
Aeroelastic Study of the
Flutter Conditions of an
Aircraft Wing

Document:

Appendices

Author/Authoress:

Guillermo Adroher Bolla

Director/Directress - Codirector/Codirectress:

Dr. David Roca Cazorla - Dr. Juan Carlos Cante Teran

Degree:

Bachelor’s Degree in Aerospace Technologies Engineering

Examination Session:

Spring, 2022

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

Contents

List of Figures IV

List of Tables V

Listings VI

A Structural Theory 1

A.1 Structural Basics . 1

A.1.1 Timoshenko beam theory . 1

A.1.2 Reissner-Mindlin plate theory . 9

A.1.3 Shear locking . 15

A.2 Computational Approach . 16

A.2.1 Beam development . 17

A.2.2 Flat shell development . 23

A.2.3 Computational elements . 29

B Aerodynamic Theory 33

B.1 Theory Basics . 33

B.1.1 Vortex quantities . 33

B.1.2 The Biot-Savart law . 35

B.1.3 The potential flow problem . 37

B.1.4 Zero-thickness cambered wing at AoA–lifting surfaces 40

B.1.5 Vortex wake . 42

B.1.6 The Kutta-Joukowsky theorem . 43

B.2 Computational Approach . 46

B.2.1 Numerical panel methods . 46

B.2.2 Singularity elements . 48

B.2.3 The Horseshoe Vortex Method . 49

B.2.4 The Vortex Lattice Method . 55

C Validation of Separate Codes 61

C.1 Structural Codes . 61

C.1.1 Beam element . 61

I

CONTENTS

C.1.2 Plate element . 64

C.2 Aerodynamic Codes . 66

C.2.1 Vortex Lattice Method . 66

D Aeroelastic Code 69

References 94

II

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

List of Figures

A.1 Beam local axes considering an arbitrary I cross-section. (Source: [1]) 1

A.2 Plane x′y′ deflection comparison between the Euler-Bernoulli and the Timoshenko theories.

(Source: [1]) . 2

A.3 Rigid-body rotation deformation (left) and warping phenomenon (right). (Source: [1]) 3

A.4 Beam decomposition of the different types of deformation. (Source: [1]) 3

A.5 Rotation of the transverse cross-section as the Timoshenko theory states. (Source: [2]) 4

A.6 Thin-plate middle plane and its local axes. (Source: [3]) . 9

A.7 Plane y′z′ mid-plane deflection comparison between the Kirchhoff and the Reissner-Mindlin

theories. (Source: [3]) . 10

A.8 Flat shell decomposition of the different types of deformation. (Source: [3]) 10

A.9 Rotation of the transverse cross-section as the Reissner-Mindlin theory states. (Source: [2]) . 11

A.10 Shear locking leads to over-stiff situations with wrong results in the FEM analysis. (Source: [4]) 16

A.11 Shear correction parameter kz for typical cross sections. (Source: [2]) 18

A.12 Two-noded linear element variables and node ordering together with its shape functions.

(Source: [1]) . 30

A.13 Bilinear quadrilateral element variables and node ordering. (Source: [3]) 31

B.1 Vortex filament of strength Γ. (Source: [6]) . 33

B.2 Closed curve C enclosing a simply connected surface S in the flow field. The differential ds is

analogous to dl. (Source: [5]) . 34

B.3 Vortex tube made of vortex filaments. (Source: [7]) . 35

B.4 Velocity at point P induced by a vortex segment. (Source: [7]) 36

B.5 Nomenclature used to define the potential flow problem. (Source: [5]) 38

B.6 (a) Streamlines and equipotential lines for a 2D vortex. (b) Radial variation of the tangential

velocity component induced by a vortex. (Source: [7]) . 39

B.7 Lifting surface model of a 3D wing. (Source: [7]) . 40

B.8 Nomenclature used for the definition of the lifting wing problem. (Source: [7]) 41

B.9 Vortex representation for the lifting surface model. (Source: [7]) 41

B.10 Effect of different values of circulation on the potential flow over a given airfoil at a given angle

of attack. (Source: [6]) . 42

B.11 Different possible shapes of the trailing edge and their relation to the Kutta condition. (Source:

[6]) . 43

III

LIST OF FIGURES

B.12 Synthesis of lifting flow over a circular cylinder. (Source: [6]) 44

B.13 Flowchart for the numerical solution of the surface singularity distribution problem. (Source: [7]) 47

B.14 Influence of a rectilinear vortex ring. (Source: [7]) . 48

B.15 Representation of a horseshoe vortex element. (Source: [7]) 49

B.16 Horseshoe vortex singularity element. (Source: [7]) . 50

B.17 Horseshoe vortex model for solving the lifting-line problem. (Source: [7]) 51

B.18 Spanwise horseshoe vortex element with all the points and distances. (Source: [7]) 51

B.19 Vortex ring model for a thin lifting surface. (Source: [7]) . 56

B.20 Nomenclature for the vortex ring elements. (Source: [7]) . 57

B.21 Arrangement of vortex rings in a rectangular array. (Source: [7]) 57

B.22 Adding a vortex wake panel to fulfill the Kutta condition in the TE panels. (Source: [7]) . . . 59

C.1 Cantilever beam with uniform load along its longitudinal axis. 61

C.2 Vertical displacement along the longitudinal direction of the beam. 62

C.3 Internal forces along the longitudinal direction of the beam in the three directions. 63

C.4 Internal moments along the longitudinal direction of the beam in the three directions. 63

C.5 Plate’s vertical displacement distribution along its surface. 65

C.6 Plate’s maximum displacement as a function of the number of 2D elements. 65

C.7 Lift distribution along the wing computed using the developed VLM code. 67

C.8 Induced drag distribution along the wing computed using the developed VLM code. 67

C.9 Lift distribution along the wing computed using the VLM tutorial in EZASE NASA code.

(Source: [11]) . 68

C.10 Induced drag distribution along the wing computed using the VLM tutorial in EZASE NASA

code. (Source: [11]) . 68

IV

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

List of Tables

A.1 Gauss quadrature integration cases for two-noded linear elements. (Source: [1]) 30

A.2 Values of the coefficients for the shape functions at each node. (Source: [3]) 31

A.3 Gauss quadrature integration cases for bilinear quadrilateral elements. (Source: [3]) 32

C.1 Analytical and computational comparison of the results of a cantilever beam with uniform load. 62

C.2 Analytical and computational comparison of the results of an all-edges-clamped plate with

uniform load. 64

C.3 EZASE and project codes comparison of the main aerodynamic forces together with the

analytical values. 66

V

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

Listings

D.1 Main script of the aeroelastic code developed to study the flutter instability. 69

D.2 Function that discretizes the mesh and computes the boundary conditions. 77

D.3 Function that computes the influence coefficients matrix. 82

D.4 Function that computes the induced velocity by a quadrilateral vortex element. 83

D.5 Function that computes the stiffness and mass matrices of the structural plate element. . . . 84

D.6 Function that computes the stiffness and mass matrices of the spar beam elements. 87

D.7 Function that computes the stiffness and mass matrices of the rib beam elements. 89

D.8 Function that computes matrix D. 91

D.9 Function that computes matrix Q. 91

D.10 Function that computes matrix E. 91

D.11 Function that computes the fixed and free DOFs vectors. 92

D.12 Function that plot the eigenmodes. 92

D.13 Function that computes the eigenvalues and eigenvectors of a matrix modal equation. 93

VI

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

Appendix A

Structural Theory

This appendix exposes the mathematical formulation of the structural models for beam and plate elements,

together with the computational implementation in MATLAB language.

A.1 Structural Basics

In this section, two theories are exposed, the Timoshenko for beams and the Reissner-Mindlin for flat plates.

Both are described from the hypotheses to the FEM application, going through the mathematical formulation.

A.1.1 Timoshenko beam theory

The Timoshenko beam theory comes from the Euler-Bernoulli model, erasing one hypothesis from the latter

that make the results more accurate.

Hypotheses of Timoshenko

To begin with the Euler-Bernoulli basis is exposed. The beam local axes are depicted in Figure A.1.

Figure A.1 Beam local axes considering an arbitrary I cross-section. (Source: [1])

1

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

Figure A.2 Plane x′y′ deflection comparison between the Euler-Bernoulli and the Timoshenko theories.
(Source: [1])

• For shear loads applied on y′ and bending moments about z′ [1]:

– Deflection uy′ of the points on a cross- section are small and equal to the deflection of the beam

axis.

– Lateral displacement uz′ is zero.

– Cross-sections to the beam axis remain plane.

– Cross-sections to the beam axis remain orthogonal to the beam axis after deformation.

• Equivalently, for shear loads applied on z′ and bending moments about y′ [1]:

– Deflection uz′ of the points on a cross- section are small and equal to the deflection of the beam

axis.

– Lateral displacement uy′ is zero.

At this point, the only difference between the Timoshenko model and the Euler-Bernoulli is the removal of

the last hypothesis when applying shear loads on y′ and bending moments about z′. Timoshenko erases

the restriction for the cross-sections to be orthogonal to the beam axis after deformation, obtaining a more

realistic model.

Now, twist is the only type of deformation which is not considered yet. The Saint-Venant theory is accurate

when considering twist, its hypotheses being the following.

• For beams with circular cross-section subjected to a twist moment about x′ [1]:

– The motion of each cross-section is a rigid body rotation about x′.

– All points in the cross-section remain plane (there are no displacements in the x′ direction).

When the cross-section of the beam is not circular, the last hypothesis is not true and displacements in the x′

direction appear. This type of displacements are called warping (see Figure A.3).

When considering the warping phenomenon in practice, a twist constant is created so to compute the

equivalent of the total deformation energy of the beam.

2

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

Figure A.3 Rigid-body rotation deformation (left) and warping phenomenon (right). (Source: [1])

Figure A.4 Beam decomposition of the different types of deformation. (Source: [1])

Local displacements and strain

The local displacements of the beam considering twist (rotation about x′ axis), bending moments (rotation

about y′ and z′ axes), shear loads (applied on y′ and z′ axes) and axial load (applied on x′ axis) are shown

below [2].

ux′ = ūx′ + z′θy′ − y′θz′

uy′ = ūy′ − z′θx′

uz′ = ū′
z + y′θx′

(A.1)

Where the different terms that appear mean the following1:

• ūx′ −→ deformation in the longitudinal x′ axis due to an axial load.

• ūy′ and ūz′ −→ deformation in the y′ and z′ axis due to shear loads on these axes.

• z′θy′ and y′θz′ −→ deformation due to bending moments around y′ and z′.

• z′θx′ and y′θx′ −→ deformation due to the twist moments around the longitudinal axis x′.

1The rotations are assumed to be small in magnitude and because of that the deformations are computed under the assumption
of small angles.

3

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

Figure A.5 Rotation of the transverse cross-section as the Timoshenko theory states. (Source: [2])

Oñate’s book nomenclature is not the same as in this project. The axes it uses are global while the

axes in here are local (’) and the vertical displacement in here is uz′ while in the book it is w

Having the displacement field, the strain tensor2 is easy to compute.

