme. Ja amb el nou algorisme 

implementat es realitza un estudi per a la definició dels vectors de pes i s’estudien diferents 

funcions d’escalarització per a tractar d’augmentar la seva eficiència. 

Ja amb el nou algorisme implementat es realitza un estudi per a la definició dels vectors de 

pes i s’estudien diferents funcions d’escalarització per a tractar d’augmentar la seva eficiència. 

Finalment, es comparen els resultats obtinguts amb el nou algorisme i els de l’original per tal 

de determinar si es possible obtenir els mateixos resultats fent us d’un menor número de 

recursos computacionals. 
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1. Introduction 

In a world increasingly aware of environmental issues, alerted to the need for changes in the 

use of energy, engineering must be able to respond to these future challenges and continue 

to meet our needs. 

This project presents an algorithm from the Evolutionary Computing branch aimed at designing 

a Hydrogen Supply Chain in the French region of Midi-Pyrénées optimizing the economic and 

environmental costs, since, in order for hydrogen to be considered as an alternative energy 

source, economic efficiency must be achieved. At the same time the carbon footprint produced 

by fossil fuels must be reduced. 

The objective of the project is the development and experimentation of an algorithm based on 

evolutionary techniques that provides the different optimal configurations of the design of the 

Hydrogen Supply Chain for the territory. More precisely, the algorithm provides a set of 

solutions belonging to a Pareto Front, i.e., the types and size of the production and storage 

facilities and the mode of transport used from a variety of energy sources. 

To achieve this objective, the current situation of hydrogen as an energy source has been 

investigated and the literature on multi-objective optimization problems has been analyzed. 

Specifically, the algorithm has been built as an extension of the original proposal developed 

by Víctor Hugo Cantú in the work "A Novel Matheuristic based on Bi-Level Optimization for the 

Multi-Objective Design of Hydrogen Supply Chains"[1]. 

In order to propose the new algorithm, it has been necessary to carry out a study of Victor's 

proposal, propose a readaptation of the algorithm, develop a computer program that 

implements it, make improvements on the new proposal and finally submit it to a computational 

experimentation to be able to draw conclusions. 

The project has been structured along the following lines: 

1. Study of hydrogen as an energy source 

2. Literature review of the MOP 

3. Definition of the HSC problem 

4. Presentation of the resolution used with the original algorithm 

5. Development and implementation of the new algorithm 

6. Computational experimentation 

7. Conclusions 

The process of evolution exists in all aspects of life. Species have evolved, society has 

evolved, technology has evolved, the same must happen with the use of energies. 
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2. Related work and basic concepts 

2.1. The Hydrogen Supply Chain 

Despite that the effects in the raise of Earth temperature produced by the presence of carbon 

dioxide in the atmosphere was first pointed out in 1896 by Svante Arrhenius [2], the idea of 

global warming being caused by the combustion of fossil fuels did not gain strength until the 

late 1980s, where some effects could be measured [3]. Today, it is a well-established theory 

to the extent that it is present in our daily basis, it to be in the news, laws, taxes or even personal 

decisions. The relevance of this theory can be noted in the Paris Agreement of 2015 [4], where 

195 countries agreed on controlling the carbon dioxide emissions in order to keep the global 

temperature rise of the XXI century below 2 degrees Celsius. 

To achieve this goal, however, it is not expected to be an easy task, since the world will need 

to make dramatic changes year after year and decrease energy-related CO2 emissions by 

58% until 2050 (from 30,6 Gt in 2020 to 13 Gt in 2050). To this, must be added the difficulty 

that final energy consumption is expected to continue growing in the coming years [5]. This 

future scenario represents a problem for the reduction of CO2 emissions, since the versatility, 

cost and abundance of fossil fuels make them highly dependent in practically all sectors and 

very difficult to replace. 

Given the need to reduce the effects produced by the use of fossil fuels, three branches of 

research have been promoted in recent years: increasing efficiency in the process of obtaining 

utile energy, reducing pollutants in the gases expelled during combustion or their treatment, 

and the seek for alternative energy sources, this last one being the most effective in the long 

term. 

Renewable energies seem to be a promising option as an alternative to fossil fuels. But this 

transformation presents new challenges, such as managing the intermittency of some 

renewable energy sources or the difficulty of electrifying certain end users.  

Therefore, in recent years, and parallel to renewable energies, there has been a growing 

interest in hydrogen, that can be seen as a versatile, clean, and safe energy carrier that can 

be used as fuel for power or in industry as feedstock. This interest has been motivated mostly 

since it can be produced from electricity and from carbon-abated fossil fuels, produces zero 

emissions at point of use, can be stored and transported at high energy density in liquid or 

gaseous form, and it can be combusted or used in fuel cells to generate heat and electricity 

[6].  

But, for this to become a reality, hydrogen will first have to meet a number of challenges to 
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make it a competitive option. Chief among these challenges is the design and construction of 

a hydrogen supply chain (HSC) to meet end-consumer demand in a localized, cost-effective 

and secure manner. 

2.1.1. Generalities on hydrogen 

Hydrogen, represented by the symbol H, is a chemical element with atomic number 1. It is the 

lightest of all elements and it is also the most abundant in the universe. On Earth, it is present 

mostly in the form of chemical compounds such as water or hydrocarbons.  

Under standard conditions of temperature and pressure its elemental form is the gas molecule 

dihydrogen and is found in the atmosphere, in very low proportions. Its very low density 

(0.08988 kg/Nm3 at 273°K) enables it to escape the Erath gravity more easily than denser 

gases like oxygen [7]. From an energetic point of view, dihydrogen is the form in which 

hydrogen can be used as fuel; either by the energy given off at the combustion of the gas or 

by using fuel cells to obtain electricity. 

As a fuel, it has extremely benefit qualities: its lower heating value is 141,88 MJ/kg [8], three 

times more than Diesel; it can be produced from electricity and carbon-abated fossil fuels and 

the only emissions generated at the point of use are water molecules. In a world concerned 

with reducing the environmental footprint, the low impact of hydrogen and its high energy 

capacity make hydrogen one of the energy sources of the future. 

As there are neither mines nor hydrogen deposits, but rather it is found in the atmosphere, 

hydrogen cannot be extracted directly from nature, so it must be produced. Currently, the most 

competitive ways to obtain hydrogen are: 

• Steam methane reforming (SMR): by reacting natural gas with high-temperature steam 

a mixture of hydrogen, carbon monoxide, and a small amount of carbon dioxide are 

generated. Currently, it is the cheapest, most efficient, and most used method to 

produce hydrogen.  

• Electrolysis: subjecting water to an electric field induces an electric current that causes 

the water molecules to split between hydrogen and oxygen. If the electricity used 

comes from renewable font, it can be considered as a renewable energy. It can also 

be used to transform the excess of electricity produced by the variable renewable 

energy, such as wind or solar, in to hydrogen, that can then be stored for a later use. 

• Gasification of biomass and coal: reacting coal or biomass with high-temperature 

steam and oxygen in a pressurized gasifier, results in a synthesis gas that contains 

hydrogen and carbon monoxide. That is later reacted with steam to separate the 

hydrogen. 
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• Fermentation: biomass is converted into sugar-rich feedstocks that can be fermented 

to produce hydrogen.  

There are other methods in a developing phase, like High-Temperature Water Splitting, 

Photobiological Water Splitting or Photoelectrochemical Water Splitting. All this these three 

methods have the same scientific basis, that consists in splitting the water molecules to 

separate the hydrogen from the oxygen of the water molecules [9].  

Although hydrogen contains a lot of energy per unit weight, it also occupies a large volume per 

unit weight making it very difficult to store it. To overcome this problem, a hydrogen 

conditioning process is necessary. There are three main alternatives: the first one is 

liquefaction. It is the way that hydrogen gets more concentrated, reducing up to 800 times the 

initial volume. By this method, hydrogen reaches a Net Calorific Value per weight unit much 

higher than Diesel [8]. Another way to store hydrogen is by compression. In this process 

hydrogen is compressed to pressures between 35 MPa to 70 MPa. The last alternative is 

based on metal hydrides. Those consists of materials that absorb hydrogen under certain 

conditions and allow reversible reaction, acting as charge carriers [10]. These methods are 

complex and require special storage equipment next to production facilities or demand points. 

2.1.2. Presentation of the HSC main goals and challenges 

Although the technology to produce, distribute and consume hydrogen is known, it still in an 

early phase. The lack of infrastructures, initial large-scale investments and the cost associated 

to it treatments make it very difficult to enter on today’s market. For these reasons, today, 

hydrogen has a restricted use and is used mainly in industrial processes. So, a horizon of 10 

to 20 years should be contemplated for creating a “hydrogen society”. The Council of 

Hydrogen, a global consortium of 92 energy companies, consider the role of hydrogen as a 

game changer in energy transition, accentuating seven major roles that hydrogen will have in 

the energy transition: 

• Enabling large-scale renewable energy integration and power generation. It can be 

used as a leveler between electricity generation and demand, due to imbalances in the 

electricity generation sector caused by variable renewable energy sources. Hydrogen 

produced by electrolysis could function as energy storage to overcome seasonality. 

• Distributing energy across sectors and regions. As a method of exchange across 

borders, securing a safe way to transfer storage energy by ships, trucks or pipes. 

Transporting hydrogen seems to be very efficient and it is not limited to small distances 

like electricity. 

• Acting as a buffer of the energy system, in addition to fossil fuels. It is necessary as 

backup capacity to ensure the smooth functioning of the energy system. As energy 

consumption will still raise, more amount of buffering is expected. 

https://www.linguee.es/ingles-espanol/traduccion/scientific+basis.html
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• Decarbonize transport. Fuel cell electric vehicles (FCEVs) have an important role to 

play in decarbonizing transport. As an alternative to battery electric vehicles (BEVs), 

FCEVs are expected to achieve longer distance, refuel quickly (3 to 5 minutes), and 

weight less due to no need of batteries. It would also make it possible to decarbonize 

other types of vehicles such as ships and airplanes in which the use of batteries is 

limited by their high weight. 

• Decarbonize industry energy use. Combusting hydrogen for low-grade heating (below 

400 °C) or as an electricity supply using fuel cells. 

• Serve as feedstock using captured carbon. Carbon capture and utilization is a 

technology that will need hydrogen to convert captured carbon into usable chemicals 

like methanol, methane, formic acid, or urea.  

• Help decarbonize building heating. Today, this activity is responsible for 12% of the 

total global carbon dioxide emissions, and hydrogen could substitute fossil fuels 

currently used. 

However, the current problem hydrogen is facing is cost competition. In the paper “Path to 

hydrogen competitiveness” [11] a realistic approach of the future competitiveness of the 

hydrogen cost is presented. In this study, 35 possible applications of hydrogen and more than 

40 technologies are analyzed and compared to other rival goods with the aim of giving a 

reasonable cost perspective. As a result of the study, it concludes that more than 22 

applications would be cost competitiveness before 2030, first becoming competitive in 

transportation, particularly for large vehicles with long range. Even this, in the short term, all 

application will struggle due to the higher cost of hydrogen technology and limited infrastructure 

and scale. This problem is expected to be overcome after 2030. 

2.1.3. The HSC design as an optimization problem (single/multi-obj) 

Various works can be found in the literature that formulate the design of the HSC as an 

optimization problem.  

A first work was introduced in [12], where a general demand-driven model was proposed to 

determine the optimal design of a network for the production, transport and storage of 

hydrogen in the UK with a Mixed Integer Linear Programming (MILP) approach, and a single-

objective of minimize the total operating and infrastructure costs. Later, the same authors 

expanded this model by adding new parameters to consider, such as the availability of raw 

material and its logistical cost, the variation in hydrogen demand along a planning horizon that 

leads to the development of infrastructure by phases, and the possibility of selecting different 

scales for the production and storage facilities [13].  

