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Abstract

In this thesis we will present explicit counterexamples for the class field tower problem,
hence proving that there exist number fields K that cannot be embedded into a larger
number field L with class number 1.

We will start by introducing profinite groups, which describe the Galois groups of
infinite Galois extensions. Special emphasis is given to pro-p groups, which describe
the Galois groups of p-extensions, as they appear in the solution of the class field tower
problem. We will explain how to describe a pro-p group in terms of generators and
relations, and prove the Golod-Shafarevich inequality, which establishes a criterion
for a pro-p group to be infinite.

After introducing the necessary notions of algebraic number theory, we will apply the
Golod-Shafarevich inequality to the class field tower problem via the Galois group
of the maximal unramified pro-p extension. We will obtain a criterion for a number
field K to have infinite class field tower, and give explicit examples of number fields
satisfying this criterion.

Keywords: number theory, class field theory, class field tower problem, profinite
groups, pro-p groups, Golod-Shafarevich inequality.

Resum

En aquesta tesi presentarem contraexemples expĺıcit per al problema de la torre de
cossos de classes, demostrant aix́ı que existeixen cossos de nombres K que no poden
ser immergits dins un cos de nombres més gran L amb nombre de classes 1.

Començarem introduint els grups profinits, els quals descriuen els grups de Galois
d’extensions de Galois infinites. Posarem un èmfasi especial als grups pro-p, els
descriuen el grup de Galois de p-extensions, ja que apareixen en la solució del problema
de la torre de cossos de classes. Explicarem com descriure un grup pro-p en termes
de generadors i relacions, i demostrarem la desigualtat de Golod-Shafarevich, la qual
estableix un criteri per a que un grup pro-p sigui infinit.

Després d’introduir les nocions necessàries de teoria algebraica de nombres, aplicarem
la desigualtat de Golod-Shafarevich al problema de la torre de cossos de classes a
través del grup de Galois de la extensió pro-p no ramificada maximal. Obtindrem un
criteri per a que un cos de nombres K tingui una torre de cossos de classes infinita, i
donarem exemples expĺıcits de cossos de nombres satisfent aquest criteri.

Paraules clau: teoria de nombres, teoria de cossos de classes, problema de la torre
de cossos de classes, grups profinits, grups pro-p, desigualtat de Golod-Shafarevich.
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Resumen

En esta tesis presentaremos contraejemplos expĺıcitos para el problema de la torre de
cuerpos de clases, demostrando aśı que existen cuerpos de números K que no pueden
ser inmergidos dentro de un cuerpo de números más grande L con número de clases
1.

Empezaremos introduciendo los grupos profinitos, los cuales describen los grupos de
Galois de extensiones de Galois infinitas. Pondremos un énfasis especial a los grupos
pro-p, los cuales describen los grupos de Galois de p-extensiones, ya que aparecen
en la solución del problema de la torre de cuerpos de clases. Explicaremos como
describir un grupo pro-p en términos de generadores y relaciones, y demostraremos
de desigualdad de Golod-Shafarevich, la cual establece un criterio para que un grupo
pro-p sea infinito.

Después de introducir las nociones necesarias de teoŕıa de números, aplicaremos la
desigualdad de Golod-Shafarevich al problema de la torre de cuerpos de clases a través
del grupo de Galois de la extensión pro-p no ramificada maximal. Obtendremos un
criterio para que un cuerpo de númerosK tenga una torre de cuerpos de clases infinita,
y daremos ejemplos expĺıcitos de cuerpos de números satisfaciendo este criterio.

Palabras clave: teoŕıa de números, teoŕıa de cuerpos de clases, problema de la
torre de cuerpos de clases, grupos profinitos, grupo pro-p, desigualdad de Golod-
Shafarevich.

MSC2020: 11R37, 14G32
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Introduction

During the 19th century, class field theory developed around three main themes:
relations between abelian extensions and ideal class groups, density theorems for
primes using L-functions, and reciprocity laws. As explained in [Lem10], the need
to study class field towers originated with the only conjecture of Hilbert concerning
the Hilbert class field which turned out to be incorrect, namely the claim that the
Hilbert class field of a number field with class number 4 has odd class number.

In fact, Hilbert’s approach to proving the reciprocity law for fields with even class
number was the following:

1. establishing the quadratic reciprocity law in fields with odd class number.

2. proving it in fields with even class number by applying the reciprocity law in
its Hilbert class field which he conjectured implicitly to have odd class number.

In 1916, Philipp Furtwängler realized that the Hilbert 2-class field K1
2 of a number

field K with 2-class group isomorphic to Z/2Z × Z/2Z need not have an odd class
number. He observed that Hilbert’s method to prove the quadratic reciprocity law
in K would still work if the 2-class field K2

2 of K1
2 had odd class number. This made

Furtwängler ask the following question: does the p-class field tower of a number field
K always terminate?

A negative answer to that question would solve the class field tower problem, which
asks whether the class field tower of any number field always terminate. This problem
was posed by Furtwängler in 1925 and remained open for almost 40 years, with no
clear indication whether the answer should be positive or negative. By class field
theory, this problem is equivalent to the following question: Given a number field K,
does it always exist a finite extension L of K such that the ring of integers of L is a
principal ideal domain?.

The class field tower problem could be solved by finding a number field K whose
maximal unramified prosolvable extension has infinite degree over K. A convenient
way to construct such K would be to prove that for some prime p, the maximal
unramified pro-p extension K∞

p of K has infinite degree, or equivalently, the Galois
group GK,p = Gal(K∞

p /K) is infinite.
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A major evidence for the negative answer to the class field tower problem was given
by Igor Shafarevich in 1963 (see [Sha63]), where the formula for the minimal number
of generators d(GK,p) of GK,p and an upper bound for the minimal number of relations
r(GK,p) were established. A year latter, in 1964, Golod and Shafarevich (see [GS64])
were able to produce counterexamples for the p-class field tower problem by showing
that for any finite p-group G, the minimal numbers of generators d(G) and relators
r(G) (where G is considered as a pro-p group) are related by the inequality r(G) >
(d(G) − 1)2/4. This was improved to r(G) > d(G)2/4 in the subsequent works of
Vinberg (see [Vin65]) and Roquette (see [Roq65]). This inequality is known as the
Golod-Shafarevich Inequality. Golod and Shafarevich applied this inequality to GK,p,
that is by definition a pro-p group, and use this to obtain a criterion for the p-class
field tower of K to be infinite.

The aim of the thesis is to present a proof of the class field tower problem, as well as
provide the necessary framework to be able to formulate this problem and solve it.
This thesis has three distinguished parts:

• The first four chapters introduce the group-theoretic base necessary for the class
field tower problem. These chapters can be read by anyone who is familiar with
the material covered in a regular bachelor’s degree in mathematics, and it is
mostly self-contained.

In Chapter 1 we define and explain some properties of profinite groups. In
Chapters 2 and 3 we introduce pro-p groups and explain how to present them
in terms of generators and relators. Finally, in Chapter 4 we prove the inequality
regarding the minimum number of generators and relators mentioned above.

The main reference used for this part is [Koc02], and [Ers12] has also been an
important reference in Chapter 4.

• Chapter 5 introduces the number-theoretic base of the thesis. It assumes some
general knowledge about number fields and rings of integers, as well as valua-
tions and completions. Ramification of primes are studied in this chapter, and
the concept of Hilbert class field is presented. They main references used for
this part are [Mar18] and [Jan96].

• Chapter 6 links the first two parts. The class field tower problem is stated and
the theory developed in the first five chapters is used to solve it.

Here, we will define the notion of p-Hilbert class field (although it will slightly
differ from the notion most authors use). We show how the p-class field tower
problem solves the class field tower problem, and use the Golod-Shafarevich
inequality to give a criterion for K to have infinite class field tower problem.
Finally, we will explicitly construct different number fields that satisfy this
criterion. The work presented in this part is mostly taken from [Ers12].
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Chapter 1

Profinite Groups

Profinite groups are objects of interest for mathematicians working in a variety of
areas. They have an important role in number theory, as they are the groups which
arise as Galois groups of algebraic field extensions. For this reason, we shall start by
discussing the general properties of these groups.

1.1 Profinite Groups

Definition 1.1.1. Let I be a direct set, i.e., a partially ordered set such that, for
every i, j ∈ I, there exists a k ∈ I with i ≤ k and j ≤ k. A projective system
P = {I,Gi, φ

j
i} is a collection of objects (groups, rings, topological groups, etc.)

{Gi}i∈I and collection of morphisms φji : Gj → Gi for all i ≤ j satisfying that φii is
the identity on Gi and φ

j
i = φkj ◦ φ

j
i for every i ≤ j ≤ k.

We will mostly be interested in the category of compact topological groups, although
we will also work with compact group algebras in Chapter 4. From now on, compact
topological groups will be assumed to be Hausdorff. The inverse limit of a projective
system can be define in any category using a universal property, although it does not
always exist. In the category of compact topological groups, the inverse limit of a
projective system always exists and it’s unique up to isomorphism.

We can construct the inverse limit in the following way:

Theorem 1.1.2. Let P = {I,Gi, φ
j
i} be a projective system of compact topological

groups. Then, the inverse limit of P is the group

lim←−Gi =

{∏
i∈I

gi ∈
∏
i∈I

Gi

∣∣∣ φji (gj) = gi ∀ i ≤ j

}

with the topology induced by the product topology of
∏
Gi.
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Proof. First of all, we should verify that lim←−Gi is an object in the category of compact
(and Hausdorff) topological groups.

∏
i∈I Gi is a topological group for being the prod-

uct of topological groups, and it is both compact and Hausdorff for being the product
of compact and Hausdorff spaces. Automatically, lim←−Gi is a Hausdorff topological
group and to verify that is compact, we just need to see that is closed in

∏
Gi. Let

πj :
∏
Gi → Gj be the projection morphisms, that are continuous by the definition

of the product topology. Then, the functions
(
φji ◦ πj

)
· π−1

i are also continuous and,

since Gi are Hausdorff, {1} ∈ Gi is closed and hence so is
((
φji ◦ πj

)
· π−1

i

)−1
({1}).

This implies that lim←−Gi =
⋂
i≤j
((
φji ◦ πj

)
· π−1

i

)−1
({1}) is closed and thus compact.

Finally, one can easily check that the universal property of the inverse limit is fulfilled,
taking as the natural projections of the inverse limit the restrictions of the morphisms
πi.

Definition 1.1.3. Let P = {I,Gi, φ
j
i} and Q = {J,Hi, ψ

j
i } be projective systems of

compact topological groups. A morphism of projective systems of compact topological
groups φ : P → Q consists of a morphism of direct sets Φ : J → I and morphisms of
compact topological groups ψi : GΦ(i) → Hi for every i ∈ J such that the diagram

GΦ(i) Hi

GΦ(j) Hj

ψi

ψj

φ
Φ(j)
Φ(i)

ψj
i

commutes for all i ≤ j.

A morphism φ of projective systems of compact topological groups induces a mor-
phism φ′ : lim←−Gi → lim←−Hi as follows:

φ

(∏
i∈I

gi

)
=
∏
j∈J

ψj
(
gΦ(j)

)
.

One can check that inductive limits behave well with exact sequences in the following
way:

Theorem 1.1.4. Let P = {I, Fi, θji }, Q = {I,Gi, φ
j
i} and R = {I,Hi, ψ

j
i } be pro-

jective systems of compact topological groups. Let {θi : Fi → Gi

∣∣ i ∈ I} and
{ψi : Fi → Hi

∣∣ i ∈ I} be to families of compact topological group morphisms such
that, for all i ∈ I,

1 Fi Gi Hi 1
θi ψi

is an exact sequence. Then, if θ and ψ are the morphisms induced by {θi} and {ψi}
respectively, the sequence
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1 lim←−Fi lim←−Gi lim←−Hi 1θ ψ

is also exact.

Proof. The proof of this theorem can be found in page 6 in [Koc02].

Definition 1.1.5. A profinite group is a topological group that can be realized as a
projective limit of discrete finite groups.

Remark. Since finite discrete groups are compact topological groups, so are profinite
groups.

We now will state some properties of profinite groups. The following lemma holds
not only for profinite groups, but for all compact topological groups:

Lemma 1.1.6. Let G be a compact topological group and H ⊆ G a subgroup. Then,
the following properties hold:

(i) H is open ⇐⇒ H is closed and [G : H] <∞.

(ii) If H is an open normal subgroup of G, then G/H is a discrete group with the
quotient topology.

Proof. Fix any g ∈ G. Since the multiplication map is continuous, so is the translation
map defined by a 7→ ga. Moreover, this map is an homeomorphism, and hence is both
open and closed.

SupposeH is open and consider the cosets {giH
∣∣ i ∈ I} for some index set I. Suppose

also that g1 = 1. We can write G as a disjoint union of its cosets:

G = H ∪

 ⋃
i∈I\{1}

giH

 . (1.1)

As the translation map is open, all cosets are open. Hence, Equation (1.1) defines
an open covering of G and, since G is compact, there exist only a finite number of
cosets. In addition,

⋃
i∈I\{1} giH is open and hence H is closed.

Suppose now that G is closed and [G : H] ≤ ∞. Again, write G as a disjoint union
of cosets:

G = H ∪ g2H ∪ . . . ∪ gnH.
Since the translation map is closed, the different cosets are closed and H = G \
(g2H ∪ . . . ∪ gnH) is open.

To prove (ii), one just needs to realize that, since H is open, gH are also open
and hence each point in the quotient G/H is open when G/H is given the quotient
topology.
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Definition 1.1.7. Let G be a topological group. An open normal neighbourhood
basis at 1 ∈ G is a neighbourhood basis at 1 consisting of open normal subgroups of
G.

We can now prove the following theorem:

Theorem 1.1.8. Let {I,Gi, φ
j
i} be a projective system of finite discrete topological

groups and G = lim←−Gi a profinite group. Let πi : G→ Gi be the natural projections.

Then, {ker(πi)
∣∣ i ∈ I} is an open normal neighbourhood basis at the unit element

1 ∈ G.

Proof. As Gi are discrete, {1} ⊆ Gi are open subgroups. It follows that ker(πi) =
π−1
i ({1}) are open normal subgroups.

Let U ⊆ G be an open set containing 1 ∈ G. A base of the topology of
∏
Gi is given

by the sets of the form ∏
i∈J

Ui ×
∏
i∈I\J

Gi,

where Ui ⊆ Gi is any subset containing 1 ∈ Gi and J ⊆ I is finite. This base on
∏
Gi

induce a base of the topology of G. Take a basic open V =
(∏

i∈J Ui ×
∏

i∈I\J Gi

)
∩G

with 1 ∈ V ⊆ U . Since I is a direct set and J is finite, there exists m ∈ I with i ≤ m
for all i ∈ J . Then, ker(πm) must have a 1 in the m-th component and hence also in
the i-th component for all i ≤ m. So, 1 ∈ ker(πm) ⊆ V ⊆ U .

The following proposition gives a characterization of profinite groups:

Theorem 1.1.9. Let G be a compact topological group. The following assertions are
equivalent:

(i) G is profinite.

(ii) There exist a set U of open normal subgroups of G that form a basis at the unit
element in G.

Proof. We have already seen that (i) implies (ii). Assume (ii) holds. First of all, we
turn U into a direct set by saying that U ≤ U ′ ⇐⇒ U ′ ⊆ U . This set is direct
since, if U,U ′ ∈ U, then U ∩ U ′ is an open neighbourhood at 1, so it must contain
an element of U. Now, we consider the projective systems P = {U, FU = U, θU

′
U },

Q = {U, GU = G, idG} and R = {U, HU = G/U, ψU
′

U }, where θU
′

U is the inclusion
U ′ ↪→ U and and ψU

′
U : G/U ′ ↠ G/U is the morphism that maps gU ′ 7→ gU (this is

well defined for U ≤ U ′). By Lemma 1.1.6, G/U are finite discrete topological groups
and hence P , Q and R are projective systems of compact topological groups. Consider
the inclusion morphisms θU : U ↪→ G and the quotient morphisms ψU : G ↠ G/U .
Then, for all U ∈ U, we have an exact sequence
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1 U G G⧸U 1
θU ψU

that, by Theorem 1.1.4, induces an exact sequence

1 lim←−U∈U U lim←−U∈UG lim←−U∈U
G⧸U 1.θ ψ

Clearly, lim←−U∈UG = G. One can show that lim←−U∈U U = {1} as G is Hausdorff. With
this, we obtain the exact sequence

1 G lim←−U∈U
G⧸U 1.

ψ

This implies that G ∼= lim←−U∈UG/U and hence G is profinite.

From the proof of this theorem we deduce the following statement:

Corollary 1.1.10. Let G be a profinite group and let U be a set of open normal
subgroups of G that form a basis at 1. Then G ∼= lim←−U∈UG/U .

Theorem 1.1.11. Direct products and fibered products exist in the category of profi-
nite groups.

1.2 Subgroups and Quotient Groups

Let G be a profinite group. In the following, UG will denote the set of all open normal
subgroups of G.

Lemma 1.2.1. Let G be a profinite group and V ⊆ G a closed subgroup. Then, V is
a profinite group.

Proof. Clearly, V is a Hausdorff topological group with the induced topology. Since
V is closed and G is compact, V is compact. Consider the set U = {V ∩U

∣∣ U ∈ UG}.
Since, U ◁ G, V ∩ U ◁ V . The subgroups V ∩ U are open in V with the induce
topology. Hence, U is an open normal neighbourhood at 1 ∈ V and, by Theorem
1.1.9, V is a profinite group.

Lemma 1.2.2. Let G be a profinite group and N a closed normal subgroup. Then
G/N is a profinite group.

Proof. G/N is a topological group that is compact with the induced topology. Since,
N is closed, G/N is also Hausdorff and thus it is a compact topological group (the
proof of this last statement can be found on Proposition 1.27 in [Kra20]). Take
U ∈ UG. Then, UN =

⋃
g∈N Ug is open and hence UN/N is open in G/N . In

addition, UN/N is normal in G/N . Therefore, {UN/N
∣∣ U ∈ UG} is an open normal

neighbourhood basis at 1 ∈ G/N and thus G/N is profinite.
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The following theorem guarantees the existence of a continuous section, that is, a
continuous system of representatives of cosets with respect to a subgroup.