ε =

εx′

1
2γx′y′

1
2γx′z′

1
2γx′y′ εy′

1
2γy′z′

1
2γx′z′

1
2γy′z′ εz′

 (A.2)

Each term in the tensor can be computed as in [1],

εx′ =
∂ux′

∂x′ =
∂ūx′

∂x′ + z′
∂θy′

∂x′ − y′
∂θz′

∂x′

εy′ =
∂uy′

∂y′
= 0

εz′ =
∂uz′

∂z′
= 0

γx′y′ =
∂uy′

∂x′ +
∂ux′

∂y′
=

∂ūy′

∂x′ − θz′ − z′
∂θx′

∂x′ = −ϕz′ − z′
∂θx′

∂x′

γx′z′ =
∂uz′

∂x′ +
∂ux′

∂z′
=

∂ūz′

∂x′ + θy′ + y′
∂θx′

∂x′ = ϕy′ + y′
∂θx′

∂x′

γy′z′ =
∂uz′

∂y′
+

∂uy′

∂z′
= 0

(A.3)

It is worth noticing that the terms ϕy′ and ϕz′ refer to an additional due to the rotation of the transverse

cross-section. The total rotation is deduced from Figure A.5,

θ =
duz′

dx
+ ϕ (A.4)

2The diagonal elements give the normal or longitudinal strains in each direction while the non-diagonal terms refer to the
angular or shear strains.

4

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

thus it means the total rotation θ does not coincide with the slope of the linear distribution of the vertical

displacement uz′ along the x′ axis.

The displacements and the strains fields (Equations A.1 and A.3) can be written in vector form, it will help

later when talking about the FEM implementation.

{u′} =

ux′

uy′

uz′

 =

 1 0 0 0 z′ −y′

0 1 0 −z′ 0 0

0 0 1 y′ 0 0

︸ ︷︷ ︸

[S(y′,z′)]

ūx′

ūy′

ūz′

θx′

θy′

θz′

︸ ︷︷ ︸
{ū′(x′)}

(A.5)

{ε′} =

εx′

γx′y′

γx′z′

 =

 1 0 0 0 z′ −y′

0 1 0 −z′ 0 0

0 0 1 y′ 0 0

︸ ︷︷ ︸

[S(y′,z′)]

ūx′,x′

ūy′,x′ − θz′

ūz′,x′ + θy′

θx′,x′

θy′,x′

θz′,x′

︸ ︷︷ ︸
{ε̄′(x′)}

(A.6)

Note that the notation ∂ai

∂xj
= ai,j refers to the partial derivative of parameter ai with respect to xj .

Moreover, the local stresses vector form is also needed in further steps. In the following equation E is the

Young’s modulus, ν is the Poisson’s ratio and G is the Shear modulus3.

{σ′} =

σx′x′

τx′y′

τx′z′

 =

 E 0 0

0 G 0

0 0 G

︸ ︷︷ ︸

[C′]

εx′x′

γx′y′

γx′z′

 (A.7)

Equilibrium equation and principle of virtual work (PVW)

The strong form of the equilibrium equation comes from the linear momentum equation and states

ṗ′ = ∇x′ · σ′ + ρb′ + q′ (A.8)

where ṗ′ = ρdotu′ is the linear momentum, ρ is the density in kg/m3, b′ is the external body forces vector

in N/kg and q′ is the volume forces vector in N/m3.

The general boundary conditions are either prescribed displacements or external traction forces:

• Displacements: u′|x′∈Γu
= u′

p

• Traction forces: σ′ · n̂|x′∈Γσ
= t′

3The relation between them is G = E
2 (1+ν)

as isotropic materials are the only considered in this work.

5

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

Then, the principle of virtual work (PTW) gives the equation [1]

∫
Ω

{δε′}T {σ′} dΩ+

∫
Ω

{δu′}T ρ
{
ü′} dΩ =

∫
Ω

{δu′}T
(
ρ
{
b′
}
+ {q′}

)
dΩ+

∫
Γσ

{δu′}T {t′} dΓ (A.9)

For all δu′|x′∈Γu
= 0, and such that {δε′}T = {δux′,x′ , δux′,y′ + δuy′,x′ , δux′,z′ + δuz′,x′}

and assuming {δu′} = [S (y′, z′)] {δū′ (x′)} and {δε′} = [S (y′, z′)] {δε̄′ (x′)}

The LHS of the PVW equation gives the stiffness and inertial terms while the RHS gives the external body

and volume forces and the external surface forces applied over different cross-sections along the beam.

As what is sought in this work is to find the stiffness matrix and mass matrices so to perform a modal analysis

later, the focus is exclusively on the LHS. There are two integrals to compute4:

• Stiffness term: It is the first term of the PVW equation and depends on material and cross-section

parameters.

∫
Ω

{δε′}T {σ′} dΩ =

∫
ℓ

{δε̄′}T
(∫

A

[S]T [C′] [S]dA

)
︸ ︷︷ ︸

[C′]

{ε̄′} dℓ (A.10)

[
C

′]
=

∫
A

[S]T [C′] [S]dA =

EA 0 0 0 0 0

0 kyGA 0 0 0 0

0 0 kzGA 0 0 0

0 0 0 ktGJ 0 0

0 0 0 0 EIy′ 0

0 0 0 0 0 EIz′

(A.11)

Where Iy′ =
∫
A
z′2dA and Iz′ =

∫
A
y′2dA are the area inertias of the section, J =

∫
A

(
y′2 + z′2

)
dA =

Iy′ + Iz′ and ky, kz and kt are the shear and twist correction constants.

• Inertial term: It is the second term of the PVW equation and depends also on material and cross-section

parameters.

∫
Ω

{δu′}T ρ
{
ü′} dΩ =

∫
ℓ

{δū′}T
(∫

A

[S]Tρ[S]dA

)
︸ ︷︷ ︸

[ρ′]

{
ü
′}

dℓ (A.12)

[ρ′] =

∫
A

[S]Tρ[S]dA = ρ

A 0 0 0 0 0

0 A 0 0 0 0

0 0 A 0 0 0

0 0 0 J 0 0

0 0 0 0 Iy′ 0

0 0 0 0 0 Iz′

(A.13)

4The cross-section of the beam is symmetric so the coupling terms of both matrices are 0, giving as a result two diagonal
matrices.

6

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

The matrices are diagonal because of the symmetry of the cross-section about its two access. The shear

and mass centers coincide with the intersection of the symmetry axes and that is where the origin of

the local reference system is placed.

At this point, the LHS of the PVW equation yields:

∫
Ω

{δε′}T {σ′} dΩ+

∫
Ω

{δu′}T ρ
{
ü′} dΩ =

∫
ℓ

{δε′}T
[
C

′] {ε′} dℓ+ ∫
ℓ

{δu′}T [ρ′]
{
ü
′}

dℓ (A.14)

Decomposition of stiffness term

The stiffness term can be decomposed into different components. Each component refers to one of the types

of deformation which affect the beam. This way the term becomes

∫
ℓ
{δε′}T

[
C

′] {ε′} dℓ = ∫
ℓ
{δε̄′a}

T
[
C

′
a

]
{ε̄′a} dℓ+

∫
ℓ
{δε̄′b}

T
[
C

′
b

]
{ε̄′b} dℓ+∫

ℓ
{δε̄′s}

T
[
C

′
s

]
{ε̄′s} dℓ+

∫
ℓ
{δε̄′t}

T
[
C

′
t

]
{ε̄′t} dℓ

(A.15)

where

{ε′a} = {ūx′,x′}
[
C

′
a

]
= [EA] −−−−−−−−−−−−−−→ Axial

{ε′b} =

{
θy′,x′

θz′,x′

} [
C

′
b

]
=

[
EIy′ 0

0 EIy′

]
−−−−−−−→ Bending

{ε′s} =

{
ūy′,x′ − θz′

ūz′,x′ + θy′

} [
C

′
s

]
=

[
kyGA 0

0 kzGA

]
−−−−−−→ Shear

{ε′t} = {θx′,x′}
[
C

′
t

]
= [ktGJ] −−−−−−−−−−−−−→ twist

(A.16)

This decomposition of the stiffness term is a way to simplify the computation of the global matrix. As it is

defined in the computational methodology, not all the components are calculated using the same number of

Gauss points5.

Discretized displacements and strains

After the decomposition of the stiffness term, one can define the displacements and strain vectors in a

discretized form. This will help when writing the computational code.

{
ū′(e)

}
=
[
· · · N(e,i) . . .

]
...

û(e,i)

...

 (A.17)

5Shear locking needs to be avoided so to obtain a realistic result (see subsection A.1.3).

7

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

{
ε̄′(e)a

}
=
[
· · · B

′(e,i)
a . . .

]
...

û(e,i)

...

{
ε̄
′(e)
b

}
=
[
· · · B

′(e,i)
b . . .

]
...

û(e,i)

...

{
ε̄′(e)s

}
=
[
· · · B

′(e,i)
s . . .

]
...

û(e,i)

...

{
ε̄
′(e)
t

}
=
[
· · · B

′(e,i)
t . . .

]
...

û(e,i)

...

(A.18)

The second term in all the last discretization equations of element (e) is

{
· · · û(e,i) · · ·

}T

=

{
û
(e,i)
x′ û

(e,i)
y′ û

(e,i)
z′ θ̂

(e,i)
x′ θ̂

(e,i)
y′ θ̂

(e,i)
z′

}T

(A.19)

and the first terms are

[
· · · N(e,i) . . .

]
=
∑
i

N (e,i) 0 0 0 0 0

0 N (e,i) 0 0 0 0

0 0 N (e,i) 0 0 0

0 0 0 N (e,i) 0 0

0 0 0 0 N (e,i) 0

0 0 0 0 0 N (e,i)

[
· · · B

′(e,i)
a . . .

]
=
∑
i

[
N

(e,i)
,x′ 0 0 0 0 0

]
[
· · · B

′(e,i)
b . . .

]
=
∑
i

[
0 0 0 0 N

(e,i)
,x′ 0

0 0 0 0 0 N
(e,i)
,x′

]
[
· · · B

′(e,i)
s . . .

]
=
∑
i

[
0 N

(e,i)
,x′ 0 0 0 −N (e,i)

0 0 N
(e,i)
,x′ 0 N (e,i) 0

]
[
· · · B

′(e,i)
t . . .

]
=
∑
i

[
0 0 0 N

(e,i)
,x′ 0 0

]

(A.20)

where the positions of the shape functions and their derivatives depend on the DOFs which are affected by

each contribution. For example, the axial strain affects the first DOF (displacement in the x′ axis) or twist

affects the fourth DOF (rotation in the x′ axis).

Discretized FEM global matrix system

Finally, the discretized FEM global matrices (stiffness and mass) can be computed. All the terms below are

built using the same scheme: transposed rotation matrix, integral with the transposed matrix of the shape

functions or their derivatives multiplied by the characteristic matrix6 and the matrix of the shape functions

or their derivatives without transposing and, at the end, the rotation matrix without transposing.

[
M(e)

]
=
[
R̂(e)

]T ∫
ℓ(e)

[
N(e)

]T [
ρ′(e)

] [
N(e)

]
dℓ
[
R̂(e)

]
(A.21)

6The characteristic matrix refers to the density matrix in the mass case and to the type of deformation in the stiffness case.