The same model has been extended and replicated in other works readapting it in other 

territories like Germany [14], France [15], Korea [16] or Portugal [17], adding new parameters 
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and considering the minimization of environmental impact or risks derived from the installation 

and activity of the infrastructure as objectives in the model. Some of these models even 

consider the uncertainty in the hydrogen demand and look for the best possible configuration 

of the HSC for a set of demand scenarios. 

Due to the large number of variables used, and in order to keep the numerical complexity 

limited, the proposed models tend to be single-objective (considering only the cost) or bi-

objective (cost + another objective). Usually, the approach used to solve them is by exact 

technics, like e-constrain. 

This project replicates the model of [18], which in turn is based on the models of [13] and [19], 

and seeks to optimize the design of a supply chain in the Midi-Pyrénées region of France by 

minimizing two objectives: 

• Total daily cost (TDC) of the supply chain, considering the investment costs related to 

plant installation and transportation routes, operational costs for production, storage 

and transportation, and also constraints for plant capacity, mass balance between grids 

and demand satisfaction. 

• Global warning potential (GWP), computed as a mathematical relation for Greenhouse 

Gas emissions due to production, storage and transportation. 

2.2. Multi-objective Optimization 

2.2.1. General presentation and formulation 

Multi-objective optimization can be defined as the search for the best solution(s) to a problem, 

i.e. the optimal solution(s), among a set of solutions that meet certain specifications, by 

evaluating two or more independent criteria called objectives. 

Each solution is a unique combination of n decision variables and constitutes the input to the 

problem. The way to express them is with its vector of decision variables 𝑥⃗. 

𝑥⃗ = [𝑥1, 𝑥2, … , 𝑥𝑛] 𝑇  

The decision variables of a solution cannot adopt any value, but are subject to constraints that 

limit and correlate them to ensure that they comply with the problem specifications. Thus, when 

the value of any of the variables of a solution is altered to construct another one, the other 

variables might be modified accordingly in order to meet the constraints. 

There are two types of constraints: 

• Inequality constraints:  
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𝑔𝑖(𝑥⃗) ≤ 0     𝑖 = 1, … , 𝑚 

• Equality constraints: 

ℎ𝑗(𝑥⃗) = 0     𝑗 = 1, … , 𝑝 

The set of solutions that satisfy all constraints is called set of feasible solutions, Ω, and only 

these solutions are candidates to be considered. 

In order to evaluate a solution, one or several objective function(s) is (are) applied, returning a 

numerical value(s) (output), therefore allowing to compare two solutions. In some cases, an 

output as low as possible is desired and, in others, as high as possible (maximization problem). 

Here, 𝑘 ≥ 2 objectives are contemplated, so that each solution is evaluated k times, once for 

each objective, ultimately obtaining a vector of objective functions: 

𝑓(𝑥⃗) = [𝑓1(𝑥⃗),  𝑓2(𝑥⃗), … , 𝑓𝑘(𝑥⃗)] 𝑇 

In general, these objectives are conflicting /meaning that improving some objective leads to 

the deterioration of another one). Therefore, in many cases, when comparing two solutions, 

one may solutions have better values for some objectives and worse values for others. In these 

cases, it is not possible to determine the best candidate solution. In order to formalize this 

observation, the dominance relationship is established: assuming that all objectives are to be 

minimized, a solution 𝑥⃗1 is said to dominate another solution 𝑥⃗2, if 𝑥⃗1 is not worse (i.e., lower 

or equal to) than 𝑥⃗2 for all objectives and strictly better (lower) than 𝑥⃗2 for at least one objective: 

∀𝐬 ∃ 𝑓𝑠(𝑥⃗1) ∶  𝑓𝑠(𝑥1) ≤ 𝑓𝑠(𝑥⃗2)  ∧  ∃ 𝑓𝑙(𝑥⃗1) ∶ 𝑓𝑙(𝑥⃗1) < 𝑓𝑙(𝑥⃗2)       𝑠, 𝑙 = 1, … , 𝑘 

Accordingly, the definition of Pareto-optimality (for Multi-objective Optimization Problems, 

MOPs) is based on the dominance relationship: a solution is Pareto-optimal if it is not 

dominated by any other solution in Ω. The set of all non-dominated solutions is called the 

Pareto set and its mapping onto the objective space is called the Pareto front. 

The ideal point, 𝑓*, contains the optimal values of Ω for each objective individually, regardless 

the value of the other objectives. This vector denotes the lower bound for each objective and 

is in general (when objectives are conflicting) infeasible, but it can serve as a reference. With 

𝑓𝑠
∗ representing the optimal value of each objective for all s = 1, …, k, the ideal point it is defined 

as follow: 

 𝑓∗ = [𝑓1
∗, 𝑓2

∗, … , 𝑓𝑘
∗] 𝑇 

The nadir point, 𝑓nad, represents the worst individual values of each objective among all the 

solutions that build the Pareto front. The following figure shows the ideal and nadir point for 
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the Pareto front of a bi-objective optimization problem (where the feasible space is denoted 

here by Z). 

 

These points give a reference of the quality of the solutions obtained and allow to normalize 

the objectives. For most cases, it is necessary to carry out this normalization because the 

objectives have different units and magnitudes, since, they can evaluate very different 

concepts, such as for example the manufacture cost of a product and a customer’s satisfaction 

degree. One way to normalize a target is as follows: 

𝑓𝑠′(𝑥⃗) = |
𝑓𝑠

∗ − 𝑓𝑠(𝑥⃗)

𝑓𝑠
∗ − 𝑓𝑠

𝑛𝑎𝑑
|           𝑠 = 1, … , 𝑘 

2.2.2. Different classes of solution techniques 

In the previous section, basic concepts such as the Pareto-optimality definition were stated for 

MOPs. However, this new definition of optimality involves the need for specific solution 

techniques and algorithms, in order to find an approximation of the Pareto set. These 

techniques are based on different paradigms in order to identify efficiently a defined number 

of Pareto-optimal solutions, i.e. in the shortest possible time. 

A traditional way to approach a MOP is by transforming it into a single-objective problem 

through scalarizing (or utility) functions. These functions combine the vector of normalized 

objectives and obtain a single output for each solution. The scalarizing functions used relate 

 

Figure 1. Representation of the ideal and nadir point of a set of 

solutions Z. Source:[20] 
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the objective vector to a predefined weight vector w := (w1, w2, …, wk), where each weight 

represents the importance given to an objective. Generally, the weight vector is normalized 

(even if not necessary). Assuming that all objectives are to be minimized, the new single 

objective problem has the following form: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑢(𝑓′(𝑥⃗) ; 𝑤) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜    𝑥⃗ ∈  Ω   

Where,  

∑ 𝑤𝑠

s

= 1 |  𝑤𝑠 ∈ [0, 1]          𝑠 = 1, … , 𝑘 

Any single-objective optimization technique adapted to the mathematical features of the above 

problem can be used. The solution represents one single Pareto-optimal point. An 

approximation of the whole Pareto front can be obtained by varying the objective weights, thus 

exploring different regions of the objective space. 

There is a wide variety of scalarizing functions that combine the objectives in different manners. 

Some of them are described in details in the following subsection because they are employed 

in this work, but the reader is referred to [26] for a complete overview on this topic. The 

scalarizing strategy, however, has three major drawbacks: (1) since only one point is obtained 

for each combination of weights, if one wants to obtain an approximation of the whole Pareto 

front, multiple runs must be performed with different weight vectors (a number that should 

increase with the number of objectives considered), (2) the approximation of the Pareto front 

may not be well distributed, especially in concave parts of the front, and (3) this technique is 

sensitive to the selection of the weight coefficients, the problem treated must be well known so 

that the selection of the weight vector provides a satisfying result [21]. 

Another way to address these MO problems is evolutionary computation, in particular 

multiobjective evolutionary algorithms (MOEA). These algorithms have a working mode based 

on biological evolution, where only the best adapted individuals survive to gradually approach 

the Pareto front in a well-distributed manner. Their structure is usually as follows: 

• The starting point is a set of µ individuals (solutions), called population. 

• Each individual is evaluated for each k ≥ 2 objectives.  

• Variation operators such as crossover and mutation are performed on individuals from 

the current population, to obtain a new generation of individuals. The crossover, which 

reproduces sexual recombination, determines the individuals that will be able to 

transmit their qualities and how they transmit them to the new generation. On the other 
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hand, mutation involves random variation of individual’s genotype. Both these 

operators usually introduce a degree of randomness in the offspring. Examples of such 

operators are the SBX crossover and the polynomial mutation, which are classical 

operators adapted to real-point encoded variables. Both these operators are described 

in this chapter, since they will be used in this work. 

• From the total population, obtained from combining the current population (parents) 

with the offspring population produced through variation operators (so that total 

population size is now greater than µ), the best µ individuals are selected according to 

a selection operator that assigns a fitness to each individual according to the algorithm 

paradigm (see next paragraphs). While a stopping criterion has not been reached, 

these selected individuals form the current population and the above process is 

repeated iteratively. The individuals that were not selected are discarded from the 

population. In general, the stopping criterion is related with resource usage, measured 

in terms of generations, objective evaluations or computational time. When the 

algorithm stops, the last population constitutes the output of the algorithm.  

With some exceptions, the distinction between different classes of MOEAs are mostly due to 

differences in the paradigm used to define the selection operator, while the choice of the 

variation operator is generic and problem dependent [22]. There are currently three main 

paradigms for MOEA selection operator designs. These are: 

1. Pareto based MOEAs: this type of algorithms uses a two-level selection process. First, 

the dominance relationship governs as a selection criterion to assign a first fitness 

value to each individual. In a second level, diversity indicators are used to promote the 

even distribution of non-dominated solutions along the Pareto front. This second level 

is applied only to individuals who share the same dominance-based fitness and is 

therefore used as a tie-breaker. A popular algorithm in this category is NSGA-II [23]. 

2. Decomposition based MOEAs: these algorithms decompose the problem into several 

scalar (single-objective) optimization subproblems, each one focusing on different 

regions of the Pareto front. To create these subproblems, a scalarizing function is used 

as an objective function and different values of the weight vector are assigned to each 

subproblem. Then, one individual from the population is assigned to each subproblem, 

i.e. searches a different region of the objective space, and interactions among 

individuals (either due to crossover or offspring sharing) allow a collaborative search 

mechanism. MOEA/D [24] is a classical decomposition-based algorithm. 

3. Indicator based MOEAs: these MOEAs are guided by an indicator that measures the 

performance or quality of an approximation set. The selection procedure depends 

directly on the contribution of each individual to this indicator, which allows establishing 

a ranking among individuals in order to select. A state-of-the-art example of such 

algorithms is the SMS-EMOA [25], which uses the hypervolume indicator to determine 
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the quality of an approximation set. This algorithm, which is employed in this work, is 

described in details in section 2.2.4.   

2.2.3. Different scalarizing technics 

Scalarization (or utility) functions transform the MOP into a single-objective optimization 

problem through some kind of distance metric between each solution and a reference point 

(typically, the ideal point). These functions use a weight vector, defined by the user, to 

determine the priorities between objectives. In general, this weight vector is normalized. By 

varying the weight vector, different sub-regions of the objective space are explored, so that a 

uniformly distributed set of weights supposedly allows to describe the entire Pareto front of the 

MOP.  A variety of scalarization functions have been developed, each with its own properties. 

A complete review of these functions is proposed in [26]. Four of them, particularly important 

for the present work, are presented below: 

- Weighted sum (WS): is one of the most commonly used in multiobjective optimization. 

