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Abstract
F -singularities are singularities of commutative rings of prime characteristic which are
related to the Frobenius endomorphism. In order to study them, researchers have
introduced numerical invariants such as the Hilbert–Kunz multiplicity and the F -
signature, which provide a measure of how singular a ring is from the point of view
of the Frobenius map. In this thesis, we introduce some concepts about characteristic
p methods and compute the value of one of these invariants, the F -thresholds, for
radical ideals in a regular setting.
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Resum

Les F -singularitats són singularitats d’anells commutatius de característica primera
relacionats amb l’endomorfisme de Frobenius. Per a poder-les estudiar, s’han intro-
duit invariants numèrics com la multiplicitat de Hilbert–Kunz o la F -signatura, que
ofereixen una mesura de com de singular és un anell des del punt de vista de l’apli-
cació de Frobenius. En aquest treball, introduïm alguns conceptes sobre els mètodes
de característica p i calculem el valor d’un d’aquests invariants, els F -llindars, per
ideals radicals en un context regular.

Paraules clau: àlgebra commutativa, anells de característica p, F -llindars, ideals
radicals, ideals monomials lliures de quadrats, ideals aresta.

MSC2020: 13A35, 13F55.



Resumen

Las F -singularidades son singularidades de anillos commutativos de característica
prima relacionados con el endomorfismo de Frobenius. Para poder estudiarlas, se
han introducido invariantes numéricos como la multiplicidad de Hilbert–Kunz y la F -
signatura, que ofrecen una medida de cómo de singular es un anillo desde el punto de
vista de la aplicación de Frobenius. En este trabajo, introducimos algunos conceptos
sobre métodos en característica p y calculamos el valor de uno de estos invariantes, los
F -umbrales, en el caso de ideales radicales en un contexto regular.

Palabras clave: álgebra conmutativa, anillos de característica p, F -umbrales, ideales
radicales, ideales monomiales libres de cuadrados, ideales arista.

MSC2020: 13A35, 13F55.
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“To light a candle is to cast a shadow... ”
Ursula K. Le Guin, A Wizard of Earthsea.
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Notation

General conventions
N The set of natural numbers starting from 0.
N∗ The set of positive natural numbers.
K A field.
p A prime number.
Fp The finite field of p elements.
R A unitary, commutative, Noetherian ring.
m A maximal ideal.

Specific notation
charR Characteristic of the ring R.
dimR Krull dimension of the ring R.
ht (I) Height of an ideal I ⊆ R.
Q(R) The fraction field of the integral domain R.
R [X] The ring of polynomials with coefficients in R.
K (X) The fraction field of K [X], namely Q(K [X]).
K The algebraic closure of the field K.
µR (I) The minimal number of generators of an ideal I ⊆ R. R is often omitted.
bxc If x ∈ R, the largest integer ≤ x.

Ic
Contraction of an ideal I ⊆ R with respect to a ring homomorphism
f : S → R.
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1 Introduction

1.1 Motivation

The main object of study of this thesis are F -thresholds, a numerical invariant used
to study singularities in characteristic p rings. This preliminary definition, however,
may raise some elementary questions to a newcomer. We might start by asking what
is a singularity? Algebraically speaking, a singular ring is a non-regular ring.

Definition 1.1.1. A regular local ring (R,m) is a ring where the minimal number of
generators of the maximal ideal equals its height (the Krull dimension of R), namely,
dim(R) = µ(m). A non local ring R is called regular when all of its localisations at
prime ideals Rp are regular.

On the other hand, there is also a geometric notion of singularity.

Definition 1.1.2. Let X be an affine variety such that X = Z(I) ⊆ An, with I =

(f1, . . . , fr) a prime ideal of K [x1, . . . , xn], where K is perfect or has characteristic zero
(see Definition 3.1.5). We say that X is non singular at P ∈ X if the Jacobian matrix(

∂fi
∂xj

(P )

)
i=1,...,r, j=1,...,n

has rank ht (I).

For example, consider the variety given by the zeros of the polynomial f = xy ∈
K [x, y]. Its Jacobian matrix (y x) has rank 0 at (x, y) = (0, 0), so the variety Z((f))

is singular at the origin. Likewise, the variety given by the zeros of the polynomial
g = x2 − y3 ∈ K [x, y] is singular at the origin as well. We can actually see these
singularities in a graphical representation (Figure 1.1).

These two algebraic and geometric notions of singularity come together by the following
theorem, that stems from the work in [Zar47].

Theorem 1.1.3. Let X be an affine variety such that X = Z(I) ⊆ An, with I =

(f1, . . . , fr) a prime ideal of K [x1, . . . , xn], where K is perfect or has characteristic
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zero. Then, a point P ∈ X is non-singular if and only if the ring of regular functions
in P is regular.

(a) 0 = x2 − y3
(b) 0 = xy

Figure 1.1: Two singular varieties

While it does not apply to non-perfect fields, this theorem tells us that studying the
singularity of a variety is equivalent to studying the singularity of a specific local ring.
However, what does it mean to study a singularity? Algebraically speaking,
there are properties behind and beyond regularity: a singular ring may have other
“desirable” properties (for instance, being reduced, a domain, Cohen–Macaulay...), so
studying the singularity can mean studying these kind of properties. Geometrically, we
can also imagine that there are various kinds of singularities as well. The singularities
presented in the previous example are visually different in some way: one is a normal
crossing while the other is a cusp. In the second variety, by incrementing the degree of
y the cusp becomes more and more narrow. Formalising and analysing these notions
is also part of the study of singularities.

A way to study singularities is defining a numerical invariant and deriving properties
from its values. For example, let (R,m) be a local ring, and define the invariant
µ(m) − ht (m). By Krull’s height theorem (2.2.4), µ(m) − ht (m) ≥ 0. By definition,
µ(m)− ht (m) = 0 if and only if R is regular. This is a kind of result researchers often
seek when studying an invariant.

Another extensively researched approach, called resolution of singularities, is the fol-
lowing problem: given a singular variety V , we would like to find whether there exists a
non-singular variety W and a map W → V with particular properties, called birational
map. Here, the notion of birational equivalency is introduced, where (very roughly
speaking) two varieties are equivalent if one can be bent into the other after remov-
ing a few points. Then, the study of singularities through resulution of singularities
becomes a problem of classification of varieties up to birational equivalence.

Finally, from our initial definition of F -thresholds, we are left to wonder what is
so particular about characteristic p? The problem of resolution of singulari-
ties is closed for varieties over a field characteristic zero ([Hir64]), but it remains an
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open problem for characteristic p, except for a few low-dimensional cases. The main
difference between positive and zero characteristic is the Frobenius map, a ring ho-
momorphism intrinsic to every characteristic p ring, given by raising its elements to
the p-th power. It is precisely the fact that the Frobenius map is a ring morphism
that makes it special: this doesn’t happen in characteristic zero, where there is no real
analogue to the Frobenius map. While characteristic p can be arguably harder than
characteristic zero in some contexts, in Chapter 3 we will see that the Frobenius map
contains a great deal of information about the ring R, so the study of R inevitably
passes through the study of its Frobenius map. As we will see, the Frobenius morphism
provides many meaningful results and helpful tools to study characteristic p rings.

1.2 Goals

The goal of this thesis is to introduce characteristic p methods and F -thresholds,
and to compute this invariant in some special classes of rings. It will be necessary
to introduce many concepts in commutative algebra to understand our motivations
and results. The first rings for which we computed an F -threshold were rings defined
by edge ideals, a special kind of square-free monomial ideals, both of which carry
combinatoric meaning. After some generalisations and reworkings of the proofs, we
realised that the same results generalised to square-free monomial ideals, and finally
to radical ideals, a much more general hypothesis.

1.3 Structure of the thesis

• Chapter 2 contains some elementary notions on regular sequences and dimension
theory needed throughout the thesis.

• Chapter 3 is dedicated to introducing the theory about the Frobenius morphism,
including Kunz’s theorem. We also motivate and define Frobenius powers and
the F -thresholds, our main objects of study.

• In Chapter 4, we explain and prove our main result, and examine its consequences
and possible generalisations.

• In Chapter 5, we introduce simplicial complexes and the Stanley–Reisner cor-
respondence, which originally motivated our study of the F -threshold in the
square-free monomial case, and explain the link between the two concepts.

• In Chapter 6, we draw conclusions from our work and consider steps to be taken
for further research.
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2 Prerequisites

In this chapter, we introduce some preliminaries on regular sequences and dimension
theory that will be needed throughout the thesis, especially in Chapter 4.

2.1 Regular sequences

Roughly speaking, regular sequences are sequences of elements of a ring R that are
“independent” with respect to an R-module M . Regular sequences, in particular
Lemma 2.1.7, will be essential to our proofs. Most of the contents of this section are
drawn from [BH98], Chapter 1.1 and its exercises.

Definition 2.1.1. Let R be a Noetherian ring, and M an R-module. A sequence
r1, . . . , rn ∈ R is an M-regular sequence if all of the following conditions hold:

(i) r1 is a non-zero-divisor in M .

(ii) ri is a non-zero-divisor in M/(r1, . . . , ri−1)M , for all i = 2, . . . , n.

(iii) M/(r1, . . . , rn)M 6= 0.

If (i) and (ii) hold, but not (iii), the sequence is said to be weakly regular. We will
denote regular sequences using boldface characters, for instance r = r1, . . . , rn. Non-
zero-divisors are often referred to as regular elements, and an R-regular sequence is
called a regular sequence.

In general, permutations of a regular sequence need not be regular (Example 2.1.2).
Nevertheless, in contexts where Nakayama’s Lemma is applicable (in particular, local
rings), regular sequences can be permuted.

Example 2.1.2. Let R = K [x, y, z], and r1 = x(y − 1), r2 = y, r3 = z(y − 1). Then,
r1, r2, r3 is a regular sequence of R, since:

(i) r1 is a regular element of R, since R is a domain.

(ii) r2 = y is a non-zero-divisor in R/(x(y− 1)), since if yf = 0 in R/(x(y− 1), then
y · f = g ·x(y−1) for some g ∈ K [x, y, z]. Then, y divides g, and f ∈ (x(y−1)),
so f = 0.
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We observe that (x(y − 1), y) = (x, y), so R/(r1, r2) = R/(x, y) ∼= K [z]. The
class of r3 = z(y − 1) in R/(x, y) is r3 = z, which is a regular element of
R/(x, y) = K [z].

(iii) R/(r1, r2, r3) ∼= K 6= 0.

However, r1, r3, r2 is not a regular sequence, since x ·z(y − 1) = 0 in R/(r1), and x 6= 0,
so r3 is not a regular element of R/(r1).

Proposition 2.1.3. Let R be a Noetherian local ring, M an R-module, and r a finitely
generated M-regular sequence. Then, every permutation of r is a regular sequence.

Proof. Every permutation is a product (composition) of transpositions, so proving
following result suffices: let r = r1, . . . , ri, ri+1, . . . , rn be a regular sequence. Then,
r′ = r1, . . . , ri−1, ri+1, ri, . . . , rn is also a regular sequence. Since the first part of r′,
namely r1, . . . , ri−1, is already a regular sequence, we can focus only on the case i = 1.
So we will prove that r′ = r2, r1, r3, . . . , rn is a regular sequence.

First, we will see that r2 is a non-zero-divisor of M . This is where the local hypothesis
will be needed. Let K = ker(r2·) be the kernel of the multiplication by r2 on M

(m 7→ r2 · m). We will see that K = 0, which is equivalent to r2 being a non-zero-
divisor in M . Let m ∈ K be such that r2m = 0. In M/r1M , r2m = 0, and because r2

is a non-zero-divisor of M/r1M , m = 0, so there exists an m′ ∈M such that m = r1m
′.

Then, r2r1m′ = 0, and because r1 is a non-zero-divisor of M , m′ ∈ K. We have thus
seen that for every m ∈ K, m = r1m

′, with m′ ∈ K. In other words, K = r1K. If
r1 was a unit, then R/(r1) = 0 and R/(r) = 0, so r would not be a regular sequence.
Then, by Nakayama’s Lemma we conclude that K = 0.