8

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

Figure A.6 Thin-plate middle plane and its local axes. (Source: [3])

[
K(e)

a

]
=
[
R̂(e)

]T ∫
ℓ(e)

[
B′(e)

a

]T [
C

′(e)
a

] [
B′(e)

a

]
dℓ
[
R̂(e)

]
[
K

(e)
b

]
=
[
R̂(e)

]T ∫
ℓ(e)

[
B

′(e)
b

]T [
C

′(e)
b

] [
B

′(e)
b

]
dℓ
[
R̂(e)

]
[
K(e)

s

]
=
[
R̂(e)

]T ∫
ℓ(e)

[
B′(e)

s

]T [
C

′(e)
s

] [
B′(e)

s

]
dℓ
[
R̂(e)

]
[
K

(e)
t

]
=
[
R̂(e)

]T ∫
ℓ(e)

[
B

′(e)
t

]T [
C

′(e)
t

] [
B

′(e)
t

]
dℓ
[
R̂(e)

]
(A.22)

The stiffness matrix is, then, the sum of all the components (axial, bending, shear and twist). Once both

matrices are computed, one can run a modal analysis, for example.

A.1.2 Reissner-Mindlin plate theory

Although the Reissner-Mindlin theory comes from the Kirchhoff thin plate theory, the results are more precise

than the latter. There is a restriction of the model which is not considered.

Hypotheses of Reissner-Mindlin

Firstly, the Kirchhoff basis for thin plates is stated (based on [3]). The displacements are computed in the

middle plane (see Figure A.6), due to the thin thickness assumption.

• Points along the normal to the middle plane have the same vertical displacement (the thickness remains

constant during deformation).

• Normal stress component is negligible, σz ≈ 0 (plane stress assumption).

• A straight line normal to the undeformed middle plane remains straight after deformation.

• Points on the middle plane only move vertically (ūx′ = ūy′ = 0).

• A straight line normal to the undeformed middle plane remains normal to the deformed middle plane.

At this point, the only difference between the Reissner-Mindlin model and the Kirchhoff is the removal of

the last hypothesis. The Ressner-Mindlin formulation erases the restriction for a straight line normal to the

undeformed middle plane to remain normal to the deformed middle plane, thus a more realistic approximation

9

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

Figure A.7 Plane y′z′ mid-plane deflection comparison between the Kirchhoff and the Reissner-Mindlin
theories. (Source: [3])

Figure A.8 Flat shell decomposition of the different types of deformation. (Source: [3])

is considered.

Local displacements and strain

The local displacements of the flat shell considering bending moments (rotation about x′ and y′ axes), shear

loads (applied on z′) and membrane deformation (applied on x′ and y′ axes) are shown below [2].

ux′ = ūx′ + z′θy′

uy′ = ūy′ − z′θx′

uz′ = ū′
z

(A.23)

Each term in the tensor can be computed as in [3],

10

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

Figure A.9 Rotation of the transverse cross-section as the Reissner-Mindlin theory states. (Source: [2])

Oñate’s book nomenclature is not the same as in this project. The axes it uses are global while the

axes in here are local (’) and the vertical displacement in here is uz′ while in the book it is w

εx′x′ =
∂ux′

∂x′ =
∂ūx′

∂x′ + z′
∂θy′

∂x′

εy′y′ =
∂uy′

∂y′
=

∂ūy′

∂y′
− z′

∂θx′

∂y′

εz′z′ =
∂uz′

∂z′
= 0

γx′y′ =
∂uy′

∂x′ +
∂ux′

∂y′
=

∂ūy′

∂x′ +
∂ūx′

∂y′
+ z′

(
∂θy′

∂y′
− ∂θx′

∂x′

)
γx′z′ =

∂uz′

∂x′ +
∂ux′

∂z′
=

∂ūz′

∂x′ + θy′ = −ϕy′

γy′z′ =
∂uz′

∂y′
+

∂uy′

∂z′
=

∂ūz′

∂y′
− θx′ = −ϕx′

(A.24)

Analog to the Timoshenko beam case, the total rotation of the flat plate adds and additional term ϕ due to

the rotation of the transverse cross-section. In this case, as the plate is 2D, the equation is the same in the

x′z′ and the y′z′ planes and the derivative is partial.

θx =
∂uz′

∂x′ + ϕx′

θy =
∂uz′

∂y′
+ ϕy′

(A.25)

Following the same procedure as in the beam, the displacements and strains fields (Equations A.23 and A.24)

are organized in vector form.

{u′} =

ux′

uy′

uz′

 =

[D(z′)]︷ ︸︸ ︷ 1 0 0 0 z′ 0

0 1 0 −z′ 0 0

0 0 1 0 0 0

{ū′(x′,y′)}︷ ︸︸ ︷

ūx′

ūy′

ūz′

θx′

θy′

θz′

(A.26)

11

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

{ε′} =

εx′

εy′

γx′y′

γx′z′

γy′z′

θz′

=

[S(z′)]︷ ︸︸ ︷

1 0 0 0 0 0 z′ 0 0

0 1 0 0 0 0 0 −z′ 0

0 0 1 0 0 0 0 0 z′

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

{ε̄′(x′,y′)}︷ ︸︸ ︷

ūx′,x′

ūy′,y′

ūx′,y′ + ūy′,x′

ūz′,x′ + θy′

ūz′,y′ − θz′

θz′

θy′,x′

θx′,y′

θy′,y′ − θx′,x′

(A.27)

A fictitious strain component θz′ is added to the tensor.

The local stresses tensor in vector form is used in the next step so it is important to compute it.

{σ′} =

σx′x′

σy′y′

τx′y′

τx′z′

τy′z′

σ∗
t

=

C11 C12 0 0 0 0

C21 C22 0 0 0 0

0 0 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C∗
t

εx′x′

εy′y′a

γx′y′

γx′z′

γy′z′

θ∗z′

= [C′] {ε′}

[
C′

p

]
=

E

1− v2

 1 v 0

v 1 0

0 0 (1− v)/2

 ; [C′
s] = ksG

[
1 0

0 1

]
; ks =

5

6

(A.28)

Some important issues to mention are that σ∗ refers to the fictitious stress component,
[
C′

p

]
to the plane-stress

constitutive relation, [C′
s] to the shear stress-strain constitutive relation, and ks to the shear correction

factor7.

Equilibrium equation and principle of virtual work (PVW)

The flat plate’s strong form of the equilibrium equation and the PVW are the same as in the beam model

(see Equations A.8 and A.9). The only things that change are the matrices of the displacements and strains

derivatives.

For all δu′|x′∈Γu
= 0, and such that {δε′}T = {δεx′,x′ , δεy′,y′ , δγx′,y′ , δγx′,z′ , δγy′,z′ , δθz′}

and assuming {δu′} = [D (z′)] {δū′ (x′, y′)} and {δε′} = [S (z′)] {δε̄′ (x′, y′)}

The focus is again on the LHS of the PVW, having to compute the two terms, the stiffness and inertial.

Therefore, the formulation of the integrals gives:

• Stiffness term: The first term of the PVW equation, it depends on material and cross-section parameters.

7The Reissner-Mindlin theory considers a constant distribution for the shear stresses while the exact distribution is parabolic.

12

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

∫
Ω

{δε′}T {σ′} dΩ =

∫
S

{δε̄′}T
(∫ h/2

−h/2

[S]T [C′] [S]dz′

)
︸ ︷︷ ︸

[C′]

{ε̄′} dS (A.29)

[
C

′]
=
∫ h/2

−h/2
[S]T [C′] [S]dz′

= h

C11 C12 0 0 0 0 z′0C11 −z′0C12 0

C21 C22 0 0 0 0 z′0C21 −z′0C22 0

0 0 C33 0 0 0 0 0 z′0C33

0 0 0 ksC44 0 0 0 0 0

0 0 0 0 ksC55 0 0 0 0

0 0 0 0 0 C∗
t 0 0 0

z′0C11 z′0C12 0 0 0 0 r′2h C11 r′2h C12 0

−z′0C21 −z′0C22 0 0 0 0 r′2h C21 r′2h C22 0

0 0 z′0C33 0 0 0 0 0 r′2h C33

(A.30)

Where C11 = C22 = E
1−ν2 , C12 = C21 = Eν

1−ν2 , C33 = C44 = C55 = E
2 (1+ν) = G = C∗

t , r′2h =

1
h

∫ h/2

−h/2
z′2dz′ = h2

12 and z′0 = 1
h

∫ h/2

−h/2
z′dz′ = 0.

Being z′0 = 0 proves that the bending and membrane stresses and strains are uncoupled8.

• Inertial term: The second term of the PVW equation, it depends also on material and cross-section

parameters.

∫
Ω

{δu′}T ρ
{
ü′} dΩ =

∫
S

{δū′}T
(∫ h/2

−h/2

[S]Tρ[S]dz′

)
︸ ︷︷ ︸

[ρ′]

{
ü
′}

dS (A.31)

[ρ′] =

∫ h/2

−h/2

[S]Tρ[S]dz′ = ρh

1 0 0 0 z′0 0

0 1 0 −z′0 0 0

0 0 1 0 0 0

0 −z′0 0 r′2h 0 0

z′0 0 0 0 r′2h 0

0 0 0 0 0 0

(A.32)

The matrices erase the coupling terms (z′0 = 0) because of the symmetry of the cross-section about its

two access. The shear and mass centres coincide with the intersection of the symmetry axes and that is

where the origin of the local reference system is placed.

The LHS of the PVW equation becomes:

∫
Ω

{δε′}T {σ′} dΩ+

∫
Ω

{δu′}T ρ
{
ü′} dΩ =

∫
S

{δε′}T
[
C

′] {ε′} dS +

∫
S

{δu′}T [ρ′]
{
ü
′}

dS (A.33)

8Remember this happens if the centre of mass is located at the origin of the local reference frame (z′ = 0).

13

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

Decomposition of stiffness term

Here again the stiffness term can be decomposed into the different components which affect the total

deformation of the flat plate. In this case, the integral divides into

∫
S
{δε′}T

[
C

′] {ε′} dS =
∫
S
{δε′m}

T
[
C

′
m

]
{ε′m} dS +

∫
S
{δε′b}

T
[
C

′
b

]
{ε′b} dS+∫

S
{δε′s}

T
[
C

′
s

]
{ε′s} dS +

∫
S
{δε̄′t}

T
[
C

′
t

]
{ε̄′t} dS

(A.34)

where

{ε′m} =

ūx′,x′

ūy′,y′

ū′
x′,y + ūy′,x′

[
C

′
m

]
=

hE

1− ν2

 1 ν 0

ν 1 0

0 0 (1− ν)/2

 −−−−−−−→ Membrane

{ε′b} =

θy′,x′

θx′,y′

θy′,y′ − θx′,x′

[
C

′
b

]
=

h3E

12 (1− ν2)

 1 ν 0

ν 1 0

0 0 (1− ν)/2

 −−−−→ Bending

{ε′s} =

{
ūz′,x′ + θy′

ūz′,y′ − θx′

} [
C

′
s

]
=

5hE

12(1 + ν)

[
1 0

0 1

]
−−−−−−−−−−−−→ Shear

{ε̄′t} = {θz′}
[
C

′
t

]
=

5hE

12(1 + ν)
[1] −−−−−−−−−−−−−−−−−−→ Fictitious

(A.35)

As in the case of the beam resolution, the decomposition of the stiffness term seeks to avoid shear locking

and simplify the computational resolution.

Discretized displacements and strains

The discretization of the strains is analog to the one showed in Equation A.18. The only difference is that

the flat shell considers the membrane and fictitious strains instead of the axial and twist for the beam. The

displacements’ discretization is the same for the beam and for the flat shell (Equation A.17).

{
ε̄′(e)m

}
=
[
· · · B

′(e,i)
m . . .