Theorem 1.2.3. Let G be a profinite group and H ⊆ G a subgroup. Then, there is
a continuous section σ : G/H → G such that σ(H) = 1, that is, a continuous map
σ : G/H → G between topological spaces such that the composition

G/H G G/Hσ π

is the identity map.

Proof. The proof of this theorem can be find in pages 9-10 in [Koc02].

This theorem will be used in the proof of Theorem 2.4.9.
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Chapter 2

Free pro-p Groups

In the following, p will denote a prime number. We restrict our considerations on a
special type of profinite groups called pro-p groups, which describe the Galois groups
of p-extensions. We begin by studying free pro-p groups.

2.1 Construction of a Free pro-p Group

Definition 2.1.1. A pro-p group is a compact topological group that can be realized
as a projective limit of discrete finite p-groups.

Definition 2.1.2. Let G be a pro-p group. A system of generators of G is a subset
E of G with the following properties:

(i) G is the smallest closed subgroup containing E, i.e., G = ⟨E⟩ is the topological
closure of the group generated by E.

(ii) every neighbourhood of 1 ∈ G contains almost all (all except finitely many)
elements of E.

Definition 2.1.3. A system of generators E of a pro-p group G is called minimal if
no proper subset of E is a system of generators of G.

We shall see that systems of generators exist in any pro-p group. To do that, we
begin by constructing a free pro-p group.

Lemma 2.1.4. Let I be an index set and let FI be the free group with generators
{si

∣∣ i ∈ I}. Let U be the set of all normal subgroups N of FI satisfying that:

(i) [FI : N ] is a power of p.

(ii) almost all elements of {si
∣∣ i ∈ I} are in N .

Then {FI/N
∣∣ N ∈ U} is a projective system of finite p-groups.
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Proof. We begin by showing that U is closed by finite intersections. Take N1, N2 ∈ U.
Clearly, N1∩N2 ◁ FI and satisfies the property (ii). It remains to see that the index
of N1 ∩N2 in FI is a power of p. By the third isomorphism theorem, we have

FI⧸N1 ∩N2

N1⧸N1 ∩N2

∼= FI⧸N1
,

so
∣∣FI/N1 ∩N2

∣∣ = ∣∣FI/N1

∣∣∣∣N1/N2 ∩N2

∣∣. By the second isomorphism theorem,

N1⧸N1 ∩N2
∼= N1N2⧸N2

.

This implies that
∣∣FI/N1 ∩ N2

∣∣ = ∣∣FI/N1

∣∣∣∣N1N2/N2

∣∣. By hypothesis,
∣∣FI/N1

∣∣ is a
power of p and since N1N2/N2 ↪→ FI/N2 and

∣∣FI/N1

∣∣ is a power of p, we obtain that∣∣N1N2/N2

∣∣ is also a power of p. Hence, the index of N1 ∩N2 in FI is a power of p.

Now, we turn U into a direct set by saying that N1 ≤ N2 if, and only if, N2 ⊆ N1 (this
is indeed a direct set since N1, N2 ≤ N1 ∩N2). The groups FI/N are finite p-groups,
and the natural projections FI/N1 ↠ FI/N2 for N2 ≤ N1 make {FI/N

∣∣ N ∈ U} a
projective system.

Definition 2.1.5. Let U be as in Lemma 2.1.4. A free pro-p group with system of
generators {si

∣∣ i ∈ I} is the pro-p group

F (I) := lim←−
N∈U

FI⧸N,

where FI/N are given the discrete topology.

To justify this name, we should see that {si
∣∣ i ∈ I} is indeed a system of generators

of F (I). We will do this later on. Let’s now see that we can embed FI into F (I).
Consider the following group morphism:

φ : FI −→ F (I)

g 7−→
∏
N∈U

gN

We will see that φ is invective. First of all, let’s prove the following lemma:

Lemma 2.1.6. The image of FI by φ is dense in F (I).

Proof. To prove this statement, we will see that the intersection of φ(FI) with any
nonempty open set is nonempty. Let U ⊆ F (I) be a nonempty open set. As we saw
on Theorem 1.1.8, {ker(πN)

∣∣ N ∈ U} is an open neighbourhood basis at the unit
element 1 ∈ F (I). Recall that in a topological group G, for any subset X ⊆ G and
any element g ∈ G, X is open (or closed) if and only if its translation gX is open
(or closed). This fact implies that {ω ker(πN)

∣∣ ω ∈ F (I), N ∈ U} is a base for the
topology of F (I). Hence, there exist ω0 ∈ F (I) andN0 ∈ U such that ω0 ker(πN0) ⊆ U .
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Write ω0 =
∏

N∈U gNN and let g0 ∈ FI be a representative for the component of ω0

corresponding to N0. Then, φ(g0) =
∏

N∈U g0N , and ω−1
0 φ(g0) =

∏
N∈U g

−1
N g0N has a

1 in the component corresponding to N0. This implies that ω−1
0 φ(g0) ∈ ker(πN0) and

hence φ(g0) ∈ ω0 ker(πN0) ⊆ U . As φ(g0) ∈ φ(FI), we see that U ∩ φ(FI) ̸= ∅.

In the next section we will prove some auxiliary results in order to show that φ is
injective.

2.2 The Magnus Group Algebra

In this section we will start by defining the concept of Magnus algebra and use it to
prove the injectivity of the morphism φ defined in the previous section. This result
will help us justify that {si

∣∣ i ∈ I} is a minimal system of generators of F (I).

Definition 2.2.1. Let Λ be a ring with unity and let I be an index set. The Magnus
algebra Λ(I) is the Λ-algebra of formal power series in non-commutative variables xi,
i ∈ I, with coefficients in Λ.

Take Λ = Fp and define a morphism of groups ψ from the free group FI generated by
{si
∣∣ i ∈ I} to the the unit group of Fp(I) by putting

ψ(si) = 1 + xi, ψ(s−1
i ) = (1 + xi)

−1 =
∞∑
ν

(−xi)ν .

Lemma 2.2.2. The map ψ is injective.

Proof. Let

g := sa1i1 · · · s
ak
ik
̸= 1, aj ∈ Z,

be an element of FI in a simplified presentation (that is, ij ̸= ij+1 and aj ̸= 0). Since
g ̸= 1, we may assume that k ≥ 1. We want to show that

ψ(g) = ψ(sa1i1 · · · s
ak
ik
) = (1 + xi1)

a1 · · · (1 + xik)
ak ̸= 1.

Using the generalization of the binomial expression for integer powers, we get that

ψ(g) =

(
∞∑
b1=0

(
a1
b1

)
xb1i1

)
· · ·

(
∞∑
bk=0

(
ak
bk

)
xbkik

)
=

∞∑
b1,...,bk=0

(
a1
b1

)
· · ·
(
ak
bk

)
xb1i1 · · · x

bk
ik
,

where
(
aj
bj

)
∈ Fp. For every j = 1, . . . , k, let bj be the maximum power of p dividing aj.

Then,
(
aj
bj

)
̸= 0 and the coefficient of xb1i1 · · · x

bk
ik

does not vanish. Hence, ψ(g) ̸= 1.

Theorem 2.2.3. The map φ : FI → F (I) defined in the previous section is injective.
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Proof. From the definition of φ, it’s easy to see that

g ∈ ker(φ) ⇐⇒ gN = 1N ∀ N ∈ U ⇐⇒ g ∈ N ∀ N ∈ U,

so ker(φ) =
⋂
N∈UN . Hence, proving that φ is injective is equivalent to proving that⋂

N∈U = {1}.

Let’s suppose first that I is finite. Let Bν ⊂ Fp(I), ν ≥ 1, be the ideal consisting
of all power series all of whose terms have degree at least ν. Clearly,

∣∣Fp(I)/Bν
∣∣ is

finite and a power of p for all ν ≥ 1. Observe that
⋂∞
ν=1B

ν = {0}. Now define
Nν := {g ∈ FI

∣∣ ψ(g)− 1 ∈ Bν}. We claim that Nν is a normal subgroup F (I). This
can be seen from the identity:

ab− 1 = (a− 1)(b− 1) + a− 1 + b− 1.

This identity clearly implies that if g1, g2 ∈ Nν , then g1g2 and g−1
1 are in Nν . To see

that Nν is normal, take g ∈ Nν and h ∈ FI and apply the previous identity two times:

ψ(hgh−1)− 1 = (ψ(h)− 1)(ψ(g)− 1)(ψ(h)−1 − 1) + (ψ(h)− 1)(ψ(g)− 1)+

+(ψ(h)− 1)(ψ(h)−1 − 1) + (ψ(g)− 1)(ψ(h)−1 − 1) + ψ(h)− 1 + ψ(g)− 1+

+ψ(h)−1 − 1 = (ψ(h)− 1)(ψ(g)− 1)(ψ(h)−1 − 1) + (ψ(h)− 1)(ψ(g)− 1)+

+(ψ(g)− 1)(ψ(h)−1 − 1) + ψ(g)− 1.

From this expression see that ψ(hgh−1) − 1 ∈ Bν and so hgh−1 ∈ Nν . Applying
Lemma 2.2.2, we see that

⋂
ν≥1Nν = {1}, as

g ∈
⋂
ν≥1

Nν ⇐⇒ g ∈ Nν ∀ ν ≥ 1 ⇐⇒ ψ(g)− 1 ∈ Bν ∀ ν ≥ 1 ⇐⇒

⇐⇒ ψ(g)− 1 ∈
⋂
ν≥1

Bν = {0} ⇐⇒ ψ(g) = 1 ⇐⇒ g = 1.

Let’s now show by induction on ν that the index of Nν is a power of p. For ν = 1, we
have that Nν = FI . Now observe that the morphism ψ− 1 induces a monomorphism
Nν/Nν+1 ↪→ Bν/Bν+1. Since Bν/Bν+1 is a power of p, so is Nν/Nν+1.

We have seen that {Nν

∣∣ ν ≥ 1} is a set of normal subgroups of FI with [FI : Nν ]
a power of p that satisfy that their intersection is trivial. Since {Nν

∣∣ ν ≥ 1} ⊆ U,
the intersection of the subgroups of U is also trivial and hence φ is injective, as we
wanted to show.

Finally, assume that I is infinite. Consider the set of all normal subgroups Nν,J of FI
generated by the sets

Nν(J), {si
∣∣ i ∈ I \ J},

where J ⊂ I is finite and Nν(J) := {g ∈ FJ ⊂ FI
∣∣ ψ(g)− 1 ∈ Bν}. Then, Nν,J ∈ U

and
⋂
ν,J Nν,J = {1}, which proves the claim.
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As φ is injective, we can identify FI with it image inside F (I). We will use the abuse
of notation g = φ(g) for the elements of FI . With this identification, we can prove
the following corollary:

Corollary 2.2.4. The set {si ∈ FI ⊆ F (I)
∣∣ i ∈ I} is a minimal system of generators

of F (I).

Proof. As we showed in Lemma 2.1.6, FI is dens in F (I), so F (I) is the topological
closure of the group generated by {si

∣∣ i ∈ I}. This shows that property (i) of Defini-
tion 2.1.2 holds. Lets see the property (ii) of Definition 2.1.2: take a neighbourhood
U of 1. Since {ker(πN)

∣∣ N ∈ U} is a neighbourhood bais of 1, there exists N0 ∈ U
with N0 ⊆ U . Now remember that the subgroups N ∈ U satisfy by construction that
almost all elements of {si

∣∣ i ∈ I} are in N . Hence, all but finitely many si ∈ N0. si is
seen as an element of F (I) though the embedding φ(si) =

∏
N∈U siN . So if si ∈ N0,

then si ∈ ker(πN0) ⊆ U . This shows that almost all si are in U .

We have seen that {si
∣∣ i ∈ I} is a system of generators of F (I). The minimality of

this system is a consequence of the fact that FI is a free group.

2.3 Abelian pro-p Groups

In this section we will state some facts about abelian pro-p groups, although we will
skip most of the proofs since we would required a deep study of the Pontryagin’s
duality. Abelian pro-p groups are used study some properties of arbitrary pro-p
groups and will appear in the following sections. Moreover, they are used to describe
the Galois group of abelian p-extensions, which will be used in Chapter 6.

Definition 2.3.1. Let G be an abelian profinite group. The Pontryagin dual group
Ĝ of G is the group of all morphisms of topological groups from G to the circle group
S1 ∼= R/Z with the usual topology.

Lemma 2.3.2. Let G be an abelian profinite group and χ ∈ Ĝ. Then, Im(χ) ⊆ Q/Z.
Proof. Let U ⊆ S1 be an open neighbourhood of 1 ∈ S1 such that the only subgroup
contained in U is {1} (such a neighbourhood clearly exists). Then χ−1(U) is an
open neighbourhood of 1 ∈ G and, by Theorem 1.1.9, there exist an open normal
subgroup N ⊆ G such that N ⊆ U . Then, χ(N) ⊆ U is a subgroup, and hence is
trivial. This implies that N ⊆ ker(χ). By Lemma 1.1.6, G/N is finite and, since
[G : N ] = [G : ker(χ)][ker(χ) : N ], G/ ker(χ) is also finite. Since Im(χ) ∼= G/ ker(χ),
we have that Im(χ) ⊆ S1 is finite. Im(χ) is a subgroup of the multiplicative group of
C. Thus, Im(χ) is cyclic and therefore contained in Q/Z.

This lemma tells us that Ĝ is torsion. Normally, the Pontryagin dual of a locally
compact abelian group is seen as a topological group with the topology of uniform
convergence on compact sets. For an abelian profinite group, Ĝ is an abelian discrete
torsion group. More precisely, we have the following statement:
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Theorem 2.3.3. G → Ĝ is an exact contravariant functor from the category of
abelian profinite groups to the category of abelian discrete torsion groups and vice
versa.

Theorem 2.3.4 (Pontryagin duality theorem). Let G be an abelian profinite group.

Then, there is a canonical isomorphism G ∼= ̂̂
G.

In the case of pro-p groups, the Pontryagin dual of an abelian pro-p group is a discrete
abelian p-primary torsion group, i.e., a discrete abelian group whose elements have
order a power of p.

Suppose G is an abelian pro-p group with exponent p. Then, its dual Pontryagin
group has a natural structure of an Fp-vector space. If a ∈ Fp and χ ∈ Ĝ, we define

(a · χ) (g) := (χ(g))a

Under this consideration, the following result holds:

Theorem 2.3.5. Let G be an abelian pro-p group with exponent p. Let {χi
∣∣ i ∈ I}

be an Fp-basis of Ĝ. The elements si ∈ G, i ∈ I, with

⟨si, χj⟩ := χj(si) = e
2πi
p δij

form a minimal system of generators of G, and G is isomorphic to
∏

I Fp.

2.4 First Characterization of Free pro-p Groups

In this section we will give a characterization of free pro-p groups and use it to prove
that all pro-p groups have a system of generators. From now on, if not specified,
a homomorphism will refer to a homomorphism of pro-p groups, i.e., a continuous
group homomorphism. These morphisms have the following property:

Lemma 2.4.1. Let F and G be pro-p groups and φ : G → F a bijective morphism.
Then, φ is an isomorphism.

Proof. We now that φ is an isomorphism of groups. Since F is compact and G is
Hausdorff, φ is an homeomorphism and thus an isomorphism of pro-p groups.

Lemma 2.4.2. Let G be a pro-p group and N an open normal subgroup. Then G/N
is a finite discrete p-group.

Proof. We already know that G/N is a finite discrete group, so it suffices to prove that
its cardinality is a power of p. Suppose G = lim←−i∈I Gi, with Gi discrete finite p-groups.

By Theorem 1.1.8, there exists i ∈ I with ker(πi) ⊆ N , where πi : G → Gi is the
natural projection. Then, [G : ker(πi)] = [G : N ][N : ker(πi)]. Since G/ ker(πi) ∼= Gi

is a finite p-group, [G : N ] must be a power of p.
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Theorem 2.4.3. Let F (I) be a free pro-p group with system of generators {si
∣∣ i ∈ I}.

Let G be a pro-p, and {ti
∣∣ i ∈ I} a subset of G satisfying that every neighbourhood

of 1 ∈ G contains almost all elements of {ti
∣∣ i ∈ I}.

Then, there exists a unique homomorphism φ : F (I)→ G such that

φ(si) = ti ∀ i ∈ I. (2.1)

Proof. Let’s first prove the existence. Equation (2.1) can be extended uniquely to a
group homomorphism ψ : FI → G, as FI is the free group generated by the si. Let U
be the set defined in Lemma 2.1.4 and let UG be the set of all open normal subgroups
of G. Take U ∈ UG and consider the induced group morphism

ψU : FI → G⧸U.

Let Φ(U) be the kernel of this map. We claim that Φ(U) ∈ U. First of all, it’s clear
that Φ(U) ◁ FI . By construction

∣∣G/U ∣∣ is a power of p, and hence so is
∣∣FI/Φ(U)∣∣.

Finally, by hypothesis, U contains almost all elements of {ti
∣∣ i ∈ I} and, since ψ

maps si to ti, almost all si ∈ Φ(U). This proves the claim.

Consider the projective systems
{
U, FI/N, α

N ′
N

}
and

{
UG, G/U, β

U ′
U

}
, where the order

of U and UG is defined by S ≤ S ′ if, and only if, S ′ ⊆ S, and the morphisms αN
′

N and
βU

′
U are the natural projections

αN
′

N : FI⧸N ′ ↠ FI⧸N, βU
′

U : G⧸U ′ ↠ G⧸U.

As we have seen, G/U are finite discrete p-groups since U are open normal subgroups
of G and we give FI/N the discrete topology. Then, the morphism of direct sets

Φ: UG −→ U

U 7−→ Φ(U) = ker(ψU)

and the morphism of compact topological p-groups

ψ̃U : FI⧸Φ(U) −→
G⧸U

gΦ(U) 7−→ ψ(g)U

define a morphism of projective systems. As we saw on Section 1.1, this defines a
morphism of pro-p groups

F (I) = lim←−
FI⧸N −→ lim←−

G⧸U ∼= G

which maps
∏

N∈U gNN to
∏

U∈UG
ψ(gΦ(U))U . This morphism has the desired prop-

erties.