However, with this function it is not possible to find solutions in the concave regions of the 

Pareto front. Its expression is as follows: 

𝑢𝑤𝑠(𝑓; 𝑤⃗⃗⃗) =  ∑ 𝑤𝑠 · 𝑓𝑠

𝑠

 

- Augmented Chebyshev (ATCH): this function is an extension of the Chebyshev function 

(TCH), which adapts to all types of front shapes. The augmented version corrects the defect 

of TCH of finding weakly dominated solutions through an additional term that allows it to 

discard these solutions. This term is weighted by a coefficient α and the authors of [26] 

recommend using a value between [0.001, 0.01]. It is defined as: 

𝑢𝑎𝑡𝑐ℎ(𝑓; 𝑤⃗⃗⃗) = max
𝑠

{𝑤𝑠|𝑓𝑠|} +  𝛼 ∑ |𝑓𝑠|

𝑠

 

- Modified Chebyshev (MTCH): is a variant of the TCH, formulated as: 

𝑢𝑚𝑡𝑐ℎ(𝑓; 𝑤⃗⃗⃗) = max
𝑠

{𝑤𝑠(|𝑓𝑠| +  𝛼 ∑|𝑓𝑠|

𝑠

)} 

For this function a small and positive α coefficient is also recommended as suggested in [26]. 

- Augmented Achievement Scalarizing Function (AASF): unlike the TCH function, the 

objectives are here divided by the weights. As ATCH, it is an augmented version through an 

additional term to discard weakly dominated solutions and the authors of [26] recommend 

using a value of the coefficient α ≈ 10-4. It is expressed as indicated below: 
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𝑢𝑎𝑎𝑠𝑓(𝑓; 𝑤⃗⃗⃗) = max {
𝑓𝑠

𝑤𝑠
} +  𝛼 ∑

𝑓𝑠

𝑤𝑠
𝑠

 

2.2.4. The SMS-EMOA algorithm 

As noted above, the SMS-EMOA is based on the optimization of a performance indicator (third 

paradigm). In particular, this algorithm seeks to maximize the hypervolume indicator. 

The hypervolume is a widely used indicator in multi-objective optimization to evaluate the 

quality of a front. This indicator, denoted as HV, is calculated as the hyper-area dominated by 

a set of solutions and bounded by a reference point. Therefore, the larger the hypervolume, 

the better the produced approximation of the actual Pareto front. The coordinates of the 

reference point (in the objective space) are the worst values found within the solution set 

according to each objective, to which a small arbitrary quantity is added. The hypervolume is 

one of the most widely used indicators since it is the only one that is Pareto-compliant, i.e., it 

meets the definition of Pareto optimality in the sense that the maximum hypervolume is 

obtained only for the actual Pareto front. Furthermore, the hypervolume measures the 

simultaneous convergence of the solutions to the real Pareto front, as well as their extent and 

the uniformity of their distribution along the front, as illustrated in figure 2.  

 

In the figure above, three solution sets, A, B and C, can be observed, corresponding to three 

approximations of the front of a classical bi-objective test function (both objectives are to be 

minimized). The gray colored area between the different solutions and the reference point r 

represents the hypervolume of each approximated front and the curve where the solutions 

converge to is the Pareto optimal (PF) front. The hypervolume values for the three sets are: 

 

Figure 2. Hypervolume of three different sets A, B and C. Source:[1] 
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HV(A) = 0.5808, HV(B) = 0.8101 and HV(C) = 0.8237. In front A, the hypervolume penalizes 

the poor convergence to PF and, in front B, the poor dispersion along PF. The value of the C 

front is the greatest one because the solutions converged to PF and the solutions are uniformly 

distributed. 

However, the main drawback of the hypervolume is the high cost associated with its 

computation. In particular, the complexity grows rapidly with the number of objectives. But, for 

the two-objective case of interest in this work, its computation is trivial and very efficient. 

SMS-EMOA is a MOEA that from a population of µ individuals generates one new solution at 

each iteration, through crossover and mutation operators. Its working mode prevents from a 

deterioration of the hypervolume covered by the current population. This implies that new 

candidate solutions can only be integrated into the current population if their replacement of a 

current member allows increasing the hypervolume. Also, dominance is accounted for the 

formation of successive fronts, such as in NSGA-II [23]. Then, the rules that define when one 

individual is preferred over another are: 

- A solution belonging to lower fronts (i.e., more likely to be non-dominated) is always 

preferred at any point in the evolutionary process. This rule is extracted from the 

popular algorithm NSGA-II [23]. 

 

- In case the first rule does not occur, the contribution to the hypervolume ∆S of each 

individual is measured as a criterion for selecting individuals from the last 

considered front (according to the non-dominating sorting procedure in NSGA-II). 

That is, the individual contributing the least to the hypervolume is discarded from 

the worst ranked front. 

In the bi-objective case, 𝑓 = (𝑓1, 𝑓2), the contribution to the hypervolume (𝛥𝑆) of a set of 

individuals 𝑅 = {𝑠1, … , 𝑠|𝑅|}, with |𝑅| > 2, is computed as:  

𝛥𝑆(𝑠𝑖, 𝑅) = (𝑓1(𝑠𝑖+1) − 𝑓1(𝑠𝑖)) ·  (𝑓2(𝑠2−1) − 𝑓2(𝑠𝑖))             ∀ 𝑛 ∈ {2, … , |𝑅| − 1}  

Note that extreme points are excluded from this procedure. The SMS-EMOA only considers 

the possibility of substituting interior points and its calculation is only possible if non-dominated 

solutions are found in the set 𝑅. 

The main drawback of SMS-EMOA is due to the computation of ∆S, which, as the 

hypervolume, is resource-consuming for more than two objectives, which undermines the 

algorithm’s efficiency for many objectives or large sets [27]. 
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2.2.5. SBX crossover operator 

Like any crossover operator, this is a binary operator which, starting from two parent solutions 

x1, x2, generates two offspring solutions y1, y2, which integrate the characteristics of their 

parents according to the following expression: 

𝑦𝑖
1 = 0.5 ((1 − 𝛽𝑖) 𝑥𝑖

1 + (1 + 𝛽𝑖) 𝑥𝑖
2) 

𝑦𝑖
2 = 0.5 ((1 + 𝛽𝑖) 𝑥𝑖

1 + (1 − 𝛽𝑖) 𝑥𝑖
2) 

Where 𝑖 ∈ {1, … , 𝑛} corresponds to the position of each of the parental decision variables in a 

population of 𝑛 individuals, and 𝛽𝑖 to a parameter calculated according to the following 

probability distribution function (polynomial): 

𝛽𝑖 = {
(2𝑢)

1
𝜂𝑐+1,                   𝑖𝑓 𝑢 ≤ 0.5

(
1

2(1 − 𝑢)
)

1
𝜂𝑐+1,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

Where 𝑢 is a random number between 0 and 1, and 𝜂𝑐 is a polynomial distribution index 

defined by the user. This operator is applied to each pair of parents to obtain the new offspring. 

2.2.5.1. Polynomial Mutation 

The polynomial mutation was proposed in the same work as the SBX crossover operator. A 

mutant is obtained by adding to the value of the variable under consideration a random 

perturbation with polynomial distribution, generated according to the following equation: 

𝑦𝑖
1′

=  𝑦𝑖
1 + (𝑥𝑖

(𝑈)
− 𝑥𝑖

(𝐿)
) ·  𝛿𝑖̅ 

Where xi
(L) and xi

(U) are respectively the lower and upper bounds on variable xi and 𝛿𝑖̅ is the 

disturbance, computed as: 

𝛿𝑖̅ = {
(2𝑟𝑖)

1
𝜂𝑚+1 − 1,                   𝑖𝑓 𝑟𝑖 ≤ 0.5

1 −  2 · (1 − 𝑟𝑖)
1

𝜂𝑚+1,             𝑖𝑓 𝑟𝑖 ≥ 0.5   

 

 

Likewise, the mutation operator is applied to each variable with a probability equal to pm = 1/n 

(where n is the number of decision variables). 
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3. Problem statement and existing solution 

schemes 

The problem to be solved consists in designing a Hydrogen Supply Chain (HSC) capable of 

supplying the growing demand for hydrogen over a given territory (the case study is the French 

region of Midi-Pyrénées), with the objective of simultaneously minimizing the total costs and 

environmental impact. The solution strategy developed here is based on the strategy 

introduced in [1] and proposes modifications in view of improving the algorithm efficiency. In 

particular, this chapter focuses on the detailed description of the HSC design problem and on 

the definition of the mathematical bi-level optimization model proposed in [1]. 

3.1. Problem description 

The problem takes into account a territory for which a hydrogen demand can be predicted in 

the future years. In order to meet this demand, an HSC must be designed considering both 

installation and operation aspects. In particular, the installation feature involves making 

decisions that affect the following areas: the selection of hydrogen generation technologies, 

the energy sources used for generation and the location and sizing of both production 

equipment and storage facilities. On the other hand, with regard to the operational aspect of 

the supply chain, the following must be determined: the production levels of the installed 

generation equipment, the means used to transport hydrogen from the generation plants to 

the customers and the distribution routes and flows of transported hydrogen. Each of these 

decision levels will have an impact on the economic and environmental cost of the HSC, so 

the optimization problem tackled here is bi-objective. 

In more detail, to solve this problem, the territory is assumed to be divided into sub-regions, 

called grids, which can refer to cities, administrative districts, communities, etc., of the 

considered territory. This division implies a possible representation of the HSC as a graph, in 

which each grid represents a node (which constitutes a potential hydrogen production area 

with its own corresponding demand) and where the potential distribution routes are the edges. 

To account for demand growth over the lifetime interval of the HSC, this time horizon is divided 

into periods, within which the demand is considered to be static. The model is therefore of the 

multi-period type. 

Regarding the installation issue, the technologies used for hydrogen generation have to be 

selected, taking into account their cost and environmental impact. In general, these parameters 

are influenced by the "maturity" of each technology, i.e., the experience accumulated over the 

years, which for example allows economic or performance improvements. In this work, the 
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following potential generation technologies are considered: steam methane reforming (SMR), 

central and distributed electrolysis. In addition, and according to the chosen generation 

technologies, a choice has to be made between the different energy sources that can be used 

as feedstock: solar photovoltaic, wind, hydro, nuclear (as electricity from the grid) and natural 

gas. It is worth mentioning that, in case of needing to import the raw materials because they 

are not available in the territory, importation costs will also be taken into account. On the other 

hand, production plants can have different sizes, associated with production capacities. 

Therefore, a discrete (and reduced) number of sizes available for each type of technology is 

considered. Finally, the optimal location of production plants must also be determined, which 

will have an impact on distribution aspects. 

At the operation level, decisions focus on production and transportation aspects. According to 

the sizes of the installed production equipment, the corresponding minimum/maximum 

production capacities can be known. The production rate should be determined between these 

two bounds. On the other hand, the transportation means between a production area and a 

consumption area have to be determined. In this work, the following options are considered: 

pipelines, tanker trucks or trucks with trailers. To use each of these transports, the hydrogen 

must be preconditioned in a specific way (gaseous or liquid form), which also conditions the 

storage technology. Storage facilities can be of different sizes, as can production facilities, and 

are deduced from the quantities produced/transported in each grid. Finally, the distribution 

routes between the hydrogen generation plants and the final customers (refueling stations for 

consumers) are to be established. 

 

In conclusion, developing an HSC involves taking into account the above aspects and 

determining the set of most efficient solutions for the corresponding bi-objective optimization 

problem. 