]
...

û(e,i)

...

{
ε̄
′(e)
b

}
=
[
· · · B

′(e,i)
b . . .

]
...

û(e,i)

...

{
ε̄′(e)s

}
=
[
· · · B

′(e,i)
s . . .

]
...

û(e,i)

...

{
ε̄
′(e)
t

}
=
[
· · · B

′(e,i)
t . . .

]
...

û(e,i)

...

(A.36)

As the FEM DOFs for the beam and the flat shell are the same, equation A.19 can be applied in this case

too. Both developments consider 3D cases, so it does not change. However, the first terms in the previous

equation do change because now the element studied is 2D while in the other case it was 1D.

14

A.1. STRUCTURAL BASICS APPENDIX A. STRUCTURAL THEORY

[
· · · N(e,i) . . .

]
=
∑
i

N (e,i) 0 0 0 0 0

0 N (e,i) 0 0 0 0

0 0 N (e,i) 0 0 0

0 0 0 N (e,i) 0 0

0 0 0 0 N (e,i) 0

0 0 0 0 0 N (e,i)

[
· · · B

′(e,i)
m . . .

]
=
∑
i

 N
(e,i)
,x′ 0 0 0 0 0

0 N
(e,i)
,y′ 0 0 0 0

N
(e,i)
,y′ N

(e,i)
,x′ 0 0 0 0

[
· · · B

′(e,i)
b . . .

]
=
∑
i

 0 0 0 0 N
(e,i)
,x′ 0

0 0 0 N
(e,i)
,y′ 0 0

0 0 0 −N
(e,i)
,x′ N

(e,i)
,y′ 0

[
· · · B

′(e,i)
s . . .

]
=
∑
i

[
0 0 N

(e,i)
,x′ 0 N (e,i) 0

0 0 N
(e,i)
,y′ −N (e,i) 0 0

]
[
· · · B

′(e,i)
t . . .

]
=
∑
i

[
0 0 0 0 0 N (e,i)

]

(A.37)

Again, the position of the shape functions and their derivatives depend on the DOFs which are activated in

each contribution to the stiffness matrix.

Discretized FEM global matrix system

The scheme is the same as in the beam methodology, the rotation matrix is necessary to obtain the results in

the global axes and the shape functions and their derivatives to define the FEM discretization.

[
M(e)

]
=
[
R̂(e)

]T ∫
S(e)

[
N(e)

]T [
ρ′(e)

] [
N(e)

]
dS
[
R̂(e)

]
(A.38)

[
K(e)

m

]
=
[
R̂(e)

]T ∫
S(e)

[
B′(e)

m

]T [
C

′(e)
m

] [
B′(e)

m

]
dS
[
R̂(e)

]
[
K

(e)
b

]
=
[
R̂(e)

]T ∫
S(e)

[
B

′(e)
b

]T [
C

′(e)
b

] [
B

′(e)
b

]
dS
[
R̂(e)

]
[
K(e)

s

]
=
[
R̂(e)

]T ∫
S(e)

[
B′(e)

s

]T [
C

′(e)
s

] [
B′(e)

s

]
dS
[
R̂(e)

]
[
K

(e)
t

]
=
[
R̂(e)

]T ∫
S(e)

[
B

′(e)
t

]T [
C

′(e)
t

] [
B

′(e)
t

]
dS
[
R̂(e)

]
(A.39)

The objective regarding the structural theory ends in here. Later in this work, both static and dynamic

aeroelasticity are studied. In the static case the mass matrix is not used because the corresponding matrix to

run the modal analysis comes from the aerodynamic model. However, in the dynamic case, the mass matrix

appears along with the aerodynamic one and that is why it has been also calculated,

A.1.3 Shear locking

Shear locking is an inconsistency that appears when linear interpolation is used for both lateral displacement

and section rotation. The linear interpolation for lateral displacement causes the rotation to be constant

15

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Figure A.10 Shear locking leads to over-stiff situations with wrong results in the FEM analysis. (Source:
[4])

all over the beam9, leading to zero curvature10 as seen in Figure A.10. Zero curvature means only shear

deformation applies to the beam, blocking the natural effects of bending deformation and bending stress

energy [4].

It is important to know that shear locking appears in any bending element situation such as beams or flat

shells, when Lagrange interpolation functions of the same order for deflection and rotation are used. The

blocking increases specially when elements are thin.

The way to solve shear locking focuses on choosing consistent interpolation for both deflection (v) and rotation

(θ). The derivative of the deflection needs to be the same as the section rotation, like the theory formulates.

Depending on the case, which can be the beam 1D or the flat shell 2D elements, shear locking is avoided by

using different Gauss quadratures for the components of the stiffness matrix.

Referring to the beam computational formulation (see subsection A.2.1), although 2 Gauss points provide

exact integration, for the shear component of the stiffness matrix a sub-integration with only 1 Gauss point

avoids the problem with only a small loss in accuracy. The other components do not require Gauss quadrature

to evaluate the integrals since the integrands are constant over the element.

On the other hand, for the flat shell computational formulation (see subsection A.2.2) something similar

happens. The membrane (t), shear (s) and fictitious (t) components of the stiffness matrix are treated with 1

Gauss point while the bending (b) component and the mass matrix are integrated using 4 Gauss points.

A.2 Computational Approach

This section provides the mathematical formulation of the FEM method applied to structural beams (1D)

and flat shells (2D). Although neither of the two elements are three-dimensional the whole computational

definition considers the most extended case, the 3D one.

9For thin beams the shear strain is γxy = v
′ − θ = 0, where v′ is the derivative of the lateral displacement and θ the section

rotation.
10Curvature is the change in section rotation which is measured with the derivative θ

′
.

16

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Each part has its own development and the main objective is to find the stiffness and mass global matrices.

Apart from that, it is important to mention that the integrals are treated as discrete using the Gauss

quadrature method.

A.2.1 Beam development

The beam computational model is based on the theory notes [1].

To begin with, the first section defines all the input data necessary to find the two global matrices, stiffness

and mass. These data contains cross-section and material parameters, which are summarized in the following

items:

• Material properties11

– Young’s modulus (E): 68.9 MPa

– Shear modulus (G)12: 26 MPa

– Density (ρ): 2700 kg/m3

• Cross-section properties13

– Orientation of y′ axis (ȷ̂′) or z′ axis (k̂
′
): The y′ axis orientation depends on whether the beam is

a spar or a rib and whether TR or SW is added. However, the z′ axis orientation is always the

same because the wing is flat so it is better to define this one.

k̂
′
= [0 0 1]

– Area (A): The area depends on the height and width of the section. As linear taper is implemented,

a constant value is not possible to give, it is different for each element. Being the shape rectangular

the expression is

A = H ·W

where H stands for height and W for width.

– Polar inertia (J): It measures the ability to resist torsion and it depends on the shape. The

expression to compute this parameter for a rectangular cross section is

J = ab3
(
16

3
− 3.36α

(
1− 1

12
α4

))
(A.40)

where a is the section’s height, b the width and α the parameter dividing the longest dimension by

the shortest (always gives a value below 1).

11The materials used are isotropic, that is, materials whose properties do not change when tested in different directions.
12Alternatively, the shear modulus can be obtained via the Poisson ratio (ν) with the expression G = E/(2 (1 + ν))
13All the development of the project deals only with cross-sections with symmetry about their two main axes thus parameters
such as the cross area inertia (Iy′z′) are equal to zero.

17

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Figure A.11 Shear correction parameter kz for typical cross sections. (Source: [2])
Asterisk (*) denotes values computed using the FEM

– Area inertia (Iy′ − Iz′): The same happens as for the last two parameters, they depend on the

section dimensions because of linear taper. The general expression for each axis is, taking as local

reference system the one in Figure A.1),

Iy′ =
1

12
WH3

Iz′ =
1

12
HW 3

(A.41)

– Shear and twist correction factors (ky − kz − kt): Looking at Figure A.11, for a rectangular

cross-section there is only the shear correction parameter kz = 5
6 .

Then, it is time to define the discretization data, which include the nodal coordinates and the nodal

connectivities matrices.

[X] =

...

x̂(n) ŷ(n) ẑ(n)

...

 Number of nodes N

x̂(n) : x-coordinate of node n

ŷ(n) : y-coordinate of node n

ẑ(n) : z-coordinate of node n

(A.42)

18

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

[Tn] =

...

n
(e)
1 n

(e)
2

...

 Number of elements Ne n

(e)
i :

global node # assigned to

i-th node in element (e)
(A.43)

Once the mesh nodes and connections between them are established, the boundary conditions are of utmost

importance to define the problem one wants to solve. A matrix containing the fix nodes and DOFs simplifies

the understanding and future implementation.

[Up] =

...

u(p) n(p) j(p)

...

 Number of prescribed DOFs

u(p) : value of prescribed displ/rot (p)

n(p) : global node # assigned to (p)

j(p) : degree of freedom assigned to (p)

(A.44)

The DOFs indices characterize the three displacements first and the three rotations next.

j = 1 : displacement in x-direction j = 4 : rotation about x-direction

j = 2 : displacement in y-direction j = 5 : rotation about y-direction

j = 3 : displacement in z-direction j = 6 : rotation about z-direction

The next step is assembling both the stiffness and mass global matrices, which are square matrices of

dimension Ndof . As the problem is 3D, the number of DOFs (Ndof) is six times the number of nodes (N).

The development shown below is performed for each element thus a for loop would be needed in the MATLAB

code. Each element matrices would be added to the global matrices in the correct DOF positions in the last

step.

• Step 1: Compute rotation matrix

As the elements are defined in a local reference system it is necessary to first define the rotation matrix.

This way, when arranging the stiffness and mass element matrices, that rotation matrix would transform

from local to global coordinates.

As the beam elements are 1D, their size can be easily computed,

ℓ = ∥X (Tn(e, 2), :)−X (Tn(e, 1), :)∥ (A.45)

19

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Then, the three local axes of the beam element can be found with the element length and the input ȷ̂′,

{
ı̂′
}
=
(
{X (Tn(e, 2), :)}T − {X (Tn(e, 1), :)}T

)
/ℓ{

k̂
′}

= k̂{
ȷ̂′
}
=
{
k̂
′}

×
{
ı̂′
} (A.46)

Arranging the local axes, each node rotation matrix and the corresponding one for the element are

obtained,

[R′] =

 {ı̂′} {
ȷ̂′
} {

k̂
′}

· · · [0]3×3 · · ·

· · · [0]3×3 · · ·
{
ı̂′
} {

ȷ̂′
} {

k̂
′}
T

R(:, i, e) =

[
[R′] [0]6×6

[0]6×6 [R′]

] (A.47)

As explained at the beginning of the development, this matrix is very important because all the following

computations of the element mass and stiffness matrices would require of it.

• Step 2: Compute shape function derivatives

The shape functions of the two-noded linear elements are those explained in subsection A.2.3. Their

derivatives are easy to obtain,

N,x′(1) = −1/ℓ N,x′(2) = 1/ℓ (A.48)

The derivatives would be useful when computing the different contributions to the global stiffness

matrix.

• Step 3: Compute each element matrix

The matrices for each elements are divided into two categories, the contributions to the stiffness matrix

and the mass matrix.

The four contributions to the stiffness matrix are: the axial component, the bending component, the

shear component and the twist component. Each one is computed following the same principle, which

is to determine the matrix that characterizes each type of deformation (axial, bending, shear or twist)

and apply the shape function derivatives matrix along with the element rotation matrix. This process

results in the global element stiffness matrix for each contribution.