Let’s now see the uniqueness of this morphism. Let φ and φ′ be to different morphisms
satisfying the property. We will obtain a contradiction. Since φ ̸= φ′, there exist
g ∈ F (I) such that φ(g) ̸= φ′(g). Since G is Hausdorff, there exist two disjoint
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open subsets U,U ′ ⊆ G with φ(g) ∈ U and φ′(g) ∈ U ′. Define V = φ−1(U) and
V ′ = φ′−1(U ′), that are open since φ and φ′ are continuous. Then, its intersection is
open and nonempty because g ∈ V ∩ V ′. Using that FI is dens in F (I), we deduce
that the intersection of V ∩ V ′ and FI is nonempty. Let h ∈ FI ∩ V ∩ V ′. As both
φ and φ′ agree on {si

∣∣ i ∈ I}, they also agree on FI . Hence, φ(h) = φ′(h). This
is a contradiction because φ(h) ∈ U and φ′(h) ∈ U ′, but the sets U and U ′ are
disjoint.

Definition 2.4.4. Let G be a pro-p group. We define the Frattini subgroup of G,
denoted by Fr(G), as the intersection of all maximal open subgroups of G. This group
can be written as the close normal subgroup generated by the commutators and the
pth-powers, i.e., Fr(G) = Gp[G,G].

The equivalence of these two ways to define the Frattini subgroups is proved on page
6 in [CT17].

Remark. The Frattini subgroup is the smallest closed normal subgroup N of G such
that G/N is an elementary abelian p-group, i.e., is an abelian group with exponent
p.

Before proving the next theorem, we will state a lemma that is a direct consequence
of the first Sylow theorem. The proof of this lemma can be find in [Hal59].

Lemma 2.4.5. Every subgroup of a p-group P of order pm is contained in a maximal
subgroup of order pm−1, and all the maximal subgroups of P are normal subgroups.

Theorem 2.4.6. Let G1 and G2 be pro-p groups, and let φ : G1 → G2 be homo-
morphism. Then, φ is surjective if, and only if, the induced map φ∗ : G1/Fr(G1) →
G2/Fr(G2) is surjective.

Proof. Firs notice that φ∗ is well defined since φ (Fr(G1)) ⊆ Fr(G2). It is clear that
if φ is surjective, so is φ∗.

Now suppose that φ is not surjective, i.e., φ(G1) ̸= G2. For an open normal subgroup
U of G2, denote πU : G2 ↠ G2/U the natural projection. We claim that there exist
U ∈ UG2 such that πU(φ(G1)) ̸= πU(G2) = G2/U . Recall that G2 = lim←−U∈UG2

G2/U .

By the second isomorphism theorem,

πU(φ(G1)) =
φ(G1)U⧸U ∼=

φ(G1)⧸φ(G1) ∩ U.

The set
{
φ(G1) ∩ U

∣∣ U ∈ UG2

}
is an open normal neighbourhood basis of 1 ∈

φ(G1), so φ(G1) is profinite and equal to lim←−U∈UG2

φ(G1)/φ(G1) ∩ U . Therefore,

if πU(φ(G1)) = πU(G2) for all U ∈ UG2 , then

φ(G1) = lim←−
U∈UG2

φ(G1)⧸φ(G1) ∩ U = lim←−
U∈UG2

G2⧸U = G2,
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which would contradict our hypothesis. Hence, there exist U ∈ UG2 with

φ(G1)U⧸U ̸=
G2⧸U.

Observe now that since U is a normal open subgroup, G2/U is a finite p-group. By
the Lemma 2.4.5, φ(G1)U/U is contained in a normal subgroup G′/U of index p of
G2/U . Therefore, G

′ ◁ G2 and [G2 : G
′] = p. This implies that Fr(G2) ⊆ G′ and

φ∗

(
G1⧸Fr(G1)

)
⊆ G′

⧸Fr(G2)
⊊ G2⧸Fr(G2)

,

i.e., φ∗ is not surjective.

We know come to the characterization of free pro-p groups. Before, we will define the
concept of group extension for a pro-p group.

Definition 2.4.7. Let G and H be pro-p groups. A pro-p group extension of G by
H is given by a pro-p group H and an exact sequence

1 H H G 1

in the category of pro-p groups. By Lemma 2.4.1, this allow us to identify (isomor-
phically) H as a subgroup of H such that H/H ∼= G.

Definition 2.4.8. We say that an extension of pro-p groups

1 H H G 1
φ

splits if there exist a morphism σ : G→ H such that φ ◦ σ = idG.

Theorem 2.4.9. Let G be a pro-p group. The following assertions are equivalent:

(i) G is a free pro-p group.

(ii) every pro-p group extension of G by a pro-p group H splits.

(iii) G is a projective object in the category of pro-p groups.

Proof. (i) implies (ii): Let G be a free pro-p group with system of generators {si
∣∣ i ∈

I}. Let
1 H H G 1

φ
(2.2)

be a pro-p group extension. Since G ∼= H/H, by Theorem 1.2.3, there exist a con-
tinuous section σ : G → H. Now, we apply Theorem 2.4.3 to thee free pro-p group
G, the pro-p group H and the subset {σ(si)

∣∣ i ∈ I} ⊆ H. We find that there exist

a unique continuous morphism of groups σ′ : G→ H such that σ′(si) = σ(si) for all
i ∈ I. The composition φ ◦ σ′ : G→ G is also a continuous morphism of groups that
lets si fixed and, by the uniqueness condition of Theorem 2.4.3, φ ◦σ′ = id and hence
the exact sequence (2.2) splits.
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(ii) implies (iii): Let G,G1, G2 be pro-p groups, f : G → G1 a morphism and
e : G2 → G1 and epimorphism, as seen in the following diagram

G

G2 G1

f

e

(2.3)

We wish to define a morphism f : G→ G2 such that e ◦ f = f . Consider the fibered
product of G and G2. This fibered product consists of the set G2 ×G1 G = {(g2, g) ∈
G2 × G

∣∣ e(g2) = f(g)} and the projection morphisms φ2 : G2 ×G1 G → G2 and
φ : G2×G1 G→ G. As e is surjective, so is φ, and we can complete the diagram (2.3)
in the following way:

1 ker(φ) G2 ×G1 G G 1

G2 G1

i φ

φ2 f

e

By assumption, there exist a morphism ψ : G → G2 ×G1 G such that φ ◦ ψ = id.
Then, f = φ2 ◦ ψ satisfies the desired condition.

(iii) implies (i): Assume G satisfies (iii). By Section 2.3, we know that G/Fr(G) is
isomorphic to

∏
i∈I Fp for some index set I. By Theorem 2.4.3, there is a morphism e :

F (I)→
∏

i∈I Fp. Clearly, this morphism is surjective and by how we constructed this
morphism, one can see that ker(e) = Fr(F (I)). By hypothesis, there is a morphism
φ : G→ F (I) such that the diagram

G

F (I)
∏

i∈I Fp

φ
π

e

commutes. We have that F (I)/Fr(F (I)) ∼=
∏

i∈I Fp, so

φ∗ : G⧸Fr(G)→
F (I)⧸Fr(F (I))

is an isomorphism. By Theorem 2.4.6, φ is surjective. Since F (I) is free, (as we
have already seen that (i) implies (ii)), there is a morphism ψ : F (I)→ G such that
φ ◦ ψ = id. Hence, ψ is injective and since ψ∗ is surjective, so is ψ. By Lemma 2.4.1,
ψ is an isomorphism of pro-p groups and thus G ∼= F (I) is free.

We now will prove some consequences of Theorem 2.4.9.

Theorem 2.4.10. Let G be a pro-p group, I some index set, and

θ :
∏
i∈I

Fp → G⧸Fr(G)
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an epimorphism. Then, there exist an epimorphism F (I)→ G that induces θ. Every
system of generators of G/Fr(G) can be lifted to a system of generators of G.

Proof. Let πF : F (I) → F (I)/Fr(F (I)) ∼=
∏

i∈I Fp be the quotient morphism and
consider the morphism θ◦πF : F (I)→ G/Fr(G). Consider also the quotient morphism
πG : G ↠ G/Fr(G). By condition (iii) of Theorem 2.4.9, there exist a morphism
φ : F (I)→ G such that the diagram

F (I)

G G⧸Fr(G)

φ
π◦θF

πG

commutes. By hypothesis, φ∗ = θ is surjective. Therefore, by Theorem 2.4.6, φ is
surjective, as we wanted to prove.

Now let {ti
∣∣ i ∈ I} be a system of generators of G/Fr(G). By Theorem 2.4.3 there is

a unique epimorphism θ : F (I)→ G/Fr(G) mapping the generators si of F (I) to the
ti for all i ∈ I. Since θ is surjective, so it is the morphism θ :

∏
i∈I Fp → G/Fr(G).

Therefore, there exist a epimorphism φ : F (I) → G that induces θ. Thus, the set
{φ(si)

∣∣ i ∈ I} is a system of generators of G that corresponds to {ti
∣∣ i ∈ I}.

Corollary 2.4.11. Every pro-p group has a system of generators.

Proof. This is a direct consequence of Theorems 2.3.5 and 2.4.10.

Theorem 2.4.12 (Burnside’s Basis Theorem). Let G be a pro-p group and E =
{si

∣∣ i ∈ I} a subset of G such that every neighborhood of 1 ∈ G contains almost all
elements of E. Then, E is a system of generators of G if, and only if, {siFr(G)

∣∣ i ∈ I}
is a system of generators of G/Fr(G).

Proof. The direct implication is clear. Assume {siFr(G)
∣∣ i ∈ I} generates G/Fr(G).

There is a morphism φ : F (I) → G that maps the generators of F (I) to the si
respectively. The induced morphism φ∗ : F (I)/Fr(F (I)) → G/Fr(G) is surjective
since siFr(G) are generators. This implies that the corresponding map φ is also
surjective and hence E generates G.

2.5 Cohomology of pro-p Groups

In this section we will introduce the basic notions of the cohomology of pro-p groups,
although we will skip some of the proofs. These notions will be used in the following
section to give another characterization of free pro-p groups. A further development
of the cohomology of profinite groups can be found on Chapter 3 in [Hal59].
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We will begin by defining the cohomology groups for any profinite group and then we
will restrict to pro-p groups.

Let G be a profinite group and A a unitary G-module, i.e., A is an abelian group
with a left action G× A→ A such that:

g · (a+ b) = g · a+ g · b

for all g ∈ G and a, b ∈ A. We make A into a topological space by giving it the
discrete topology.

Definition 2.5.1. A is called a discrete G-module if the map G × A → A induced
by the action of G is continuous.

Definition 2.5.2. Let G be a profinite group and A a discrete G-module. For any
n ≥ 1, we define Kn(G,A) to be the set of continuous maps from the n-fold product
Gn to A. We putK0(G,A) := A and transfer the additive structure of A toKn(G,A).

As shown on page 11 on [Koc02] for the 1-dimensional case, the fact that f ∈
Kn(G,A) is continuous is equivalent to say that the function f(x1, . . . , xn) only de-
pends on cosets of xi modulo some open normal subgroup of G.

Now consider the following group homomorphisms dn : Kn(G,A) → Kn+1(G,A)
defined by

(dnf)(x1, . . . , xn+1) = x1 · f(x2, . . . , xn+1)+

+
n∑

m=1

(−1)mf(x1, . . . , xmxm+1, . . . , xn) + (−1)m+1f(x1, . . . , xn).

These morphisms satisfy the following property:

Theorem 2.5.3. For n ≥ 1, we have dn ◦ dn−1 = 0.

This result tells us that the groups Kn(G,A) together with the morphisms dn is a
cochain complex. This allow us to define the cohomology groups in the following way:

Definition 2.5.4. The n-th cohomology group of G with coefficients in A is:

Hn(G,A) =

{
ker(dn)⧸Im(dn−1)

if n ≥ 1,

ker(dn) if n = 0.

Example 2.5.5. Let’s take a look at the case n = 1. Let f ∈ K1(G,A). The image
of f by d1 is the function:

(d1f)(x1, x2) = x1 · f(x2)− f(x1x2) + f(x1).
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Then, a continuous function f : G→ A is in ker(d1) if, and only if,

f(g1g2) = f(g1) + g1 · f(g2)

for all g1, g2 ∈ G. These functions are called crossed homomorphisms.

Now take a ∈ K0(G,A) = A. The image of a by d0 is the function:

(d0a)(x1) = x1 · a− a.

Then, a continuous function f : G→ A is in Im(d0) if, and only if, there exist a ∈ A
such that

f(g) = g · a− a

for all g ∈ G. These functions are called split crossed homomorphisms. The group
H1(G,A) is the quotient of the group of all crossed homomorphisms by all the split
crossed homomorphisms.

We are interested in the case that A = Fp and G is a pro-p group acting trivially on
G. In fact, it could be shown that this is the only possible way a pro-p group can act
on Fp. We introduce the following abbreviation:

Hn(G) := Hn(G,Fp).

Let’s take a look at the result described in Example 2.5.5 in this case. Since G acts
trivially on Fp, the crossed homomorphism from G to Fp are exactly the continuous
groups homomorphisms, and the only split crossed homomorphism is the zero mor-
phism. Hence, H1(G) is the group of all continuous group homomorphism from G to
Fp. From this fact, we obtain the following result:

Lemma 2.5.6. An abelian pro-p group G with exponent p has H1(G) as its Pontryagin
dual group.

Proof. Since G has exponent p, for any χ ∈ Ĝ, the image of χ will be contained in
the set of all p-th roots of unity. The natural identification of Fp with the p-th roots

of unity will give us an isomorphism between Ĝ and H1(G).

Remark. Let G be a pro-p group. As Fp is abelian and has exponent p, any function
f ∈ H1(G) satisfies that Fr(G) ⊆ ker(f). We have a correspondence between mor-
phisms f : G→ Fp and morphism f : G/Fr(G)→ Fp. Hence, H1(G) ∼= H1(G/Fr(G)).

With this correspondence, and Theorems 2.3.3 and 2.3.4, one can state Theorem 2.4.6
in the following way:

Theorem 2.5.7. Let G1 and G2 be pro-p group, and let φ : G1 → G2 be a continuous
group homomorphism. Then, φ is surjective, if, and only if, the induced map φ∗ :
H1(G2)→ H1(G1) is injective.
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Remark. Since Kn(G,Fp) is an abelian group of exponent p, it has a natural struc-
ture of an Fp-vector space. This structure translate well to the cohomology groups
Hn(G).

2.6 Second Characterization of Free pro-p Groups

In this section we will give a second characterization of free pro-p groups using coho-
mology groups. To do so, we need a further study of extensions of pro-p groups.

Definition 2.6.1. Let G and H be pro-p groups and H1, H2 two pro-p group ex-
tensions of G by H. We say that they are equivalent if there exist an isomorphism
T : H1 → H2 making the following diagram commutative:

H1

1 H G 1.

H2

T

Remark. The equivalence of pro-p group extensions of G by H is an equivalence
relation.

Definition 2.6.2. Let H and G be topological groups. Let Auttg(H) denote the
group of all continuous group automorphisms of H. Let ρ : G → Auttg(H) be a
group homomorphism such that the induced map

G×H → H
(g, h) 7→ (ρ(g)) (n)

is continuous. We write ρg(h) := (ρ(g)) (h) for simplicity. We define the semidirect
product of H and G with respect to ρ, denoted as H ⋊ρ G as the the set H × G
together with the group operation:

(h1, g1) ∗ (h2, g2) := (h1ρg1(h2), g1g2).

Lemma 2.6.3. (H ⋉ρ G, ∗) is a group with identity (1, 1) ∈ H⋉ρG. In fact, H⋉ρG
is a topological group with the product topology of H ×G.

Theorem 2.6.4. Let G and H be pro-p groups and let

1 H H G 1
φ

be a pro-p group extension of G by H, where we identify H with its image inside
H. Suppose this extension splits, i.e. there exists a pro-p group homomorphism
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σ : G → H such that φ ◦ σ = idG. Then, H is isomorphic as a topological group to
the semidirect product H ⋉ρ G, where ρg(h) = σ(g)hσ(g)−1.

Proof. Consider the map

T : H ⋉ρ G −→ H
(h, g) 7−→ h · σ(g).

By construction, this map is continuous. This map is a group homomorphism with
the product operation defined in H ⋉ρ G. Now consider the map

T̃ : H −→ H ⋉ρ G

h 7−→
(
h ·
(
σ
(
φ(h)

))−1
, φ(h)

)
,

that is well defined because h ·
(
σ
(
φ(h)

))−1 ∈ ker(φ) = H. Again, by construction,

this map is continuous. In addition, on can easily check that T ◦ T̃ = idH and
T̃ ◦ T = idH⋉ρG. Thus, T is an isomorphism of topological groups.

Remark. This theorem shows that, with these hypothesis, H ⋉ρG is a pro-p group.

Corollary 2.6.5. If the pro-p group extension

1 H H G 1

splits, then it is equivalent to the pro-p group extension

1 H H ⋉ρ G G 1

where ρ is the automorphism defined in Theorem 2.6.4.

Now we come to the characterization of pro-p groups using cohomology groups. Be-
fore, we need the following lemmas:

Lemma 2.6.6. Let A ̸= {1} be a finite p-group and G a subgroup of p-power order of
the automorphism group of A. Then, the number of invariant elements AG := {a ∈
A
∣∣ g(a) = a ∀ g ∈ G} ≠ {1}

Proof. We decompose A into disjoint orbits:

G · a = {g(a) ∈ A
∣∣ g ∈ G}.