Now, we will see that r1, r3, . . . , rn is an M/r2M -regular sequence. By hypothesis,
r3, . . . , rn is an M/(r1, r2)M -regular sequence, so we only need to check that r1 is a
regular element of M/r2M . If we denote the quotient classes in M/r1M and M/r2M

with one and two bars, respectively, let m ∈ M/r2M be such that r1m = 0. Lifting
back to M , there exists an m′ ∈M such that r1m = r2m

′, and projecting to M/r1M ,
we get that r2m′ = 0. As r2 is a regular element of M/r1M , m′ = 0, so there exists
an m′′ ∈ M such that m′ = r1m

′′. Then, r1m = r2r1m
′′, so r1(m− r2m

′′) = 0, and as
r1 is a regular element of M , m = r2m

′′, so in M/r2M , m = 0, and we conclude that
r1 is a non-zero-divisor in M/r2M , as we wanted to see.

We have seen that r2 is a regular element of M , and that r1, r3, . . . , rn is an M/r2M -
regular sequence, so r2, r1, r3, . . . , rn is an M -regular sequence, and we are done.
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Proposition 2.1.4. Let 0 → U → M → N → 0 be a short exact sequence of R-
modules, and r = r1, . . . , rn a sequence which is both U-regular and N-regular. Then,
r is M-regular.

Proof. Let f and g be the maps U → M and M → N from the exact sequence,
respectively. We will check all three conditions of 2.1.1:

(i) r1 is a non-zero-divisor in M : Let m ∈ M be an element such that r1m = 0.
Then, 0 = g(r1m) = r1g(m). Because r1 is a non-zero-divisor in N , m ∈ ker(g) =

Im(f), so there exists a u ∈ U such that f(u) = m. Then, 0 = r1f(u) = f(r1u).
As f is injective, r1u = 0, but r1 is a non-zero-divisor in U , so u = 0 and thus
m = f(u) = 0.

(ii) ri is a non-zero-divisor in M/(r1, . . . , ri−1)M , for all i = 2, . . . , n: Let I be the
ideal generated by the regular sequence, I = (r1, . . . , ri−1). Tensoring the se-
quence 0 → U → M → N → 0 with _ ⊗R R/I, and as the tensor product is
right exact, we get the following exact sequence:

U ⊗R R/I M ⊗R R/I N ⊗R R/I 0,
f⊗ι g⊗ι

where ι is the identity map on R/I. Using the isomorphism R/I ⊗R C ∼= C/IC

(for any R-module C), we get the following exact sequence

U/IU M/IM N/IN 0,
f ′ g′

where f ′ is given by u 7→ f̃(u) and g′ is given by m̃ 7→ g(m). If we prove that f ′

is injective, then we have the following exact sequence:

0 U/IU M/IM N/IN 0,
f ′ g′ (2.1)

and then we can use (i) to conclude: because ri is a non-zero-divisor in U/IU and
N/IN , it is a non-zero-divisor in M/IM as well. To check this, we can assume
that I is generated by one element, and the general case follows by induction
on the length of r. If I = (r1), let u ∈ U/r1U be such that f ′ (u) = 0̃. By
definition of f ′, f̃(u) = 0̃, so f(u) ∈ r1M , and there exists an m ∈M such that
f(u) = r1m. In other words, r1m ∈ Im(f) = ker(g), so 0 = g(r1m) = r1g(m).
As r1 is a regular element of N , m ∈ ker(g) = Im(f), so there exists a u′ ∈ U

such that f(u) = m. Then, f(u) = r1m = r1f(u
′) = f(r1u

′). Because f is
injective, u = r1u

′, and in the quotient U/IU , u = r1u′ = 0, so f ′ is injective.
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(iii) M/(r1, . . . , rn)M 6= 0: Let I = (r1, . . . , rn). We have seen that there is an exact
sequence

U/IU M/IM N/IN 0.

If M/IM = 0, by surjectivity N/IN = 0, which is a contradiction by N -
regularity of r.

Proposition 2.1.5. Let r1, . . . , ri, . . . , rn and r1, . . . , r
′
i, . . . , rn be M-regular sequences,

where M is an R-module. Then, r1, . . . , rir′i, . . . , rn is an M-regular sequence as well.

Proof. First, we observe that ri, . . . , rn and r′i, . . . , rn are M/(r1, . . . , ri−1)M -regular
sequences. Then, the statement is equivalent to showing that rir

′
i, . . . , rn is a regular

sequence in M/(r1, . . . , ri−1)M . So it suffices to prove the case i = 1. Assume that
r, r2, . . . , rn and r′, r2, . . . , rn are M -regular sequences. Then, we want to see that
rr′, r2, . . . , rn is an M -regular sequence as well. It is enough to prove the following:

(i) rr′ is a non-zero-divisor in M .

(ii) r2, . . . , rn is a regular sequence in M/(rr′)M .

For (i), let m ∈ M be such that rr′m = 0. Because r is a regular element of M ,
r′m = 0, and since r′ is also a regular element of r, m = 0. We conclude that rr′ is a
non-zero-divisor of M .

As for (ii), consider the following short exact sequence:

0 M/rM M/(rr′)M M/r′M 0,
f g (2.2)

where f is the product by r′, namely m 7→ r′m, and g is given by m 7→ m̃. Next, we
will verify that it is indeed a short exact sequence:

• f is well defined: if m = m′ in M/rM , then m = m′ + rm′′ in M . Applying f ,
r′m = r′m′ + r′rm′′ = r′m′ in M/(rr′)M , so we conclude that f is well defined.

• f is injective: let m ∈M/rM be such that f(m) = r′m = 0. Then, r′m = rr′m′

in M , so r′(m− rm′) = 0. As r′ is a regular element of M , m = rm′, so m ∈ rM

and m = 0 in M/rM . Thus, f is injective.
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• g is well defined and surjective: consider the diagram

M M/r′M.

M/(rr′)M

π1

π2
g

Because (rr′)M ⊆ (r′)M = ker(π1), by the universal property of the quotient
module, there exists a unique homomorphism g that makes the diagram com-
mute, which is given by m 7→ π1(m) = m̃. Furthermore, g is surjective, since π1

is.

• ker(g) = Im(f): We observe that ker g =
{
m ∈M/(rr′)M

∣∣∣ m̃ = 0̃
}

. Because

m̃ = 0̃ if and only if m ∈ r′M , ker(g) = r′M . By definition of f , we have
Im(f) = r′M as well.

Then, since r2, . . . , rn is both M/rM and M/r′M -regular, we can apply the previous
result (2.1.4) to 2.2 to conclude that r2, . . . , rn is M/(rr′)M -regular.

Corollary 2.1.6. Let r1, . . . , rn be M -regular sequences, where M is an R-module.
Then, ri11 , . . . , rinn is an M -regular sequence for any i1, . . . , in ∈ N∗.

Lemma 2.1.7. Let r = r1, . . . , rn be a regular sequence in R. Let i1, . . . , in ∈ N∗.
Then,

ri1−1
1 · . . . · rin−1

n 6∈
(
ri11 , . . . , r

in
n

)
.

Proof. Suppose, by contradiction, that

ri1−1
1 · . . . · rin−1

n ∈
(
ri11 , . . . , r

in
n

)
. (2.3)

If R is a local ring, we will prove that for every j = 1, . . . , n, if

ri1−1
1 · . . . · rij−1

j ∈
(
ri11 , . . . , r

ij
j , rj+1, . . . , rn

)
,

then
ri1−1
1 · . . . · rij−1−1

j−1 ∈
(
ri11 , . . . , r

ij−1

j−1 , rj, rj+1, . . . , rn

)
.

Applying this result to 2.3 for j = n, and then successively for every j = n− 1, . . . , 1,
we have 1 ∈ (r1, . . . , rn), which is a contradiction, since R/(r1, . . . , rn) 6= 0 as r is a
regular sequence. To prove the result, assume that

ri1−1
1 · . . . · rij−1

j ∈
(
ri11 , . . . , r

ij
j , rj+1, . . . , rn

)
.
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Then, ri1−1
1 · . . . ·rij−1

j can be written as a linear combination of ri11 , . . . , r
ij
j , rj+1, . . . , rn.

Let aj ∈ R be the coefficient associated to r
ij
j . Then, we can write

ri1−1
1 · . . . · rij−1

j − ajr
ij
j ∈

(
ri11 , . . . , r

ij−1

j−1 , rj+1, . . . , rn

)
.

Factoring out r
ij−1
j , we have(

ri1−1
1 · . . . · rij−1−1

j−1 − ajrj

)
r
ij−1
j ∈

(
ri11 , . . . , r

ij−1

j−1 , rj+1, . . . , rn

)
. (2.4)

By 2.1.6, ri11 , . . . , r
ij−1

j−1 , r
ij−1
j , rj+1, . . . , rn is a regular sequence, and by 2.1.3, any per-

mutation of a regular sequence in a local ring is regular. Thus, we realise that
ri11 , . . . , r

ij−1

j−1 , rj+1, . . . , rn, r
ij−1
j is a regular sequence, so applying this to 2.4, we have

ri1−1
1 · . . . · rij−1−1

j−1 − ajrj ∈
(
ri11 , . . . , r

ij−1

j−1 , rj+1, . . . , rn

)
,

so we can finally conclude that

ri1−1
1 · . . . · rij−1−1

j−1 ∈
(
ri11 , . . . , rj, r

ij−1

j−1 , rj+1, . . . , rn

)
,

just as we wanted to see.

In the general setting, we can reduce to the local case by considering a minimal prime
p ∈ Min ((r1, . . . , rn)), so

(
ri11 , . . . , r

in
n

)
⊆ (r1, . . . , rn) ⊆ p. Localising at p, we get that(

ri11 , . . . , r
in
n

)
p
⊆ (r1, . . . , rn)p ⊆ pp, so r1/1, . . . , rn/1 are not units of Rp. Now, we will

check that r1/1, . . . , rn/1 is a regular sequence in Rp:

(i) As localisation is a flat morphism, if r1 is a non-zero-divisor in R, r1
1

is a non-
zero-divisor in Rp.

(ii) Likewise, as ri is a non-zero-divisor in R/(r1, . . . , ri−1), ri
1

is a non-zero-divisor
in (R/(r1, . . . , ri−1))p

∼= Rp/(r1, . . . , ri−1)p = Rp/(r1/1, . . . , ri−1/1) , where the
isomorphism is given by the exactness of localisation.

(iii) We have seen that (r1/1, . . . , rn/1) ⊆ pp ( Rp, so Rp/(r1/1, . . . , ri−1/1) 6= 0.

So, if we assume by contradiction that ri1−1
1 · . . . · rin−1

n ∈
(
ri11 , . . . , r

in
n

)
, in Rp we have

ri1−1
1

1
· . . . · r

in−1
n

1
∈
((r1

1

)i1
, . . . ,

(rn
1

)in)
,

which is a contradiction since we saw the result for the local case.
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2.2 Dimension theory

Dimension theory is a fundamental tool in commutative algebra and algebraic geom-
etry, since it provides an algebraic definition of the dimension of an affine variety.
As discussed in Chapter 1, the algebraic notion of regularity is tied to a geometrical
interpretation of regularity as well. We will use some of the following well known re-
sults in dimension theory throughout the thesis, in particular, 2.2.10 will be of utmost
importance for the proofs of Chapter 4. Some of the statements in this chapter are
offered without proof, one can find such proofs in [AM69], Chapter 11.

Definition 2.2.1. Let p be a prime ideal in a commutative ring R. Then, the height
of p is defined as the supremum of the lengths of chains of prime ideals contained in
p. That is,

ht (p) := sup {t | ∃ a chain p0 ( . . . ( pt = p} .

For a proper ideal I ⊆ R, its height is defined as:

ht (I) := inf {ht (p) | p ⊇ I, p prime} .

Definition 2.2.2. The Krull dimension of a commutative ring R is defined as the
supremum of the lengths of chains of prime ideals in R, namely:

dimR = sup {ht (p) | p is prime} .