 

Figure 3. Problem diagram. Source: [1] 
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3.2. Mathematical model 

The hypotheses and operational modes stated in the previous section have been formalized 

through different models of Mixed Integer Linear Programming (MLEP), in particular in the 

works of [13] and [19]. However, these models were reformulated in [1] as a bi-level 

mathematical programming problem, which takes advantage of the distinction between 

installation and operation issues to decompose the global problem into two sub-problems to 

reduce its original complexity. The first sub-problem (master, or upper-level) focuses on the 

installation aspects, while the slave sub-problem (lower-level) deals with the operation aspects 

(production and transportation). The same approach is used here to solve the overall HSC 

design problem, so the bi-level formulation is presented below: 

min
𝑥

[𝑇𝐷𝐶(𝑥), 𝐺𝑊𝑃(𝑥)]𝑇 

𝑠. 𝑡.      ∑ ∑ ∑ 𝑃𝐶𝑎𝑝𝑝𝑗𝑖
𝑚𝑖𝑛 𝑁𝑃𝑝𝑗𝑖𝑔𝑡 − ∑ 𝐷𝑖𝑔𝑡

𝑔∈𝐺

≤ 0       ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇

𝑔∈𝐺𝑗∈𝐽𝑝∈𝑃

 

∑ 𝐷𝑖𝑔𝑡

𝑔∈𝐺

−  ∑ ∑ ∑ 𝑃𝐶𝑎𝑝𝑝𝑗𝑖
𝑚𝑎𝑥  𝑁𝑃𝑝𝑗𝑖𝑔𝑡 ≤ 0       ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇

𝑔∈𝐺𝑗∈𝐽𝑝∈𝑃

 

∑ ∑ 𝑆𝐶𝑎𝑝𝑠𝑗𝑖
𝑚𝑖𝑛  𝑁𝑆𝑠𝑗𝑖𝑔𝑡 − 𝑆𝑖𝑔𝑡

𝑇 ≤ 0       ∀𝑖 ∈ 𝐼, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇

𝑗∈𝐽𝑠∈𝑆

 

𝑆𝑖𝑔𝑡
𝑇 ∑ ∑ 𝑆𝐶𝑎𝑝𝑠𝑗𝑖

𝑚𝑎𝑥  𝑁𝑆𝑠𝑗𝑖𝑔𝑡 ≤ 0       ∀𝑖 ∈ 𝐼, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇

𝑗∈𝐽𝑠∈𝑆

 

𝑁𝑃𝑝𝑗𝑖𝑔𝑡 , 𝑁𝑆𝑠𝑗𝑖𝑔𝑡  ∈ ℕ       ∀𝑝 ∈ 𝑃, ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝐼, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

min
𝑦

[𝑇𝐷𝐶(𝑦), 𝐺𝑊𝑃(𝑦)]𝑇 

𝑠. 𝑡.      𝑃𝐶𝑎𝑝𝑝𝑗𝑖
𝑚𝑖𝑛  𝑁𝑃𝑝𝑗𝑖𝑔𝑡− ≤ 0      ∀𝑝 ∈ 𝑃, ∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝐼, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

𝑃𝑝𝑗𝑖𝑔𝑡 − 𝑃𝐶𝑎𝑝𝑝𝑗𝑖
𝑚𝑎𝑥  𝑁𝑃𝑝𝑗𝑖𝑔𝑡  ≤ 0      ∀𝑝 ∈ 𝑃, ∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝐼, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

∑ ∑  𝑃𝑝𝑗𝑖𝑔𝑡 − ∑ ∑ (𝑄𝑖𝑙𝑔𝑔′𝑡 − 𝑄𝑖𝑙𝑔′𝑔𝑡) − 𝐷𝑖𝑔𝑡 = 0      ∀𝑖 ∈ 𝐼, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇

𝑔′∈𝐺,𝑔′≠𝑔𝑙 ∈𝐿𝑗∈𝐽𝑝∈𝑃

 

𝑃𝑝𝑗𝑖𝑔𝑡 , 𝑄𝑖𝑙𝑔𝑔′ ∈  ℝ≥0      ∀𝑝 ∈ 𝑃, ∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

Bi-level mathematical model of the HSC, for more details see [1]. 

As above-mentioned, the sub-problem of the upper-level (master) focuses on defining the 

structure of the HSC, which involves determining the type (generation technology), location 
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and size of the production and storage equipment. The corresponding decision variables are 

𝑥 = [𝑁𝑃𝑝𝑗𝑖𝑔𝑡 , 𝑁𝑆𝑠𝑗𝑖𝑔𝑡], both integers. 𝑁𝑃𝑝𝑗𝑖𝑔𝑡 corresponds to the number of production facilities 

of type p, size j, which uses hydrogen in its physical form i, installed on the grid g during period 

t. Besides, the variable 𝑁𝑆𝑠𝑗𝑖𝑔𝑡 corresponds to the number of storage facilities of type s, size j, 

which uses hydrogen in its physical form i, installed in grid g during period t. The constraints 

ensure that, with the installed production and storage capacity, the hydrogen required can be 

supplied in the whole territory and for each period. In the lower-level sub-problem (slave), the 

aim is to determine the production rate of the installed plants and the transport flows between 

grids, for the structure imposed at the upper-level. The corresponding decision variables are 

𝑦 = [𝑃𝑝𝑗𝑖𝑔𝑡 , 𝑄𝑖𝑙𝑔𝑔′𝑡], both continuous. 𝑃𝑝𝑗𝑖𝑔𝑡 corresponds to the production ratio in kg·d-1 of the 

installations of type p, size j, which uses hydrogen in its physical form i, installed in grid g during 

period t. On the other hand,  𝑄𝑖𝑙𝑔𝑔′𝑡 corresponds to the amount of transported hydrogen in 

kg·d-1 according to its physical condition i, through the transportation means l, from grid g to 

grid g’ during period t. The constraints ensure that production capacities and demand 

requirements are respected in each grid, adjusting production levels and transported flows. 

As observed, the variables of the sub-problem at the lower-level are not present in the sub-

problem at the upper-level, i.e., the decisions made at the upper-level are independent of the 

lower-level. In contrast, the lower-level depends directly on the decision variables of the upper-

level. Thus, an upper-level solution can be seen as a partially defined solution that can be 

complemented by solving the lower-level sub-problem: once the values of the upper-level 

decision variables are known, they are introduced into the slave problem which treats them as 

constants. 

The objectives for both problems are conceptually the same ones:  

• Total daily cost (TDC) of the supply chain, considering the investment costs related to 

plant and storage installation and transportation routes, operational costs for 

production, storage and transportation. 

• Global warning potential (GWP), computed as a mathematical relation for gas 

emissions due to production, storage and transportation. 

The difference between the two levels is that both the TDC and GWP are calculated only 

regarding the generation and storage equipment installed at the upper-level (TDC only 

depends on 𝑥 = [𝑁𝑃𝑝𝑗𝑖𝑔𝑡 , 𝑁𝑆𝑠𝑗𝑖𝑔𝑡]); while they are calculated on the basis of production rates 

and transported flows at the lower-level (TDC depends only on 𝑦 =  [𝑃𝑝𝑗𝑖𝑔𝑡 , 𝑄𝑖𝑙𝑔𝑔′𝑡]).  

Thus, the bi-level reformulation introduced here results in two optimization sub-problems: the 

master sub-problem is MILP since it involves integer variables, while the slave sub-problem 

belongs to the Linear Programming (LP) class (since it involves only continuous variables). 

This observation motivates the use of optimization techniques adapted for each level, as 
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proposed in [1]. This solution mechanism is described in the next subsection 

3.3. Current resolution strategy for the HSC bi-level problem 

The strategy used by the author of [1] to solve the problem consists of a hybrid approach, 

namely, a MOEA for the upper level coupled with a linear programming solver at the lower 

level. The iterative process is described as follows. 

The upper level uses the algorithm SMS-EMOA (see section 2.2.4) to determine the 

configuration of the HSC production and storage facilities. A population of µ individuals is 

evolved, each one defined by the variables 𝑁𝑃𝑝𝑗𝑖𝑔𝑡 y 𝑁𝑆𝑠𝑗𝑖𝑔𝑡  ∀ 𝑝, 𝑗, 𝑠, 𝑖, 𝑔, 𝑡. These variables 

represent the technology, size, energy source used, location and opening period of the 

production and storage facilities, respectively. Due to the stochastic nature of the algorithm 

(initial population and variation operators), these solutions may not meet the constraints of the 

master problem, in particular those regarding the ability to supply the total demand of the 

territory considered. In this case, the solutions are repaired by randomly adding or removing 

facilities one by one, until the solution is feasible. 

For its evaluation, each individual, i.e. each upper level partial solution, needs the resolution 

of the lower level sub-problem to determine the optimal values of inter-grid transportation flow 

and plant production rate (variables 𝑄𝑖𝑙𝑔𝑔′𝑡 y 𝑃𝑝𝑗𝑖𝑔𝑡, respectively). The sub-problem is also bi-

objective (minimizing the total costs and environmental impact associated with the operation 

of the SC) and it is solved exactly and efficiently through a LP solver and a scalarizing function 

to deal with both objectives (the author recommends the use of AASF, see section 2.2.3, with 

a randomly generated vector of weights associated to each objective). Note, however, that the 

corresponding LP has to be solved for each time period, which may imply a great 

computational effort (since every partial solution of the upper-level, i.e. every individual of the 

used MOEA, requires solving this LP sub-problem). Thus, to simplify the problem, a heuristic 

is used in order to drastically reduce the number of variables: according to the values of the 

variables of the upper-level, 𝑁𝑃𝑝𝑗𝑖𝑔𝑡, only grids with an installed production capacity higher 

than their demand in a period are able to export, while those with a capacity lower than their 

demand can only import hydrogen. In this way, the number of potential transport flows 

decreases, which allows short computational times for solving each lower-level sub-problem. 

Once the partial solution of the slave sub-problem has been calculated, the MOEA gets the 

value of the continuous variables 𝑃𝑝𝑗𝑖𝑔𝑡  y 𝑄𝑖𝑙𝑔𝑔′𝑡  of the slave problem, integrates them to the 

corresponding individual of the master sub-problem and computes the associated objectives 

(TDC and GWP). It is of particular relevance to this work that, in the original version of the 

algorithm, the lower-level sub-problem is solved only once for a single vector of weights, 

yielding a single partial solution for the upper-level. Thus, the SMS-EMOA algorithm can be 
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used in its canonical form: through classical genetic operators (SBX crossover and polynomial 

mutation), offspring are generated. The combined population of parents (current generation) 

and children is composed of 2·µ individuals. The selection operator is that of SMS-EMOA: after 

generating successive fronts of non-dominated solutions and assigning a ranking to each 

individual, the next population is filled starting with the lowest ranked fronts. For the last front 

for which solutions are to be selected, the contribution of each individual to the hypervolume 

indicator is measured. The algorithm discards the individual with the lowest value for this 

contribution, repeating this process until the population is reduced to µ individuals. These 

generational stages are repeated iteratively, until the stopping criterion is reached, in this case 

a maximum number of generations of the evolutionary process (user-defined parameter). 

 

Hybrid strategy procedure  

1 initialize MOEA  

2 while not terminate do  

3  generate offspring through variation operators 

4  for all individuals in population do  

5   for all t ∈ T do {for each period}  

6    if offspring solution violates upper level constrains then  

7     repair infeasible solution  

8    end if  

9    build LP problem (identify sink and source grids)  

10    solve transportation problem (LP solver)  

11   end for  

12  compute master problem’s objective functions  

13  assign fitness value according to MOEA’s working paradigm  

14  evolve population according to MOEA’s working paradigm  

15  end for  

16 end while  

17 return current Pareto set approximation 

Algorithm 1. Pseudocode of the hybrid algorithm developed in [1]. 

The results obtained through an experimentation carried out over different instances of the 

HSC design problem demonstrate that this algorithm is able to identify a set of solutions that 

have converged to the optimal front (they lie on the Pareto boundary) and well distributed along 

the front, in a single run [1]. Despite these satisfactory conclusions, the author of [1] himself 

insists in his work perspectives on the need to develop a method able to work with several 



  Pàg. 31 

 

solutions of the lower-level sub-problem associated to a partial solution of the upper-level. 