If a is invariant,
∣∣G · a∣∣ = 1. If a is not invariant,

∣∣G · a∣∣ is a multiple of p since the
order of G is a power of p. This can be seen using that

∣∣Ga

∣∣∣∣G · a∣∣ = ∣∣G∣∣, where Ga

is the stabilizer subgroup of G with respect to a. Now we write∣∣A∣∣ = ∑
a∈AG

1 +
m∑
r=1

∣∣G · ar∣∣ = ∣∣AG∣∣+ m∑
r=1

∣∣G · ar∣∣.
Since

∣∣A∣∣ and ∣∣G · ar∣∣ are multiples of p, so is
∣∣AG∣∣ and since 1 ∈ AG,

∣∣AG∣∣ has to be
at least p.
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Lemma 2.6.7. Let G be a pro-p group and let H ̸= 1 be a closed normal subgroup
of G. Then, there exist a closed normal subgroup H ′ of G such that H ′ ⊆ H and
[H : H ′] = p.

Proof. Since H ̸= 1, we claim that there exist an proper subgroup H ′′ of H satisfying

1. H ′′ is open in H.

2. H ′′ is normal in G.

3. H ′′ is closed in G.

Indeed, take a nontrivial element g ∈ H. Since G is Hausdorff, there exist an open
subset U ⊆ G containing 1 with g /∈ U . By Theorem 1.1.9, G has a neighbourhood
basis at 1 consisting of open normal subgroups so, without loss of generality, we may
assume that U is an open normal subgroup of G. Then H ′′ = H ∩ U is an open
subgroup of H and, since both H and U are normal in G, so is H ′′. This group is
proper in H because g ∈ H but g /∈ H ′′. Finally, since U is open in G, by Lemma
1.1.6, it is also closed. This implies that H ′′ = H ∩U is closed in G. This proves the
claim.

By Lemma 1.2.1, H is a pro-p group and, since H ′′ is open in H, by Lemma 1.1.6,
[H : H ′′] is finite. Let H ′ be a maximal proper subgroup of H containing H ′′ that
is normal in G. We want to see that [H : H ′] = p. If [H : H ′] > p, there exist a
subgroup H1/H

′ ⊆ H/H ′ of order p. G acts on H1/H
′ by conjugation. By Lemma

2.6.6, the subgroupH2/H
′ ⊆ H1/H

′ of all the invariant elements of the action ofG/H ′

is nontrivial. So, H2 satisfies that H ′ ⊊ H2 ⊊ H and is normal to G, contradicting
the maximality of H ′. We can see that H ′ is closed in G because we can write H ′ as
a finite union of cosets gH ′′.

Theorem 2.6.8. A pro-p group G is free if, and only if, H2(G) = 0.

Proof. In this proof we will use that there’s a bijection between the equivalence classes
of pro-p group extensions of G by a Fp and the second cohomology group H2(G). This
bijection is explained on Theorem 5.4.6 in [Wil21]

Suppose G is a free pro-p group. By Theorem 2.4.9, every extension H of G by Fp
splits. Thus, by Corollary 2.6.5, H is equivalent to the extension

0 Fp Fp ⋉ρ G G 1

for some ρ ∈ Auttg(Fp) ∼= F∗
p. We will see that ρ = idFp . We claim that ρ is continuous

when we consider the discrete topology on Auttg(Fp). By construction, the map

Φ : G× Fp −→ Fp
(g, a) 7−→ ρg(a)

is continuous. For any a, b ∈ F∗
p, let fa,b ∈ Auttg(Fp) be the only automorphism that

sends a to b. Fix a, b ∈ Fp. Then,
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Φ−1(b) =
⊔
c∈F∗

p

ρ−1(fc,b)× {c}

is open inG×Fp and, intersecting withG×{a}, we obtain that ρ−1(fa,b)×{a} ⊆ G×Fp
is open. Hence, ρ−1(fa,b) is open in G. This proves the claim.

Since ρ is continuous, ker(ρ) ⊆ G is an open normal subgroup. Thus, G/ ker(ρ) is a
finite p-group and we have an induced group morphism G/ ker(ρ) ↪→ Auttg(Fp) ∼= F∗

p.
Since F∗

p has order coprime to p, the only possibility is that this morphism is the
trivial morphism. Hence ker(ρ) = G, i.e., ρ is the constant function idFp ∈ Auttg(Fp).
This implies that Fp ⋉ρ G = Fp × G. Consequently, all extensions of G by Fp are
equivalent to the trivial extension

0 Fp Fp ×G G 1.

Since there is only one equivalence class of extensions of G by Fp, H2(G) = 0.

Now suppose that G is a pro-p group with H2(G) = 0. By Section 2.3, we have an
isomorphism

θ :
∏
I

Fp → G/Fr(G)

for some index set I. By Theorem 2.4.10, there exists an epimorphism φ : F (I) ↠ G
that induces θ. Denote H = ker(φ). If H = {1}, we obtain that φ is an isomorphism
and hence G is free. Suppose H ̸= {1}. We will obtain a contradiction. H is
normal in F (I) and since G is Hausdorff, H is closed. By Lemma 2.6.7, there exists
a closed normal subgroup H ′ of G such that H ′ ⊆ H and [H : H ′] = p. By the third
isomorphism theorem, (F (I)/H ′) / (H/H ′) = F (I)/H. Denote G′ = F (I)/H ′ and
notice that F (I)/H ∼= G and H/H ′ ∼= Fp. Thus, φ induces the following pro-p group
extension:

0 Fp G′ G 1.

Since H2(G) = 0, this extension is equivalent to the trivial extension, i.e., we have
G′ ∼= Fp ×G. Consider the following diagram:

F (I) G′ ∼= Fp ×G G

∏
I Fp G′

⧸Fr(G′)
∼= Fp ×

∏
I Fp G⧸Fr(G)

α1

β1

α2

β2 β3

γ1 γ2

This diagram is commutative since the first row are just quotients of F (I) by H ′ and
H and the second rows are the induced morphisms. In addition, the second rows are
isomorphisms since the composition is θ and both maps are surjective by Theorem
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2.4.6. From this, we get a contradiction, as (1, 0) ∈ G′ ∼= Fp×G is map to 0 thought
β3 ◦ α2 but β2((1, 0)) = 1× (0, . . . , 0), contradicting the injectivity of γ2.

Theorem 2.6.9. Let G be a pro-p group. Suppose that Hn(G) = 0 for some n ∈ N.
Then Hm(G) = 0 for all m > n.

Proof. The proof of this theorem can be found on page 49 in [Koc02].

The two previous theorems lead to the following result:

Corollary 2.6.10. Let G be a free pro-p group. Then, Hn(G) = 0 for all n ≥ 2.
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Chapter 3

Presentation of pro-p Groups

On of the most important methods for constructing pro-p groups is the presentation
by generators and relations. This will be used in Chapter 4 to introduce Golod-
Shafarevich groups and to present the Golod-Shafarevich inequality.

3.1 The Generator Rank

Let G be a pro-p group. As we saw on Section 2.5, the first cohomology group H1(G)
can be seen as the group of all continuous group homomorphisms from G to Fp. There
is a natural way to regard H1(G) as an Fp-vector space.

Definition 3.1.1. The generator rank d(G) of a pro-p group G is the dimension of
H1(G) as an Fp-vector space.

This definition is motivated by the following statement:

Theorem 3.1.2. Let G be a pro-p group. The cardinality of any minimal system of
generators of G equals d(G).

Proof. Let {si
∣∣ i ∈ I} be a minimal system of generators of G. By Theorem 2.4.12,

{siFr(G)
∣∣ i ∈ I} is a minimal system of generators of G/Fr(G). Then, by Theorem

2.3.5, we have an isomorphism

G⧸Fr(G) ∼=
∏
I

Fp.

Taking into account Lemma 2.5.6 and dualizing this equivalence, we obtain

H1(G) ∼= H1
(
G⧸Fr(G)

)
∼=
⊕
I

Fp,

and so dim
(
H1(G)

)
=
∣∣I∣∣.
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This theorem shows that all minimal systems of generators of a pro-p group have
equal cardinality.

Remark. Notice that d(G) = d(G/Fr(G)).

Lemma 3.1.3. Let F be a finitely generated free pro-p group and G ⊆ F pro-p
subgroup of finite index. Then,

d(G) = [F : G] (d(F )− 1) + 1.

Proof. The proof of this lemma uses the concept of Euler-Poincaré characteristic of
a pro-p group. It is a consequence of Theorem 5.4 in [Koc02].

In general, any pro-p subgroup of finite index in a finitely generated pro-p group is
finitely generated.

3.2 Relation Systems

Definition 3.2.1. Let G be a pro-p group. An exact sequence

1 R F G 1
φ

(3.1)

of pro-p groups where F is a free pro-p group with system of generators {ti
∣∣ i ∈ I}

is called a presentation of G by F . We identify R with the corresponding subgroup
of F . If {φ(ti)

∣∣ i ∈ I} is a minimal system of generators of G, then the presentation
is called minimal.

Definition 3.2.2. A subset E ⊆ R is called a (generating) system of relations of G
with respect to the presentation (3.1) if it satisfies:

(i) R is the smallest normal subgroup of F containing E.

(ii) every open normal subgroup of R contains almost all elements of E.

We say that E is minimal if no proper subset of E is a system of relations of G.

Definition 3.2.3. Let {Gi

∣∣ i ∈ I} be a family of pro-p groups and let {Ti
∣∣ i ∈ I}

be a family of normal subgroups of the Gi such that the Gi/Ti are free pro-p groups.
Let G be a pro-p group. A family of morphisms {φi : Gi → G

∣∣ i ∈ I} is called
admissible with respect to {Ti

∣∣ i ∈ I} if every open normal subgroup of G contains
almost all φi(Ti).

Theorem 3.2.4. Let G be a pro-p group with a presentation as in Equation (3.1).
Let the assumptions be as in Definition 3.2.3. Let {φi : Gi → G

∣∣ i ∈ I} be admissible
with respect to {Ti

∣∣ i ∈ I}. For every i ∈ I, let
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1 Ri Fi Gi 1
ψi

(3.2)

be a presentation of Gi. Then, there exist morphisms χi : Fi → F with restrictions
χ : Ri → R such that the diagram

Ri Fi Gi

R F G

χi χi

ψi

φi

ψ

commutes and {χi
∣∣ i ∈ I} is admissible with respect to {Ri

∣∣ i ∈ I}. In this case, we
speak about an admissible presentation of {φi

∣∣ i ∈ I}.
Proof. By Theorem 1.2.3, there exists a continuous section σ : G→ F with σ(1) = 1.
Let {tik

∣∣ k ∈ Ii} be a system of generators of the free pro-p group Fi, where the
images of tik under the map θi : Fi ↠ Gi/Ti form a system of generators for some
subset I1i ⊆ Ii and are mapped to 1 for k ∈ I2i := Ii \ I1i . Then, by Theorem 2.4.3,
we can define a morphism χi : Fi → F by

χi(t
i
k) = (σ ◦ φi ◦ ψi) (tik), k ∈ Ii.

This morphism satisfies that φi ◦ ψi = ψ ◦ χi. Moreover, if g ∈ ker(ψi) = Ri, then
χi(g) ∈ ker(ψ) = R and hence the restriction χi is well define. Thus, the diagram
(3.2) is commutative.

Notice that the quotient Ri/Ri = {1} is a free pro-p group generated by 0 elements.
Thus, to see that {χi

∣∣ i ∈ I} is admissible with respect to {Ri

∣∣ i ∈ I}, we just need
to see that every open normal subgroup of R contains almost all χi(Ri).

Let N be an open normal subgroup of F . Then, σ−1(N) is an open neighbourhood
of 1. Since G is profinite, there exists an open normal subgroup U of G with U ⊆ N .
By assumption, we have

φi(Ti) ⊆ U (3.3)

for almost all i ∈ I. Let i be an index for which (3.3) holds. Then, for all k ∈ I2i ,
ψ(tik) ∈ Ti and hence χi(t

i
k) ∈ σ(U) ⊆ N . But this implies that χi(ker θi) ⊆ N , and

since Ri ⊆ ker(θi), we have χi(Ri) ⊆ R ∩ N . Since every neighborhood of 1 ∈ R
contains a group N ∩R, this implies the claim.

Lemma 3.2.5. Assume the hypothesis of Theorem 3.2.4 and consider the family
{χi : Ri → R

∣∣ i ∈ I}, that is admissible with respect to {Ri

∣∣ i ∈ I}. Then, for

any f ∈ H1(R) and for almost all i ∈ I, the image of f , under the induced map
H1(R)→ H1(Ri) is 0.
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Proof. Let f ∈ ker(d1) ⊆ K1(R,Fp) be a cocycle representing f . Let U be a normal
open subgroup of R on which f is constant. By assumption, for almost all i ∈ I, we
have a factorization

Ri U R,

and therefore induced maps

H1(Ri) H1(U) H1(R).

Since f is constant in U , so is the image of f in H1(U). As we saw on Section 2.5,
H1(U) is the group of all continuous group homomorphisms from U to Fp, so the only
possibility is that the image of f in H1(U) is 0.

This previous lemma guarantees that the map

χ∗ : H1(R) −→
⊕
i∈I

H1(Ri) (3.4)

is well defined.

Since R is normal to F , F acts on R by conjugation. This action induces an action
of F on H1(R): if f ∈ H1(R) and h ∈ F , we define

(h · f)(r) := f(h−1rh).

Since H1(R) is the set of continuous group homomorphisms from R to Fp and Fp is
abelian, it is clear that R acts trivially on H1(R). Hence, we can regard this action as
an action of G. Moreover, we can regard H1(R) as a discrete G-module. With these
considerations and the morphism defined in Equation (3.4), we have the following
theorem:

Theorem 3.2.6. The groups χi(Ri), i ∈ I, generate R as a normal subgroup of F if,
and only if, the restriction of χ∗ to H1(R)G is injective.

Recall that the normal subgroup of F generated by χi(Ri) is the subgroup generated
by {g−1rg ∈ F

∣∣ g ∈ F, r ∈ χi(Ri), i ∈ I}, i.e., is the smallest normal subgroup of F
that contains χi(Ri). For the proof of Theorem 3.2.6 we need the following lemma:

Lemma 3.2.7. Let G be a pro-p group and A a p-primary discrete G-module. Then,
AG = 0 implies A = 0.

Proof. Using the same argument we used on the proof of Theorem 2.6.8, one can see
that the fact that the action of G to A is continuous implies that the induced group
morphism

ρ : G→ Aut(A)
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is continuous when we consider the discrete topology on Aut(A). Then, ker(ρ) is an
open normal subgroup of G and we have an induced action of G/ ker(ρ) on A. Since G
is pro-p, G/ ker(ρ) is a finite p-group. Then, each a ∈ A generates a finite G-module
A0. If we had A0 ̸= 0, then Lemma 2.6.6 would imply that AG0 ̸= 0 contradicting our
assumption.

Now we come to the proof of Theorem 3.2.6:

Proof of Theorem 3.2.6. Suppose that χi(Ri), i ∈ I, generate R as a normal subgroup
of F and let f ∈ H1(R)G with χ∗(f) = 0. We have that f ◦ χi = 0 for all i ∈ I and
hence f (χi(Ri)) = 0. Since f is invariant under G (and invariant under F ), for any
h ∈ F we have f(h−1χi(Ri)h) = 0. By assumption, the sets h−1χi(Ri)h generate R.
Therefore, f(R) = 0, i.e., f = 0.

Conversely, assume that the restriction of χ∗ to H1(R)G is injective and let R′ denote
the normal subgroup of F generated by the χi(Ri). The inclusion R′ ↪→ R induces a
homeomorphism φ : H1(R)→ H1(R′) which factorizes the map (3.4):

H1(R) H1(R′)
⊕

i∈I H
1(Ri).

φ

By assumption, ker(φ) doesn’t contain any nonzero elements invariant under the
action of G. By Lemma 2.5.6,

H1(R) ∼= H1
(
R⧸Fr(R)

)
∼= R̂⧸Fr(R),

and so H1(R) is a p-primary discrete G-module. Hence, ker(φ) is also a p-primary
discrete G-module and, by Lemma 3.2.7, this implies that ker(φ) = 0. Now, applying
Theorem 2.5.7 we deduce that R′ = R.

Lemma 3.2.8. Let the assumptions be as in Definition 3.2.3. Assume that {φi
∣∣ i ∈

I} is admissible with respect to {Ti
∣∣ i ∈ I}. We consider the induced maps φ∗

i :
Hn(G) → Hn(Gi). Then, for any α ∈ Hn(G), n ≥ 2, it holds that φ∗

i (α) = 0 for
almost all i ∈ I.

Proof. Let f ∈ ker(dn) ⊆ Kn(G,Fp) be a cocycle representing α. Then f only
depends on cosets ofGmodulo some open normal group U ofG. Let i be an index such
that φi(Ti) ⊆ U . Then , f induces a cocycle in Kn(Gi,Fp) that depends only on the
cosets Gi/Ti, and which therefore must be induced from a cocycle in Kn(Gi/Ti,Fp).
Since Gi/Ti is free, by the Corollary 2.6.10, Hn(Gi/Ti) vanishes for n ≥ 2, hence so
does φ∗

i (α).

This lemma allow us to define the following map:

φ∗ : H2(G)→
⊕
i∈I

H2(Gi). (3.5)

Now we come to the main result of this section. To formulate it, we first define the
notion of complementary set:
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Definition 3.2.9. A subset E ⊆ R is called a complementary set of {χi
∣∣ i ∈ I} if:

(i) E and
⋃
i∈I χi(Ri) generate R as a normal subgroup of F .

(ii) Each neighborhood of 1 ∈ R contains almost all elements of E.

The set E is called minimal if no proper subset of E is a complementary set.