One of the main results of dimension theory is Krull’s height theorem, that bounds
the height of a prime ideal by its number of generators.

Theorem 2.2.3 (Krull’s height theorem). Let R be a Noetherian ring, x1, . . . , xn ∈ R,
and p ∈ Min ((x1, . . . , xn)). Then, ht (p) ≤ n.

Corollary 2.2.4. Let R be a Noetherian ring, and I an ideal of R. Then, ht (I) ≤ µ(I).

The following result offers a sort of converse of Krull’s height theorem.

Proposition 2.2.5. Let R be a Noetherian ring and p ∈ Spec(R). If ht (p) = h, then
there exist y1, . . . , yh ∈ R such that p ∈ Min ((y1, . . . , yh)).

When we apply this proposition to the maximal ideal of a local ring (R,m), we have
the following characterisation of the dimension of a local ring.

Corollary 2.2.6. Let (R,m) be a Noetherian, local ring. Then,

dimR = min
{
c
∣∣∣ ∃x1, . . . , xc ∈ m,

√
(x1, . . . , xc) = m

}
. (2.5)
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Definition 2.2.7. Let (R,m) be a Noetherian, local ring of dimension dimR = d.
A set of elements {x1, . . . , xd} ⊆ m is called a system of parameters if it satisfies 2.5,
that is,

√
(x1, . . . , xd) = m. An element x ∈ R is called a parameter if it belongs to a

system of parameters.

Observation 2.2.8. Let (R,m) be a Noetherian, local ring, and x ∈ m a non-zero-
divisor. Then, x is a parameter.

Lemma 2.2.9. Let (R,m) be a Noetherian, local ring. Let x ∈ m be a parameter.
Then, R/(x) is local ring of dimension dimR− 1.

Proof. If x is a parameter, it is part of a system of parameters {x, x2, . . . , xd}. Let
c = dim (R/(x)), so we want to see that c = d−1. We know that m =

√
(x, x2, . . . , xd),

so in the quotient R/(x) we have that m =
√

(x2, . . . , xd). Because R/(x) is a local
ring with maximal ideal m, by 2.2.6 we have c ≤ d− 1.

On the other hand, if c = dim (R/(x)) and m is the maximal ideal, again by 2.2.6
there exist y1, . . . , yc ∈ m such that m =

√
(y1, . . . , yc). Thus, there exists an N ∈ N∗

such that mN ⊆ (y1, . . . , yc). Lifting back to R, mN + (x) ⊆ (y1, . . . , yc) + (x), so
mN ⊆ (y1, . . . , yc, x) ⊆ m. Taking radicals, we conclude that

√
(y1, . . . , yc, x) = m.

Therefore, by 2.2.6, d ≤ c+ 1 ⇐⇒ c ≥ d− 1, and we are done.

Proposition 2.2.10. Let R be a regular, local, Noetherian ring. Then, R is an integral
domain.

Proof. We will proceed by induction on the dimension of R. If dimR = 0, then
µ(m) = 0 and m = (0), so R is a field and thus a domain. Let d = dim(R) > 0. Then,

m 6⊆ m2 ∪

( ⋃
p∈MinR

p

)
,

so there exists an element a ∈ m \ (m2 ∪ (∪p∈MinR p)). As a 6∈ m2, a 6= 0 in m/m2,
an R/m-vector space. By Steinitz’s exchange lemma, we can extend {a} to a basis of
m/m2, that is, there exist a1, . . . , ad−1 ∈ m/m2 such that {a, a1, . . . , ad−1} is a basis of
m/m2. Then, as a consequence of Nakayama’s Lemma, {a, a1, . . . , ad−1} is a minimal
generating set of m of cardinality d. By regularity of R, {a, a1, . . . , ad−1} is a system
of parameters of R, so a is a parameter.

Then, by 2.2.9, R/(a) is a local ring of dimension d − 1. It is also regular, since
m is generated by d − 1 elements. Indeed, m = (a1, . . . , ad−1), and these generators
are minimal: suppose without loss of generality that a1 can be removed, so a1 =

b2f2 + . . . + bd−1ad−1 for some b2, . . . , bd−1 ∈ R/(x). Lifting back to R, there exists
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c ∈ (a) (so c = ba for some b ∈ R) such that a1 = ba + b2a2 + . . . bd−1ad−1, so
{a, a1, . . . , ad−1} would not be a minimal generating set of m.

By induction hypothesis, R/(a) is a domain, so (a) is a prime ideal of R. Because
a 6∈ ∪p∈MinR p, there exists a p ∈ MinR such that p ( (a). Now, let p ∈ p. As p ( (a),
there exists an x ∈ R such that p = a · x. Since p is prime and a 6∈ p, x ∈ p, so
p = ap. Then, by Nakayama’s Lemma, p = (0), so (0) is a prime ideal and thus R is
a domain.
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3 The Frobenius map

In this chapter, we introduce some basic concepts about the Frobenius morphism
and present Kunz’s theorem, a celebrated result that characterizes regular rings in
characteristic p. Finally, we introduce the F -thresholds, our main object of study.

3.1 Definitions and basic properties

Definition 3.1.1. Let R be a ring of characteristic p. The Frobenius endomorphism
is the map:

F : R −→ R

x 7−→ xp

The e-th iteration of Frobenius (e ∈ N∗) is denoted as follows:

F e : R −→ R

x 7−→ xpe

In the context of a ring of characteristic p, the letter q will be used to represent q = pe.

Proposition 3.1.2. The Frobenius map is a ring homomorphism.

Proof. Let x, y ∈ R. Then F (xy) = (xy)p = xpyp = F (x)F (y), since R is commuta-
tive. Now, for additivity:

F (x+ y) = (x+ y)p =

p∑
i=0

(
p

i

)
xiyp−i =

p∑
i=0

p!

i!(p− i)!
xiyp−i = xp + yp = F (x) + F (y).

The next-to-last equality is due to the fact that
(
p
i

)
is a multiple of p for all 0 < i < p,

and multiplication by p in R is zero.

If R has no nilpotent elements, the Frobenius map is injective. In fact, we have:

Proposition 3.1.3. The Frobenius endomorphism is injective if and only if R is
reduced.
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Proof. If the Frobenius morphism F is injective, then so is F e, for all e ∈ N∗. Then
kerF e = {x ∈ R | xpe = 0} = {0} for all e ∈ N∗. Consider a nilpotent element of R:
x ∈ R such that xN = 0 for some N ∈ N∗. Then let e′ ∈ N∗ such that N ≤ pe

′ . Such
an e′ exists, since N is finite.

Because N ≤ pe
′ , then xpe

′
= 0, and x ∈ kerF e′ = {0}, so we conclude that x = 0. We

have seen that the only nilpotent element of R is 0 and, by definition, R is reduced.

For the converse, assume that R is reduced. Then, if there exists an x ∈ R such that
F (x) = xp = 0, then necessarily x = 0, and thus F is injective.

Surjectivity, however, is not characterized by such a result, and requires definitions on
its own. Consider the following example:

Example 3.1.4. Let R = Fp(X). Even though R is a field, the element X is not in
the image of F , so F cannot possibly be surjective.

Definition 3.1.5. A ring R of characteristic p1 is said to be perfect when its Frobenius
endomorphism is bijective, that is, an automorphism. In particular, when R is reduced
and every element of R is a p-th power of an element of R.

Examples 3.1.6. 1. Fp is perfect.

2. Every algebraically closed field K is perfect. First, fields are integral domains
and thus reduced. Second, for every a ∈ K, the equation xp = a has a solution
in K, so we have both injectivity and surjectivity of the Frobenius morphism.

3. Fp

[
X,X1/p, X1/p2 , . . .

]
is a perfect ring, since every p-th root is added.

Noetherian perfect rings are quite special, in fact, one can show the following:

Exercise 3.1.7. A Noetherian perfect ring is a finite, direct product of perfect fields.

Proof. If R is a Noetherian, local ring with maximal ideal m = (x1, . . . , xn), then
there exist y1, . . . , yn ∈ R such that ypi = xi, for all i = 1, . . . , n, so m = (yp1, . . . , y

p
n).

We observe that (yp1, . . . , y
p
n) ⊆ (y1, . . . , yn) ⊆ m, so we conclude that (yp1, . . . , y

p
n) =

(y1, . . . , yn) = m. However, we have the following chain of inclusions:

(yp1, . . . , y
p
n) ⊆ (y1, . . . , yn)

p ⊆ (y1, . . . , yn)
2 ⊆ (y1, . . . , yn).

Both ends of the chain equal m, so we conclude that m2 = m, and by Nakayama’s
Lemma we have that m = (0), so R is a field.

1It makes sense to define characteristic zero rings as perfect in the context of fields, since a
characterisation of perfect fields, and often used as a definition, is that every algebraic field extension
of a perfect field is separable ([DF03], Section 13.5). All characteristic zero fields satisfy this.
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In the non-local case, let d = dimR. Then, there exists a chain of prime ideals of
maximum length d:

p0 ( p1 ( . . . ( pd,

where pd = m is a maximal ideal. Then, Rm is a local, Noetherian ring, and also
perfect. Indeed, Fm (the Frobenius map in Rm) is surjective: let r/s ∈ Rm, so r ∈ R

and s 6∈ m. Then, because R is perfect, there exists an r′ ∈ R such that rsp−1 = (r′)p.
Thus, Fm(r

′/s) = (r′)p/sp = (rsp−1)/sp = r/s. A surjective morphism in a Noetherian
ring is also injective, so Fm is an isomorphism and Rm is perfect. As Rm is local, we
have previously proved that it is a field, so mm = (0). Because of the correspondence
between prime ideals of Rm and prime ideals of R contained in m, dim(R) = 0, so
m ∈ Min(R), for all m ∈ Max(R). In particular, there is a finite number of maximal
ideals. Additionally, by 3.1.3 we have that R is reduced, so

√
0 = (0), and

(0) =
√
0 =

⋂
p∈Min(R)

p =
⋂

m∈Max(R)

m.

Let φ : R→
∏

m∈Max(R) R/m. Then, by the Remainder Theorem (as stated in [AM69],
Proposition 1.10), φ is surjective. Furthermore, because maximal ideals are coprime
in pairs, φ is also injective. Thus, φ is an isomorphism from R to a product of fields,
which are perfect since quotient classes and powers commute.

The following statements outline how the Frobenius map behaves under localisation.

Observation 3.1.8. If p ⊆ R is a prime ideal of R, then F−1(p) = p. This means
that the map on SpecR induced by the Frobenius map, namely, p 7−→ F−1(p), is the
identity.

Proof. On the one hand, if x ∈ p, then F (x) = xp ∈ p, so F (p) ⊆ p and p ⊆ F−1(p).
On the other hand, if x ∈ F−1(p), then xp ∈ p, and because p is prime, x ∈ p, so we
conclude F−1(p) = p.

Proposition 3.1.9 (The Frobenius map commutes with localisation). Let S ⊆ R

be a multiplicatively closed set. Then, the following diagram commutes, where the
downward arrows are the localisation map:.

R R

S−1R S−1R

F e

F e
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Proof. It suffices to note that, for any x ∈ R, F e(x)
1

= xq

1
=
(
x
1

)q
= F e

(
x
1

)
.

Definition 3.1.10. The Frobenius power of an ideal I ⊆ R is the ideal:

I [p] := ({xp | x ∈ I})

Following the convention of 3.1.1, we write I [q] for I [p
e], and we note that I

[
p0

]
= I.

Observation 3.1.11. As I [q] = (F e(I)), if I = (f1, . . . , fn), then I [q] = (f q
1 , . . . , f

q
n).

Observation 3.1.12. It holds that I [q] ⊆ Iq ⊆ I, and all three ideals have the same
radical.

Observation 3.1.13. Let R be a ring of characteristic p. Consider its subset Rp :=

{rp | r ∈ R}. Then, Rp is a subring of R. If R is reduced, there is an isomorfism of
rings between R ∼= Rp given by the Frobenius map.

Proof. Rp is, by definition, the image of the Frobenius map, so it is a subring. Fur-
thermore, because R is reduced, the Frobenius map is injective, so by Noether’s first
isomorphism theorem, R ∼= F (R) = Rp.