Indeed, since the LP sub-problem is also bi-objective, different solutions could be obtained 

using different weight vectors. 

This is what is intended to do in the present work: to solve the LP sub-problem with several 

weight vectors and thus generate several lower-level solutions associated to a single upper-

level partial solution; and, consequently, to modify the upper-level algorithm to adapt it to the 

operational mode of the former. The developed strategy is presented in the following section. 
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4. A new hybrid algorithm for the HSC design 

problem. 

4.1. Proposed improvement strategy 

The HSC design problem is a bi-objective optimization problem. In its bi-level formulation, both 

levels consider the same objectives (TDC and GWP), but for the lower-level it focuses on the 

operation sub-problem (production and transportation) corresponding to each individual 

defined at the upper-level, i.e., a configuration of production and storage facilities. Since the 

objectives are conflicting at both levels, the slave sub-problem admits several equivalent 

solutions, in the sense of non-dominated. 

The above is illustrated in figure 4, where the installed production and storage infrastructures 

are shown in black and blue respectively (𝑁𝑃𝑝𝑗𝑖𝑔𝑡 and 𝑁𝑆𝑠𝑗𝑖𝑔𝑡), associated with a single upper-

level individual. For this partial solution, two combinations of plant production level and 

transport flows (𝑃𝑝𝑗𝑖𝑔𝑡  and 𝑄𝑖𝑙𝑔𝑔′𝑡) are examined, as illustrated by the arrows, whose thickness 

represents the amount of hydrogen transported and the color, the physical form in which it is 

transported. Considering their respective objectives, these two solutions to the slave sub-

problem are non-dominated. 

      

Generalizing, one cannot say that there is only one optimal solution of the sub-problem at the 

 

Figure 4. Example of two non-dominated solutions at the lower-level of 

an upper-level individual 
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lower-level, but rather a set of Pareto-optimal solutions, whose image in the objective space is 

a Pareto frontier, i.e., a sub-front associated to the “parent” upper-level partial solution. Thus, 

the optimal front of the global problem can be composed of different sub-fronts, each one 

corresponding to (part of) the Pareto-optimal frontier of an individual of the upper-level. This 

behavior is illustrated in figure 5. 

 

 

Therefore, if a linear problem is solved for each individual using a scalarizing function with a 

single vector of weights, just as in the original algorithm presented in the previous section, only 

one of the sub-front points associated with an individual is known. This solution strategy can 

generate a loss of information regarding the individuals of the upper-level, since the selection 

of the best individuals by the evolutionary algorithm is made according to the point of the front 

obtained, without taking into account the sub-front as a whole. 

For the above reasons, the aim of this work is to develop a new algorithm that generates the 

lower-level sub-front associated to each individual of the upper-level, through the repeated 

resolution of the same linear problem with a certain number of different weight vectors. The 

realization of this general objective raises several issues, denoted in what follows as particular 

objectives of the present work: 

1. Perform a preliminary comparative study on different scalarizing functions to determine the 

most appropriate one to solve the lower-level sub-problem. 

2. Propose an adaptation of the selection operator in the SMS-EMOA, since, in the new 

algorithm, the individuals are sub-fronts (composed of the lower-level PL solutions obtained 

 

Figure 5. The problem front seen as a combination of sub-fronts 

associated with the upper-level solutions 
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with different weight vectors) and not a single solution as in the original version. The 

comparison between individuals must therefore be adapted to this new operational mode. 

3. Implement the proposed algorithm in a program to solve the HSC design problem. 

4. Develop a strategy for a smart management of the weight vectors used for the generation 

of the sub-front associated to each individual, in order to reduce the number of PLs solved in 

case they are not all necessary. 

5. Conduct an experimentation on several instances of the HSC design problem, to compare 

the two developed versions of the new algorithm (using all weight vectors or smart 

management) with the base algorithm proposed in [1]. 

 

4.2. Selecting the scalarizing function 

In this project, an approximation of the entire sub-front associated with each individual (or 

rather, a representative discretization of this sub-front) is to be generated, using a defined set 

of weight vectors to solve the lower-level sub-problem. From this perspective, one of the 

important points is to determine the most appropriate scalarizing function to be optimized in 

the PL. In order to make a justified choice, preliminary experiments have been carried out with 

four different scalarizing functions. The functions tested are classical ones (see [26] for more 

details) and were described in section 2.2.3 : Weighted Sum (WS), Augmented Tchebychev 

(ATCH), Modified Tchebychev (MTCH) and Augmented Achievement Scalarizing Function 

(AASF). It should be recalled that, in the original algorithm [1], AASF is used. 

The experimentation consisted in randomly generating a sample of Sw  {500, 2000, 3000, 

5000} upper-level feasible individuals (as done for the initial MOEA population). For each 

individual, the corresponding linear problem is solved λw  {55, 10, 25, 50} times, i.e., using 5, 

10, 15, or 50 different weight vectors. To generate the weight vectors, the Simplex Lattice 

Design (see [28]) is used, which becomes trivial in two dimensions. 

This procedure is repeated with the four scalarizing functions, computed using the same set 

of weight vectors. In this way, with every scalarizing function, a sub-front composed of λw 

solutions is generated for each individual. Once the sub-fronts associated to all individuals with 

the different functions have been obtained, the results are analyzed using the hypervolume 

indicator as a criterion to measure the quality of each sub-front to compare the solutions 

obtained with each scalarizing function. In particular, for each function, the number of 

individuals obtaining the maximum hypervolume value (calculated using the λw weight vectors) 

are counted. For example, if, for individual #1, the results are as follows: HV(WS)= 0.368, 
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HV(MTCH) = 0.46, HV(ATCH) = 0.447, HV(AASF) = 0.46, then this individual is counted for 

MTCH and AASF, which obtained the maximum hypervolume value. Based on these results, 

a ranking of the four functions is established, where that one with the highest number of 

individuals with maximum hypervolume obtains the best ranking. Then, the worst function 

according to this ranking is eliminated and the above procedure is repeated iteratively until 

only one scalarizing function remains and is selected as the best one. 

This preliminary experimentation was carried out with only one small-size instance (the 

smallest one of those described in section 5), In order to avoid high computational times and 

assuming that the results obtained can be generalized to other instances. 

4.2.1. Reference point for hypervolume computation 

In order to perform a fair comparison of the four scalarizing functions considered, the 

hypervolume associated with each individual is computed with the same reference point, 

regardless of the function used. This implies, in a first step, normalizing the objectives. In this 

perspective, each single-objective problem is solved first (i.e., each objective is optimized 

separately, which is independent from any scalarizing function), making it possible to 

determine the coordinates of the ideal and Nadir points (denoted as 𝑝𝑒
∗ y 𝑝𝑒

𝑛𝑎𝑑 for individual 

𝑒 𝜖 Ω. 𝑝𝑒
∗ contains the minimum values of the objectives encountered when solving the single-

objective problems and 𝑝𝑒
𝑛𝑎𝑑 the corresponding values of the non-optimized objective. Then, 

each objective vector found for individual 𝑒 𝜖 Ω is normalized according to the following 

formula: 

𝑝𝑒′ =
𝑝𝑒 − 𝑝𝑒

∗

𝑝𝑒
𝑛𝑎𝑑 − 𝑝𝑒

∗
 

The reference point chosen for the hypervolume calculation has the following coordinates (in 

the target space) 𝑟𝑒
∗ =  1.1 · 𝑝𝑒

𝑛𝑎𝑑
, as is recommended in the literature for many classical 

problems. These reference points are the same for each individual, regardless of the 

scalarizing function optimized. 

4.2.2. Results and discussion 

The number of individuals (among the Sw considered) for which the maximum hypervolume 

has been obtained by applying the scalarizing function to solve the λw LPs, as well as the 

corresponding ranking, are shown in table 1.  As explained above, the ranking process is 

repeated several times to iteratively eliminate the functions with the worst results, which is 

reflected in the 3 "iterations" presented in the table. 
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Case Iteration AASF WS MTCH ATCH 

S1 = 1000 

λ1 = 50 

1 516 (1) 265 (4) 292 (3) 445 (2) 

2 575 (1) X 132 (3) 488 (2) 

3 579 (2) X X 616 (1) 

S2 = 2000 

λ2 = 25 

1 1084 (1) 657 (4) 669 (3) 870 (2) 

2 1242 (1) X 796 (3) 1012 (2) 

3 1246 (2) X X 1278 (1) 

S3 = 3000 

 λ3 = 10 

 

1 1600 (1) 1118 (4) 1144 (3) 1272 (2) 

2 1972 (1) X 1461 (3) 1577 (2) 

3 1979 (2) X X 2022 (1) 

S4 = 5000 

λ3 = 5 

 

1 2690 (1) 2210 (2) 2083 (4) 2176 (3) 

2 2694 (2) 2216 (3) X 2781 (1) 

3 3347 (2) X X 3516 (1) 

Table 1. Number of individuals with the maximum hypervolume rating according to the 

scaling function and iteration. 

For the parameter sets tested, the function that consistently obtains the best sub-fronts (in 

terms of hypervolume) is ATCH, but always with a very similar rating to AASF, regardless of 

the number of weight vectors used. Practically, half of the best results (i.e., individuals with 

maximum hypervolume) is obtained with ATCH and the other half with AASF. In contrast, WS 

and MTCH are never the best choice. Note that the sum of best solutions per iteration is not 

equal to the total number of individuals examined, because there are sub-fronts for which the 

hypervolume valuation is the same regardless of the scalarizing function used. 

Although the ATCH is always the best rated, the fact that it is not clearly distinguished from the 

AASF as the best solution makes the choice non-trivial. Therefore, a second study has been 

carried out, for the same solution sets, now evaluating the differences between the solutions 

obtained with the ATCH and AASF functions. 

4.2.2.1. Analysis of the differences with respect to the best hypervolume 

Since the first result analysis highlighted the fact that the ATCH and AASF functions achieve 

a similar number of “maximum hypervolume individuals”, this second analysis focuses on the 

differences, for each individual, between the hypervolume obtained by a scalarizing function 

and the best hypervolume found (this difference is logically 0 when the function achieves the 

best hypervolume for an individual). The mean and standard deviation of these differences 

with respect to the maximum hypervolume are presented in table 2. 
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 AASF ATCH 

Case Mean Std Dev Mean Std Dev 

S1 = 1000, λ1 = 50 0,0405 0,0764 0,0413 0,0831 

S2 = 2000, λ2 = 25 0,0620 0,1032 0,0500 0,0901 

S3 = 3000, λ3 = 10 0,0993 0,1195 0,0857 0,0995 

S4 = 5000, λ3 = 5 0,1718 0,1672 0,1444 0,1348 

Table 2. Results of differences with respect to the best solution 

The obtained results show that, except for case {S1, λ1}, the ATCH function consistently obtains 

differences that are lower than those obtained with AASF. This means that, when the sub-front 

identified by ATCH is not the best one (in terms of hypervolume), it lies anyway closer to the 

best approximation than it happens when using AASF. Indeed, this trend is even clearer when 

the population size increases. Simultaneously, the standard deviation of the ATCH sub-front 

hypervolumes is also lower than that achieved with AASF, except for case {S1, λ1}, highlighting 

the consistency of the better quality of the solutions found with ATCH. Finally, it can be noted 

that, in the only case for which AASF provides better results ({S1, λ1}) the differences between 

both functions are insignificant. Therefore, it can be concluded that the best scalarizing function 

for solving the lower-level sub-problem is the Augmented Chebyshev, which is used in the 

remainder of this work. 