– Axial component: The local axes of a beam are the x′ axis in the longitudinal direction, the z′

axis in the vertical direction and the y′ where the cross product states.

This way, the axial contribution affects the displacement in the longitudinal direction (x′). As the

DOFs are organized, the latter corresponds to the first one.

20

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Then, the characteristic matrix depends on the Young’s modulus and the cross-sectional area.

B′
a(1, :, e) =

[
N,x′(1) 0 0 0 0 0 N,x′(2) 0 0 0 0 0

]
C

′
a = E A

Ka(:, :, e) = ℓ [R(:, :, e)]T [B′
a(1, :, e)]

T
[
C

′
a

]
[B′

a(1, :, e)] [R(:, :, e)]

(A.49)

– Bending component: The second contribution is bending. In a 3D beam there are two types of

bending, about y′ or z′ axes. The DOFs which correspond are rotation about y′ or z′ (DOFs 5

and 6).

The characteristic matrix depends on the local inertia and the Young’s modulus.

B′
b(:, :, e) =

[
0 0 0 0 N,x′(1) 0 0 0 0 0 N,x′(2) 0

0 0 0 0 0 N,x′(1) 0 0 0 0 0 N,x′(2)

]

C
′
b = E

[
I
(Tm(e))
y′ 0

0 I
(Tm(e))
z′

]
Kb(:, :, e) = ℓ [R(:, :, e)]T [B′

b(:, :, e)]
T
[
C

′
b

]
[B′

b(:, :, e)] [R(:, :, e)]

(A.50)

– Shear component: The shear is probably the most complex deformation to understand because

rotations and displacements are coupled. Following the above justification, both y′ and z′ are

possible deformation axes. That said, a deformation in the y′ direction is directly connected to a

rotation about z′ and vice versa.

The matrix which defines the deformation phenomena strictly depends on the modulus of rigidity,

the cross-sectional area and the shear correction factors.

So to avoid shear locking14 the shape functions assume only one Gauss point, giving N = 1/2.

B′
s(:, :, e) =

[
0 N,x′(1) 0 0 0 −N 0 N,x′(2) 0 0 0 −N

0 0 N,x′(1) 0 N 0 0 0 N,x′(2) 0 N 0

]

C
′
s = GA

[
ky 0

0 kz

]
Ks(:, :, e) = ℓ [R(:, : e)]T [B′

s(:, :, e)]
T
[
C

′
s

]
[B′

s(:, :, e)] [R(:, :, e)]

(A.51)

– twist component Finally, the last contribution is due to the twist effect. It translates into a

rotation about the longitudinal direction, x′.

Its characteristic matrix depends on the modulus of rigidity and the polar inertia (directly related

14Shear locking is an error that appears because of the linear nature of the FEM. It leads to over-stiff situations for slender
beams [2]. See subsection A.1.3

21

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

to the inertia concept).

B′
t(1, :, e) =

[
0 0 0 N,x′(1) 0 0 0 0 0 N,x′(2) 0 0

]
C

′
t = G [J]

Kt(:, :, e) = ℓ [R(:, :, e)]T [B′
t(1, :, e)]

T
[
C

′
t

]
[B′

t(1, :, e)] [R(:, :, e)]

(A.52)

On the other hand, the mass matrix is computed directly with the cross-section and material input

parameters. To compute the characteristic matrix one needs basically the density of the material, the

cross-sectional area and the inertia modules including the polar one.

ρ′ = ρ

A 0 0 0 0 0

0 A 0 0 0 0

0 0 A 0 0 0

0 0 0 J 0 0

0 0 0 0 Iy′ 0

0 0 0 0 0 Iz′

Me(:, :, e) = [0]12×12

(A.53)

In this case, the mass matrix can be computed using two Gauss points, providing an exact integration

result. For the 1D linear element the Gauss points coordinates (ξ) and corresponding weights (w) are

{ξ} =
{
−1/

√
3 ; 1/

√
3
}

{w} = {1 ; 1}
(A.54)

Then, applying the shape functions with its corresponding Gauss weights and rotation matrix, the

element mass matrix is found.

N(1) = (1− ξ(k))/2

N(2) = (1 + ξ(k))/2

N(:, :, e, k) = [N(1)[1]6×6 N(2)[1]6×6]

Me(:, :, e) = Me(:, i, e) +w(k) ℓ [R(:, :, e)]T[N(:, :, e, k)]T [ρ′] [N(:, i, e, k)][R(:, i, e)]/2

(A.55)

The main step is this last one, as assembling the global matrices is simply organizing these element

matrices, it has no mathematical formulation.

• Step 4: Assembly to global matrices

Finally, the step which keeps filling the global matrices by adding the contributions of each element

consists of two stages.

The first stage identifies the position of the DOFs of each node so that they are added correctly to the

22

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

global matrix. Considering six DOFs per node,

Idof(j, 1) = 6 (Tn(e, 1)− 1) + j

Idof(6 + j, 1) = 6 (Tn(e, 2)− 1) + j
(A.56)

And the second stage adds the previously computed element matrices to the global ones,

K (Idof , Idof) = K (Idof , Idof) +Ka(:, :, e) +Kb(:, :, e) +Ks(:, :, e) +Kt(:, :, e)

M (Idof , Idof) = M (Idof , Idof) +Me(:, :, e)
(A.57)

Although both the stiffness and mass matrices are theoretically symmetric, due to machine precision

when obtaining them computationally there are small differences in the last decimal digits.

A.2.2 Flat shell development

This case, which considers the computational approach for flat shells is more complex than the the one for

beams in subsection A.2.1. It is based on the theory notes [3]. The idea and steps of the resolution are the

same because both cases are based on the FEM. However, the elements are now bilinear quadrilateral with

four nodes and the shell is 2D, not 1D as for the longitudinal beam.

There are less input parameters; the Young’s modulus (E), the Poisson ratio (ν), the density (ρ) and the

shell thickness (h).

Regarding the discretization data and boundary conditions the matrices are exactly the same than in the

previous section except for the connectivities matrix, which now includes four columns (the finite elements

are four-noded).

[Tn] =
[
n
(e)
1 n

(e)
2 n

(e)
3 n

(e)
4

] }
Number of elements Ne n

(e)
i :

global node # assigned to

i-th node in element (e)
(A.58)

Moving on to the computation of element matrices, the resolution process is identical. Only little complexity

appears in the shape functions and matrices definition. Therefore, the development for each element is

summarized below.

• Step 1: Compute rotation matrix

It is necessary to define the rotation matrix to transform from the local reference system into the global

one. First of all, longitudinal length and element surface vectors are defined,

{S} =
(
{X (Tn(e, 3), :)}T − {X (Tn(e, 1), :)}T

)
×
(
{X (Tn(e, 4), :)}T − {X (Tn(e, 2), :)}T

)
/2

{d} =
(
{X (Tn(e, 2), :)}T + {X (Tn(e, 3), :)}T − {X (Tn(e, 4), :)}T − {X (Tn(e, 1), :)}T

)
/2

(A.59)

The three local axes are obtained from the latter parameters. Notice that it is not necessary to give ȷ̂′

23

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

unit vector because the elements are 2D, so the normal unit vector is defined geometrically.

{
k̂
′}

= {S}/∥{S}∥ (normal vector of the flat shell element){
ı̂′
}
= {d}/∥{d}∥{

ȷ̂′
}
=
{
k̂
′}

×
{
ı̂′
} (A.60)

Organizing the local unit vectors in a matrix the nodes’ rotation matrix is found thus the element

rotation matrix consists of the four contributions of each node in the corresponding element, giving a

24× 24 square array.

[R′] =

 {ı̂′} {
ȷ̂′
} {

k̂
′}

· · · [0]3×3 · · ·

· · · [0]3×3 · · ·
{
ı̂′
} {

ĵ
′} {

k̂
′}

R(:, :, e) =

[R′] [0]6×6 [0]6×6 [0]6×6

[0]6×6 [R′] [0]6×6 [0]6×6

[0]6×6 [0]6×6 [R′] [0]6×6

[0]6×6 [0]6×6 [0]6×6 [R′]

(A.61)

Throughout the development, this last matrix would appear continuously.

• Step 2: Get nodal coefficients for the shape functions

Unlike the development for beams, now two arrays of four coefficients each are necessary. These

coefficients define the contribution of each node in the element (see Table A.2).

{a} = {−1, 1, 1,−1}

{b} = {−1,−1, 1, 1}
(A.62)

• Step 3: Compute each element matrix

In this case, although not strictly the same as the 1D element case, there are also four contributions to

the global stiffness matrix; the fictitious component, the shear component, the membrane component

and the bending component.

Relative to the mass matrix, the procedure does not change, it is only extended to four-noded elements.

It is worth mentioning that, in order to avoid shear locking (see subsection A.1.3), two types of Gauss

quadrature are used15. On the one hand, a 1 point Gauss quadrature involves the computation of the

fictitious, shear and membranes components of the stiffness matrix while, on the other hand, a 4 point

Gauss quadrature is used for the mass matrix and for the bending component of the stiffness matrix.

– 1 Gauss point quadrature matrices:

Before starting to compute the contributions to the stiffness global matrix, the shape functions in

15See Table A.3 for further information about Gauss quadrature for bilinear quadrilateral elements.

24

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

the parent or element domain16 are defined, along with the initialization of the Jacobian matrix,

{N1} = {1, 1, 1, 1}T/4

{N1,ξ} = {a}/4

{N1,η} = {b}/4

[J 1] = [0]2×2

(A.63)

Once defined, the Jacobian matrix is filled, running a loop for all the nodes in the element studied.

The mathematical formulation inside the for loop, for any node i is,

J 1 = J 1 +

{
N1,ξ(i)

N1,η(i)

}
{X (Tn(e, i), :)}

[
i′ ȷ̂′

]
(A.64)

Afterwards, the transformation from the parent domain into the physical domain17 is immediate,

[N1,x′] = [J 1]
−1

[
N1,ξ

N1,η

]
S1 = 4 · det [J 1]

(A.65)

Being S1 the area associated to the Gauss point considered for the element.

From this point, it is all set to define the computational approach to compute the fictitious, shear

and membrane contributions to the stiffness matrix. The steps for each component do not change;

compute the shape functions derivatives matrix (depending on the DOFs that are activated in

each contribution) implementing a for loop for the nodes in the element, define the characteristic

matrix which defines the type of deformation and apply the rotation from local to global axes

along with the area associated to the Gauss point.

∗ Fictitious component of stiffness matrix

The DOF affected is the rotation about the vertical axis (z direction) and the characteristic

matrix depends on the plate’s thickness, the Young’s modulus and the Poisson coefficient of

the material.

For each node i (from 1 to 4) in the element:

B
′(i)
t (1, :, i) =

[
0 0 0 0 0 N1(i)

]
End loop over nodes

C
′
t = 5hE/ (12 (1 + ν))

B′
t(1, :, e) =

[
B

′(i)
t (1, :, 1),B

′(i)
t (1, :, 2),B

′(i)
t (1, :, 3),B

′(i)
t (1, :, 4)

]
Kt(:, :, e) = S1[R(:, :, e)]T [B′

t(1, :, e)]
T
[
C

′
t

]
[B′

t(1, :, e)] [R(:, :, e)]

(A.66)

16Domain in which the nodes are defined using the local or element coordinates, those being ξ and η for 2D cases.
17Domain in which the nodes are defined using the global or physical coordinates, those being x and y for 2D cases.