Observation 3.1.14. This isomorphism can be iterated again and again to get R ∼=
Rp ∼= Rp2 ∼= Rp3 ∼= . . . .

3.2 The Frobenius push-forward

Given a homomorphism of rings f : R → S, one can view S as an R-module through
the action r · s := f(r)s, with r ∈ R and s ∈ S. This action is called the restriction
of scalars, and can be used to view S-modules as R-modules. The Frobenius map
F : R→ R induces an R-module structure on R different from the standard one, given
by r · s = rps, with r, s ∈ R. The · symbol represents the new action given by the
restriction of scalars, and no symbol is used for the ordinary product in R. Because
it can be confusing to use R as an R-module with two different actions, we often use
F∗(R) to denote R as a module over itself via Frobenius. To distinguish the elements
of F∗(R) from the scalars we use the notation F∗(r), for r ∈ R. Thus, if r, s ∈ R, we
have

F∗(r) + F∗(s) = F∗(r + s) and r · F∗(s) = F∗(r
ps).

This notation can also be applied to the iterated Frobenius F e
∗ without any special

considerations.
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Given a homomorphism of rings f : R → S, viewing S as an R-module by restriction
of scalars is equivalent to viewing S as an f(R)-module by the standard action of S.
With this in mind, a natural way of treating F∗(R) is as R viewed as an Rp-module.
However, there is another way to interpret F∗(R).

Definition 3.2.1. Let R be a domain, Q(R) its field of fractions and Q(R) the
algebraic closure of the latter. The ring of p-th roots of R is defined as R1/p :={
x ∈ Q(R)

∣∣∣ xp ∈ R
}

. An element x ∈ R1/p such that r = xp ∈ R is often denoted as
r1/p.

Observation 3.2.2. The notation r1/p ∈ R1/p is well defined thanks to the reduced-
ness for R. Indeed, if there was another y ∈ R1/p such that yp = r = xp, then
(x− y)p = 0 in R, and reducedness gives us x = y.

Clearly, R ⊆ R1/p, so we can view R1/p as an R-module with the action given by
the extension of scalars on the inclusion. With this structure, R1/p and F∗(R) are
isomorphic as R-modules. Before giving a proof, Table 3.1 below illustrates how the
two actions operate in the same way on the scalars in the specific case of the scalar
multiplication law.

R-Module R1/p F∗(R)

Elements s ∈ R, sp =: t, r1/p ∈ R1/p s ∈ R, r ∈ F∗(R)

Law s · r1/p = t1/pr1/p = (tr)1/p = (spr)1/p s · F∗(r) = F∗(s
pr)

Table 3.1: Comparison of the scalar multiplication law of R1/p and
F∗(R) as R-modules.

Observation 3.2.3. R1/p ∼= F∗(R), as R-modules.

Proof. Let x be an element in R1/p. Then, consider the map

φ : R1/p −→ F∗(R)

x 7−→ F∗(x
p).

This map is well-defined since xp ∈ R, which is equal as a set to F∗(R). It is also a
module homomorphism:

• Let x, y ∈ R1/p be such that xp = r and yp = s. Then, φ(x) + φ(y) = φ
(
r1/p
)
+

φ
(
s1/p
)
= F∗(r)+F∗(s) = F∗(r+s) = φ

(
(r + s)1/p

)
= φ

(
r1/p + s1/p

)
= φ(x+y).

• Let s ∈ R and x ∈ R1/p be such that xp = r ∈ R. Then, φ(s · x) = φ
(
s · r1/p

)
=

φ
(
(spr)1/p

)
= F∗(s

pr) = s · F∗(r) = s · φ(r1/p) = s · φ(x).
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It is injective: let x ∈ R1/p and suppose φ(x) = 0. Then, F∗(x
p) = 0, so xp = 0 in

R. Because R is reduced, we conclude x = 0. Regarding surjectivity, if r ∈ F∗(R),
then r ∈ R (recall that F∗(R) and R are equal as sets). If X is an indeterminate,
the equation Xp = r has a solution in Q(R). Let x be the solution, which by 3.2.2
is unique and by definition belongs to R1/p. Then, φ(x) = F∗(x

p) = F∗(r), so φ is
surjective and thus an isomorphism of R-modules.

Observation 3.2.4. The isomorphism of rings of 3.1.13 works with p-th roots as well,
since the image of R1/p under the Frobenius map is R, so we have isomorphisms of
rings R ∼= R1/p ∼= R1/p2 ∼= R1/p3 ∼= . . . .

3.3 Kunz’s Theorem

This section is dedicated to a notorious theorem by Ernst Kunz (1969) that charac-
terizes regular rings of prime characteristic.

Theorem 3.3.1. A ring R is regular if and only if the Frobenius map is flat.

While the most difficult of the implications is the “backward” (i.e., that if the Frobenius
map is flat, the ring is regular), we will only need the direct implication. The proof
of the direct implication involves completions, which will not be used in this work,
so we present a proof of the direct implication for the case R = K [x1, . . . , xn], which
uses the same fundamental ideas as the full proof. A proof of the general case, and of
the converse as well, can be found in [Kun69]. Before starting the proof, we need to
introduce the following Lemma:

Proposition 3.3.2. Let A, B be rings such that A→ B is flat. Then, A [x]→ B [x]

is flat.

Proof. Since the tensor product is already right exact, we only have to prove injectivity
at the left. Let N , M be A [x]-modules, therefore, they are also A-modules. Let
0→ N ↪→M . We want to see that

0→ N ⊗A[x] B [x]→M ⊗A[x] B [x]

is exact. We recall that B [x] ∼= A [x]⊗A B, so we have the isomorphisms:

N ⊗A[x] B [x] ∼= N ⊗A[x] (A [x]⊗A B) ∼=
(
N ⊗A[x] A [x]

)
⊗A B ∼= N ⊗A B.
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Likewise, the same holds for M , and thus

0 N ⊗A[x] B [x] M ⊗A[x] B [x]

N ⊗A B M ⊗A B.

∼= ∼=
Because we know that A→ B is flat, N ⊗A B → M ⊗A B is injective, so our desired
map is injective as well.

Proof (of 3.3.1): We will see that R is flat over Rp, that is, that Rp ↪→ R is a flat exten-
sion. Firstly, Rp = Kp [xp

1, . . . , x
p
n], and the extension Kp [xp

1, . . . , x
p
n] ↪→ Kp [x1, . . . , xn]

is free, since Kp [x1, . . . , xn] is a Kp [xp
1, . . . , x

p
n]-module with basis {xα1

1 · . . . · xαi
n | 0 ≤

≤ αi < p}. Because it is free, it is flat as well. Secondly, Kp ↪→ K is flat, since it is a
field extension (and vector spaces are free). Then, iterating 3.3.2 guarantees us that
Kp [x1, . . . , xn] ↪→ K [x1, . . . , xn] is a flat extension. In short, we have the following two
flat extensions:

Kp [xp
1, . . . , x

p
n] ↪→ Kp [x1, . . . , xn] ↪→ K [x1, . . . , xn] .

Because the composition of flat maps is flat, we have that the extension Rp ↪→ R is
flat, so R is a flat Rp-module.

Corollary 3.3.3. As the composition of flat maps is flat, we have that if R is regular,
the iterated Frobenius F e is also flat for all e ≥ 1.

Example 3.3.4. Let R = FpJx,yK
(xy)

. R is not regular, so according to Kunz’s Theo-
rem it should not be flat either. First, it is straightforward to justify that R is not
regular. (x, y) is the maximal ideal of Fp Jx, yK, so (x, y) is the maximal ideal of R,
and µR (x, y) = 2. On the other hand, as xy is not a unit nor a zero-divisor, by
2.2.9, dim(R) = dimFp Jx, yK − 1 = 1. Then, R is not regular by definition, since its
dimension differs from the minimal number of generators of its maximal ideal.

To see that R is not flat, we will find a map that does not stay injective after tensoring.
Let f : Rp → Rp be the map ap 7→ apyp. We have ker f = (xp), so

f ′ : Rp/ (xp) ↪−→ Rp



Chapter 3. The Frobenius map 27

is injective. Tensoring with R over Rp,

Rp

(xp)
⊗Rp R Rp ⊗Rp R

R/ (xp) R,

f ′⊗Rp id

∼= ∼=

where the lower map is given by a 7→ apyp, which is not injective, as x is in its kernel.

3.3.1 Consequences

The flatness of the Frobenius map grants us properties of flat homomorphisms that
are key in the development of this work. In particular, the distribution of Frobenius
powers over intersections will allow us to work with primary decompositions, and the
distribution over colon ideals will be necessary to control containments of Frobenius
powers.

Proposition 3.3.5. Let f : R → S be a flat ring homomorphism. Let I, J be ideals
of R, and let x ∈ R be an element. Then, the following hold:

(i) f(I ∩ J)S = f(I)S ∩ f(J)S.

(ii) f(I :R x)S = f(I)S :S f(x).

Proof. (i) The following is a short exact sequence of R-modules:

0 −→ R

I ∩ J

α−−→ R/I ⊕R/J
β−−→ R

I + J
−→ 0

where α and β are given by â 7→
(
ā, a
)

and
(
b̄, c
)
7→ b̃− c respectively.

Applying the tensor product _⊗R S we get the following short exact sequence,
since f is flat:

0 −→ R

I ∩ J
⊗RS

α⊗RidS−−−−−→ (R/I ⊗R S)⊕(R/J ⊗R S)
β⊗RidS−−−−−→ R

I + J
⊗RS −→ 0

Using the isomorphism R/I⊗RM ∼= M/IM (for an R-module M), and realising
that in this case, I · S = f(I)S, the sequence becomes:

0 −→ S

f(I ∩ J)S

g−−→ S

f(I)S
⊕ S

f(J)S

h−−→ S

f(I + J)S
−→ 0
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where now g and h are given by ŝ 7→
(
s̄, s
)

and
(
t̄, u
)
7→ t̃− u.

Because the sequence is exact, g is injective, so

{0̂} = ker g =

{
ŝ ∈ S

f(I ∩ J)S

∣∣∣∣ s̄ = 0̄, s = 0

}
.

Lifting these two sets, we get f(I ∩ J)S = f(I)S ∩ f(J)S.

(ii) We use the same reasoning, but with the short exact sequence:

0 −→ R

I :R x

α−−→ R/I −→ R

(I, x)
−→ 0,

where α is given by a 7→ ax. Tensoring with _ ⊗R S and applying the isomor-
phism seen in (i), we get the short exact sequence:

0 −→ S

f (I :R x)S

g−−→ S

f(I)S
−→ S

f (I, x)S
−→ 0

This time, g is given by s 7→ f(x)s. Just as before, g is injective, and thus

{0} = ker g =

{
s ∈ S

f (I :R x)S

∣∣∣∣ f(x)s = 0

}
.

Lifting these sets, we get f (I :R x)S = f(I) :S f(x), our desired result.

Corollary 3.3.6. Let I, J be ideals of a regular ring R of characteristic p. Then, the
previous proposition implies that:

(i) (I ∩ J)[q] = I [q] ∩ J [q].

(ii) (I : x)[q] = I [q] : xq.

(iii) (I : J)[q] = I [q] : J [q].

Proof. (i) and (ii) are direct from 3.3.5. For (iii), let J = (f1, . . . , fs) = (f1)+. . .+(fs).
Then,

I : J = I : ((f1) + . . .+ (fs)) = (I : f1) ∩ . . . ∩ (I : fs).

Taking Frobenius powers and applying (i) and (ii) consecutively, we get

(I :J)[q] = ((I : f1) ∩ . . . ∩ (I : fs))
[q] = (I :f1)

[q]∩. . .∩(I :fs)[q] = (I [q] :f q
1 )∩. . .∩(I [q] :f q

s ).
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As J [q] = (f q
1 , . . . , f

q
s ) = (f q

1 ) + . . .+ (f q
s ), we have

(I : J)[q] = I [q] : ((f q
1 ) + . . .+ (f q

s )) = I [q] : J [q].

.