Theorem 3.2.10. Let G be a pro-p group and let {φi : Gi → G
∣∣ i ∈ I} be a family

of morphisms admissible with respect to {Ti
∣∣ i ∈ I }. Assume we have an admissible

presentation of {φi
∣∣ i ∈ I}, where the presentations of G and Gi are minimal :

1 Ri Fi Gi 1

1 R F G 1

χi χi φi

Moreover, let E be a minimal complementary set of {χi
∣∣ i ∈ I} and consider the

morphism φ∗ defined in Equation (3.5). Then,

dimFp (ker(φ
∗)) =

∣∣E∣∣
The proof of this theorem requires some more development of the cohomology of
profinite groups. We will state the main ideas of the proof and cite [Koc02] for some
needed results:

Proof. For every j ∈ E, let Fj be the smallest closed subgroup of F containing j,

i.e., Fj = ⟨j⟩, which is a pro-p group. Let χj denote the inclusion Fj ↪→ F . Consider
the subgroups Rj = Fj. Note that Fj ⊆ R, and hence we can define the restriction
χj : Rj → R. We have a commutative diagram

Ri Fj Gj

R F G

χj χj

for j ∈ I ∪ E. Condition (ii) in Definition 3.2.9 assures that the family {χj
∣∣ j ∈

I ∪ E} is admissible with respect to {Rj

∣∣ j ∈ I ∪ E } and we have an admissible
presentation. In addition, by condition (i) in Definition 3.2.9,⋃

j∈I∪E

χj(Rj)

generate R as a normal subgroup of F . Hence, by Theorem 3.2.6, the induced map

χ∗ : H1(R)G −→
⊕
j∈I∪E

H1(Rj)
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is injective. Consider the map

ψ∗ : H1(R)G −→
⊕
i∈I

H1(Ri)
Gi

and the commutative diagram

H1(R)G
⊕
j∈I∪E

H1(Rj)

ker(ψ∗)
⊕
j∈E

H1(Rj)

(3.6)

Clearly, the second row in (3.6) is injective, and even an isomorphism since E is
minimal. By Theorem 3.14 in [Koc02], we have the following exact commutative
diagram:

0 0

H1(G)
⊕
i∈I

H1(G)

H1(F )
⊕
i∈I

H1(Fi)

0 ker(ψ∗) H1(R)G
⊕
i∈I

H1(Ri)
Gi

0 ker(φ∗) H2(G)
⊕
i∈I

H2(Gi)

0 0

inf
inf

res
res

ψ∗

tra
tra

φ∗

The morphisms inf, res and tra are called inflation, restriction and transgression. Its
definition is not simple, and hence we will omit it. It can be found on pages 28 - 34
in [Koc02]. One can see that, since the presentation of Gi and G are minimal, the
inflation maps and the transgression maps are isomorphisms. Thus, the induced map



CHAPTER 3. PRESENTATION OF PRO-P GROUPS 34

ker(ψ∗)→ ker(φ∗) is an isomorphism. Since,

dim(ker(ψ∗)) = dim

(⊕
j∈E

H1(Rj)

)
=
∣∣E∣∣,

this implies the claim.

We will give some consequences of this theorem. To this end, we introduce the notion
of relation rank:

Definition 3.2.11. The relation rank of a pro-p group G, denoted by r(G), is the
Fp-dimension of H2(G).

Theorem 3.2.12. The relation rank of a pro-p group G equals the cardinality of any
minimal system of relations.

Proof. Let

1 R F G 1

be a minimal presentation of G. Let I be a singleton and Gi = G. Take Ti = Gi.
Then, Gi/Ti = {1} is a free pro-p group. Define φ : Gi → G to be the trivial map.
Then {φi

∣∣ i ∈ I} is admissible with respect to {Ti
∣∣ i ∈ I}.

Consider for Gi the same presentation as G and apply Theorem 3.2.4 Then χi : Fi →
F is the trivial map and we have an admissible presentation of {φi

∣∣ i ∈ I}.
Since χi(Ri) = {1}, the notions of complementary set of {χi

∣∣ i ∈ I} and generating
system of relations coincide. Let E ⊆ R be a minimal generating system of relations
and consider the map

φ∗ : H2(G) −→
⊕
i∈I

H2(Gi) = H2(Gi).

By Theorem 3.2.10,

dimFp(ker(φ
∗)) =

∣∣E∣∣.
Since φi is the trivial map, so is φ∗. Thus, ker(φ∗) = H2(G). This implies the
claim.

Theorem 3.2.13. Under the assumptions of Theorem 3.2.10, R is generated as a
normal subgroup of F by the subgroups χi(Ri), i ∈ I, if, and only if, φ∗ is injective.
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Chapter 4

The Golod-Shafarevich Inequality

In this chapter we will prove the famous Golod-Shafarevich inequality. To be able to
state it, we need to define the concept of Golod-Shafarevich group. To do so, we shall
begin by taking about the complete group algebra of a pro-p group.

4.1 Complete Group Algebra of a pro-p Group

For finite groups G, the additive group of the ring Fp[G] is isomorphic to the direct
sum of

∣∣G∣∣ copies of Fp, and thus inherits the discrete topology, that makes Fp[G]
into a compact group ring.

Let G be a pro-p group. For open normal subgroups N,N ′ ⊆ G with N ′ ⊆ N , we
can lift the natural map

G⧸N ′ −→ G⧸N
linearly to a homomorphism of group algebras

Fp
[
G⧸N ′

]
−→ Fp

[
G⧸N

]
.

This defines a projective system {Fp[G/N ]
∣∣ N ∈ UG} of compact rings.

Definition 4.1.1. The complete group algebra Fp[[G]] of a pro-p group G over the
compact field Fp is the projective limit of the system {Fp[G/N ]

∣∣ N ∈ UG}.

Remark. Since the algebras Fp[G/N ] are compact, so is Fp[[G]].

We can embed G into Fp[[G]] via the following morphism

g 7−→
∏
N∈UG

[gN ].

Lemma 4.1.2. The subring Fp[G] (which is given the subspace topology) is dense in
Fp[[G]].
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Proof. The proof of this lemma is analogous to the proof of Lemma 2.1.6.

Other basic properties of Fp[[G]] are expressed in the following:

Theorem 4.1.3. Let G be a pro-p group. The following properties hold:

(i) The map G → Fp[[G]] is a covariant functor from the category of profinite
groups to the category of compact Fp-algebras.

(ii) Let A be a compact Fp-algebra. Every morphism φ : G→ A∗ from G to the unit
group of A can be extended uniquely to a morphism Fp[[G]]→ A.

(iii) Let φ : G → G′ be a morphism of pro-p groups with kernel N . The kernel of
the induced morphism φ′ : Fp[[G]]→ Fp[[G′]] is the closed ideal I(N) generated
by the elements h− 1, h ∈ N .

Proof. (ii) First, notice that φ can be lifted uniquely to a continuous homomorphism
φ′ : Fp[G] → A. By Lemma 4.1.2, Fp[G] is dense in Fp[[G]], and hence can be lifted
uniquely to Fp[[G]].

(i) This is a consequence of (ii). Every map G1 → G2 can be extended uniquely to a
map Fp[[G1]]→ Fp[[G2]].

(iii) Since the image of φ is closed in G′, Im(φ) is also a pro-p group. Hence, without
loss of generality, we may assume that φ is surjective. It is clear that I(N) ⊆ ker(φ′).
Thus, φ′ induces a morphism

φ̃ : Fp[[G]]⧸I(N) −→ Fp[[G′]].

The restriction of φ̃ to the image of G in the quotient space Fp[[G]]/I(N)

ψ : G+ I(N)⧸I(N) −→ G′

is an isomorphism, since I(N) ∩ G = N . By (ii), ψ−1 can be lifted to a morphism
Fp[[G′]] → Fp[[G]]/I(N), that turns out to be the inverse of φ̃. This implies that
I(N) = ker(φ′).

Remark. Let G be a finite discrete p-group. Then {1} is an open normal subgroup
of G and U1 = {1} is cofinal in UG. This shows that

Fp[[G]] = lim←−
N∈UG

Fp
[
G⧸N

]
∼= lim←−

N∈U1

Fp
[
G⧸N

]
= Fp[G]

Theorem 4.1.4. Let G be a pro-p group. The system {I(N)
∣∣ N ∈ UG} is an open

neighborhood basis at 0 ∈ Fp[[G]].
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Proof. Notice that, for every N ∈ UG, (Fp[G/N ],+) is a finite discrete topological
group. Hence, Fp[[G]] = lim←−N∈UG

Fp[G] is a profinite group. Let πN denote the map

πN : Fp[[G]] −→ Fp
[
G⧸N

]
.

By Theorem 1.1.8, {ker(πN)
∣∣ N ∈ UG} is an open neighborhood basis at 0 ∈ Fp[[G]].

Observe now that, for every N ∈ UG, G/N is also a pro-p group. Thus, by 4.1.3, the
morphism

φN : G −→ G⧸N
extends uniquely to a morphism

φ′
N : Fp[[G]] −→ Fp

[[
G⧸N

]]
whose kernel is I(N). Since N is open, G/N is a finite discrete p-group. Hence,
Fp[[G/N ]] ∼= Fp[G/N ]. This implies that ker(πN) = I(N).

In the following sections we will use this special case:

Lemma 4.1.5. Let G be a pro-p group. Then, Fp[[G]]/I(G) ∼= Fp.

Proof. Consider the morphism φ : G→ {1}. By Theorem 4.1.3, we can extend φ to
a morphism

φ̃ : Fp[[G]] −→ Fp[{1}] ∼= Fp
with kernel I(G). Hence, Fp[[G]]/I(G) ∼= Fp.

4.2 Filtrations

In this section we will start describing a special filtration of Fp[[G]], and use it to
define a filtration of G known as Zassenhaus filtration. Remember that, for any open
normal subset N of G, I(N) denotes the closed ideal of Fp[[G]] generated by the
elements h− 1, h ∈ N .

Definition 4.2.1. We denote by In(G) the topological closure of the n-th power of
I(G) in Fp[[G]].

We will prove that the ideals In(G) form an open neighbourhood basis at 0. First,
we need the following two lemmas:

Lemma 4.2.2. Let G be a finite p-group. Then In(G) = 0 for all sufficiently large
n.
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Proof. If G is a finite p-group, so is Fp[[G]] ∼= Fp[G]. For any n ≥ 0, let

In(G) = A0 ⊃ A1 ⊃ · · · ⊃ As = {0}

be a composition series of In(G) as a G-module. If s = 0, we are done. Suppose
s > 0. We claim that the factors Ak/Ak−1 are isomorphic to Fp. By Lemma 2.6.6,
(Ak/Ak−1)

G is nonzero and hence Ak/Ak−1 must have a submodule isomorphic to Fp
where G acts trivially. Since Ak/Ak−1 is irreducible, this submodule is Ak/Ak−1.

G acts trivially on In(G)/A1, so

ga ≡ a (mod A1)

for all g ∈ G and all a ∈ In(G). Thus, for all g ∈ G, (g − 1)In(G) ⊆ A1 and hence
In+1(G) ⊆ A1. This implies the claim.

Lemma 4.2.3. If G is a finitely generated pro-p group, then the index [Fp[[G]] : In(G)]
is finite for all n ≥ 1.

Proof. By Lemma 4.1.5, [Fp[[G]] : I(G)] is finite, so it’s enough to prove that [In(G) :
In+1(G)] is finite for all n ≥ 1. We will use induction.

Let s1, . . . , sm denote the generators of G. We put

xi = si − 1, i = 1, . . . ,m, In = In(G).

I. n = 1. We define

A1 = Fp x1 + . . .+ Fp xn.

Since A1 is finite and I2 is closed,

A1 + I2 =
⋃
a∈A1

a+ I2

is also closed. Clearly, A1+I
2 ⊆ I. Let’s see that I ⊆ A1+I

2. Note that {s1, . . . , sm}−
1 ⊆ A1 + I2. Consider the following identity:

g1g2 − 1 = (g1 − 1)(g2 − 1) + g1 − 1 + g2 − 1. (4.1)

This shows that ⟨s1, . . . , sm⟩− 1 ⊆ A1+ I
2, where ⟨s1, . . . , sm⟩ is the group generated

by si. Since A1 + I2 is closed and G ↪→ Fp[[G]], we have that G − 1 ⊆ A1 + I2, and
thus SpanFp

(G− 1) ⊆ A1 + I2. Now, for every g − 1 ∈ G− 1 and every g′ ∈ G,

g′(g − 1) = (g′g − 1)− (g′ − 1) ∈ SpanFp
(G− 1),

so SpanFp
(G− 1) = SpanFp[G](G− 1). Since Fp[G] is dense in Fp[[G]],

I = SpanFp[[G]](G− 1) ⊆ A1 + I2.
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This proves the case n = 1.

II. Assume that In−1/In is finite. Let

In−1 = An−1 + In (4.2)

be a decomposition of finite abelian groups with An−1 finite. Multiplying by I, we
see that

In ⊇ IAn−1 + In+1 ⊇ A1An−1 + In+1.

Again, since A1An−1 is finite and In+1 is closed, A1An−1 + In+1 is a closed subset of
In. Now repeat the argument used in the first case to see that A1An−1 + In+1 ⊆ In:
by Equation (4.2), we see that

(si − 1)In−1 = (si − 1)An−1 + (si − 1)In ⊆ An−1A1 + In+1.

Using Equation (4.1) and a closure argument, we deduce that (G−1)In−1 ⊆ A1An−1+
In+1. As in the previous case, this implies that SpanFp[G] ((G− 1)In−1) ⊆ A1An−1 +

In+1 and, since Fp[G] is dense in Fp[[G]],

SpanFp[[G]]

(
(G− 1)In−1

)
⊆ An−1A1 + In+1.

Since A1An−1 + In+1 is closed, we see that In ⊆ A1An−1 + In+1. This implies that
In/In+1 is finite.

Now, we can prove the following theorem:

Theorem 4.2.4. Let G be a finitely generated pro-p group. Then {In(G)
∣∣ n ∈ Z+}

is an open neighbourhood basis at 0 ∈ Fp[[G]].

Proof. By Lemma 4.2.3, the ideals In(G) have finite index in Fp[[G]] and therefore
are open. Consider the maps

φU : Fp[[G]] −→ Fp
[
G⧸U

]
,

with U ∈ UG. The set {ker(φU)
∣∣ U ∈ UG} is a neighbourhood basis at 0. Thus, it

remains to show that for every U ∈ UG, there is an n ∈ Z+ such that In(G) ⊆ ker(φU).

Take g1, . . . , gn ∈ G and λ0(g1 − 1)λ1 · · ·λn−1(gn − 1)λn ∈ (I(G))n. Then,

φU

(
λ0(g1 − 1)λ1 · · ·λn−1(gn − 1)λn

)
= λ0(g1 − 1)λ1 · · ·λn−1(gn − 1)λn ∈ In(G/U)

Since In(G/U) is a closed ideal and φU is continuous, φU(I
n(G)) ⊆ In(G/U). By

Lemma 4.2.2, In(G/U) = 0 for sufficiently large n. Therefore, In(G) ⊆ ker(φU) for
sufficiently large n.
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The descending filtration {In(G)
∣∣ n ∈ Z+} induces a filtration in G defined in the

following way:

Definition 4.2.5. The Zassenhaus filtration filtration of a pro-p group G is the
descending filtration given by

Gn := {g ∈ G
∣∣ g − 1 ∈ In(G)}

Remark. One can easily see using Equation (4.1) that Gn are normal subgroups of
G.

In fact, it can be proved (Theorem 7.11 in [Koc02]) that this filtration is an open
neighbourhood basis at 1. The Zassenhaus filtration will be used in the following
section to introduce the Golod-Shafarevich groups. Now we will introduce another
filtration that will be used on Chapter 6 in the solution of the class field tower problem.

Let G be a pro-p group. Write Fr0(G) = G and Frn(G) = Fr
(
Frn−1(G)

)
for n ≥ 1.

Note that Frn(G) are pro-p since they are closed subgroups of a pro-p group. This
is known as the Frattini series. One can show that G is finitely generated if, and
only if, Frn(G) is open in G for all n ≥ 0. In this case,

⋂
n≥0 Fr

n(G) = {1} and

{Frn(G)
∣∣ n ≥ 0} is an open neighbourhood basis at 1. The proof of these facts can

be found in [Lub82] and [Sem02].

4.3 The Golod-Shafarevich Inequality

In this section we will define Golod-Shafarevich groups using the Zassenhaus filtration
introduced in Section 4.2. The Golod-Shafarevich inequality will give us a sufficient
condition for a pro-p group to be Golod-Shafarevich, and hence infinite.

Assume that we have a finitely generated pro-p group G and a minimum presentation

1 R F G 1. (4.3)

Recall that the generator rank d(G) := dimFp(H
1(G)) equals the minimum number of

generators of G. Since the presentation (4.3) is minimal, d(G) = d(F ). We write d =
d(G) for simplicity. Recall also that the relation rank r(G) := dimFp(H

2(G)) equals
the minimum number of relations of G. Again, for simplicity, we write r = r(G).

Definition 4.3.1. The level of r ∈ R is the unique positive integer m such that
r ∈ Fm \ Fm+1, where {Fn

∣∣ n ∈ Z+} is the Zassenhaus filtration of F . We wite
lv(r) = m.

Let E ⊆ R be a generating system of relations of G with respect to the presentation
(4.3). We introduce the following notations:
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an =

{
dimFp

(
In(G)⧸In+1(G)

)
if n ≥ 1

1 if n = 0.

En = {r ∈ E
∣∣ lv(r) = n}, n ≥ 1.

rn =

{∣∣En∣∣ if n ≥ 1,
1 if n = 0.

Note that the definition of an = dimFp(I
n(G)/In+1(G)) also generalizes for n = 0 if

we define I0(G) := Fp[[G]], as Lemma 4.1.5 tells us that dimFp(Fp[[G]]/I(G)) = 1.
Note also that the sets En can be chosen to be finite because of our assumptions. We
have the following lemma:

Lemma 4.3.2. Assume the above setting and define

bn :=
n∑
k=0

ak.

Then,

−bn−1d+
n∑
k=0

bkrn−k ≥ 1

for all n ≥ 1.

The proof of this lemma is rather long and complicate. The main idea is to establish
an isomorphism between the complete group algebra Fp[[F ]] of a free pro-p group F
and the Magnus algebra Fp(I) defined in Section 2.2, consisting on the formal power
series in non-commutative variables xi with coefficients in Fp. The explanation on
how to construct this isomorphism, as well as the proof of this theorem, can be found
on pages 68-71 in [Koc02].

A direct consequence of this lemma is the following theorem. To formulate it, we
define the following Hilbert series:

HilbA(t) =
∞∑
n=0

ant
n, HilbR(t) =

∞∑
n=1

rnt
n.