25

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

∗ Shear component of stiffness matrix

The DOF affected is the vertical displacement, coupled with the rotation about the x and y

axes and the characteristic matrix depends on the plate’s thickness, the Young’s modulus and

the Poisson coefficient of the material.

For each node i (from 1 to 4) in the element:

B′(i)
s (:, :, i) =

[
0 0 N1,x′(1, i) 0 N1(i) 0

0 0 N1,x′(2, i) −N1(i) 0 0

]
End loop over nodes

C
′
s =

[
1 0

0 1

]
5hE/ (12 (1 + ν))

B′
s(:, :, e) =

[
B′(i)

s (:, :, 1),B′(i)
s (:, :, 2),B′(i)

s (:, :, 3),B′(i)
s (:, :, 4)

]
Ks(:, :, e) = S1[R(:, :, e)]T [B′

s(:, :, e)]
T
[
C

′
s

]
[B′

s(:, :, e)] [R(:, :, e)]

(A.67)

∗ Membrane component of stiffness matrix

The DOFs affected are the longitudinal and transversal plane displacements (x and y directions)

and the characteristic matrix depends on the plate’s thickness, the Young’s modulus and the

Poisson coefficient of the material.

For each node i (from 1 to 4) in the element:

B′(i)
m (:, :, i) =

 N1,x′(1, i) 0 0 0 0 0

0 N1,x′(2, i) 0 0 0 0

N1,x′(2, i) N1,x′(1, i) 0 0 0 0

End loop over nodes

C
′
m =

 1 ν 0

ν 1 0

0 0 (1− ν) /2

hE/
(
1− ν2

)
B′

m(:, :, e) =
[
B′(i)

m (:, :, 1),B′(i)
m (:, :, 2),B′(i)

m (:, :, 3),B′(i)
m (:, :, 4)

]
Km(:, :, e) = S1[R(:, :, e)]T [B′

m(:, :, e)]
T
[
C

′
m

]
[B′

m(:, :, e)] [R(:, :, e)]

(A.68)

– 4 Gauss point quadrature matrices:

The first step is to initialize the matrices one wants to fulfill, the bending component and the mass

matrices.

Kb(:, :, e) = [0]24×24

Mb(:, :, e) = [0]24×24

(A.69)

Now the Gauss quadrature vectors are defined, being ξ and η the element coordinates and w the

26

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

weight of each coordinate point affecting the integration.

{ξ4} = {−1, 1, 1,−1}/
√
3

{η4} = {−1,−1, 1, 1}/
√
3

{w4} = {1, 1, 1, 1}

(A.70)

Then, the procedure that follows is repeated for every Gauss point k in a for loop. The Jacobian

matrix is defined again (as in the beam development),

[J 4] = [0]2×2 (A.71)

Inside the loop for each Gauss point, another iterative process arises, this one being for each

node in each bilinear quadrilateral element. The shape functions and their derivatives are defined,

looking forward to filling the Jacobian matrix,

N4(i) = (1 + a(i)ξ4(k)) (1 + b(i)η4(k)) /4

N4,ξ(1, i) = a(i) (1 + b(i)η4(k)) /4

N4,η(1, i) = b(i) (1 + a(i)ξ4(k)) /4

J 4 = J 4 +

{
N4,ξ(i)

N4,η(i)

}
{X (Tn(e, i), :)}

[
î
′

ĵ
′]

(A.72)

The loop for the nodes in the element finishes here, being the last step of this initial calculations

the transformation from the parent domain into the physical one,

[N4,x′] = [J 4]
−1

[
N4,ξ

N4,η

]
S4(e, k) = w4(k) · det [J 4]

(A.73)

S4 is, again, the area associated to Gauss point k.

When this procedure related to the definition of the shape functions, the parent and physical

domains and the Jacobian matrix is finished, one can move forward to the computation of the

matrices stated at the beginning of the development.

∗ Bending component of stiffness matrix

The first matrix is the bending component, which affects directly the stiffness of the flat plate,

it is one of the four contributions.

The DOFs affected are the rotations in the base plane of the flat shell (x − y plane). The

characteristic matrix depends on the Poisson ratio, the plate’s thickness and the Young’s

modulus. Those are the same parameters considered as in the other contributions of the

stiffness matrix.

27

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

For each node i (from 1 to 4) in the element:

B
′(i)
b (:, :, i) =

 0 0 0 0 N4,x′(1, i) 0

0 0 0 N4,x′(2, i) 0 0

0 0 0 −N4,x′(1, i) N4,x′(2, i) 0

End loop over nodes

C
′
b =

 1 ν 0

ν 1 0

0 0 (1− ν) /2

h3E/
(
12
(
1− ν2

))
B′

b(:, :, e, k) =
[
B

′(i)
b (:, :, 1),B

′(i)
b (:, :, 2),B

′(i)
b (:, :, 3),B

′(i)
b (:, :, 4)

]
Kb(:, :, e) = Kb(:, :, e) + S4(e, k)[R(:, :, e)]T [B′

b(:, :, e, k)]
T
[
C

′
b

]
[B′

b(:, :, e, k)] [R(:, :, e)]

(A.74)

Once the stiffness element matrix is finished it is time to compute the mass element matrix. One

needs, at first, to organize the shape functions of each node in an equivalent matrix,

For each node i (from 1 to 4) in the element:

N(i)(:, :, i) = N4(i)[1]6×6 ([1]6×6 ≡ Identity matrix of 6× 6)

End loop over nodes

(A.75)

Next, with the density of the material and the plate’s thickness, the characteristic matrix is found.

And, multiplying the latter by the Gauss point area, the rotation matrix and the shape function

matrix one obtains the element mass matrix contribution of Gauss point k.

ρ′ = ρ h

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 h2/12 0 0

0 0 0 0 h2/12 0

0 0 0 0 0 0

N(:, :, e, k) =

[
N(i)(:, :, 1),N(i)(:, :, 2),N(i)(:, :, 3),N(i)(:, :, 4)

]
Me(:, :, e) = Me(:, :, e) + S4(e, k) [R(:, :, e)]T[N(:, :, e, k)]T [ρ′] [N(:, :, e, k)][R(:, :, e)]

(A.76)

The Gauss point loop ends in here. By repeating the exposed iterative process for the four Gauss

points, the element bending and mass matrices are fulfilled.

• Step 4: Assembly to global matrices

Finally, the assembly of the stiffness and mass matrices follows the same procedure as for the beam.

First of all, the position of the DOFs is identified and then each contribution is added to the global

matrix.

28

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Idof(j, 1) = 6 (Tn(e, 1)− 1) + j

Idof(6 + j, 1) = 6 (Tn(e, 2)− 1) + j
(A.77)

K (Idof , Idof) = K (Idof , Idof) +Ka(:, :, e) +Kb(:, :, e) +Ks(:, :, e) +Kt(:, :, e)

M (Idof , Idof) = M (Idof , Idof) +Me(:, :, e)
(A.78)

Once again, both the stiffness and mass matrices should be symmetric but due to machine precision

there are small differences in the last decimal digits (they are not symmetric).

A.2.3 Computational elements

Once the two FEM developments for the wing structure are explained, it is necessary to define which type of

elements characterize each structural part.

So as to reach an accurate solution, it is convenient to use two-noded linear elements for the beams (spars

and ribs) and bilinear quadrilateral elements for the flat shell.

Two-Noded Linear Elements

The spars and the ribs of the wing are studied as beams, so the finite element chosen is the two-noded linear

one. It gives reliable results and allows to simplify the mathematical formulation.

Firstly, the shape functions in natural coordinates ξ ∈ [−1, 1] are

N (e,1)(ξ) =
1

2
(1− ξ) N (e,2)(ξ) =

1

2
(1 + ξ) (A.79)

Consequently, the derivatives of these shape functions in natural coordinates are

N
(e,1)
,ξ = −1

2
N

(e,2)
,ξ =

1

2
(A.80)

The characterization of this element is depicted in Figure A.12, one can see the element domain, the natural

and local coordinates and the shape functions.

Next, the Jacobian of the element results as

J ′(e) =
∂x′

∂ξ
=
∑
i

N
(e,i)
,ξ

{
x̂(e,i)

}T {
ı̂′(e)

}
︸ ︷︷ ︸

x̂′(e,i)

=
1

2

(
x̂′(e,2) − x̂′(e,1)

)
︸ ︷︷ ︸

ℓ(e)

(A.81)

Finally, the shape function derivatives in local coordinates are like

N
(e,1)
,x′ =

(
J ′(e)

)−1

N
(e,1)
,ξ = − 1

ℓ(e)
N

(e,2)
,x′ =

(
J ′(e)

)−1

N
(e,2)
,ξ = +

1

ℓ(e)
(A.82)

29

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Figure A.12 Two-noded linear element variables and node ordering together with its shape functions.
(Source: [1])

where ℓ(e) is the element length.

At this point, when evaluating the integrals seen in subsection A.2.1, the two-noded linear works with either

one or two Gauss points:

Table A.1 Gauss quadrature integration cases for two-noded linear elements. (Source: [1])

NG k wk ξk

1 1 2 0

1 1 −1/
√
3

2
2 1 +1/

√
3

In the latter table, NG refers to the number of Gauss points, k to each Gauss point, wk to the weight of the

k-th Gauss point and ξk to the natural coordinate of the k-th Gauss point.

Bilinear Quadrilateral Element

As stated in the beginning of the section, the FEM shell discretization is based on the bilinear quadrilateral

element. It is a four-noded element which allows to compute the structural properties by using a domain

in where the element is a square of side two. Figure A.13 shows the domain representation and the node

ordering of this element.

To begin with, the shape functions are

N (e,i)(ξ, η) =
1

4
(1 + aiξ) (1 + biη) (A.83)

where i refers to the number of the natural node and ai and bi are coefficients of the shape functions. Table

A.2 shows the values depending on the number of node.

30

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Figure A.13 Bilinear quadrilateral element variables and node ordering. (Source: [3])

Table A.2 Values of the coefficients for the shape functions at each node. (Source: [3])

i 1 2 3 4

ai -1 1 1 -1

bi -1 -1 1 1

Then, the shape functions natural derivatives and the Jacobian matrix of the element are

N
(e,i)
,ξ (ξ, η) =

1

4
ai (1 + biη) N (e,i)

,η (ξ, η) =
1

4
bi (1 + aiξ) (A.84)

[
J ′(e)

]
=

 ∂x′

∂ξ
∂y′

∂ξ

∂x′

∂η
∂y′

∂η

 =
∑
i

 N
(e,i)
,ξ

N
(e,i)
,η

{
x̂′(e,i)

}T

︷ ︸︸ ︷{
x̂(e,i)

}T
[
î′

(e)
ȷ̂′(e)

]
(A.85)

And, in the end, the local derivatives of the shape functions give N
(e,i)
,x′

N
(e,i)
,y′

 =
[
J ′(e)

]−1

 N
(e,i)
,ξ

N
(e,i)
,η

 (A.86)

As seen in the two-noded linear element section, the integrals are evaluated using the Gauss quadrature

integration. For this four-noded element, the procedure works with either one or four Gauss points. Table

A.3 exposes the Gauss points weights and coordinates for each integration case.