The following is also a handy consequence of Kunz’s theorem.

Lemma 3.3.7. Let I, J be ideals in a regular ring R of characteristic p. Then, I ⊆ J

if and only if I [q] ⊆ J [q] for some q.

Proof. The direct implication is clear and true in the general case. For the converse,
suppose by contradiction that I * J . Then, the colon J : I is a proper ideal, so there
exists m ∈ Max(R) such that J :I ⊆ m. Taking Frobenius powers, (J : I)[q] ⊆ m[q], and
applying 3.3.6 (iii), we get that J [q] : I [q] = (J : I)[q] ⊆ m[q]. However, our hypothesis is
that I [q] ⊆ J [q], so J [q] :I [q] = R. Thus, we have R ⊆ m[q] ⊆ m, which is a contradiction
with the fact that m is a maximal ideal.

In the following propositions, we will see how the flatness of the Frobenius map in-
fluences the behaviour of Frobenius powers regarding associated primes, and how it
shines in comparison with ordinary powers.

Proposition 3.3.8. Let I be a Q-primary ideal in a regular ring R. Then I [q] is also
a Q-primary ideal.

Proof. This is equivalent to showing that Ass
(
R/I [q]

)
= {Q}. Since I is Q-primary,

Ass (R/I) = Min(I) = {Q}. Let p ∈ Ass
(
R/I [q]

)
, we want to see that p = Q. Firstly,

we know that I [q] ⊆ p. Taking radicals, we already get that Q ⊆ p.

We define MaxAss
(
R/I [q]

)
as the associated primes of I [q] that are maximal with

respect to the inclusion. This set is well defined because R is a Noetherian ring. We
will show that if q ∈ MaxAss

(
R/I [q]

)
, then q = Q. This implies that p = Q, since

p ∈ Ass
(
R/I [q]

)
will be contained in a maximal one, and

Q ⊆ p ⊆ q = Q.

So let q ∈ MaxAss
(
R/I [q]

)
. Because q is an associated prime, there exists an α ∈ R

such that q =
(
I [q] : α

)
, so

I [q] ⊆ I ⊆ Q ⊆ q =
(
I [q] : α

)
⊆
(
I [q] : αq

)
.
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We will now see that
(
I [q] : α

)
=
(
I [q] : αq

)
. It is known that every maximal element of

the family of ideals F :=
{
J : ∃β ∈ R such that J =

(
I [q] : β

)}
is an associated prime

of I [q]. Because R is Noetherian,
(
I [q] : αq

)
is contained in one of these maximal

elements of F , that is, there exists a β ∈ R such that
(
I [q] : αq

)
⊆
(
I [q] : β

)
. However,

the latter is maximal and thus an associated prime that contains q. Because q is also
a maximal associated prime, we conclude that q =

(
I [q] : α

)
=
(
I [q] : αq

)
=
(
I [q] : β

)
.

Now, by flatness of Frobenius,

I [q] ⊆ I ⊆ Q ⊆ q =
(
I [q] : α

)
= (I : α)[q] .

Finally, assume by contradiction that there exists an element γ ∈ q, γ 6∈ Q. Then
γ ∈ q implies that γα ∈ I [q] ⊆ I. Because I is a Q-primary ideal, if α 6∈ I, then there
exists an n ∈ N such that γn ∈

√
I = Q. However, Q is a prime ideal, so that would

imply γ ∈ Q, which would be against our assumption. Thus, α ∈ I. Now, α ∈ I

implies that (I : α) = R, which yields the following contradiction with the fact that q

is a prime ideal:
q =

(
I [q] : α

)
= (I : α)[q] = R[q] = R.

This contradiction comes from assuming Q ( q, so we conclude Q = q, as we wanted
to see.

Corollary 3.3.9. Let I be an ideal of a regular ring R. Then, the Frobenius map
preserves associated primes, that is, Ass (R/I) = Ass

(
R/I [q]

)
.

Proof. Let I = Q1 ∩ · · · ∩ Qm be an irredundant primary decomposition of I. By
flatness of the Frobenius map, I [q] = Q

[q]
1 ∩ · · · ∩ Q

[q]
m . We will prove that this is an

irredundant primary decomposition of I [q].

The previous proposition, 3.3.8, already tells us that Q
[q]
i is Qi-primary, so we only

have to see that the given decomposition is irredundant. Firstly, we define J := Q1 ∩
· · · ∩ Qm−1. Then, we assume by contradiction that the decomposition is redundant.
Without loss of generality we can also assume that the redundant factor is Q

[q]
m , and

then I [q] = Q
[q]
1 ∩ · · · ∩Q

[q]
m−1 ∩Q

[q]
m = Q

[q]
1 ∩ · · · ∩Q

[q]
m−1. By flatness of Frobenius,

I [q] = (Q1 ∩ · · · ∩Qm−1 ∩Qm)
[q] = (Q1 ∩ · · · ∩Qm−1)

[q] = J [q].
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If I [q] = J [q], by 3.3.7 we have that I = J . However, that is not the case, since the
initial decomposition for I is irredundant, so

I = Q1 ∩ · · · ∩Qm−1 ∩Qm ( Q1 ∩ · · · ∩Qm−1 = J.

Thus, we conclude that the assumption was false, and the decomposition is not redun-
dant.

Note that both of the previous results are false for ordinary powers. Indeed, if p is a
prime ideal, pn need not be p-primary. In contrast, the properties do hold for symbolic
powers, a way of defining powers of an ideal that allows us to have more control over
its associated primes.

Definition 3.3.10. Let I be an ideal of a Noetherian ring R (any characteristic)
without embedded primes2. Then, the n-th symbolic power of I is defined as:

I(n) :=
⋂

p∈Min(p)

(
Inp
)c
,

where
(
Inp
)c denotes the contraction with respect to the localisation map of (In)p =

(Ip)
n. Then, if p is a prime ideal, p(n) is the smallest p-primary ideal that contains

p. Because embedded components can arise in ordinary powers, in general symbolic
powers differ from ordinary powers.

Example 3.3.11. Let I = (xy, xz, yz) ⊆ K [x, y, z]. We observe that I is a radical
ideal with unique irredundant primary decomposition I = (x, y)∩ (x, z)∩ (y, z).Then,
I2 = (x2y2, x2z2, y2z2, x2yz, xy2z, xyz2) = (x, y)2 ∩ (x, z)2 ∩ (y, z)2 ∩ (x2, y2, z2). In
this case, I2 has the same minimal primes as I, but an (x, y, z)-primary embedded
component has arisen. Then, I(2) = (x, y)2 ∩ (x, z)2 ∩ (y, z)2 = (x2y2, xyz, x2z2, y2z2).

While both symbolic and Frobenius powers offer us specific knowledge about the pri-
mary decomposition of an ideal, Frobenius powers also carry information about the
order of its generators, just like ordinary powers. In this example, we observe that
every generator of I2 and I [2] = (x2y2, x2z2, y2z2) has order 4, whereas I(2) contains a
generator of order 3.

2Although symbolic powers can be defined in general, in this context it is more convenient not to
do so. For general symbolic powers, 3.3.9 doesn’t necessarily hold.
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3.4 F-thresholds

If I is an ideal of a characteristic p ring R, we have seen that I [q] ⊆ Iq. Most of the
times, this bound is tight, that is, if I [q′] ⊆ Iq, we will have q′ ≥ q. The other contain-
ment, however, proves to be much more interesting. We can ask ourselves about the
particularities of an N such that, for a fixed q, IN ⊆ I [q]. Or, more generally, about
the comparison between Frobenius powers and ordinary powers. In this section, we
introduce the F -thresholds, a numerical invariant that explores these kind of relation-
ships. F -thresholds were first defined for regular rings in [MTW04] as a characteristic
p analogue to the jumping numbers: a family of invariants in characteristic zero that
carry geometric and algebraic information about singularities. Although their defini-
tions are quite different, the cited paper and following ones showed many relations
with these characteristic zero invariants as p >> 0. Later, F -thresholds were defined
in general rings of characteristic p in [HMTW08], and in [DNBP18], F -thresholds were
proved to exist in this general setting, since until then their existence had only been
proved in some partial cases.

Returning to the our motivation, we observe that because
√
I =

√
I [q], there exists

an Nq ∈ N such that INq ⊆ I [q]. The following observations allow us to make the
dependence of Nq on q more explicit.

Observation 3.4.1. (In)[q] =
(
I [q]
)n.

Proof. If I = (f1, . . . , fn), then

(In)[q] = ({(fα1
1 )q · . . . · (fαn

n )q | Σαi = n}) = ({(f q
1 )

α1 · . . . · (f q
n)

αn | Σαi = n}) =
(
I [q]
)n

.

Observation 3.4.2. Let J be an ideal of R. Let a be an ideal contained in the radical
of J , so a ⊆

√
J . Then, there exists an N ∈ N such that for all q, aN ·q ⊆ J [q].

Proof. Since a ⊆
√
J and R is Noetherian, there exists an M ∈ N such that aM ⊆ J .

Now let a = (f1, . . . , fs). If we see that

aM(s(q−1)+1) ⊆
(
a[q]
)M

,

we will be closer to concluding, since
(
a[q]
)M

=
(
aM
)[q] ⊆ J [q]. By definition,

aM(s(q−1)+1) =

({
fα1
1 · . . . · fαs

s

∣∣∣∣∣
s∑

i=1

αi = M(s(q − 1) + 1)

})
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and (
a[q]
)M

=

({
(f q

1 )
β1 · . . . · (f q

s )
βs

∣∣∣∣∣
s∑

i=1

βi = M

})
.

Let g := fα1
1 · . . . · fαs

s be generator of aM(s(q−1)+1), so
∑s

i=1 αi = M(s(q − 1) + 1).
Then, the pigeonhole principle (iterated M times) guarantees us that, in g, there are
at least M instances of various fi having an exponent greater or equal to q (allowing
repetitions of i). In other words, g is a multiple of (f q

1 )
γ1 ·. . .·(f q

s )
γs , with

∑s
i=1 γi ≥M ,

so necessarily g ∈
(
a[q]
)M . Because this holds true for any generator, we have the

following containment:
aM(s(q−1)+1) ⊆

(
a[q]
)M ⊆ J [q].

Finally, we can take N := Ms, so Nq = Msq ≥M(s(q−1)+1) and the desired result
holds:

aN ·q ⊆ aM(s(q−1)+1) ⊆ J [q].

Definition 3.4.3. Let a, J be two ideals of R, a characteristic p ring, with a ⊆
√
J .

Then, for any q = pe, e ∈ N, we define

νJ
a (q) := max

{
t ∈ N

∣∣ at * J [q]
}
.

3.4.2 guarantees us the existence of νJ
a , since there exists an N such that aNq ⊆ J [q]

for all q. Thus, νJ
a (q) < Nq.

Proposition 3.4.4. Let a, J be two ideals of R, a characteristic p ring, with a ⊆
√
J .

Let e, e′ be natural numbers, and let q = pe, q′ = pe
′. Then, the following properties

hold:

(i) If b ⊆ a, then νJ
b (q) ≤ νJ

a (q).

(ii) If J ⊆ I, then νI
a (q) ≤ νJ

a (q).

(iii) νJ [q]

a (q′) = νJ
a (qq

′).

(iv) If n ∈ N∗, νJ
an(q) = b

νJa (q)
n
c.

(v) If R is regular, q′νJ
a (q) ≤ νJ

a (q
′q).

Proof. (i) Let v = νJ
b (q). By definition, bv * J [q], so surely bv ⊆ av * J [q]. As

νJ
a (q) is the maximum t such that at * J [q], v ≤ νJ

a (q).

(ii) Let v = νJ
a (q). By definition, av+1 ⊆ J [q] ⊆ I [q]. Because νI

a (q) is the maximum
t such that at * I [q], we necessarily have νI

a (q) < v + 1, so νI
a (q) ≤ v.
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(iii) We observe that
(
J [q]
)[q′]

= J [qq′]. Then, by definition:

νJ [q]

a (q′) = max
{
t ∈ N

∣∣∣ at * (J [q]
)[q′]}

= max
{
t ∈ N

∣∣∣ at * J [qq′]
}
= νJ

a (qq
′).