Theorem 4.3.3. In the above setting, we have(
1− dt+HilbR(t)

)
· HilbA(t)

1− t
≥ 1

1− t
,

where 1
1−t =

∑
n≥0 t

n.
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Proof. Recall that given two formal series F (t) =
∑

n≥0 fnt
n and G(t) =

∑
n≥0 gnt

n,
we say that F (t) ≥ G(t) if fn ≥ gn for all n ≥ 0. Computing the products of the
formal series involved in the inequality we obtain that(

r0 − dt+HilbR(t)
)
· HilbA(t)

1− t
= 1 +

∞∑
n=1

(
−bn−1d+

n∑
k=0

bkrn−k

)
tn.

The claim follows from Lemma 4.3.2.

Definition 4.3.4. Let G be a finitely generated pro-p group with a presentation as
in (4.3) and assume E ⊆ R is a minimum generating system of relations with respect
to that presentation. We say that G is a Golod-Shafarevich group if there exist a real
number τ ∈ (0, 1) such that 1− dτ +HilbR(τ) < 0.

Remark. This definition can be generalized to any abstract group G saying that G
is a Golod-Shafarevich group (with respect to p) if its pro-p completion Gp̂ is Golod-
Shafarevich. However, we are only interested in pro-p groups. Hence, from now on,
a Golod-Shafarevich group will refer to a Golod-Shafarevich pro-p group.

Lemma 4.3.5. Let G be a Golod-Shafarevich group and τ ∈ (0, 1) such that 1−dτ +
HilbR(τ) < 0. Then,

(i) HilbA(τ) diverges.

(ii) dimFp Fp[[G]] =∞.

Proof. (i) Observe that the series
∑

n≥0 t
n converges to 1/(1 − τ) when we evaluate

it at τ . Suppose that HilbA(τ) converges. Take the inequality in Theorem 4.3.3 and
evaluate it at τ . Since τ > 0 and all the series converge, the same inequality hols
after evaluating at τ . Then(

1− dτ +HilbR(τ)
)
· HilbA(τ) ≥ 1.

Note that a0 = 1 and an ≥ 0 for all n ≥ 0. Thus, HilbA(τ) > 0 and we get a
contradiction.

(ii) Since an = dimFp(I
n(G)/In+1(G)) for all n ≥ 0,

∑
n≥0 an = dimFp(Fp[[G]]). If

Fp[[G]] was finite-dimensional, HilbA(t) would be a finite sum, and therefore would
converge for any t ∈ (0, 1). From (i), HilbA(τ) diverges, so Fp[[G]] must be infinite-
dimensional.

Corollary 4.3.6. Golod-Shafarevich groups are infinite.

Proof. Let G be a Golod-Shafarevich group. If G was finite, it would have finitely
many open subsets and hence UG would be finite. But then,

Fp[[G]] = lim←−
U∈UG

Fp
[
G⧸U

]
⊆
∏
U∈UG

Fp
[
G⧸U

]
would be finite dimension, contradicting Lemma 4.3.5. Thus, G must be infinite
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Now we turn to the famous inequality d2/4 > r for Golod-Shafarevich pro-p groups
that is used in the solution of the class field tower problem:

Theorem 4.3.7 (Golod-Shafarevich inequality). Let G be a finitely generated pro-p
group with d > 1. If

d2

4
> r,

then G is Golod-Shafarevich.

Proof. Suppose we have a minimum presentation of G as in (4.3). Let E ⊆ R be
a minimum generating system of relations with respect to that presentation. Then,∑

n≥1 rn =
∣∣E∣∣ = r. Note first that r1 = 0, that is, E has no relations of level 1. This

could easily be seen by the isomorphism between Fp[[G]] and the Magnus algebra
Fp(x1, . . . , xd), as a level 1 relation would allow us to express one of the generators xi
as a linear combination of the others, contradicting the minimality of Fp(x1, . . . , xd)
and hence the minimality of F . Therefore, for any τ ∈ (0, 1), we have

1− dτ +HilbR(τ) ≤ 1− dτ + rτ 2. (4.4)

If d = 2, necessary r = 0, and we see that any τ ∈ (1/2, 1) satisfies that 1−dτ < 0 and
hence G is Golod-Shafarevich. Suppose so that d ≥ 3. We proceed by contrapositive.
If G is not Golod-Shafarevich, then 1 − dτ + HilbR(τ) ≥ 0 for all τ ∈ (0, 1). In
particular, this is true for τ = 2/d ∈ (0, 1) (note that we have treated separately the
case d = 2). Combining this fact with Equation (4.4), we obtain that d2/4 ≤ r.

Remark. Using a similar reasoning we could prove that if d2/4 ≥ r, then G must
be infinite, but not necessary Golod-Shafarevich. This relies on the fact that if there
exist τ ∈ (0, 1) such that 1 − dτ + HilbR(τ) ≤ 0, then Lemma 4.3.5 also holds (we
don’t need the strict inequality as happens for Golod-Shafarevich groups). In this
case, the theorem would also hold for d = 1 (for more details see [Ers12]).
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Chapter 5

Results from Algebraic Number
Theory

In the first four chapters we focused our study on profinite groups to be able to define
a Golod-Shafarevich group and establish a criterion for a pro-p group to be Golod-
Shafarevich in terms of its generators and relations. Now we change the subject
completely. In this chapter we will give all the necessary results in algebraic number
theory to be able to formulate and solve the class field tower problem. We will
assume some basic knowledge of number fields and ring of integers. For instance, we
will assume the theory given in the first three chapters in [Mar18] and in the first two
chapters in [Jan96].

5.1 Splitting of Primes in Extensions

In this first section we will remind some of the general aspects of the splitting of
primes in a finite extension of number fields. This will help us introduce the notation
we will follow in the next sections.

Let K be a number field. We denote by OK its ring of integers. For every nonzero
prime ideal p of OK and any real constant c ∈ (0, 1), the function |α|p = cordp(α) for
α ∈ K∗ (and |0|p = 0) defines a nonarchimedean valuation on K. We call this a
p-adic valuation. For any two different primes ideals p and q, a p-adic valuation and
q-adic valuation are inequivalent.

On the other side, any embedding σ of K into R or C give rise to an archimedean
valuation by putting |α|σ = |σ(α)|, where | · | is the usual absolute value on R or C.
Two embeddings give rise to equivalent valuations if, and only if, they are complex-
conjugates.

Ostrowski’s theorem tells us that any valuation on K is equivalent to a p-adic valua-
tion or to a valuation coming from a real or complex embedding of K. An equivalence
class of valuations on K is called a prime of K. By tradition, a prime is called an
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infinite prime if it contains an archimedean valuation, and a finite prime otherwise.
We shall now describe how primes split when extended to a finite extension L of K.
Let’s begin with finite primes.

Every finite prime of K can be uniquely identified with a nonzero prime ideal p of
OK . We can describe how a prime splits when extended in L by describing how p
splits when extended in OL. From now on, the term “prime ideal” will be used to
mean ”nonzero prime ideal”.

Fix a prime ideal p of Ok. We denote by pOL the ideal generated by p in OL. If a
prime ideal P of OL divides pOL, we say that P lies over p or that p lies under P.
Every prime ideal of OL lies over a unique prime ideal of OK and every prime ideal
of OK lies under at least one prime ideal of OL.

The primes lying over p are exactly the ones which occur in the prime decomposition
of pOL. The exponent with which they occur are called the ramification indices.
Thus, if Pe is the exact power of P dividing pOL, then e is the ramification index of
P over p, denoted by e(P|p). We say that p is unramified if e(P|p) = 1 for all prime
ideals P of OL lying over p, and ramified otherwise.

IfP is a prime ideal ofOL lying over p, the residue fieldOK/p is canonically embedded
into the residue field OL/P. The degree of this extension is called the inertial degree
of P over p, and it is denoted by f(P|p). The inertial degree is always finite, since it
is bounded by [L : K].

Notice that e and f are multiplicative in towers: if pK ⊂ pL ⊂ pE are prime ideals of
the ring of integers of three number fields K ⊂ L ⊂ E, then

e(pE|pK) = e(pE|pL)e(pL|pK),
f(pE|pK) = f(pE|pL)f(pL|pK).

Ramification indices, inertial degrees and the degree of the extension L/K are related
by the following formula:

Theorem 5.1.1. Let n be the degree of L over K and let P1, . . . ,Pr be the prime
ideals of OL lying over p. Denote by e1, . . . , er and f1, . . . , fr the corresponding ram-
ification indices and inertial degrees. Then,

r∑
i=1

eifi = n.

We say that p splits completely if e(P|p) = f(P|p) = 1 for all prime ideals P of OL
lying over p. Theorem 5.1.1 tells us that this is equivalent to saying that there are
exactly [L : K] different primes ideals of OL lying over p.

If L is a Galois extension of K, it is easy to see that the Galois group of L over
K permutes the prime ideals of OL lying over p transitively. In other words, if P



CHAPTER 5. RESULTS FROM ALGEBRAIC NUMBER THEORY 46

is a prime ideal of OL lying over p and σ ∈ Gal(L/K), then σ(P) is also a prime
ideal of OL lying over p. Moreover, those are all prime ideals of OL lying over p.
As a consequence, all prime ideals lying over p have the same ramification index and
inertial degree.

Let’s now describe how infinite primes split when extended in a finite extension L
of K. An infinite prime p of K is called a real prime if the completion of K with
respect to any valuation contained in p is R. Similarly, p is called a complex prime
if the completion of K with respect to any valuation contained in p is C. Thus, the
real primes of K correspond to the distinct embeddings of K into R and the complex
primes correspond to the conjugate pairs of embeddings of K into C. We will describe
how p splits when extended in L by describing how its corresponding embedding can
be extended to different embeddings of L into R or C.

Consider first that p is a complex prime of K and let σ : K ↪→ C be an embedding of
K into C such that |σ(x)| is in p. As C is algebraically closed, we know from Galois
theory that there are exactly n = [L : K] different embeddings σi : L ↪→ C such that
σi|K = σ. No two σi can be conjugates, as then they could not agree on K. Hence,
they represent n distinct complex infinite primes P1, . . . ,Pn of L. We can write

p = P1 · · ·Pn

to indicate that the Pi are the primes of L extending p. In this case, we define the
ramification indices e(Pi|p) and the inertial degrees f(Pi|p) to be one. We will say
that the complex prime p is unramified in L (because all ramification indices are one).
Thus, in this case the formula

∑n
i=1 eifi = n holds.

Consider now that p is a real prime of K and let σ : K ↪→ R be the corresponding
embedding. Regarding σ as an embedding from K into C, we can apply Galois theory
again to assure the existence of exactly n = [L : K] different extensions of σ to L,
some of which may have an image insider R. List the extensions of σ as

σ1, . . . σr, σr+1, σr+1, . . . σr+s, σr+s,

where σi(L) ⊂ R for 1 ≤ i ≤ r and σr+j, σr+j give s pairs of complex conjugate
embeddings of L into C. Note that r + 2s = n. This give rise to r distinct real
primes P1, . . . ,Pr and s distinct complex primes Pr+1, . . . ,Pr+s of L extending p.
We define the ramification indices as follows: if Pi is a real prime of L lying over p,
we set e(Pi|p) = 1. If Pr+j is a complex primes, we set e(Pr+j|p) = 2. We define all
inertial degrees to be one. Thus, we formally write

p = P1 · · ·PrP
2
r+1 · · ·P2

r+s.

Note that the we still have the formula
∑r+s

i=1 eifi = n.
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5.2 Galois Theory Applied to Prime Decomposi-

tion

In this section we will apply Galois theory to the general problem of determining
how primes of a number field split in an extension field. We will find connections
between the ramification indices and the inertial degrees introduced in the previous
section with some subgroups of the Galois groups of this extension. Some parts of our
discussion will be valid for both finite and infinite primes, although we will mostly
restrict to finite primes, as the notions of Frobenius automorphism and Artin map
are directly related to finite primes. In this section, all finite primes of a number field
K may be identified with the corresponding prime ideal of OK .

Let K and L be number fields, and assume that L is a Galois extension of K. Let
G be the Galois group of L over K and assume that the degree of the extension is
n = [L : K]. Let p be a finite prime of K. Recall that all primes P of L lying over p
have the same ramification index e and inertial degree f . Thus, if there are r of such
primes P, by Theorem 5.1.1, ref = n.

Definition 5.2.1. For each prime P of L lying over p, we define the decomposition
group as

D = D(P|p) = {σ ∈ G
∣∣ σ(P) = P }

and the inertia group as

E = E(P|p) = {σ ∈ G
∣∣ σ(α) ≡ α (mod P) ∀ α ∈ OL } .

Remark. D and E are subgroups of G with E ⊆ D, as the condition σ(P) = P can
be expressed as σ(α) ≡ 0 (mod P) if, and only if, α ≡ 0 (mod P).

The elements of D induce automorphisms of the field OL/P in a natural way: Every
σ ∈ G restricts to an automorphism of OL and, if σ ∈ D, the induced mapping
OL → OL/P has kernel P. Thus, each σ ∈ D induces an automorphism σ of OL/P
that makes the following diagram commutative:

OL OL

OL⧸P
OL⧸P

σ

σ

Moreover, it is clear that σ fixes the subfield Ok/p pointwise since σ fixes K. Thus,
σ is an element of the Galois group G of OL/P over OK/p. In other words, we have
a mapping D → G, and it is easy to see that it is a group homomorphism. The
kernel of this morphism is easily seen to be E. This information is summarized in
the following lemma:
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Lemma 5.2.2. The mapping

D −→ G
σ 7−→ σ

is a group homomorphism with kernel E.

This shows that E is a normal subgroup of D. We will see that D → G is actually
onto, and hence D/E → G is a group isomorphism.

Definition 5.2.3. The decomposition field LD is the subfield of L fixed by D and
the inertia field LE is the subfield of L fixed by E.

In general, we adopt the following notation: For a subgroup H of G, LH denotes the
fixed field of H, and PH = P ∩ LH is the unique prime ideal of OLH

lying under
P. Clearly, PH lies over p and OLH

/PH is an intermediate field between OL/P and
OK/p.

We can now state the main result:

Theorem 5.2.4. With the notations above, we have the following:

DEGREES L P
RAMIFICATION

INDICES
INERTIAL
DEGREES

e e 1

LE PE

f 1 f

LD PD

r 1 1

K p

Proof. We begin by showing that [LD : K] = r. By Galois theory we know that
[LD : K] is the same as the index of D in G. As D fixes P, each coset σD, σ ∈ G,
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sends P to σ(P). It is clear that σD = τD if, and only if σ(P) = τ(P). This
establishes a one-to-one correspondence between the left cosets σD and the prime
ideals σ(P). As we explained in the previous section, G permutes the prime ideals of
OL lying over p transitively. Hence, {σ(P)

∣∣ σ ∈ G} are exactly all the prime ideals
of OL lying over p. This shows what we wanted.

Next we show e(PD|p) = f(PD|p) = 1. Note first that P is the only prime of OL
lying over PD, since such primes are necessarily permuted transitively by the Galois
group of L over LD; this group is D, which fixes P. It follows by Theorem 5.1.1 that

[L : LD] = e(P|PD)f(P|PD).

Since we have shown that [LD : K] = r and we know that [L : K] = ref , we have
that [L : LD] = ef . Moreover, since the ramification indices and inertial degrees are
multiplicative in towers, e(P|PD) and f(P|PD) cannot exceed e and f respectively.
Hence, e(P|PD) = e, f(P|PD) = f , and we obtain that

e(PD|p) = f(PD|p) = 1.

Next we show that f(P|PE) = 1. By definition, this means showing that OL/P is
the trivial extension of OLE

/PE. We will do this by showing that the Galois group
of OL/P over OLE

/PE is trivial. To do this, we will show that for each θ ∈ OL/P,
the polynomial (x − θ)m has coefficients in OLE

/PE for some m ≥ 1. It will follow
that every member of the Galois group sends θ to another root of (x − θ)m, which
can only be θ. This will prove what we want.

Fix any α ∈ OL corresponding to θ ∈ OL/P. Clearly the polynomial

g(x) =
∏
σ∈E

(x− σ(α))

has coefficients in OLE
, as each element of E = Gal(L/LE) fixes the coefficients of g.

Reducing modulo P we find that g ∈ (OL/P)[x] actually has coefficients in OLE
/PE.

But, by the definition of E, all σ(α) are send to θ when reduced modulo P. Hence,
g(x) = (x− θ)m, where m =

∣∣E∣∣. That completes the proof that f(P|PE) = 1.

Using that f(PD|p) = 1 and the multiplicativity in towers, we get that f(PE|PD) =
1. Thus, by Theorem 5.1.1 we must have that [LE : LD] ≥ f . But by Lemma 5.2.2,
D/E is embedded in G, which is a group of order f , and hence [LE : LD] = [D : E] ≤
f . Thus, [LE : LD] = f . Using Theorem 5.1.1 again, we obtain that e(PE|PD) = 1.
Finally, we easily obtain that [L : LE] = e and e(P|PE) = e by considering the
degrees and ramification indices already established.

Corollary 5.2.5. D is mapped onto G by the natural map σ 7→ σ. Hence, D/E ∼= G
is cyclic of order f .

Proof. We have already seen that D/E is embedded in G. Moreover, both groups
have order f , since [D : E] = [LE : LD]. The fact that G is cyclic is a consequence of
being a Galois group of a finite extension of finite fields.
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The following special case indicates a reason for the terms “decomposition field” and
“inertia field”. Even though this corollary won’t be needed in Chapter 6, we still
present it for completeness.

Corollary 5.2.6. Suppose D is a normal subgroup of G. Then p splits into r distinct
primes in LD. If E is also normal in G, then each of them remains prime (is “inert”)
in LE. Finally, each one becomes an eth power in L.