31

A.2. COMPUTATIONAL APPROACH APPENDIX A. STRUCTURAL THEORY

Table A.3 Gauss quadrature integration cases for bilinear quadrilateral elements. (Source: [3])

NG k wk ξk ηk

1 1 4 0 0

1 1 −1/
√
3 −1/

√
3

2 1 +1/
√
3 −1/

√
3

3 1 +1/
√
3 +1/

√
3

4

4 1 −1/
√
3 +1/

√
3

Notice that this table adds one column with respect to Table A.1. This is because the four-noded element

uses a 2D domain while the two-noded one uses a 1D domain.

32

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

Appendix B

Aerodynamic Theory

The second appendix aims to define the aerodynamic model that will be coupled to the structural one, defined

in the previous appendix. Both the theoretical and computational explanations are included.

B.1 Theory Basics

The following section aims to describe the basic concepts related to aerodynamics in this work. The

fundamentals of the theory exposed apply for inviscid and incompressible flow, simplifying the model without

losing accuracy in the results. Beginning with vortex filaments and the Biot-Savart law, the potential flow

problem can be defined. However, the ultimate concept to be described is the Kutta-Joukowsky theorem and

how to formulate the problem to analyse lifting surfaces.

B.1.1 Vortex quantities

Both subsection B.1.2 and this one are based on the theory slides [5].

To begin with, a vortex filament of constant strength Γ is presented in Figure B.1, where Γ is the circulation,

dl the length differential of the filament and r the distance between the filament and point P (where the

velocity wants to be found, thus the velocity differential dV is applied there).

Figure B.1 Vortex filament of strength Γ. (Source: [6])

33

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.2 Closed curve C enclosing a simply connected surface S in the flow field. The differential ds is
analogous to dl. (Source: [5])

Circulation is an important concept to introduce, Figure B.2 depicts a closed curved which can help to define

the concept.

The equation defining circulation is, making use of Stoke’s theorem,

∫
S

(∇× V) · n̂ dS =

∫
S

w · n̂ dS =

∮
C

V · dl = −Γ1 (B.1)

To model a lifting surface using vortex filaments, it is needed to study the 3D approach and applications of

those. They can be defined as

w × dl = 0 (B.2)

where w refers to the vorticity2. As vorticity is equal to the rotational of the velocity field, the divergence of

it gives

∇ ·w = ∇ · (∇×w) = 0 (B.3)

which shows that the vorticity is divergence free. Therefore, applying the divergence theorem

∫
V

∇ ·w dV =

∮
S=∂V

w · n̂ dS = 0 (B.4)

one can demonstrate that the circulation is constant along a vortex filament following the example of a vortex

tube:

• Consider the vortex tube in Figure B.3

• Apply equation B.4 to get

∮
S=∂V

w · n̂ dS = −
∮
S=∂V

w · n̂1 dS = +

∮
S=∂V

w · n̂2 dS = 0 (B.5)

1By mathematical convention, the line integrals are positive in the counterclockwise direction. However, in aerodynamics it is
convenient to consider circulation positive in the clockwise sense. Hence, the minus sign [5].

2In fluid mechanics vorticity is used to quantify the rotation of a fluid.

34

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.3 Vortex tube made of vortex filaments. (Source: [7])

• Reorganize the terms ∮
S=∂V

w · n̂1 dS = +

∮
S=∂V

w · n̂2 dS (B.6)

• Define the circulation and prove

Γ =

∮
S=∂V

w · n̂ dS = Γ1 = Γ2 = constant (B.7)

Applying this last equation to a vortex filament, with dS → 0, the following is obtained

Γ = w dS = constant (B.8)

indicating that the vortex line cannot end in the fluid because if the circulation is constant then w → ∞.

The results obtained above prove the first two out of three Helmholtz’s theorems, named after Hermann von

Helmholtz, an important German physician in the 19th century. These say:

• The strength of a vortex filament is constant along its length.

• A vortex filament cannot start or end in the fluid; it must form a closed path or extend to infinite.

B.1.2 The Biot-Savart law

In this subsection, the Biot-Savart law is demonstrated, obtaining a key result to apply in the aerodynamic

vortex methods.

The mass conservation equation states

∂ρ

∂t
+

∂

∂xi
(ρ ui) = 0 (B.9)

and if we make the hypothesis of steady incrompressible fluid it gives

∂

∂xi
(ρ ui) =

∂ρ

∂xi
ui + ρ

∂ui

∂xi
= 0 −→ ∂ui

∂xi
= ∇ · V = 0 (B.10)

Then, considering this steady incompressible fluid, the velocity field due to a vortex line comes from an

unknown vector field, for example, B

V = ∇×B (B.11)

35

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.4 Velocity at point P induced by a vortex segment. (Source: [7])

The vector field B is defined with the following condition

∇ ·B = 0 (B.12)

Next, using the vorticity formula and applying the last equation in it, one obtains

w = ∇× V = ∇× (∇×B) = ∇ (∇ ·B)−∇2B −→ w = −∇2B (B.13)

which is a Poisson’s problem3 to find B. The equation can be solved using the Green’s theorem (see [8], pp.

532-534), giving

B =
1

4π

∫
V

w

|r0 − r1|
dV (B.14)

where B is the value of the function at a point P due to vorticity and inside a volume containing the vortex

line (see Figure B.4).

Now that B is known, making use of Equation B.11 one can find the induced velocity

V =
1

4π

∫
V

∇× w

|r0 − r1|
dV (B.15)

3A Poisson’s problem is defined as an equation in which the Lagrange operator of a vector, ∆g = ∇2g, equals another unknown
function. It can be solved using the Green’s theorem.

36

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

The last step to find the expression of the Biot-Savart law introduces the following assumptions

dl =
w

w
dl dV = dS dl Γ = w dS (B.16)

which transform the integrand of the induced velocity equation into

∇× w

|r0 − r1|
dV = ∇× w dl/dl dSdl

|r0 − r1|
= ∇× w dlΓ/w

|r0 − r1|
= ∇× Γ dl

|r0 − r1|
= Γ

dl× (r0 − r1)

|r0 − r1|3
(B.17)

Finally, introducing the last equation into the integral computed previously, the Biot-Savart law states

V =
Γ

4π

∫
V

dl× (r0 − r1)

|r0 − r1|3
(B.18)

which in differential form reads

dV =
Γ

4π

dl× (r0 − r1)

|r0 − r1|3
(B.19)

This law is used in the computational code when calculating the aerodynamic influence coefficients matrix as

the induced velocity at each collocation point is needed.

B.1.3 The potential flow problem

From this point to the end of the aerodynamic theory model the development can be followed in [7].

Definition of the Problem

Because of the type of flow which is selected in this aerodynamic formulation, it is necessary to define the

potential flow problem.

On the one hand, as seen previously, the governing equations if the flow in the fluid region is considered to

be steady, inviscid, incompressible and irrotational4 are

∇ · V = 0 (B.20)

w = (∇× V) = 0 (B.21)

On the other hand, introducing a scalar potential function, Φ, from which the velocity, V , is obtained thanks

to the gradient operation

V = ∇Φ (B.22)

4The hypothesis does not impede the flow to be compressible.

37

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.5 Nomenclature used to define the potential flow problem. (Source: [5])

and combining it with Equation B.20, one gets a Laplace’s equation5

∇2Φ = 0 (B.23)

This gradient of the potential function also satisfies Equation B.21 because

∇×∇Φ = 0 (B.24)

Equation B.23 can be solved defining suitable boundary conditions and, when the solution is found, the

velocity field is easily computed. The pressure is obtained using Bernoulli’s equation.

The boundary conditions can be of Dirichlet, Neumann or mixed. Typically, in aerodynamic problems the

following are used:

• Freesteam condition: The flow approaches freestream conditions far away from the body6.

x → ∞ : ∇Φ = U∞ (B.25)

• Wall conditions: For a body inside the fluid, the normal component (to the body’s surface and to

other solid boundaries) of the velocity must be zero.

∇Φ · n̂ = 0 (B.26)

Vortex Solution

The potential problem accepts other solutions apart from the general ones of source and doublet. In this

case, the procedure to find one solution based on the vortex flow and using the Biot-Savart law is explained.

The singularity element, as shown in Figure B.6a, has only a tangential velocity component. Therefore

ur = 0

uθ = uθ(r, θ)

Substituting these velocity components in the continuity equation in cylindrical coordinates for an incom-

5A Laplace’s equation is a 2nd order PDE (Partial Differential Equation) of elliptic type. It is a boundary value problem,
boundary conditions must be defined for all the domain boundaries.

6It is not necessary that the flow is aligned with the x direction.

38

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.6 (a) Streamlines and equipotential lines for a 2D vortex. (b) Radial variation of the tangential
velocity component induced by a vortex. (Source: [7])

pressible fluid
∂ur

∂r
+

1

r

∂uθ

∂θ
+

∂ux

∂x
+

ur

r
= 0 (B.27)

it is proved that

uθ = uθ(r)

which means that the tangential velocity is constant along the θ variation.

Now, being the fluid irrotational, the vorticity equation reads

w = ∇× V =

∂
∂r
1
r

∂
∂θ
∂
∂x

×

 ur

uθ

0

 =

 −∂uθ

∂x
∂ur

∂x
∂uθ

∂r − 1
r
∂ur

∂θ

 =

 0

0
∂uθ

∂r − 1
r
∂ur

∂θ

 = 0

which means

wy =
∂uθ

∂r
− 1

r

∂ur

∂θ
= −1

r

(
∂

∂r
(r uθ)−

∂

∂θ
(ur)

)
= −1

r

∂

∂r
(r uθ) = 0

Integrating with respect to r one gets

r uθ = constant = A (B.28)

meaning that the tangential velocity is inversely proportional to the radius, as depicted in Figure B.6b.

Thanks to the definition of the circulation (see Equation B.1), the value of the constant A can be found7

Γ = −
∮

V · dl =
∫ 0

2π

= uθ · r dθ = −2π A −→ A = − Γ

2π

The velocity field is then

ur = 0

uθ = − Γ

2π r

(B.29)

7Remember that the positive direction of the circulation is clockwise, contrary to θ evolution.

39

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.7 Lifting surface model of a 3D wing. (Source: [7])

Finally, integrating the velocity field equations the velocity potential for a vortex element is found

Φ =

∫
uθ r dθ + C = − Γ

2π
θ + C (B.30)

where the constant C is arbitrary and can be set to zero. Notice that this result is obtained using cylindrical

coordinates and it is immediate to transform it into Cartesian ones. For a vortex located at (x0,z0), the

velocity components look like

ux =
Γ

2π

z − z0
(z − z0)2 + (x− x0)2

uz = − Γ

2π

x− x0

(z − z0)2 + (x− x0)2

(B.31)

and the velocity potential

Φ = − Γ

2π
tan−1 z − z0

x− x0
+ C (B.32)

being C the arbitrary constant mentioned before, which can be set to zero.

B.1.4 Zero-thickness cambered wing at AoA–lifting surfaces

Now that the basic aerodynamic concepts are already introduced, it is time to formulate the problem adapted

to a finite wing. The element treated as a wing is called lifting surface and it is depicted in Figure B.7.