(iv) Let v = νJ
an(q). Then, (an)v * J [q] and (an)v+1 ⊆ J [q]. We notice that, for

any t ∈ N, (an)t * J [q] if and only if nt ≤ νJ
a (q), so using t = v, we have

v ≤ bν
J
a (q)
n
c. On the other hand, if t = v + 1 the converse (an)v+1 ⊆ J [q] is true,

so n(v + 1) > νJ
a (q). Then, v + 1 > νJa (q)

n
≥ bν

J
a (q)
n
c, and thus v ≥ bν

J
a (q)
n
c, which

grants us the equality we wanted to prove.

(v) We will prove the result for q′ = p, namely pνJ
a (q) ≤ νJ

a (pq), and the statement
follows from a simple induction. First, the regular setting allows us to notice the
following fact: in an ideal I ⊆ R, if up ∈ I [p], then u ∈ I. Indeed, if up ∈ I [q],
then (up) = (u)[p] ⊆ I [p], and we can apply 3.3.7 to conclude (u) ⊆ I, and thus
u ∈ I.

To prove the result, let v = νJ
a (q), so av * J [q]. Then, there exists a u ∈ av such

that u 6∈ J [q]. By our previous observation, u 6∈ J [q] implies up 6∈
(
J [q]
)[p]

= J [pq].
As u ∈ av, up ∈ (av)p = apv. This proves that apv * J [pq], so pνJ

a (q) ≤ νJ
a (pq).

Example 3.4.5. The last inequality, (v), does not hold in the non-regular setting.
Let q = p = 3, R = F3[x,y]

(x4−y5)
and consider the ideals a = (x), J = (y). As the ideals

are principal, Frobenius and ordinary powers are equal. We have that a ⊆
√
J , since

x4 = y5 ∈ J . As x4 = y5 ∈ J [3], a4 ⊆ J [3]. On the other hand, a3 * J [3], because
x3 6∈ J [3]. Therefore, νJ

a (p) = 3.

We observe that x8 = y10 ∈ J [9], so a8 ⊆ J [9]. Thus, νJ
a (pq) ≤ 8, so νJ

a (pq) < p·νJ
a (p) =

9.

Definition 3.4.6. Let a, I be two ideals of R, a characteristic p ring, with a ⊆
√
I.

Then, we define the F-threshold of a with respect to I as

cJ(a) := lim
e→∞

νJ
a (p

e)

pe
.

Observation 3.4.7. The F-threshold is well defined, that is, the limit always exists.

Proof. We will give a short proof of the regular case. The reader can find a complete
proof of the general case in [DNBP18], Theorem 3.4.
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By 3.4.2, νJ
a (p

e) < Npe, so we have a uniform upper bound on cJ(a). Thus, if we
see that the sequence

(
νJ
a (p

e)
)
e∈N is non-decreasing, we can conclude convergence of

cJ(a). Let te := νJ
a (p

e). We will see that te ≤ te+1.

Assume, by contradiction, that te > te+1. As these are natural numbers, we have
te ≥ te+1 + 1. By definition of te+1,

ate+1+1 ⊆ J
[
pe+1

]
=
(
J [pe]

)[p]
,

and since te ≥ te+1 + 1, we get

(
ate
)[p] ⊆ ate ⊆ ate+1+1 ⊆

(
J [pe]

)[p]
.

Due to the regularity of R, we can use 3.3.7 to deduce ate ⊆ J [pe] from (ate)
[p] ⊆(

J [pe]
)[p]

. However, this is a contradiction with the definition of te, which is the maxi-
mum t ∈ N such that at * J [pe].

Proposition 3.4.8. Let a, J be two ideals of R, a characteristic p ring, with a ⊆√
J .Then, the following properties hold:

(i) If b ⊆ a, then cJ(b) ≤ cJ(a).

(ii) If J ⊆ I, then cI(a) ≤ cJ(a).

(iii) If n is a positive integer, cJ(an) = 1
n
· cJ(a).

(iv) cJ [q]
(a) = q · cJ(a).

Proof. The first three are due to taking the limit in 3.4.4 (i), (ii), and (iv) respectively.
As for the fourth, with a change of variable and 3.4.4 (iii), we get:

cJ(a) = lim
e→∞

νJ
a (pe)

pe
= lim

e→∞

νJ
a (p · pe)
p · pe

=
1

p
· lim
e→∞

νJ
a (p · pe)

pe
=

1

p
· lim
e→∞

νJ [p]

a (pe)

pe
=

1

p
·cJ [p]

(a) .

If q = pe, iterating the result e times we get the desired statement.

Example 3.4.9. Let R = K [x, y, z]. Let I = (xy, xz). Then, νI
I (p

e) = 2(pe − 1), so
cI(I) = 2.

Proof. Let q = pe. In order to prove νI
I (q) = 2(q−1), we have to check both I2(q−1)+1 ⊆

I [q] and I2(q−1) * I [q].

For the containment, let g be a generator of I2(q−1)+1, namely g = (xy)α · (xz)β,
with α + β = 2(q − 1) + 1. By the pigeonhole principle, either α or β is greater
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than or equal to q. We can assume without loss of generality that α ≥ q. Then,
g ∈ (xy)α ⊆ (xy)q ⊆ ((xy)q, (xz)q) = I [q]. We have seen that all generators of I2(q−1)+1

belong to I [q], and so I2(q−1)+1 ⊆ I [q].

For the non-containment, consider the element f := (xy)q−1(xz)q−1 ∈ I2(q−1). We will
verify f 6∈ I [q] = ((xy)q, (xz)q). If f was in I [q], because f is a monomial and I [q] a
monomial ideal, either (xy)q or (xz)q divide f . In the first case, yq would divide f ,
which is a contradiction since f = yq−1 · (x2q−2zq−1). Likewise, in the second case zq

would divide f , which is a contradiction as well.

When trying to find the F-threshold of an ideal, one can use the computer algebra
software Macaulay2 to verify a hypothesised value of νJ

a for some small cases.

Example 3.4.10. Let R and I be as in the previous example. Then, the following
code can check the containment and non-containment for reasonable values of p and
e.

1 p = 7
2 e = 2
3 q = p^e
4

5 --hypothesised nu
6 hnu = 2*(q -1)
7

8 k = ZZ/p
9 kk = k[x,y,z]

10

11 I = ideal(x*y, x*z)
12

13 --calculation of I^[q]
14 J = ideal(apply( flatten entries generators I, i-> i^q))
15

16 --should return false
17 isSubset (I^( hnu),J)
18

19 --should return true
20 isSubset (I^( hnu + 1),J)
21

Indeed, the last two functions return false and true respectively.

Furthermore, one can benefit from the FrobeniusThresholds package from [HSTW21]
and use the frobeniusNu function to compute νa

J(q) directly, but only in a polynomial
ring over a field of characteristic p. This function is implemented as a binary search on
a restricted range of t, which then checks containments. By default, ideal containment
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is checked using the standard isSubset function from M2, but there are some optimi-
sations that shine in the polynomial ring setting, such as checking the containment via
Frobenius roots (as defined in [BMS08]). There are other optimisations that greatly
speed up computations in the case of the threshold of a single polynomial with certain
special properties (such as diagonal, binomial, and some others).

The following code illustrates how to use the frobeniusNu function and the great
speed-up provided by using Frobenius roots instead of the standard ideal containment
functions.

1 loadPackage " FrobeniusThresholds "
2

3 p = 7
4 e = 4
5 q = p^e
6

7 --hypothesised nu
8 hnu = 2*(q -1)
9

10 k = ZZ/p
11 kk = k[x,y,z]
12

13 I = ideal(x*y, x*z)
14

15 time nu1 = frobeniusNu (e, I, I)
16 -- used 79.7303 seconds
17

18 time nu2 = frobeniusNu (e, I, I, ContainmentTest =>
FrobeniusRoot )

19 -- used 1.05625 seconds
20

21 nu2 == hnu
22 -- true
23

While no more code is included, as it is not relevant in the presence of proofs,
Macaulay2 has been used throughout the development of this work to gain intuitions
and find (counter)examples to conjectures.
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4 The Frobenius threshold for
radical ideals

In this chapter, we will compute the value of the F -threshold for radical ideals in a
regular ring. Recall example 3.4.9, which will be key throughout the whole chapter:

Example. Let R = K [x, y, z]. Let I = (xy, xz). Then, νI
I (q) = 2(q− 1), so cI(I) = 2.

Looking at this example and its proof, one might naively guess νI
I (q) = µ(I)(q − 1).

Indeed, for radical ideals, the containment Iµ(I)(q−1)+1 ⊆ I [q] follows from the proof of
3.4.2, but one quickly realises that this estimate on νI

I (q) may be too high, as in the
following example.

Example 4.0.1. Let R = K [x, y, z]. Let J = (xy, xz, yz). Then, νJ
J (q) < 3(q − 1).

Proof. Consider a generator of J3(q−1), namely g = (xy)α(xz)β(yz)γ, where α+β+γ =

3(q − 1). If α, β or γ are > q, then g is a multiple of (xy)q, (xz)q or (yz)q respec-
tively, so g ∈ J [q]. However, the only remaining case is g = (xy)q−1(xz)q−1(yz)q−1 =

(xy)2q−2z2q−2 = (xy)q(xy)q−1zq−2, so g ∈ J [q] as well. Thus, J3(q−1) ⊆ J [q] and by
definition, νJ

J < 3(q − 1).

Even if, in general, νI
I (q) 6= µ(I)(q − 1), we will see how the regularity and radical

hypotheses allow us to employ a generalisation of the techniques used in the proof of
3.4.9, which do rely on the number of generators. This requires us to introduce the
following concept.

Definition 4.0.2. Let I be an ideal with no embedded primes. The big height of
I is the maximum height of the associated (minimal) primes of I, and is sometimes
denoted by bight(I).

Now, we can state the main result of the chapter:

Theorem 4.0.3. Let R be a regular ring of characteristic p, and let I be a radical
ideal in R. Then,

νI
I (q) = H(q − 1),

where H = bight(I).
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By definition of the F -threshold, this implies that cI(I) = H. In order to prove
the result, we will take inspiration from the ideas of 3.4.9, so for the containment,
we will use the pigeonhole principle, and for the non-containment, we will find a
particular element of the ordinary power that is not in the Frobenius power. This
techniques, however, will only work in certain localisations of I, so we rely on the
following key lemma, that ties the proof together by allowing us to check containments
at the localisations of associated primes.

Proposition 4.0.4. Let I and J be ideals in a Noetherian ring R (not necessarily
regular). Then, I ⊆ J ⇐⇒ Ip ⊆ Jp for all p ∈ Ass (R/J).

Proof. The direct implication is clear, because localisation is a ring homomorphism.
For the converse, assume that Ip ⊆ Jp for all p ∈ Ass (R/J). Consider the sets:

V :=
⋃

p∈Ass(R/J)

p and U := R \ V.

We will denote the localisation U−1R by RU . Now, we will prove the containment
IU ⊆ JU , which will aid us in proving I ⊆ J , our desired containment. In order to
do so, first consider MaxAss (R/J), the associated primes of J that are maximal with
respect to the inclusion. We observe that, because of their maximality,

V =
⋃

p∈Ass(R/J)

p =
⋃

p∈MaxAss(R/J)

p.

So from now on we can consider only the maximal associated primes instead of all
associated primes. Now, let a

s
∈ IU (we can assume a ∈ I, s ∈ U). We will see that

a
s
∈ JU . If p ∈ MaxAss(R/J) and s ∈ U , then s 6∈ p, so a

s
∈ Ip ⊆ Jp. This means that,

for every p ∈ MaxAss(R/J), there exists an element sp 6∈ p such that asp ∈ J .