Proof. If D is normal in G, then LD is a Galois extension of K. We know that PD

has ramification index and inertial degree 1, and hence so does any other prime P′
D

of LD lying over p. By Theorem 5.1.1, there must be r primes of LD lying over p.
It follows that there must be exactly r primes in LE lying over p, since this is true
for both LD and L. This implies that each prime P′

D of LD lying over p lies under a
unique prime P′

E of LE. If E is normal in G, then LE is Galois over K, and hence
e(P′

E|p) = e(PE|p) = 1. This shows that e(P′
E|P′

D) = 1, and thus P′
D is inert in LE.

Finally, by multiplicativity of the ramification index, we deduce that P′
E becomes an

eth power in L.

Corollary 5.2.7. Let L/K be a Galois extension of number fields. A finite prime
p of K is unramified in L if, and only if, for all finite primes P of L lying over p,
E(P|p) = {id}.

Proof. The finite prime p is unramified in L if, and only if, e(P|p) for all finite primes
P of L lying over p. We have seen that e(P|p) is the degree of the extension L/LE.
Thus, this extension is trivial if, and only if, the inertia group E(P|p) is trivial.

Definition 5.2.8. We say that an extension of number fields L/K is unramified if
every prime of K (finite and infinite) is unramified in L. More generally, if S is a
set of primes of K, we say that L/K is unramified outside S if all primes of K not
belonging to S are unramified in L.

We will now prove two properties about the compositum and lifting of unramified
Galois extensions of number fields. This property will be very useful in Chapter 6.
First, we will need the following lemmas from Galois theory:

Lemma 5.2.9. If L/K is Galois, then every lifting LF/F is Galois. In this case,
the map

Gal(LF/F ) ↪−→ Gal(L/K)
σ 7−→ σ|L

is a well defined group monomorphism.

Lemma 5.2.10. The compositum of Galois extensions L/K and F/K is Galois. In
this case, the map

Gal(LF/K) ↪−→ Gal(L/K)×Gal(F/K)
σ 7−→ (σ|L , σ|F )

is a well defined group monomorphism.
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Theorem 5.2.11. Let L/K be an unramified Galois extension of number fields and
F a finite extension of K. Then LF/F is unramified.

Proof. Let’s first see that any finite prime of F is unramified in LF . Let p be a finite
prime of F and P a finite prime of LF lying over p. Note that P ∩ OL is a finite
prime of L lying over the finite prime P∩OK of K, and that e(P∩OL|P∩OK) = 1.
Take σ ∈ E(P|p). Then, for all α ∈ OL ⊆ OLF , we have σ(α) = σ|L(α) ≡ α
(mod P). As σ|L(α)−α ∈ OL, we also have that σ|L(α) ≡ α (mod P∩OL). Hence,
σ|L ∈ E(P∩OL|P∩OK). By Corollary 5.2.7, σ|L = id and by Lemma 5.2.9, σ = id.
This shows that e(P|p) = 1 and thus LF/F is unramified at the finite primes.

Let’s now see that any infinite prime of F is unramified in LF . Let p be an infinite
prime of F and P an infinite prime of LF lying over p. By Section 5.1, we know that
p correspond to an embedding σ of F into C and P corresponds to an embedding τ of
LF into C with τ |F = σ. If p is a complex prime, p is unramified, so suppose that p is
a real prime, i.e. σ(F ) ⊂ R. We must show that τ(LF ) ⊂ R to see that e(P|p) = 1.
Note that τ |L corresponds to an infinite prime of L lying over an infinite prime of K
corresponding to τ |K . Note also that τ |K = σ|K is a real embedding and, since L/K
is unramified, the image of τ |L must also lie inside R. Now take any α ∈ FL and
write α =

∑
i βiγi with βi ∈ L and γi ∈ F . Then

τ(α) =
∑
i

τ(βi)τ(γi) =
∑
i

τ |L(βi)σ(γi) ∈ R.

This implies that τ(LF ) ⊂ R and hence e(P|p) = 1.

Theorem 5.2.12. Let L/K and F/K be Galois extensions of number fields. Let S
be a set of primes of K. Suppose L/K and F/K are unramified outside S. Then,
LF/K is also unramified outside S.

Proof. For the case of finite primes, take a finite prime p /∈ S of K and let P be
a prime of LF lying over p. Then, P ∩ OL and P ∩ OF are finite primes of L and
F lying over p respectively. Take σ ∈ E(P|p). Using the same argument as in the
previous proof, one can see that σ|L ∈ E(P ∩ OL|p) and σ|F ∈ E(P ∩ OF |p). Since
L/K and F/K are unramified at p, we have that σ|L = idL and σ|F = idF . Then, by
Lemma 5.2.10, σ = id and e(P|p) = 1.

For the case of infinite primes, let P be an infinite prime of LF lying over an infinite
prime p /∈ S of K. p corresponds to an embedding σ : K ↪→ C and P corresponds to
an embedding τ : LF ↪→ C with τ |K = σ. Suppose p is a real prime (otherwise we
already know it is unramified). The restriction of τ to L and F correspond to infinite
primes of L and F lying over p. Since p is unramified in L and F , τ(L), τ(F ) ⊂ R.
Writing any element of LF in terms of elements of L and F we deduce that τ(FL) ⊂ R
and so e(P|p) = 1.
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Corollary 5.2.13. Let L/K and F/K be unramified Galois extensions of number
fields. Then, LF/K is unramified.

Proof. Apply Theorem 5.2.12 with S = ∅.

Assume L/K is a Galois extension of number fields and P a finite prime of L lying
over a finite prime p of K. We are interested in knowing what happens to the groups
D(P|p) and E(P|p) when we replace P by another prime P′ of L lying over the same
p. As explained in Section 5.1, P′ = σ(P) for some σ ∈ G = Gal(L/K). It is easy to
see that

D(σ(P)|p) = σD(P|p)σ−1,

E(σ(P)|p) = σE(P|p)σ−1.

Thus, D and E are just replaced by conjugate subgroups of G. In particular, we see
that when G is abelian, the groups D(P|p) and E(P|p) depend only on p, not on P.

5.3 The Frobenius Automorphism and the Artin

Map

In this section we will introduce two notions that play an important role in class
field theory: the Frobenius automorphism and the Artin map. This map will help us
understand some important properties of the Hilbert class field, as we will explain in
Section 5.4.

Assume that L/K is a Galois extension of number fields, and let P be a finite prime
of L lying over a finite prime p of K. Assume that p is unramified in L, so that
E(P|p) is trivial. In this case, we have an isomorphism from the decomposition
group D = D(P|p) to the Galois group G of OL/P over OK/p. G is cyclic of order
f(P|p), and has a special generator: the mapping which sends every x ∈ OL/P to
x||p||, where ||p|| :=

∣∣OK/p∣∣. The corresponding automorphism ϕ ∈ D satisfies that

ϕ(α) ≡ α||p|| (mod P)

for every α ∈ OL. Since p is unramified, ϕ is the only element in D with this property,
and in fact the only element in G (this property clearly implies that ϕ ∈ D).

Definition 5.3.1. The described automorphism is called the Frobenius automor-
phism. We denote it by ϕ(P|p) to indicate its dependence with P and p.

Lemma 5.3.2. Let σ ∈ Gal(L/K). Then σ(P) also lies over p and

ϕ(σ(P)|p) = σϕ(P|p)σ−1.
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Proof. For every α ∈ OL, we have ϕ(σ(P)|p)(α) − α||p|| ∈ σ(P). Substituting α by
σ(α) and applying σ−1 we obtain that (σ−1ϕ(σ(P)|p)σ) (α) − α||p|| ∈ P for every
α ∈ OL, and hence ϕ(P|p) = σ−1ϕ(σ(P)|p)σ.

We have already seen that all primes over p are of the form σ(P) for some σ ∈ G =
Gal(L/K). Thus, the conjugacy class of ϕ(P|p) is uniquely determined by p. In
particular, when G is abelian, φ(P|p) itself is uniquely determined by the unramified
prime p. This ϕ satisfies the same congruence for all primes lying over it, and hence
it satisfies

ϕ(α) ≡ α||p|| (mod pOL).

Part of the significance of the Frobenius automorphism is that indicates how p splits
in L, as its order is the inertial degree. Thus, for example, an unramified prime p
splits completely in the Galois extension L if, and only if, ϕ(P|p) = id for all P lying
over p.

Assume now that L is an abelian extension of K, that is, a Galois extension of K with
abelian Galois group. The ideal group IK is the group of fractional ideals of K, i.e.,
the group of OK-submodules of K. As happens with the ideals of OK , any fractional
ideal can be uniquely express as a product (with integer exponents) of prime ideals
of OK . Hence, IK is a free abelian group generated by the prime ideals of OK . Let
P be the set of all (nonzero) prime ideals of OK and S the subset of P of all primes
that ramify in L. Denote by ISK the subgroup of IK generated by P \ S. Then, an
element of ISK has the form

U =
∏

p∈P\S

pa(p) (5.1)

where almost all the exponents are zero.

Definition 5.3.3. We define the Artin map as the following group morphism:

ΦL/K : ISK −→ Gal(L/K)

U 7−→
∏

p∈P\S

ϕ(P|p)a(p)

where U has the form (5.1) and P is any prime of L lying over p.

Of course, when p is a prime ideal of OK , Φ(p) is the Frobenius automorphism of p.
One consequence of the Frobenius density theorem is stated in the following:

Theorem 5.3.4. The Artin map carries ISK onto Gal(L/K).

The statement and proof of the Frobenius density theorem, as well as the proof of
this theorem can be found in Chapter IV in [Jan96].
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5.4 The Hilbert Class Field

The aim of this section is to introduce the notion of the Hilbert class field of a given
number field. This notion comes from a general theory know as class field theory,
which studies the abelian extensions of global and local fields. The label “class field”
refers to a field extension satisfying a technical property that is historically related to
ideal class groups. One of the main theorems in class field theory is that class fields
are the same as abelian extensions. The the Hilbert class field will be a particular
class field of special interest.

We will not give a deep study of the notions and theorems of class field theory here,
as this would be rather long and unnecessary. A more detailed study of class field
theory is given in Chapter V in [Jan96]. We will just give a quick summary on the
notion of Hilbert class field, some of its properties, and how is it related with the
previous sections.

In 1898, Hilbert stated the following conjecture:

Conjecture 5.4.1. For any number field K there is a unique finite extension L such
that

(i) L/K is Galois and Gal(L/K) ∼= Cl(K).

(ii) L/K is unramified, and every abelian unramified extension of K is a subfield of
L.

(iii) for every finite prime p of K, the inertial degree f(P|p) (for any prime P of L
lying over p) is the order of p in Cl(K).

(iv) every ideal of OK becomes principal in OL.

Hilbert proved the existence of such extension when the class number (the cardinality
of the class group Cl(K)) was 2 and [K : Q] = 2. In 1907, Philipp Furtwängler
proved the first two parts of Hilbert’s conjecture in general, and used this to prove
the quadratic reciprocity law in all number fields in 1913. He proved the third part in
1911 and the fourth part in 1930, after Artin reduced it to a purely group-theoretic
statement.

Property (ii) is normally used to characterize this extension:

Definition 5.4.2. Let K be a number field. The Hilbert class field of K, denoted by
H(K), is the maximal unramified abelian extension of K.

Since all primes of K are unramified in H(K), property (iii) implies that a finite
prime p of K splits completely on H(K) if, and only if, its principal. Consider the
Artin map associated to the extension H(K)/K:
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ΦH(K)/K : IK −→ Gal(H(K)/K)∏
p∈P

pa(p) 7−→
∏
p∈P

ϕ(P|p)a(p)

Note that, since no finite prime ramifies in K, the Artin map is defined for all nonzero
fractional ideals of K (that is, S = ∅). As we saw in the previous section, the order
of the Frobenius automorphism ϕ(P|p) of a given finite prime p of K is the inertial
degree f(P|p). Hence, it is clear that p is in ker(ΦH(K)/K) if, and only if, p is a
principal ideal. This property holds not only for the prime ideals of OK , but also for
all nonzero fractional ideals of K. Thus, the kernel of the Artin map is precisely the
set of nonzero principal fractional ideals of K. Since the Artin map is surjective, the
induce map

ΦH(K)/K : Cl(K) −→ Gal(H(K)/K)

U 7−→ ΦH(K)/K(U)

establishes an isomorphism between the class group of K and the Galois group
Gal(H(K)/K). The notion of Hilbert class field and properties (i) and (ii) in Con-
jecture 5.4.1 will be widely used in the following chapter.
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Chapter 6

The Class Field Tower Problem

In this finial chapter we will use all the theory developed in this thesis to formulate an
solve the class field tower problem. We begin by formulating the following problem:

Problem 6.0.1 (Embeddability problem). Given a number field K, does it always
exist a finite extension L of K such that the ring of integers of L is a principal ideal
domain?

If K is a number field, the extent to which OK fails to be a PID is measured by the
class group Cl(K). In particular, OK is a PID if, and only if, Cl(K) is trivial. The
class group of K is always finite and, by class filed theory, is isomorphic to the Galois
group Gal(H(K)/K). Thus, OK is a PID if, and only if, its Hilbert class field of K
is K itself. This brings us to consider another problem. To state it, we need the
following definition:

Definition 6.0.2. Let K be a number field. Denote H0(K) := K and Hn(K) :=
H(Hn−1(K)) for n ≥ 1. The class field tower of K is the following tower of extensions:

K = H0(K) ⊆ H1(K) ⊆ H2(K) ⊆ . . .

We say that the class field tower is finite if it stabilizes at some point, i.e., if there
exists m ∈ N such that Hn(K) = Hm(K) for all n ≥ m. It is said to be infinite
otherwise.

Problem 6.0.3 (Class field tower problem). Is the class field tower of any number
field K always finite?

Problems 6.0.1 and 6.0.3 are equivalent in the following sense:

Lemma 6.0.4. Let K be a number field. Then, the class field tower of K is finite if,
and only if, there exists a finite extension L/K with Cl(L) = {1}.

Proof. Assume that the class field tower is finite. Then, there exists m ∈ N with
H(Hm(K)) = Hm(K) and hence Cl(Hm(K)) = {1}. Since the Hilbert class field of
any number field is a finite extension of itself, Hm(K)/K is finite.
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Assume now that L is a finite extension of K with trivial class group and consider
the tower of fields

L = LK ⊆ LH1(K) ⊆ LH2(K) ⊆ . . .

For every n ∈ N, we now that Hn+1(K)/Hn(K) is an abelian unramified extension.
Then, LHn+1(K)/LHn(K) is abelian by Lemma 5.2.9 and unramified by Theorem
5.2.11. In particular, LH1(K) is an abelian unramified extension of L. But Cl(L) =
{1}, so H(L) = L and L does not have nontrivial abelian unramified extensions.
This implies that LH1(K) = L. Repeating this argument inductively we find that
LHn(K) = L for all n ≥ 0. Since Hn(K) ⊆ LHn(K) = L, every field in the class field
tower of K is contained in L. L is a finite extension of K, so the class field tower of
K must be finite.

6.1 A Criterion for Infinite Class Field Towers

Our goal now is to prove that there exists number fields K with an infinite class field
tower. Computing the class field of a given number is a rather difficult task. Its a bit
easier to control the p-class field, defined in the following:

Definition 6.1.1. Let K be a number field and p a fixed prime number. The p-
class field of K, denoted by Hp(K), is the maximal unramified Galois extension of K
such that the Galois group Gal(Hp(K)/K) is an elementary abelian p-group, i.e., an
abelian group where every nontrivial element has order p.

Remark. Most authors define the p-class field of K to be the maximal unramified
abelian p-extension of K (without the extra condition that the corresponding Galois
group is elementary). We will use this alternative notion of p-class field, as this will
allow us to apply some of the results seen in the previous chapters.

Theorem 6.1.2. The p-class field of a given number field K always exists.

Proof. Let K be a number field and let L1 and L2 be unramified Galois extensions
of K with Gal(L1/K),Gal(L2/K) elementary abelian p-groups. Then L1L2 is also
a Galois extension of K. By Lemma 5.2.10, Gal(L1L2/K) is an elementary abelian
p-group and by Corollary 5.2.13, L1L2/K is an unramified extension. In other words,
the compositum of unramified elementary abelian p-extension is also an unramified
elementary abelian p-extension. Thus, we define Hp(K) to be the compositum of all
subextensions L of H(K) with Gal(L/K) an elementary abelian p-group. Clearly,
Hp(K) satisfies the desired property.

Definition 6.1.3. Let K be a number field. Denote H0
p(K) := K and Hn

p (K) :=
Hp(Hn−1

p (K)) for n ≥ 1. The p-class field tower of K is the following tower of
extensions:
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K = H0
p(K) ⊆ H1

p(K) ⊆ H2
p(K) ⊆ . . .

As with the class field tower, we say that the p-class field tower is finite if it stabilizes
at some point and infinite otherwise.

The following lemma will allow us to reduce the problem of proving that a certain
class field tower is infinite to prove that the p-class field tower is infinite:

Lemma 6.1.4. Let K be a number field and p a prime number. Then, Hn
p (K) ⊆

Hn(K) for any n ≥ 1.

Proof. We will prove it by induction. By construction, Hp(K) ⊆ H(K). Assume that
Hn
p (K) ⊆ Hn(K). Consider the following diagram of extensions:

Hn
p (K)

Hn(K)

Hn+1
p (K)

Hn+1
p (K)Hn(K)

Since Hn+1
p (K)/Hn

p (K) is an unramified abelian extension, the same is true for the
lifting Hn+1

p (K)Hn(K)/Hn(K). Then, by maximality of the Hilbert class field,

Hn+1
p (K)Hn(K) ⊆ H(Hn(K)) := Hn+1(K).

This proves the statement.

Corollary 6.1.5. Let K be a number field. If the p-class field tower of K is infinite
for some prime number p, then the class field tower of K must also be infinite.

Definition 6.1.6. Let K be a number field and p a prime number. We define the
following extension of K:

H∞
p (K) :=

⋃
n≥0

Hn
p (K).