4.3. Adaptation of the upper-level MOEA selection operator 

4.3.1. Context 

The MOEA used here for the upper-level maintains the same structure as in the original work 

of [1]. In the evolutionary algorithm, the variables 𝑁𝑃𝑝𝑗𝑖𝑔𝑡 and 𝑁𝑆𝑠𝑗𝑖𝑔𝑡  are generated for each 

individual, on the basis of which the linear lower-level sub-problem can be solved, obtaining 

variables 𝑃𝑝𝑗𝑖𝑔𝑡  and 𝑄𝑖𝑙𝑔𝑔′𝑡, which are constant parameters for the upper-level. But, unlike the 

original algorithm, for every combination of variables 𝑁𝑃𝑝𝑗𝑖𝑔𝑡 and 𝑁𝑆𝑠𝑗𝑖𝑔𝑡 (individual) of the 

master problem, λ solutions are obtained here in the slave problem, where λ is a parameter 

set by the user to define the number of weight vectors used to approximate the lower-level 

sub-front. The resulting solutions are optimal for the lower-level PL, with the scalarization 

function selected in the previous section. Thus, the output of the lower-level consists of λ 

solutions associated to each of the µ individuals of the MOEA. 

For ease of understanding, in the following, an individual refers to the production and storage 

infrastructure defined in the upper-level (as a partial solution). On the contrary, speaking of a 

solution refers to a complete solution, i.e., obtained by solving the slave sub-problem for the 
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upper-level variables 𝑁𝑃𝑝𝑗𝑖𝑔𝑡 and 𝑁𝑆𝑠𝑗𝑖𝑔𝑡 associated with an individual and with a given weight 

vector. Therefore, in the remainder of this work, it will be considered that each individual has 

a set of corresponding solutions. 

The above is visualized in figure 6, which shows the value of the objectives (TDC on the 

horizontal axis and GWP on the vertical axis) obtained for a population of µ = 4 individuals with 

λ = 20 different weight vectors. There should therefore be 420 = 80 solutions in total, denoted 

with dots in figure 6 (each color identifies the solutions of the same individual). It can be 

observed, however, that there are actually fewer than 80 distinct solutions. This behavior is 

due to the fact that several solutions, associated with the same individual but generated with 

different weight vectors, are identical (for example, in an extreme case, only one solution is 

obtained for the individual identified in pale violet in figure 6).  

 

This new working mode involves a remodeling of the selection operator governing the MOEA 

at the upper-level. The original algorithm [1] uses SMS-EMOA, but this algorithm only 

considers that each individual is equivalent to a (completely defined) solution whereas, in the 

present work, several solutions are taken into account for each individual. Therefore, a 

modification is proposed in what follows, considering each individual as a sub-front, i.e., a set 

of solutions, when selecting the best individuals. These changes are therefore concentrated in 

lines 10 (solution of the λ PLs of operation for each individual) and 13-14 (fitness assignment 

 

Figure 6. Value of the solutions obtained in the first generation from a 

sample of four individuals with 20 weight vectors each 
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and generation of the next population) of Algorithm 1 (see page 30). 

4.3.2. The proposed operator design 

In particular, once evaluated the offspring individuals resulting from applying the genetic 

operators and computing, for each new individual, the λ solutions of the PL parameterized by 

different weight vectors, the combined population having 2·µ individuals (µ parents and µ 

offspring) should be reduced to µ individuals, selected for the next generation. Accordingly, it 

is necessary to design a selection criterion that maintains those individuals with the best genes 

in the population, making them able to transmit their genetic background to the next 

generation. It is worth mentioning that, to the best of our knowledge, there is no operator in the 

devoted literature for evaluating and selecting individuals characterized by several solutions. 

The new selection operator proposed in this work is based on the same SMS-EMOA paradigm, 

but it was adapted to allow the evaluation of an individual according to its set of associated 

solutions. 

This new criterion consists of two steps. In the first step, the combined population 

{Parents}{Offspring} is divided into layers of equal dominance ranks, as in the popular NSGA-

II genetic algorithm. Note that this non-dominated sorting procedure is carried out over 

solutions (and not over individuals, which have several solutions associated). Then, individuals 

are copied to the new population according to the rankings of its corresponding solutions. In a 

second step, for the individuals having solutions that belong to the last layer likely to be inserted 

into the next population, the contribution of these individual to the hypervolume indicator is 

used as a selection criterion to determine those individuals that are to survive. are discarded 

(thus following the SMS-EMOA paradigm). These two steps are explained in detail below. This 

explanation is illustrated with an example of 6 individuals, where 3 must be selected. At first, 

their distribution in the objective space is as shown in figure 7, where each color identifies the 

solutions corresponding to the same individual. Note that all individuals do not have the same 

number of solutions, since, as explained previously, some individuals may have fewer 

solutions than the number of weight vectors used for solving the LP sub-problem. 
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Step 1: First, all the solutions are classified according to the dominance operator, regardless 

of the individual to which they belong. The population is thus divided into different layers, where 

those of lower rank dominate those of higher rank. Each individual is assigned the ranking of 

its lowest-ranked solution (i.e., the the contribution of each individual to the hypervolume 

indicator of the lowest layer in which the individual has at least one solution). In this way, 

individuals with solutions in lower-ranked layers are ranked above (better) those with solutions 

in higher-ranked layers. 

The ranking thus obtained constitutes the first rule of preference amongst individuals. Those 

individuals with solutions occupying a lower layer have preference over other individuals to 

survive and be selected for the next generation. Therefore, similarly to what happens in NSGA-

II or SMS-EMOA, starting with the lowest layer (with rank i = 1), the individuals of the rank i are 

 

Figure 7. Initial population compose of 6 individuals 

 

Figure 8. Segmentation of the solutions in non-dominated ranks 
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considered. Being ni the number of individuals present on the layer i, if j=1,…,i nj  µ, all the 

individuals of ranking i are selected and the process continue with the next layer, i+1. It is 

important to note here that, in layer i, there may exist solutions belonging to individuals with 

ranking j < i, which were already selected previously when examining lower-ranked layers. 

These individuals are not considered here, since they were already selected. Otherwise, if 

j=1,…,i nj > µ, then the ni individuals of ranking i do not all “fit” in the remaining space in the next 

generation's population. It is therefore necessary to select µ – j=1,…,i-1 nj individuals of the ni 

that have their best solutions in layer i, denoted as critical layer in the following. This is done 

in Step 2 of the selection process. In the example, as the first layer is composed of only two 

individuals, the critical layer is the one with ranking 2. 

The above explanations can be illustrated with the example of figure 8. The first layer has 

solutions from the “orange” and “green” individuals, so that both these individuals are selected. 

Then, the first layer is discarded and the individuals having solutions in the second layer are 

considered. Only one individual should be selected (since two are already chosen), while four 

individuals have solution in this second layer, which is therefore the critical layer. Among this 

four individuals, one is the “green” individual, already selected and, thus, not considered 

anymore. The three remaining individuals in the critical layer are the “red”, the “blue” and the 

“lilac” ones (see figure 9), from which only one should be selected, as explained in what follows. 

 

Step 2: In this step, a number of individuals is to be selected from those having ranking i (i.e, 

having their best solution in the critical layer i). This number is that necessary to complete the 

population of the following generation (µ – j=1,…,i-1 nj). To this end, and in agreement with the 

classic SMS-EMOA operating mode, those individuals who contribute the least to the total 

hypervolume of this critical layer are discarded here. Note that, in this critical layer, there may 

be solutions belonging to individuals with a ranking lower than i (i.e, these individuals have 

 

Figure 9. Critical layer 
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solutions in lower-ranked layers) and, therefore, have already been selected. The 

corresponding solutions in the critical layer i are anyway considered for the calculation of the 

total hypervolume of this layer i and of the contribution to the hypervolume of the solutions 

belonging to other individuals (of ranking i), which are candidates to be discarded. 

Then, an iterative process that computes the contribution to the hypervolume of the solution(s) 

associated to each individual of rank i is performed. Since, for a same individual, there can be 

several solutions in the rank i layer, the total contribution of an individual is computed as the 

sum of the partial contributions due to all of its solutions that belong to the critical layer. Note 

that the contribution of each solution to the hypervolume is calculated as the area dominated 

by this solution and bounded by the areas dominated by its two neighboring solutions, as 

illustrated in figure 10. With only two objectives, the corresponding computational process is 

very efficient, as it only consists of ordering the layer solutions according to the first objective 

and, for each solution, calculating the area bounded by the area dominated by the two 

neighboring solutions. Therefore, there is no need for a reference point associated to the 

classical hypervolume computations. 

 

Also, it is worth highlighting the fact that the extreme points of the layer are exempted from this 

calculation: as in SMS-EMOA, these points are considered to have an infinite hypervolume 

contribution, to ensure that the corresponding individuals are selected. If the number of 

individuals to be selected from layer i is 2, then the individual(s) corresponding to these 

extreme points are automatically selected. If only one individual is to be selected from layer i, 

and the two endpoints correspond to two different individuals, then one of these two individuals 

is randomly selected. 

 

Figure 10. Contribution to the hypervolume of the critical layer per 

individual represented by colors 
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Once all the contributions to the hypervolume of the individuals of ranking i have been 

computed, the individual with the lowest contribution value is discarded. In case of a tie, one 

is discarded at random. If, at this point, more individuals need to be discarded, the process is 

repeated iteratively (recalculating the contributions of each individual) until the required 

number of individuals remains. Thus, by integrating this new selection operator, the fitness 

assignment and selection parts of the original algorithm are modified (lines 13-14 of the 

Algorithm 1, presented in section 3.3).  

4.3.3. Parents population selection 

In the same way as for the canonical version of SMS-EMOA, the environmental selection 

operator (which determines the survival of individuals from one generation to the next) has its 

consequence in the selection of the parents subsequently used for the recombination 

(crossover) process. Here as in NSGA-II, the selection of parents is performed by a binary 

tournament: a pair of individuals is chosen randomly and then compared to select the individual 

that will act as a parent. The comparison criterion follows the same logic as the selection 

operator: first, it prefers individuals having a solution in lower dominance layers. Otherwise 

(both individuals have the same ranking), they are compared according to the second criterion, 

i.e., the contribution of each individual to the hypervolume of the layer. It is worth mentioning 

that this contribution value was not necessarily calculated in previous iterations (when the layer 

considered is not the critical one). In these cases, the contribution to hypervolume is calculated 

following the indications of Step 2 described in the previous section. For each instance of the 

crossover process, this tournament is repeated twice to select two parents. Once the parents 

are selected, the next generation is generated by applying the SBX crossover and polynomial 

mutation (see section 2.2.5). 

4.4. Implementation of the algorithm 

The above-described algorithm was implemented in MATLAB. The code development first 

involved reading the input data defining the specifications of the HSC design problem. These 

datasets, called instances, include the following parameters: 

• The different options available regarding: energy sources for production, type of 

production facility, means of transportation and type of storage facility. 

• The available production and storage plant sizes. 

• The economic and environmental costs associated with each of the options in each 

period.  

• The number of periods considered. 

• The number of grids into which the territory is divided and their corresponding hydrogen 

demand for each period. 



  Pàg. 45 

 

Different datasets have been used to test the proposed algorithm (see Appendix A). 

Depending on the number of input variables considered in each instance, their resolution 

complexity will be different. Also, the working parameters of the algorithm have to be defined, 

in particular: 

• The population size (µ). 

• The number of weight vectors (λ), whose optimal value can vary depending on the 

treated instance. 

• The crossover (𝜂𝑐) and mutation (𝜂𝑚) distribution indexes. In this work, 𝜂𝑐 = 20 and 

𝜂𝑚 = 20, as recommended by the authors of [29]. 

• The stopping criterion (𝑙𝑝𝑚𝑎𝑥). Since the computational time is almost entirely 

concentrated by the solution of the lower-level LP, it has been decided that the number 

of calls to the LP solver is the stopping criterion (rather than the number of generations). 

• The scalarizing function of the lower-level sub-problem: being consistent with the 

results obtained in section 4.2, the ATCH scalarizing function is chosen. 