If p ∈ MaxAss(R/J), then by maximality we have that q 6⊆ p for every other q ∈
MaxAss(R/J) \ {p}. This implies that⋂

q∈MaxAss(R/J)\{p}

q 6⊆ p,

so we can find elements s′p ∈ q, s′p 6∈ p, for all q ∈ MaxAss(R/J) \ {p}. Now, consider
the following element:

s′ :=
∑

p∈MaxAss(R/J)

sps
′
p
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We observe that this construction guarantees s′ 6∈ p for any p ∈ MaxAss(R/J), so
s′ ∈ U . Furthermore, because asp ∈ J ,

as′ =
∑

p∈MaxAss(R/J)

asps
′
p ∈ J.

So we conclude that a
1
∈ JU =⇒ a

s
∈ JU , and we have IU ⊆ JU .

Finally, we can see I ⊆ J . Let a ∈ I. Then, a
1
∈ IU ⊆ JU =⇒ a

1
= b

s
, with b ∈ J

and s ∈ U , so there exists an u ∈ U such that u(sa− b) = 0. Rearranging the terms,
we get us · a = ub ∈ J =⇒ us · a = 0 in R/J . However, V = R \ U is the set of
zero divisors of R/J , so us ∈ U cannot be a zero divisor, and thus we conclude that
a = 0 =⇒ a ∈ J .

4.1 Containment

Let I be a radical ideal of R, a regular ring, and let H = bight(I). In this section, we
will prove the containment IH(q−1)+1 ⊆ I [q], for all q = pe, e ∈ N∗. Because of 4.0.4,
we can just check I

H(q−1)+1
p ⊆ I

[q]
p for all p ∈ Ass

(
R/I [q]

)
. However, in 3.3.9 we have

seen Ass (R/I) = Ass
(
R/I [q]

)
, and it suffices to check for all p ∈ Ass (R/I).

Let I = Q1∩· · ·∩Qm be the irredundant primary decomposition of I, with Q1 a primary
component with height H (the big height). We recall that, because I is radical, all
the primary components are prime and Min(I) = Ass(R/I), so if p ∈ Ass (R/I), then
p = Qi for some i ∈ {1, . . . ,m}. Every Qj (j 6= i) has at least one generator not
in Qi, because the decomposition is irredundant. This generator becomes invertible
under localisation by Qi = p, so (Qj)p = Rp for all j 6= i. This means that, for all
i ∈ {1, . . . ,m},

Ip = (Q1)p ∩ · · · ∩ (Qi)p ∩ · · · ∩ (Qm)p = (Qi)p = pp.

Now, we recall that R is a regular ring, so Rp is a regular local ring with maximal ideal
pp = Ip. This means that µ (Ip) = htRp (Ip) = htR (p) = hi ≤ H, so Ip is generated by
no more than H elements. We name these generators Ip = (f1, . . . , fhi

). Next, we will
see that

I
hi(q−1)+1
p = (f1, . . . , fhi

)hi(q−1)+1 ⊆
(
f q
1 , . . . , f

q
hi

)
= I

[q]
p .

It suffices to show that the generators of Ihi(q−1)+1
p are inside of I [q]p . Indeed, consider

a generator fa1
1 · . . . · f

ahi
hi

, with a1 + . . . + ahi
= hi(q − 1) + 1. Then, the Pigeonhole

Principle guarantees us that ak ≥ q for at least one k ∈ {1, . . . , hi}, so the element
fa1
1 · . . . · f

ahi
hi

is a multiple of f q
k and we have the desired inclusion.
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Because hi ≤ H, in general we have I
H(q−1)+1
p ⊆ I

[q]
p for all p ∈ Ass (R/I), as we

wanted to see.

4.2 Non-containment

Let I be a radical ideal of R, a regular ring, and let H = bight(I). In this section, we
will prove the non-containment IH(q−1) 6⊆ I [q].

Let Q be a primary component of I with maximum height H, so we can write the
irredundant primary decomposition as I = Q ∩ Q1 ∩ · · · ∩ Qm. This decomposition
is unique, since for radical ideals, Min(I) = Ass(R/I). Furthermore, all primary
components are prime.

We are going to use the same strategy as before. By 4.0.4, it suffices to find a p ∈
Ass

(
R/I [q]

)
such that I

H(q−1)
p * I

[q]
p . That is precisely what happens if we take

p = Q ∈ Ass(R/I) = Ass
(
R/I [q]

)
. Just as with the containment, localizing at a

minimal (associated) prime, Ip = pp is the maximal ideal of the regular local ring Rp.
By regularity, µ (Ip) = htRp (Ip) = htR (p) = H, so Ip is generated minimally by H

elements: Ip = (f1, . . . , fH). Since Ip =
√
Ip =

√
(f1, . . . , fH), {f1, . . . , fH} is a system

of parameters of Rp. If this system of parameters were a regular sequence, then by
2.1.7, the element f q−1

1 · . . . · f q−1
H ∈ I

H(q−1)
p would not belong to I

[q]
p = (f q

1 , . . . f
q
H), so

I
H(q−1)
p * I

[q]
p

and we would be done. Finally, we will check that this is the case, that is, that
f1, . . . , fH is a regular sequence in Rp. Following definition 2.1.1:

(i) By 2.2.10, a regular local ring is a domain, so f1 is a regular element of Rp.

(ii) We can check inductively: suppose that f1, . . . , fi is a regular sequence. We will
check that fi+1 is a regular element of Rp/(f1, . . . , fi). First, S := Rp/(f1, . . . , fi)

is a local ring with maximal ideal pp =
(
fi+1, . . . , fH

)
. These H−i generators are

minimal. Indeed, suppose without loss of generality that fi+1 can be removed,
so fi+1 = ai+2fi+2 + . . . + aHfH . Lifting to Rp, there exists an element f ∈
(f1, . . . , fi) such that fi+1 = f +ai+2fi+2+ . . . aHfH , so fi+1 would be redundant
in Rp = (f1, . . . , fH), which is a contradiction since we know µRp(pp) = H. So
µS(pp) = H − i.
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On the other hand, by hypothesis, fi is a non-zero-divisor in Rp/(f1, . . . , fi−1),
so by 2.2.9

dim(Rp/(f1, . . . , fi)) = dim(Rp/(f1, . . . , fi−1))− 1.

Iterating, dim(Rp/(f1, . . . , fi)) = dim(Rp)− i = H− i. We have therefore shown
that dim(S) = µS(pp) = H − i, so S is a regular local ring, and thus a domain,
so fi+1 is a non-zero-divisor of dim(Rp/(f1, . . . , fi)).

(iii) Rp/(f1, . . . , fH) 6= 0, since (f1, . . . , fH) = pp ( Rp.

4.3 Extending the result

The current statement of the result came to be by proving it in a scenario very similar
to 3.4.9, namely edge ideals, which are a particular kind of square-free monomial ideals.
We then saw that our proof generalised to square-free monomial ideals, and later on
to radical ideals. Once we obtained the present result, it was natural to ask ourselves
whether the current methods could be further generalised. Given definition 4.0.2 of
the big height, it made sense to consider the F -threshold of ideals without embedded
primes, a condition slightly more general than radical. The following example, where
I has no embedded primes, but is not radical, shows how the result does not generalise
in this way.

Example 4.3.1. Let R = K [x, y], and I = (x, y)2 = (x2, y2, xy). Then, cI(I) = 3/2.

Proof. By 3.4.8 (iii), cI((x, y)2) = 1
2
cI((x, y)). We will now see that cI((x, y)) = 3

by proving the value of νI
(x,y) = 3(q − 1) + 1. As always, this means proving both a

containment and a non containment.

(i) (x, y)3(q−1)+2 ⊆ (x2, y2, xy)
[q]: Let g a generator of (x, y)3(q−1)+2 = (x, y)3q−1.

Then, g = xαyβ, with α+ β = 3q − 1. If α < q, then β ≥ 2q and g is a multiple
of y2q ∈ I [q]. Likewise, if β < q, g is a multiple of x2q. Otherwise, if α, β ≥ q,
then g ∈ (xqyq) ⊆ I [q], so every generator of (x, y)3(q−1)+2 is always in I [q].

(ii) (x, y)3(q−1)+1 * (x2, y2, xy)
[q]: Consider the element f := xq−1y2q−1 ∈ (x, y)3(q−1)+1.

Suppose that xq−1y2q−1 ∈ (x2q, y2q, xqyq) = I [q]. Then, because f is a monomial,
and I [q] a monomial ideal, either x2q, y2q, or xqyq divide f , which is impossible
in every case.
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The main problem is that the radicality of I was heavily employed in our previous
proofs: the core idea being that, for every associated (minimal) prime p of I, Rp is
a regular local ring with maximal ideal pp = Ip, which then allows us to control the
number of generators of Ip. However, in an ideal without embedded primes, we observe
that this condition is equivalent to being radical.

Observation 4.3.2. Let I be an ideal without embedded primes. Then, the following
are equivalent:

(i) Ip = pp, for every p ∈ Ass(R/I) = Min(I).

(ii) I is radical.

Proof. We have seen (ii) =⇒ (i) in a previous (4.1) proof. To see (i) =⇒ (ii), let
x ∈

√
I = ∩p∈Min(I)p. Then, x ∈ p for all p ∈ Min(I), so x

1
∈ pp = Ip for all

p ∈ Min(I). Thus, (x)p = (x
1
) ⊆ Ip, for all p ∈ Min(I) = Ass(R/I). By 4.0.4, (x) ⊆ I,

so x ∈ I. We have seen that
√
I ⊆ I, and because in general I ⊆

√
I, we conclude

that
√
I = I.

In light of this observation, we see that relaxing the radical hypothesis in any way will
make the core idea of the containment proof fail, so a generalisation of the current
results would likely have to employ different techniques.
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5 Simplicial complexes and face
rings

5.1 Definitions

Simplicial complexes are mathematical objects that, roughly speaking, represent a set
of points, edges, triangles and in general, n-simplexes (n-dimensional triangles). While
being a field of study in and of themselves, they arise mainly in algebraic topology
and combinatorics. Simplicial complexes are mostly studied through algebraic (homo-
logical) and combinatoric methods. In this chapter, we introduce some basic concepts
about simplicial complexes and relate them to our previous results. The contents of
this section are freely drawn from [BH98], Chapter 5.1.

Definition 5.1.1. Let V = {v1, . . . , vn} be a finite set. Then, a simplicial complex ∆

on V is a collection of subsets of V such that for every F ⊆ G ∈ ∆, then F ∈ ∆. In
this context:

• The elements of V are called vertices.

• The elements of ∆, faces.

• The maximal faces under inclusion are called facets.

• The dimension of a face F ∈ ∆ is defined as dimF := |F | − 1.

• Faces of dimension 1 are called edges.

• The dimension of ∆ is defined as dim∆ := max {dimF | F ∈ ∆}.

Example 5.1.2. Often, when describing a simplicial complex, we slightly abuse the
usual notation for sets and omit parentheses and commas between elements of a face.
So, if we let V = {v1, v2, v3, v4}, then the simplicial complex ∆ = {{v1, v2, v3} , {v1, v2} ,
{v1, v3} , {v2, v3} , {v2, v4} , {v1} , {v2} , {v3} , {v4} ,∅} can be written as ∆ = {v1v2v3,
v1v2, v1v3, v2v3, v2v4, v1, v2, v3, v4,∅}. ∆ has a total of 10 faces: ∅ (dimension −1), 4
vertices (dimension 0), 4 edges (dimension 1) and one facet of dimension 2. Thus,
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dim∆ = 2. Simplicial complexes are usually represented graphically, as illustrated by
Figure 5.1.

v3

v4v1 v2

Figure 5.1: Example 5.1.2. The shaded area indicates the face v1v2v3.

Definition 5.1.3. Let V = {v1, . . . , vn} be a set of vertices, and {F1, . . . , Fm} ⊆
P(V ) a collection of subsets of V . Then, the (unique) smallest simplicial complex
that contains {F1, . . . , Fn} is said to be generated by {F1, . . . , Fn}, and is denoted
by 〈F1, . . . , Fm〉. This simplicial complex consists of all subsets G ⊆ V which are
contained in some Fi.