Clearly, the p-class field tower of K is finite if, and only if, H∞
p (K) is a finite extension

of K. Our goal now will be to give sufficient conditions for H∞
p (K) to be infinite. In

the following we will prove that H∞
p (K) is the maximal unramified pro-p extension of

K (by pro-p extension we mean Galois extension with Galois group a pro-p group).
This extension is not necessary abelian. If it was, it would be contained in the Hilbert
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class field of K and hence it would always be finite. For a possibly infinite extension
L of K, we say that L/K is unramified if all of its finite subextensions are unramified.
We begin with the following lemma:

Lemma 6.1.7. Let K be a number field and p a prime number. Then, the extensions
Hn
p (K)/K are Galois.

Proof. We proceed by induction on n. Clearly, Hp(K) is Galois over K. Sup-
pose Hn

p (K)/K is a Galois extension. We will see that for any σ ∈ Gal(K/K),

σ
(
Hn+1
p (K)

)
= Hn+1

p (K) and hence Hn+1
p (K)/K must be Galois.

Let σ ∈ Gal
(
K/K

)
. Since Hn

p (K)/K is Galois, σ|Hn
p (K) ∈ Gal(Hn

p (K)/K). We have
the following diagram of extensions:

K

Hn
p (K)

Hn+1
p (K) σ

(
Hn+1
p (K)

)

We claim that σ
(
Hn+1
p (K)

)
/Hn

p (K) is unramified. For the finite primes, notice
that σ permutes the prime ideals p of OHn

p (K). Such prime ideals p decompose as

P1 · · ·Pr when extended in Hn+1
p (K), as they are unramified. Then, σ(p) decompose

as σ(P1) · · · σ(Pr) when extended in σ
(
Hn+1
p (K)

)
, and hence finite primes of Hn

p (K)

are unramified in σ
(
Hn+1
p (K)

)
.

For the infinite primes, notice that σ permutes the embeddings of Hn
p (K) into C

when acting by composition: if τ : Hn
p (K) ↪→ C is one of these embeddings, so is

τσ−1 : Hn
p (K) ↪→ C. If τ extends to r = [Hn+1

p (K) : Hn
p (K)] different embeddings

of Hn+1
p (K) into C (where no two are complex conjugates), namely τ1 . . . , τr, then

τ1σ
−1, . . . τrσ

−1 are the embeddings of σ
(
Hn+1
p (K)

)
into C extending τσ−1 (again, no

two embeddings are complex conjugates). This shown that infinite primes of Hn
p (K)

are unramified in σ
(
Hn+1
p (K)

)
.

Now recall that Hn+1
p (K)/Hn

p (K) is Galois, and hence so is σ
(
Hn+1
p (K)

)
/Hn

p (K).
Sigma induces an isomorphism of groups between their Galois groups acting by con-
jugation:

Gal
(
Hn+1
p (K)/Hn

p (K)
)
−→ Gal

(
σ
(
Hn+1
p (K)

)
/Hn

p (K)
)

τ 7−→ στσ−1

This shows that Gal
(
Hn+1
p (K)/Hn

p (K)
) ∼= Gal

(
σ
(
Hn+1
p (K)

)
/Hn

p (K)
)
. Therefore,

σ
(
Hn+1
p (K)

)
is a unramified Galois extension of Hn

p (K) such that the corresponding
Galois group is an elementary abelian p-group. By maximality of the p-class field, we
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must have σ
(
Hn+1
p (K)

)
⊆ Hn+1

p (K) and, by injectivity of σ, this must be an equality.
This proves the lemma.

Lemma 6.1.8. Let K be a number field and p a prime number. Then, H∞
p (K)/K is

an unramified pro-p extension.

Proof. First, notice that Hn
p (K) is a finite unramified extension of K. This is a

consequence of the fact that ramification indices are multiplicative in towers. Let
L ⊆ H∞

p (K) be a finite extension of K. Then, L ⊆ Hn
p (K) for some n ∈ N and hence

L/K is unramified. This shows that H∞
p (K)/K is unramified.

By Lemma 6.1.7, the extensions Hn
p (K)/K are Galois and

Gal
(
Hn+1
p (K)/K

)
⧸Gal

(
Hn+1
p (K)/Hn

p (K)
) ∼= Gal

(
Hn
p (K)/K

)
,

so
∣∣Gal

(
Hn+1
p (K)/K

) ∣∣ =
∣∣Gal

(
Hn+1
p (K)/Hn

p (K)
) ∣∣∣∣Gal

(
Hn
p (K)/K

) ∣∣. Thus, ap-

plying induction we see that Gal
(
Hn+1
p (K)/K

)
are finite p-groups. As H∞

p (K) =⋃
n≥0Hn

p (K), by Galois theory, we have that H∞
p (K)/K is Galois and

Gal
(
H∞
p (K)/K

)
= lim←−

n≥0

Gal
(
Hn
p (K)/K

)
(for more details, see Chapter 2 in [Koc02]). This shows that H∞

p (K)/K is a pro-p
extension.

Now we can prove the following theorem:

Theorem 6.1.9. Let K be a number field and p a prime number. Then, H∞
p (K) is

the maximal unramified pro-p extension of K.

Proof. We already know that H∞
p (K) is an unramified pro-p extension of K. Hence,

we only need to prove that is maximal. Let L be an unramified Galois extension
of K such that G = Gal(L/K) is a pro-p group. Let L1 be the fixed field of
Fr(G) ⊆ G. Since Fr(G) is normal in G, L1 is Galois over K and Gal(L1/K) ∼=
Gal(L/K)/Gal(L/L1). Since Fr(G) is closed in G, by the fundamental theorem of Ga-
lois theory for (possibly) infinite extension, Gal(L/L1) = Fr(G). Hence, Gal(L1/K) ∼=
G/Fr(G) is an elementary abelian p-group. Now note that L1 is unramified over K.
This implies that L1 ⊆ Hp(K), that is a finite extension of K. In particular G/Fr(G)
is finite and, since d(G) = d (G/Fr(G)), G is finitely generated. As we explained in
the end of Section 4.2, in this case, the Frattini series {Frn(G)

∣∣ n ∈ N} form an open
neighbourhood basis at 1 ∈ G. Let Ln be the fixed field of Frn(G). We will prove by
induction that Ln ⊆ Hn

p (K) for all n ≥ 1.

We have already seen that L1 ⊆ H1
p(K). Suppose Ln ⊆ Hn

p (K). L/Ln is Galois

with Gal(L/Ln) = Frn(G). We have that Frn+1(G) := Fr (Frn(G)) is normal in
Frn(G). Then, Ln+1 is a Galois extension of Ln with Galois group Gal(Ln+1/Ln) ∼=
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Gal(L/Ln)/Gal(L/Ln+1) = Frn(G)/Frn+1(G), and thus Ln+1 is an unramified ele-
mentary abelian p-extension of Ln. Consider the following diagram of extensions:

Ln

Hn
p (K)

Ln+1

Ln+1Hn
p (K)

The lifting Ln+1Hn
p (K)/Hn

p (K) of Ln+1/Ln is also an unramified elementary abelian
p-extension, and hence Ln+1Hn

p (K) ⊆ Hn+1
p (K). This shows that Ln+1 ⊆ Hn+1

p (K).

Let’s now see that L =
⋃
n≥1 Ln. Clearly,

⋃
n≥1 Ln ⊆ L. Take α ∈ L. Then

K(α) is a finite extension of K, and hence Gal(L/K(α)) is an open subgroup of
Gal(L/K). Then, since the Frattini series form an open neighbourhood basis at 1,
there exists n ∈ N with Frn(G) ⊆ Gal(L/K(α)). The corresponding fields fixed
by these subgroups satisfy the reverse inclusion, i.e., K(α) ⊆ Ln. This shows that
L ⊆

⋃
n≥1 L.

Finally, since Ln ⊆ Hn
p (K) for all n ≥ 1, we have that

L =
⋃
n≥1

Ln ⊆
⋃
n≥1

Hn
p (K) = H∞

p (K).

This finishes the proof.

Let GK,p := Gal
(
H∞
p (K)/K

)
. Proving that H∞

p (K)/K is an infinite extension is
equivalent to proving that GK,p is infinite.

We claim that Frattini quotient GK,p/Fr(GK,p) is isomorphic to Gal (Hp(K)/K). In-
deed, let L be the fixed field of the subgroup Fr(GK,p). Since GK,p/Fr(GK,p) is an
elementary abelian p-group and L is unramified, L ⊆ Hp(K). On the other side,
Gal (Hp(K)/K) ∼= Gal

(
H∞
p (K)/K

)
/Gal

(
H∞
p (K)/Hp(K)

)
is an elementary abelian

p-group. Since the Frattini subgroup Fr(GK,p) is the smallest normal subgroup of
GK,p such that the quotient is elementary abelian, Fr(GK,p) ⊆ Gal

(
H∞
p (K)/Hp(K)

)
,

and hence Hp(K) ⊆ L.

Recall that Hp(K) is the maximal subextension of the Hilbert class field of K such
that its Galois group over K is an elementary abelian p-group. Thus, Gal(Hp(K)/K)
is the maximal elementary abelian quotient of Gal(H(K)/K). Since the subgroup
lattice and the quotient lattice of a finite abelian group are isomorphic, every quo-
tient of Gal(H(K)/K) is isomorphic to one of its subgroups. This implies that the
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the maximum elementary quotient Gal(Hp(K)/K) of Gal(H(K)/K) is isomorphic
to its maximal elementary subgroup: Gal(H(K)/K)[p]. Taking into account that
Gal(H(K)/K) ∼= Cl(K), we obtain that

Gal(Hp(K)/K) ∼= Cl(K)[p].

Let ρp(K) := dimFp (Cl(K)[p]) be the p-rank of the class group of K. With all the
considerations made above, and recalling that the generator rank of a pro-p group is
the same as the generator rank of its Frattini quotient, we obtain that

d(GK,p) = d
(
GK,p⧸Fr(GK,p)

)
= d (Gal (Hp(K)/K)) = ρp(K). (6.1)

The following theorem establishes a relation between the generator and relation ranks
of GK,p and the number of infinite primes of K:

Theorem 6.1.10 (Shafarevich). Let K be a number field and ν(K) the number of
infinite primes of K. Then, for any prime number p we have

0 ≤ r(GK,p)− d(GK,p) ≤ ν(K)− 1.

This theorem was originally proved by Shafarevich in [Sha63]. An proof in English of
this inequality can be found in Section 11.3 in [Koc02] as a consequence of Theorems
11.5 and 11.8.

Combining Theorem 6.1.10 with Theorem 4.3.7, we obtain the following criterion for
the group GK,p to be infinite:

Corollary 6.1.11 (Golod-Shafarevich). In the notations above, assume that

ρp(K) > 2 + 2
√
ν(K) + 1.

Then GK,p is Golod-Shafarevich and therefore infinite.

Proof. By Equation (6.1), ρp(K) = d(GK,p). Rearranging the terms and squaring
this inequality we obtain that

d(GK,p)
2

4
− d(GK,p) > ν(K).

Using Theorem 6.1.10 we deduce that

d(GK,p)
2

4
> r(GK,p) + 1.

Hence d(GK,p) > 1 and d(GK,p)
2/4 > r(GK,p). Theorem 4.3.7 implies the claim.
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6.2 Particular Examples

To complete the negative solution to the class field tower problem it suffices to exhibit
examples of number fields satisfying the inequality in Corollary 6.1.11. We will see
that for any prime number p and any n ∈ N, there exist a number field K = K(p, n)
such that [K : Q] = p and ρp(K) ≥ n. Since ν(K) ≤ [K : Q] (because K has [K : Q]
different embedding into C), we can choose any n > 2 + 2

√
p+ 1. Then, K(p, n) will

satisfy the inequality in Corollary 6.1.11 and hence will have an infinite class field
tower.

6.2.1 Number fields with infinite 2-class field tower

Let’s start with the case p = 2. Take any n + 1 distinct prime numbers q1, . . . , qn+1

congruent to 1 modulo 4 (the Dirichlet’s theorem on arithmetic progressions as-
sures us that there are infinitely many primes congruent to 1 modulo 4). Let K =
Q(
√
q1 · · · qn+1) and L = Q(

√
q1, . . . ,

√
qn+1). Note that [K : Q] = 2.

Lemma 6.2.1. The extension L/K is unramified.

Proof. Note that L is a totally real number field, i.e., all its infinite primes are real.
Therefore, L/K is unramified at the infinite primes. To see that is also unramified
at the finite primes, we will first see that L/Q is unramified outside {q1, . . . , qn+1}.
Then, we will see that the ramification indexes of the primes qi in L are 2 and use
this to deduce that L/K is unramified. Consider the following diagram:

Q

Q(
√
q1) Q(

√
q2, . . . ,

√
qn+1)

L = Q(
√
q1, . . . ,

√
qn+1)

By Theorem 5.2.12, if a prime number q ∈ Z ramifies in L, it must also ramify at
Q(
√
q1) or at Q(

√
q2, . . . ,

√
qn+1). Thus, applying this reasoning repeatedly, q ramifies

in L if, and only if, q ramifies in Q(
√
qi) for some i. The discriminant of Q(

√
qi)/Q

is qi, and hence the only finite prime of Q that ramifies in Q(
√
qi) is qi. This tells us

that the only prime numbers that ramified at L are precisely q1, . . . , qn+1.

Let’s now calculate the ramification indexes of qi in L. Let Qi be a prime of L lying
over qi. Let F = Q(

√
q1, . . .

√
qi−1,

√
qi+1, . . .

√
qn+1) and consider the group morphism

given by Lemma 5.2.10:
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Φ : Gal(L/Q) −→ Gal
(
Q(
√
qi)/Q

)
×Gal (F/Q)

σ 7−→
(
σ|Q(

√
qi), σ|F

)
Let σ ∈ E(Qi|qi). Then, using the same argument we used in the proof of Theorem
5.2.11, σ|Q(

√
qi) ∈ E(Qi ∩Q(

√
qi)|qi) and σ|F ∈ E(Qi ∩ F |qi). In other words,

Φ(E(Qi|qi)) ⊆ E(Qi ∩Q(
√
qi)|qi)× E(Qi ∩ F |qi).

We know that the ramification index of qi in Q(
√
qi) is 2 and, by the argument used in

the beginning of the proof, e(Qi ∩F |qi) = 1. Using that the cardinality of the inertia
subgroup is equal to the corresponding ramification index, and that Ψ is injective, we
deduce that ∣∣E(Qi|qi)

∣∣ ≤ ∣∣E(Qi ∩Q(
√
qi)|qi)

∣∣∣∣E(Qi ∩ F |qi)
∣∣ = 2 · 1 = 2.

Since qi ramifies in L, we must have e(Qi|qi) = 2.

Finally, note that the only possible finite primes of K that could ramify in L are
those lying over the primes qi. Let qi of be the unique prime of K lying under Qi.
The discriminant of K/Q is q1 · · · qn+1, so qi ramifies in K. We must have that
e(qi|qi) = 2. By the multiplicativity of the ramification indexes, e(Qi|qi) = 1. This
proves the statement.

L is an abelian extension of K with Galois group isomorphic to (Z/2Z)n. Since L/K
is unramified, we must have L ⊆ H(K). By the isomorphism between the subgroup
lattice and the quotient lattice of a finite abelian group, Gal(H(K)/K) must have a
subgroup isomorphic to (Z/2Z)n. Hence, ρ2(K) = dimF2 (G[2]) ≥ dimF2 ((Z/2Z)n) =
n (it can be shown that, in fact, ρ2(K) = n). For any n ≥ 6 > 2+ 2

√
3, by Corollary

6.1.11, Q(
√
q1 · · · qn) has an infinite class field tower.

6.2.2 Number fields with infinite p-class field tower for odd
primes p

Now let’s do the case where p is an arbitrary odd prime number. Take any n + 1
distinct prime numbers q1, . . . , qn+1 congruent to 1 modulo p. Let Li = Q(ζqi)
be the qth cyclotomic field and let Ki be the unique subfield of Li that has in-
dex p over Q. Let L = L1 · · ·Ln+1 and M = K1 . . . Kn+1. Since Li ∩ Lj = Q
for i ̸= j, Gal(L/Q) ∼=

⊕
Gal(Li/Q), and hence Gal(M/Q) ∼=

⊕
Gal(Ki/Q) ∼=

(Z/pZ)n+1. Clearly, Gal(M/Q) has a subgroup of index p which does not con-
tain Gal(Ki/Q) for any i (for instance, one could take the subgroup generated by
(1, 0, . . . , 0, 1), (0, 1, 0, . . . , 0, 1), . . . , (0, . . . , 0, 1, 1) ∈ (Z/pZ)n+1). The field K fixed
by this subgroup has index p over Q and is not contained in the compositum of any
proper subset of {K1, . . . , Kn+1}.

Lemma 6.2.2. The extensions KKi/K are unramified.
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Proof. To see that infinite primes of K don’t ramify in KKi, note that both K and
Ki are Galois over Q (since they are subextensions of an abelian Galois extension).
Then, they must be either totally real or totally imaginary, but since they have odd
degree over Q and the number of complex embedding is even, K and Ki must be
totally real. Then, its compositum KKi is also totally real, so infinite primes of K
don’t ramify in KKi.

For the finite primes, note that the only finite prime of Q that ramifies in Li is qi.
Then, by Theorem 5.2.12, L/Q is unramified outside S = {q1, . . . , qn+1}, and hence
so is any subextension of L. Therefore, KKi/K may only be ramified a the finite
primes qi of K laying over qi. If KKi/K was ramified at some prime qi, then so
would be M/K. This would be a contradiction since M = K

∏
j ̸=iKj, but KKj/K

are unramified at qi for j ̸= i and then so is their compositum M/K.

The fields KKi are unramified over K, so their compositumM is also unramified over
K. In addition M/K is abelian with Galois Gal(M/K) ∼= (Z/pZ)n. Then, we must
have M ⊆ H(K). Using again the correspondence between quotients and subgroups
of a finite abelian group, we deduce that Gal(H(K)/K) has a subgroup isomorphic to
(Z/pZ)n. This shows that ρp(K) = dimFp (Cl(K)[p]) ≥ n (again, one could show that
the equality holds). For any n > 2 + 2

√
p+ 1, the field K defined above has infinite

p-class field tower and thus cannot be embedded in a greater number field with class
number 1.
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