Once the problem and algorithm parameters have been defined, the algorithm designed in the 

previous sections is implemented. The architecture of the computer program consists of a main 

function that requires the above-described necessary inputs and the name of the problem 

instance to be solved, which is imported from an external file. This main function establishes 

the order of execution of the algorithm, which consists of calling various sub-functions that 

create and alter the population, and also collects the data associated with the population at 

each moment. In particular: 

1. A sub-function initializes the algorithm, which includes the generation of a population 

of individuals; repairing those individuals that do not meet the upper-level constraints; 

the creation of a set of weight vectors to be used for solving the LP lower-level sub-

problems. 

2. A sub-function that computes the TDC and GWP objectives for a (complete 

solution), i.e., including the lower-level variables. 

3. A sub-function performing the genetic variation (crossover and mutation operators). 

4. A sub-function generating the LP sub-problem associated to an upper-level 

individual and a specified weight vector. 

5. A sub-function implementing the selection operator proposed in this work. 

At the end of an execution, the program reports the value of the decision variables and 

objective functions of each individual in the last population (corresponding to the generation 

when 𝑙𝑝𝑚𝑎𝑥 is reached). In addition, further data associated with each generation are also 

saved, in order to analyze the any-time performance of the algorithm, such as the number of 

LP calls of the sub-problem at the lower-level up to that instant. In particular, the hypervolume 

of the front generated by the non-dominated solutions in each population is reported. Please 
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note that the hypervolume computation is performed considering a fixed reference point, in 

order to be able to fairly evaluate the dynamics of the hypervolume indicator evolution during 

the evolutionary process. This reference point was obtained from the single-objective solution 

of the instance with CPLEX for each objective.  

4.5. Smart management of weight vectors  

4.5.1. Weight generation 

In the first experiments, the same weight vectors were used for all the individuals that 

integrated 𝜆 values uniformly distributed between 0 and 1. This experimentation revealed two 

issues. The first one is that due to the similarity between different individuals, regions of highly 

concentrated solutions appeared in the objective space, forming staggered structures (see 

figure 11). The second is that since the weight vectors are limited to specific values, weight 

vectors that could provide better information may be omitted. 

 

This results in a loss of information about how individuals are actually distributed, which may 

 

Figure 11. Population distribution after executing the program with the 

same weight vectors to all individuals 
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lead to inefficient selection in future generations. To avoid this issue, the weight vectors were 

generated including a random component: the segment [0, 1] is divided into λ uniform intervals 

and one random value is randomly generated within each interval. These values constitute the 

first element of the weight vectors, while the second one is trivially deduced (since the problem 

has only two objectives). 

This process allows maintaining a “globally uniform” distribution of the weight vectors but 

introduces a random component which showed empirically its validity for solving the above-

mentioned issue. Indeed, this new approach corrects the accumulation of points in certain 

areas of the objective space, as can be seen in figure 12, which shows the same case as in 

figure 11 but with the new weight vector generation technique. 

  

4.5.2. Weight selection 

As already mentioned in section 4.3.1, the fact that λ weight vectors are assigned to an 

individual does not imply that λ distinct solutions are obtained by the solution of the λ PLs with 

different parametrizations. Two different weight vectors may indeed result in the same solution. 

Actually, this observation turned out to be a recurring situation for all the treated instances of 

the HSC design problem. In some cases, the number of distinct solutions obtained for an 

individual is lower than λ /3, meaning that more than 60% of the resources used to solve the λ 

 

Figure 12. Population distribution after executing the randomized 

weight vector generation approach 
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sub-problems were useless. This fact is especially critical, since the resolution of the LP 

(solution generation) accounts for more than 90% of the computational time of the algorithm. 

Therefore, it seemed necessary to design a heuristic for weight vector selection, to reduce the 

computation of repeated solutions. 

A detailed observation of the solutions obtained for each weight vector showed that the non-

repeated solutions are generated only within a continuous interval of the first element of the 

weight vector. The remainder of the solutions, obtained for extreme values of the weight 

vectors, are repeated solutions. For instance, if w1 is the first element of the weight vector, 

distinct solutions are obtained when w1  [0.4, 0.8], while the solutions obtained for w1  [0, 

0.4] are identical and so are the solutions obtained for w1  [0.8, 1]. Thus, the procedure 

proposed here first solves the LP sub-problems corresponding to the two extreme weight 

vectors ([0,1]T and [1,0]T). If the solutions obtained are identical, there is no need to try with 

other weight vectors (the individual has only one associated solution). Otherwise, for a weight 

vector [w1
0, w2

0]T such that 0<w1
0,w2

0<1, if the obtained solution is the same as that found for 

an extreme weight vector (for instance, [0,1]T), then there is no need to further explore the 

interval bounded by these weight vectors (in our example, there is no need to perform LP 

optimizations for 0≤w1≤w1
0 (equivalent to w2

0≤w2≤1) since the same solution will be repeatedly 

found. On the other hand, if the solution found for [w1
0, w2

0]T is different from that found for an 

extreme weight vector, it is worth further generating intermediate weight vectors in order to 

(maybe) identify new solutions of the LP sub-front.  

According to the above strategy, the following heuristic is proposed and applied to each 

individual, when 𝜆 > 2: 

1. A user-defined number of candidate weight vectors is generated as detailed in 4.5.1, 

obtaining a matrix, 𝑊𝜆𝑥2 that stores the values of the weight vectors. 

2. The LP of the lower-level linear sub-problem is solved for the vectors of extreme 

weights ([𝑊1,1, 𝑊1,2]𝑇 and [𝑊𝜆,1, 𝑊𝜆,2]𝑇). If the extreme values of the objective functions 

coincide, this means that all the points will yield the same solution, therefore, the 

solution obtained is copied to the 𝜆 − 2 remaining solutions, the process is stopped 

and proceeds with the following individual. If, on the other hand, the two solutions found 

are not equal, the variables 𝑎 = 1 and 𝑏 =  𝜆 are defined and the process continues to 

step 3. 

3. The weight vector [𝑊𝑐,1, 𝑊𝑐,2]𝑇, such as 𝑐 = 𝑐𝑒𝑖𝑙 (
𝑎+𝑏

2
), is selected. If the value of the 

objective function is the same as that of the extreme solution found with [𝑊1,1, 𝑊1,2]𝑇, 

go to step 3a. Otherwise, if the solution found is the same as the extreme solution 

found with [𝑊𝜆,1, 𝑊𝜆,2]𝑇, go to step 3b. Finally, if the solution found for [𝑊𝑐,1, 𝑊𝑐,2]𝑇 is 

different from both extreme solutions, set 𝑟 =  𝑐 + 1  and go to step 4. 
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a.  The value of the variables in position 𝑐 is copied to those in the position 

between 𝑎 + 1 and  𝑐 − 1,  𝑎 is updated such as 𝑎 = 𝑐. Return to step 3. 

b. The value of the variables in position 𝑐 is copied to those in the position 

between 𝑐 + 1 and  𝑏 − 1, 𝑏 is updated such as 𝑏 = 𝑐 . Return to step 3. 

4. The LP is solved for the weight vector at position 𝑟. If the value obtained is different 

from the value of solution 𝑏, this step is repeated with 𝑟 = 𝑟 + 1. If, reversely, the value 

coincides with 𝑏, set 𝑙 = 𝑐 − 1 and go to next 5. 

5. The LP is solved for the weight vector at position 𝑖. If the value obtained is different 

from the value of solution 𝑎, this step is repeated with 𝑙 = 𝑙 − 1. If, reversely, the value 

coincides with 𝑎, the iterative process stops and moves on to the next individual. 

Therefore, this heuristic may allow to save a significantly high number of calls to the LP solver 

when 𝜆 > 2 and will be particularly relevant when 𝜆 increases, as shown in the next section. 

By computing the algorithm with this heuristic, the unnecessary calls to the LP solver are 

greatly reduced, avoiding the need to perform calculations in situations where the solver would 

yield a repeated solution. It starts to be effective when 𝜆 = 3, and its effectiveness is 

immediate. For 𝜆 = 3 it reduces the total number of calls to the linear problem by 15% per 

generation compared to a version where the heuristic is not applied; as the number of weight 

vectors increases, this value increases logarithmically, reaching a reduction in the number of 

calls to the LP solver of more than 70% for values of lambda greater than 20.  

Due to the clear improvement in computational performance when using this heuristic, it is 

incorporated in the final algorithm and used in the experimentation of block 5. 
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5.  Experimental computations 

In this section the numerical experiments performed to analyze the performance levels of the 

proposed algorithm are presented. First, the instances and parameter settings are defined in 

section 5.1. Then, global results are provided in section 5.2 and finally, an any-time analysis is 

proposed in section 5.3. 

5.1. Experimental methodology 

Once the algorithm has been developed, implementing the new functionalities such as the 

reconditioning of the upper-level selection process, the creation strategy of weight vectors and 

the selection of ATCH as the scalarizing function to be optimized at the lower-level, a numerical 

experimentation was carried out to provide results for analysis, comparison and conclusions.  

The objective of this experimentation has been to check if the new algorithm allows for an 

improvement over the original one [1] and, if so, to determine the optimal number of weight 

vectors that should be associated to each individual. The HSC design problem has been 

solved for five instances: HSC08g001p, HSC08g01p and HSCg22g01p (single-period) and 

HSC08g04p, HSC08g07p that contemplates 4 and 7 periods (see Appendix A). All instances 

have been solved considering a population of µ = 100 individuals (as in [1]). Six numbers of 

weight vectors were tested, these being 𝜆𝑒 = {1, 2, 3, 5, 11, 19}. To account for the stochastic 

nature of the solution technique (due to the MOEA at the upper-level), each instance has been 

solved nine times for each number of weight vectors. The case 𝜆1 = 1 is equivalent to the 

original algorithm, so its results have been used as a basis for comparing whether the 

modifications provided an improvement. The stopping criterion was the same for all instances, 

i.e. 100.000 · 𝑇 calls to the subproblem, where 𝑇 is the number of periods of the instance. This 

number has been taken from [1] where it is considered to be a sufficient number to ensure 

convergence to the Pareto front. 

It is worth mentioning that maintaining the stopping criterion means that the total number of 

generations is considerably reduced each time the number of weight vector is increased, which 

has the drawback of reducing the genetic mixing among individuals, allowed by the crossover 

operator of the MOEA. On the other hand, the use of more weight vectors will give more 

comprehensive information regarding the sub-fronts of the individuals. In order to evaluate this 

relationship, the evolution of the population has been followed through the dynamic output 

parameters described in section 4.4, analyzing the hypervolume generated by the non-

dominated solutions of each generation and keeping track of the number of calls to the LP 

solver at each generation. When making comparisons using the hypervolume indicator, it is 

desirable that the number of points on each approximated front is the same. Thus, to ensure 
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fair comparisons the hypervolume calculation has been performed on a reduced set of 21 

solutions. The selection of these sub-sets is obtained by applying a heuristic that selects those 

points that are best distributed along the non-dominated solution front of a population, selected 

by iteratively discarding one by one those that contribute the least to the hypervolume until the 

21 solutions are reached. 

5.2. Global Results 

To analyze the quality of the final fronts obtained for each instance and the impact of varying 

the number of weight vectors used to solve the lower-level sub-problem, table 3 shows the 

average and the standard deviation (over the of the nine executions performed in each case), 

of the value of the hypervolume of the last population, computed after reducing the solutions 

of the front to 100. The best mean value obtained for each instance is underlined. 