Example 5.1.4. Let V = {v1, v2, v3, v4} and F := {v2v3v4, v1v2, v1v3, v2v3, v2v4, v4} ⊆
P(V ). Then, 〈F〉 = {v2v3v4, v1v2, v1v3, v2v3, v2v4, v3v4, v1, v2, v3, v4,∅}.

v1

v2 v3

v4

v1

v2 v3

v4

Figure 5.2: Example 5.1.3. On the left, F . White points and dashed
lines indicate that a vertex or edge (respectively) is not in F . On the

right, 〈F〉.

5.2 The Stanley–Reisner correspondence

Definition 5.2.1. Let ∆ be a simplicial complex on V = {v1, . . . , vn}, and K a field.
Then, the Stanley–Reisner ring, or face ring, of ∆ with respect to K is defined as

K [∆] := K [x1, . . . , xn] /I∆,

where I∆ is the ideal generated by all monomials xi1xi1 · · ·xij such that vi1vi1 · · · vij 6∈
∆.

Example 5.2.2. Consider Example 5.1.2, where ∆ = 〈v1v2v3, v2v4〉. Then, I∆ =

(x1x2x4, x1x4x3, x3x2x4, x1x4, x3x4) = (x1x4, x3x4).



Chapter 5. Simplicial complexes and face rings 46

v3

v4
v1

v2

v3

v4
v1

v2

Figure 5.3: On the left, ∆. On the right, the non-faces of ∆.

We observe that, by definition, I∆ is a square-free monomial ideal. The following two
propositions describe very particular properties of square-free monomial ideals.

Proposition 5.2.3. Let I be a square-free monomial ideal. Then, I is a finite inter-
section of monomial prime ideals (generated by variables).

Proof. We are going to use the following lemma without proof.

Lemma 5.2.4. Let I, J be monomial ideals. If I = (f1, . . . , fn) and J = (g1, . . . , gm),
with fi, gj monomials for every 1 ≤ i ≤ n, 1 ≤ j ≤ m, then

I ∩ J = ({lcm(fi, gj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m})

Let I = (f1, . . . , fn), where fi are monomials. We will proceed by induction on n. If
f1 = xj1 · . . . · xjr , then for n = 1 we have

I = (xj1 · . . . · xjr) =
r⋂

k=1

(xjk) .

In the general case, by the previous Lemma 5.2.4,

I = (xj1 · . . . · xjr , f2, . . . , fn) =
r⋂

k=1

(xjk , f2, . . . , fn) .

By induction hypothesis, (f2, . . . , fn) = ∩si=1pi, where pi are prime, monomial ideals
(generated by variables). Then,

I =
r⋂

k=1

s⋂
i=1

(xjk , pi) ,

and we are done because (xjk , pi) is a prime, monomial ideal (generated by variables).
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Proposition 5.2.5. Let I be a monomial ideal. Then I radical if and only if it is
square-free.

Proof. For the direct implication, assume that I is not square free. Then, there is a
generator (from a minimal set of monomial generators) of I of the form xα1

i1
· . . . · xαr

jr
,

where αj > 0 for all j, and αk > 1 for some k. Let α = max {α1, . . . , αr}. Then,
xα
i1
· . . . · xα

jr = (xi1 · . . . · xjr)
α is a multiple of xα1

i1
· . . . · xαr

jr
, so (xi1 · . . . · xjr)

α ∈ I. By
definition of radical ideal, xi1 · . . . · xjr ∈ I, but xi1 · . . . · xjr 6∈ I, since by minimality
of the generating set no generator divides xi1 · . . . · xjr . Therefore, I is not radical.

For the converse, if I is square-free, by 5.2.3 it is a finite intersection of prime ideals,
which in a Noetherian ring is equivalent to being radical.

These properties allow us to interpret the primary (prime) decomposition of I∆ in
terms of ∆.

Theorem 5.2.6. Let ∆ be a simplicial complex, and K a field. Then,

I∆ =
⋂
F

pF ,

where the intersection is taken over all facets F of ∆, and pF denotes the (prime)
ideal generated by all xi such that vi 6∈ F .

Proof. Because I∆ is a square-free monomial ideal, by 5.2.3 and 5.2.5 I∆ is a finite
intersection of minimal prime ideals generated by variables. Let p = (xi1 , . . . , xir) be
an ideal generated by variables. We observe that p is a minimal prime of I∆ if and
only if {v1, . . . , vn} \ {vi1 , . . . , vir} is a facet of ∆.

Indeed, assume that p is a minimal prime of I∆ and let F := {vj1 . . . vjs} = {v1, . . . , vn}\
{vi1 , . . . , vir}. F is a face of ∆: if it wasn’t, then xj1 . . . xjs ∈ I∆, so xj1 · . . . · xjs ∈ p,
which is a contradiction because p does not contain any xjk , for any 1 ≤ k ≤ s. Fur-
thermore, F is a facet. If it wasn’t, then there would be a face of ∆ that contains it, so
there would exist a k ∈ {i1, . . . , ir} such that vj1 . . . vjs ( vj1 . . . vjsvk. If vj1 . . . vjsvk is
a face of ∆, then any non-face has to contain at least one of the remaining vertices, so
for every monomial generator of I∆, there exists an element of {xi1 , . . . , x̂k, . . . , xir}1

that divides it. Thus, I∆ ⊆ (xi1 , . . . , x̂k, . . . , xir) ( p = (xi1 , . . . , xir), which is a
contradiction because p is a minimal prime.

Conversely, assume that F = {vj1 . . . vjs} = {v1, . . . , vn} \ {vi1 , . . . , vir} is a facet. We
want to see that (xi1 , . . . , xir) = p is a minimal prime of I∆. Because F is a face

1A hat indicates that the element is missing.
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of ∆, the non-faces contain at least one of the vertices not in F , so the monomials
associated to non-faces are multiples of {xi1 , . . . , xir}. Thus, I∆ ⊆ p = (xi1 , . . . , xir).
To see that it is a minimal prime, assume that there exists a prime ideal q ∈ Min(I∆)

such that I∆ ⊆ q ( p. At the beginning of the proof we observed that the minimal
primes of I∆ are generated by variables, so we can assume (rearranging variables) that
q = (xi1 , . . . , xil) ( (xi1 , . . . , xir), with l < r. Let F ′ := {v1, . . . , vn} \ {vi1 , . . . , vil} ={
vj1 . . . vjsvil+1

. . . vir
}

. Then F ′ is not a face of ∆, because F ⊆ F ′ is a facet, so
xj1 · · ·xjsxil+1

· · ·xir ∈ I∆ ⊆ q. As q is a prime ideal, then at least one of the variables
xj1 , . . . , xjs , xil+1

, . . . xir is in q, which is a contradiction since none of them belong to
q.

Example 5.2.7. Let ∆ = 〈v1v2v3, v1v5, v3v4〉. Then, I∆ = (x1x4, x2x5, x2x4, x3x5,

x4x5). The primary decomposition of I∆ is I∆ = (x4, x5)∩ (x2, x3, x4)∩ (x1, x2, x5). As
stated in 5.2.6, we see that the primary component (x4, x5) corresponds to the facet
v1v2v3, as v4, v5 are the vertices that do not belong to v1v2v3. Likewise, the components
(x2, x3, x4) and (x1, x2, x5) correspond to the facets v1v5 and v3v4, respectively.

v1

v2

v3 v4

v5

Figure 5.4: ∆ = 〈v1v2v3, v1v5, v3v4〉.

We have seen that, given a simplicial complex ∆, one can create an associated square-
free monomial ideal I∆ (the one generated by by the monomials associated to the
non-faces of ∆). On the other hand, for every square-free monomial ideal J ⊆
K [x1, . . . , xn], we can find a simplicial complex on V = {v1, . . . , vn}, ∆J , such that
I∆J

= J . We construct ∆J in the following way:

∆J := {F ⊆ V | F = vi1 . . . vir , xi1 · . . . · xir 6∈ J} .

∆J is a simplicial complex because if F = vi1 . . . vir ∈ ∆J , then xi1 · . . . · xir 6∈ J , so
any product of a subset of these variables cannot belong to J either. In other words,
any subset of F belongs in ∆J , so ∆J is indeed a simplicial complex. The procedure
described above defines a bijection {square-free monomial ideals} ↔ {simplicial com-
plexes}, better known as the Stanley–Reisner correspondence, and illustrated in Table
5.1. This correspondence is inclusion-reversing: if ∆ and ∆′ are simplicial complexes
on the same vertex set, then ∆ ⊆ ∆′ ⇐⇒ I∆′ ⊆ I∆.
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Simplicial complexes Square-free monomial ideals

∆ 7−→
I∆: Ideal generated by the

monomials corresponding to
non-faces of ∆.

∆J : Simplicial complex
generated by the faces that do

not correspond to monomials in
J.

←−[ J

Table 5.1: The Stanley–Reinser correspondence

Example 5.2.8. Let J = (x1x4, x3x4) ⊆ K [x1, . . . , x4]. Then, ∆J = {v1v2v3, v1v2,
v2v3, v1v3, v2v4, v1, v2, v3, v4,∅} = 〈v1v2v3, v2v4〉. As we saw in 5.2.2,

I∆J
= (x1x4, x3x4) = J.

5.3 Applications

In Chapter 4, we proved that the F -threshold of a radical ideal I in a regular ring is the
big height of the ideal. In general, computing the big height of an ideal requires finding
its primary decomposition, which might not be straightforward in some cases. Even
with an algorithm, it may be costly computationally speaking. The Stanley–Reisner
correspondence gives us another point of view on the primary decomposition of a
square-free monomial ideal that allows us to know its big height without computing
said decomposition.

Proposition 5.3.1. Let ∆ be a simplicial complex over V = {v1, . . . , vn}. Then,

bight(I∆) = n− d− 1,

where d = min {dimF | F is a facet of ∆}.

Proof. Because of Theorem 5.2.6 and Proposition 5.2.3, the prime components of I∆
are generated by variables, so their height is their number of generators. As we have
seen, the variables that generate a prime component correspond to vertices that are
not in a particular facet of ∆, so an ideal of height H corresponds to a facet with n−H
vertices, that is, of dimension n−H−1. Thus, the big height will correspond to a facet
with minimal number of vertices, and if it has dimension d, then d = n−bight(I∆)−1,
as we wanted to see.
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Because every square-free monomial ideal J is the face ideal of a simplicial complex
∆J , this proposition allows us to find the big height of a square-free monomial ideal
in general, computing just ∆J , as opposed to using a generalistic method to compute
the primary decomposition. As a comparison, the default method for computing a
primary decomposition of non-monomial ideals in Macaulay2 is the one proposed by
Shimoyama and Yokoyama in [SY96], and it requires computing a Gröbner basis of the
ideal, the complexity of which is not fully understood yet [BFS15]. In the monomial
case, a more efficient algorithm is used, based on Alexander duality, which is a powerful
tool in Stanley–Reisner theory. A detailed description of this algorithm can be found
in [EGSS01], pg 77.
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6 Conclusions

In summary, we have proved that if I is a radical ideal in a regular ring, then cI(I) =
bight(I). Recalling Chapter 1, where we introduced our motivations and presented
the F -thresholds as an invariant to measure singularities in characteristic p, one may
wonder about the relevance of such a result in a regular setting. Let H = bight(I).
Then, as ht (I) = min {ht (p) | p ∈ Min(I)}, cI(I) = ht (I) if and only if ht (p) = H,
for all p ∈ Ass(R/I).

Definition 6.0.1. A ring R is called equidimensional if all associate primes have the
same height.

Rewording our finding, we see that cI(I) = ht (I) if and only if R/I is equidimensional.
As mentioned in the introduction, this is the kind of result one would try to derive from
an invariant. Because Cohen–Macaulay rings are equidimensional, equidimensionality
can be seen as a “first step” towards a ring being Cohen–Macaulay, so it is still a
beneficial property for a non-regular ring to have.

As for further work, in Section 4.3 we saw that we have likely reached the limit to
generalising the results with our techniques. A new line of work, however, would be
to compute the same F -thresholds for other kinds of ideals. A fitting candidate would
be the maximal ideals of determinantal rings, which are quotients of a polynomial ring
by the ideal generated by minors of generic matrices.
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