 

Instancia 𝝀 = 𝟏 𝝀 = 𝟐 𝝀 = 𝟑 𝝀 = 𝟓 𝝀 = 𝟏𝟏 𝝀 = 𝟏𝟗 

HSC08g001p 0,9846 

(0,0010) 

0,9846 

(0,0004) 

0,9848 

(0,0002) 

0,9843 

(0,0011) 

0,9844 

(0,0003) 

0,9844 

(0,0004) 

HSC08g01p 0,9905 

(0,0012) 

0,9911 

(0,0010) 

0,9911 

(0,0008) 

0,9903 

(0,0026) 

0,9896 

(0,0026) 

0,9899 

(0,0011) 

HSC08g04p 0,7781 

(0,0063) 

0,7656 

(0,0055) 

0,7544 

(0,0087) 

0,7471 

(0,0073) 

0,7447 

0,0045 

0,7470 

(0,0052) 

HSC22g01p 0,9869 

(0,0021) 

0,9862 

(0,0098) 

0,9846 

(0,0027) 

0,9840 

(0,0007) 

0,9827 

(0,0020) 

0,9823 

(0,0020) 

HSC08g07p 0,7871 

(0,0019) 

0,7862 

(0,0013) 

0,7832 

(0,0027) 

0,7806 

(0,0036) 

0,7817 

(0,0012) 

0,7799 

(0,0027) 

Table 3. Hypervolumes of the latest generation for a population reduced to 100 solutions 

These results demonstrate that, for the two instances of lower complexity (HSC08g01p and 

HSC08g01p), the best hypervolume averages are obtained with 𝜆 equal to 2 or 3 weight 

vectors. However, the differences among the different values of 𝜆 seems insignificant. On the 

other hand, for the more complex instances, the best results are obtained with 𝜆 = 1 (original 

case). In these cases, the differences between different number of weight vectors increase 

and consistently, it can be observed that the greater the number of weight vectors used, the 

worse the hypervolume of the final front. Therefore, these global results seem to indicate that 

increasing the number of weight vectors does not provide benefits, even though values such 

as 𝜆 =,2 or three obtains very good results, close to those found when using one single weight 
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vector. In what follows, an any-time analysis is provided to verify if these conclusions are true 

during the whole search process. 

5.3. Any-time analysis 

This study following consists in analyzing, for the five instances, the evolution of the 

hypervolume value in each generation. The result obtained for the HSC08g01p instance is 

illustrated in figure 13. It can be considered as a representative example of the trends obtained 

for the rest of the instances. 

 

In this figure, the curves do not have the same length since, when using higher numbers of 

weight vectors, the number of generations computed to reach the stopping criterion (which is 

the number of calls to the LP solver) evolves in an inversely proportional manner. For this 

instance, all hypervolumes converge to similar values (as already mentioned previously), but 

larger differences between curves can be observed in the first generations of the algorithm. In 

order to have a better visibility of this period of the search process, the evolution of the 

hypervolume between generations [1 and 200] has been plotted for each instance in figure 14. 

 

Figure 13. Variation of the hypervolume for the reduced population in the instance 

HSC08g01p 
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Figure 14. Evolution of the hypervolumes between generations 1 and 200 

In all instances it is observed that, independently from the value of 𝜆, all the curves show similar 

trends: the hypervolume grows quickly and, after a point close to generation 50, the increase 

is steadier. Before reaching that point, there is a clear difference can be observed among the 
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curves corresponding to 𝜆 > 2 when compared to the trend when 𝜆 = 1. More in details, for 

the smallest instances, during this first period of the search, the best hypervolume values are 

obtained if 𝜆 is high. Subsequently, for a number of generations between 50 and 200, the best 

option clearly seems to be 𝜆 = 2, as illustrated in figure 15. 

 

 

During this second period of the search (between 50 and 200 generations) the results obtained 

with the other values 𝜆 ≥ 5, are very similar, resulting in almost indistinguishable curves. This 

observation suggests that, from five weight vectors per individual, the extra information 

obtained from the sub-fronts do not generate significant differences to improve the search 

process. Also, as stressed when analyzing the global results, high values of 𝜆 do not allow the 

algorithm to converge to the optimal Pareto front for the instances of higher complexity.  

In order to provide further insights regarding the behavior of the algorithm according to the 

value of 𝜆, the variation of the hypervolume according to the computational resources 

allocated, i.e., the number of iterations or calls to the LP solver, is studied in what follows. In 

this perspective, the final number of iterations (the stopping criterion is 100,000 iterations) has 

been divided into 11 instants, indicated in the headers of table 4, where T is the number of 

periods of the instance. At each instant, the average value of the hypervolume for each value 

of 𝜆 is used to establish a ranking among these different parameter settings and the results 

are presented in table 4 where the value noted in each cell corresponds to the number of 

weight vectors for which the hypervolume is maximum at that instant. 

The results obtained show that, at the beginning of the search the best results are always 

obtained with 𝜆 = 1. However, for the first two instances, after approximately 30,000 iterations, 

the best hypervolumes using 𝜆 = 2  or 𝜆 = 3, which is consistent with the results presented in 

section 5.2. 

 

Figure 15. Search process after 50 generations (HSC22g01p on left and HSC08g04p 

on right) 
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 5e3·T 1e4 · T 2e4 · T 3e4 · T 4e4 · T 5e4 · T 6e4 · T 7e4 · T 8e4 · T 9e4 · T 1e5 · T 

HSC08g0

01p 

1 1 1 3 1 3 3 3 3 3 3 

HSC08g0

1p 

1 1 1 2 2 2 2 2 2 2 2 

HSC08g0

4p 

1 1 1 1 1 1 1 1 1 1 1 

HSC22g0

1p 

1 1 1 1 1 1 1 1 1 1 1 

HSC08g0

7p 

1 1 1 1 1 1 1 1 1 1 1 

Table 4. Best rated case at each time and instance 

Thus, from the above study, it can be concluded that the best results are consistently obtained   

𝜆 = 1. However, it can also be observed that there are other competitive number of weight 

vectors (𝜆 = 2 and 𝜆 = 3), in particular for small instances, but the differences with 𝜆 = 1 do 

not seem significant. On the other hand, the any-time analysis show that, at the beginning of 

the search, the intensive search procedures performed at the lower-level (with more weight 

vectors) allows for quick improvements of the hypervolume, but this trend is compensated by 

the genetic mixing produced during the last part of the evolutionary process, when fewer weight 

vectors are used. 
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6. Conclusions 

This master thesis had the clear objective of developing a novel hybrid algorithm for bi-level 

bi-objective optimization and to evaluate its performance level through the application to the 

problem of hydrogen supply chain deployment and design. In order to achieve this, the 

structure of the solution strategy presented recently by Cantú et al. [1], has been used as a 

starting point and enriched through a new approach based on a finer evaluation of the sub-

front corresponding to each lower-level sub-problem associated to the upper-level variables. 

In this perspective, a higher number of weight vectors are used for solving the lower-level sub-

problems, aiming to provide a greater amount of information to improve the selection of future 

generations in the evolutionary process. As a consequence, the MOEA used at the upper-level 

had to be significantly modified to enable the algorithm to handle individuals constituted by 

sub-fronts and not single solutions. 

During the development of the project and when carrying out preliminary experiments, some 

difficulties have appeared, such as not uniform distributions when using non-randomized 

weight vectors, or obtaining repeated solutions for the same individual in the lower-level sub-

problem when too much weight vectors were computed. These early observations led to 

introduce randomness in the generation of the weight vectors associated to each individual, 

and to design a heuristic process selecting the worthy weight vectors in a smart way, improving 

the efficiency of the global algorithm. 

From the design and experimentation performed over with different instances of the HSC 

design problem, the following conclusions can be drawn. 

1- The comparative study of the sub-fronts generated by the different scalarizing functions 

has shown that the best alternative is the Augmented Chebyshev (ATCH) function, 

slightly better than the Augmented Achievement Scalarizing Function (AASF) 

proposed in [1] and, therefore, subsequently used in the algorithm developed here. 

2- The proposition first of a random selection criterion of the weights of the individuals and 

then the intelligent management in the selection of which weights should be used to 

obtain the different solutions are crucial for the efficient construction of the sub-fronts 

and the competitiveness of the algorithm, especially for large number of weight vectors. 

3- No evidence has been obtained, with the selection operator proposed in this work, 

regarding the benefits of working with more weight vectors at the lower-level. In other 

words, getting a more complete information on the sub-fronts associated to each 

combination of upper-level variables did not lead to a more efficient genetic selection 

within the MOEA used at the upper-level. 

4- In the most complex instances, using more than two weight vectors and equal resource 

usage (calls to the LP solver) can even deteriorate the convergence to the true Pareto 
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front. Note, however, that convergence is observed in any case for equal numbers of 

generation. 

5- The latter indicates that the genetic mixing produced by letting the population evolve a 

during a greater number of generations (with 1 or a small number of weight vectors) 

outperforms the more accurate description of lower-level sub-front (with many weight 

vectors) but over a shorter evolutionary process. 

In summary, when evaluating the algorithm according to computational resources, the original 

algorithm proposed in [1] (using a single weight vector) is consistently more efficient for 

obtaining a good approximation of the Pareto front. However, these conclusions should be 

balanced considering two observations. First, the obtained results are valid for the particular 

formulation of the HSC design problem treated here. It would be worth evaluating the proposed 

solution strategy over a wider range of problems, in order to confirm the above-mentioned 

conclusions regarding the use of one or several weight vectors. On the other hand, the new 

selection procedure of the MOEA, designed and developed in this work, might be seen as a 

first attempt and it may, for some reason, be responsible for the adverse results found in the 

present study. It is reasonable to think that the design of this new operator could be improved 

in order to overcome possible drawbacks. 

Accordingly, both these observations are likely to constitute perspectives for future work, i.e.: 

(1) extending the application of the proposed algorithm to different bi-level bi-objective 

optimization problems and (2) modifying the selection operator of the upper-level MOEA, in 

order to determine if improvements can be obtained, in the perspective of a world where 

hydrogen is getting closer to become an environmental-friendly and economically viable 

alternative to conventional energy source.
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Appendix A. Data instances 

The data instances used are the same as those proposed in the paper [1], with the exception 

of HSC08g001p which was not included in that paper. Differs from the other instances because 

only three types of production technology, three possible sizes of production facilities, two sizes 

of storage facilities and three types of primary energy forms are considered as opposed to nine 

production technologies, three possible sizes of production facilities, four sizes of storage 

facilities and five different primary energy sources considered in the other instances.  

Table A.1: costs associated with primary energy sources. 

 

Table A.2: production capacities and costs of hydrogen plants. 

 

Table A.3: costs and characteristics of transportation modes. 
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Table A.4: storage capacities and costs of liquid hydrogen storage facilities. 

 

Table A.5: global warming potential. 

 

Table A.6: local and regional delivery distances for 8 grid instances. 
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Table A.7: local and regional delivery distances for 22 grid instances. 

 

  



  Pàg. 63 

 

Data for instance HSC08g01p & HSC08g001p 

Table A.9: Hydrogen demand of each grid ad time period (kg/d) for instance HSC08g01p. 

 

Table A.10: initial availability of energy sources (unit/d) for instance HSC08g01p. 
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Data for instance HSC08g04p 

Table A.11: Hydrogen demand of each grid ad time period (kg/d) for instance HSC08g04p. 

 

Table A.12: initial availability of energy sources (unit/d) for instance HSC08g04p. 
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Data for instance HSC08g07p 

Table A.13: Hydrogen demand of each grid ad time period (kg/d) for instance HSC08g07p. 

 

Table A.14: initial availability of energy sources (unit/d) for instance HSC08g07p. 
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Data for instance HSC22g01p 

Table A.15: Hydrogen demand of each grid ad time period (kg/d) for instance HSC22g01p. 

 

Table A.16: initial availability of energy sources (unit/d) for instance HSC22g01p. 
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Data for instance HSC22g04p 

Table A.17: Hydrogen demand of each grid ad time period (kg/d) for instance HSC22g04p. 

 

Table A.18: initial availability of energy sources (unit/d) for instance HSC22g04p. 
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