The problem to be solved is

∇2Φ = 0 (B.33)

with the boundary condition that requires no flow across the surface (in this cased evaluated at z = 0) shown

in Figure B.8
∂Φ

∂z
(x, y, 0±) = Q∞

(
∂ηc
∂x

− α

)
(B.34)

40

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.8 Nomenclature used for the definition of the lifting wing problem. (Source: [7])

Figure B.9 Vortex representation for the lifting surface model. (Source: [7])

Because of the small-disturbance approximation the wake is also considered to be planar (placed on the z =

0 plane).

As the aerodynamic model is based on vortex distribution, this zero-thickness cambered wing at AoA lifting

surface problem considers only the vortex solution. Vortex line distributions are used over the wing and the

wake. By considering the Biot-Savart law in differential form,

dV =
−1

4π

dΓr × dl

r3
(B.35)

where dV is the velocity due to a vortex line element dl with a strength of dΓ, one can get the component of

velocity normal to the wing (downwash).

This downwash is induced by vortices distributed over the wing and wake as in Figure B.9, where the elements

41

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.10 Effect of different values of circulation on the potential flow over a given airfoil at a given angle
of attack. (Source: [6])

that point in the y direction are denoted as γy
8 and the ones pointing in the x direction are denoted as γx.

uz (x, y, z) =
−1

4π

∫
wing+wake

γy(x− x0)− γx(y − y0)

r3
dx0 dy0 (B.36)

Notice that thee are two unknowns (γx and γy) and one equation. However, thanks to the first Helmholtz

theorem in subsection B.1.1 vortex the strength of a vortex filament is constant along its length. This way,

considering that the wing consist of numerous infinitesimal vortex lines then at any point∣∣∣∣∂γx∂x

∣∣∣∣ = ∣∣∣∣∂γy∂y

∣∣∣∣ (B.37)

and the unknowns reduce to only one.

Finally, to construct the lifting surface equation for the unknown γ = γx = γy the wing induced downwash

(Equation B.36) must be equal and opposite in sign to to the normal component of the freestream velocity

(Equation B.34)

−1

4π

∫
wing+wake

γy(x− x0)− γx(y − y0)

[(x− x0)2 + (y − y0)2]
3/2

dx0 dy0 = Q∞

(
∂ηc
∂x

− α

)
(B.38)

This result allows to compute the velocity field distribution.

B.1.5 Vortex wake

Until now the aerodynamic formulation has focused on finding the zero normal flow boundary condition

on solid surfaces such as the wing. However, in some cases the solution is not unique, different values of

circulation can be selected thus the flow distribution varies (see Figure B.10). This is where the German

mathematician Kutta appears, to define an additional restriction, with his well-know Kutta condition:

The flow leaves the sharp trailing edge of an airfoil smoothly and the velocity there is finite.

The last statement can be interpreted in several ways. One for example defines that the flow must leave

the trailing edge (TE) smoothly. Figure B.11 depicts two shapes of the TE and their relation to the Kutta

condition:

8The variable γ is known as the circulation density and it is computed dividing the total circulation of an airfoil, for example, by
its length.

42

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.11 Different possible shapes of the trailing edge and their relation to the Kutta condition. (Source:
[6])

• Finite angle: The flow leaves the TE along the bisector line there. At point a there needs to be a

stagnation point (velocity equal to zero) so that the normal component of velocity vanishes adding

both sides of the airfoil.

• Cusp: As both velocities at point a are in the same direction, they can be finite. Using Bernoulli’s

equation, as the pressure in a is unique, both velocities are the same.

The Kutta condition implies ∆pTE = 0 and if the circulation is modeled by vortex distribution then, for both

the finite angle and the cusp,

γTE = V1 − V2 = 0 (B.39)

Now, considering the wake is modeled by a vortex sheet, it must not create loads. The pressure difference

across the sheet is obtained using

∆p = ρV × γ (B.40)

where γ = (γx, γy, γz). The pressure difference equals to zero because of the Kutta condition, meaning that

the velocity on the wake is parallel to the wake vortices.

This result will be very useful when introducing the computational approach of the aerodynamic model.

B.1.6 The Kutta-Joukowsky theorem

The KJ theorem relates the flow circulation to the lift produced by a body, so it is one of the most important

theorems that apply to computational aerodynamics. When having the matrix of flow circulations it is

immediate to compute the lift force and thus the induced drag9.

This theorem is proved from the flow in a rotating cylinder, depicted in Figure B.12. If the cylinder is static,

there is symmetry over the horizontal and vertical planes thus the lift and drag are zero (no aerodynamic

force). However, if a point vortex of strength Γ is added by the principle of superposition, the symmetry

over the horizontal plane disappears. Then, the drag continues to be zero but, thanks to the mentioned

asymmetry, a lift net force appears.

This means that circulation added to a flow creates lift, which is the heart of the KJ theorem. Now, this

9Induced drag is the component of drag related to the generation of lift.

43

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Figure B.12 Synthesis of lifting flow over a circular cylinder. (Source: [6])

relation between circulation and velocity is to be found using the rotating cylinder case.

The starting point are the flow equations of velocity over a rotating cylinder (see [6], pp. 291-293)

Vr =

(
1− R2

r2

)
V∞ cos θ

Vθ = −
(
1 +

R2

r2

)
V∞ sin θ − Γ

2πr

(B.41)

The idea is to obtain the lift from the pressure and the pressure from the velocity working with appropriate

dimensionless coefficients.

• Step 1: Obtain pressure from velocity

The pressure coefficient is defined as

CP =
∆P

1
2ρV

2
∞

(B.42)

and as the flow is elementary and inviscid the Bernoulli equation can be used to relate pressure with

velocity. Between two points on a streamline, one in the free stream region and the other close to the

cylinder, it states

P∞ +
1

2
ρV 2

∞ = P +
1

2
ρV 2 (B.43)

and rearranging

∆P = P − P∞ =
1

2
ρ(V 2

∞ − V 2)

Going back to the pressure coefficient definition, it can be defined solely in terms of speed

CP =
1
2ρ(V

2
∞ − V 2)

1
2ρV

2
∞

=
V 2
∞ − V 2)

V 2
∞

= 1−
(

V

V∞

)2

(B.44)

Notice that the pressure distribution is defined over the cylinder surface so the velocity would be

considered also over the same surface (r = R).

• Step 2: Turn the pressure distribution into a force, the lift force

44

B.1. THEORY BASICS APPENDIX B. AERODYNAMIC THEORY

Normal and axial aerodynamic forces are computed by integrating the pressure and shear distributions

on the upper and lower surfaces of the body

N ′ = −
∫ TE

LE

(Pu cos θ + τu sin θ) dsu+

∫ TE

LE

(Pl cos θ − τl sin θ) dsl

A′ =

∫ TE

LE

(−Pu sin θ + τu cos θ) dsu +

∫ TE

LE

(Pl sin θ + τl cos θ) dsl

(B.45)

Considering the flow is inviscid all the shear components can be removed, giving

N ′ = −
∫ TE

LE

Pu cos θ dsu +

∫ TE

LE

Pl cos θ dsl

A′ =

∫ TE

LE

−Pu sin θ dsu +

∫ TE

LE

Pl sin θ dsl

(B.46)

Now, by expressing the upper and lower surface differentials in Cartesian coordinates

dx = cos θ ds dy = − sin θ ds

and the axial and normal forces in terms of the aerodynamic ones

N ′ = L′ A′ = D′

one can write the integrals in Equation B.46 as

L′ = −
∫ TE

LE

Pu dx+

∫ TE

LE

Pl dx =

∫ TE

LE

(Pl − Pu) dx

D′ =

∫ TE

LE

Pu dy −
∫ TE

LE

Pl dy =

∫ TE

LE

(Pu − Pl) dy

(B.47)

The idea is to work with dimensionless coefficients so, as the body is a cylinder, the characteristic

length used will be its diameter D. This way10

cl =
1

D

∫ TE

LE

(CPl
− CPu

) dx

dd =
1

D

∫ TE

LE

(CPu
− CPl

) dy

(B.48)

Transforming another time from Cartesian coordinates to cylindrical ones so to evaluate the integrals,

considering D = 2R,

y = R sin θ −→ dy = R cos θ dθ

x = R cos θ −→ dx = −R sin θ dθ

10The lift and drag coefficients are defined per unit span.

45

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

the integrals state

cl = −1

2

∫ 2π

π

CPl
sin θ dθ +

1

2

∫ 0

π

CPu
sin θ dθ

cd =
1

2

∫ 0

π

CPu
cos θ dθ − 1

2

∫ 2π

π

CPl
cos θ dθ

(B.49)

At this point, noting that CPu
and CPl

are given by the same expression (Equation B.44 extended),

CP = 1−
(
Vtheta(r = R)

V∞

)2

= 1−
(
−2 sin θ − Γ

2π RV∞

)2

(B.50)

the integrals can be evaluated directly as one going from 0 to 2π,

cl = −1

2

∫ 2π

0

CPl
sin θ dθ

cd = −1

2

∫ 2π

0

CPu cos θ dθ

(B.51)

With several trigonometric integrals the results obtained are

cl =
Γ

RV∞

cd = 0

(B.52)

which prove the hypothesis that, due to symmetry over the vertical axis, there is no drag force.

Finally, writing the dimensional lift force, the KJ theorem is defined11

cl =
L′

1
2ρV

2
∞2R

−→ L′ =
1

2
ρV 2

∞2RCl =
1

2
ρV 2

∞2R
Γ

RV∞
= ρV∞Γ (B.53)

Although this theorem is derived from the case of a rotating cylinder, it works for flows over bodies with

arbitrary shape, making it a very powerful tool in aerodynamics.

B.2 Computational Approach

This next section explains how aerodynamics are programmed, putting focus on vortex methods. A general

introduction to numerical panel methods opens the development, being followed by two singularity elements

and their respective vortex computational formulations, the Horseshoe Vortex Method (HVM) and the Vortex

Lattice Method (VLM).

B.2.1 Numerical panel methods

The numerical panel methods are introduced and developed in [7]. The basic methodology is picked from the

corresponding chapters of the book.

In the theory section explained previously the solution to the potential flow problem is obtained using

11This result was found independently by Kutta, a German mathematician, and Joukowsky, a Russian physicist at the beginning
of 20th century.

46

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Figure B.13 Flowchart for the numerical solution of the surface singularity distribution problem. (Source:
[7])

analytical techniques. Therefore, a lot of simplifications are needed, both in the geometry and the boundary

conditions. However, the application of numerical techniques allows expanding the cases to more real

approaches, letting the analysis to be more precise.

The numerical methods that apply to this work are based on the surface distribution of singularity elements,

with the objective of finding the strength of these elements. Figure B.13 defines the general steps to be

followed when solving a numerical panel problem, once the singularity element is already chosen.

One by one, the steps can be explained shortly like:

• Selection of the singularity element: As mentioned previously, in this work, both of the methods

exposed base their formulation on vortex flow. The order of the problem needs to be also defined and,

once it is, an influence routine needs to be established. This routine outputs the velocity components

and the potential induced by the element.

• Definition of the geometry: Once the basic solution element is selected, the geometry of the problem

(the body) needs to be discretized so that it consists of those basic solution elements. The corner

points of each element, along with its collocation point, are defined in this step too. It is important to

remember that choosing an adequate grid can optimize the solution, enabling faster convergence.

• Computation of influence coefficients: For each of the elements, at the collocation point, the

influence coefficient is calculated via a loop routine. A unit singularity strength is assumed and the

equation is derived from the boundary conditions.

• Computation of RHS: The RHS of the matrix equations is known. It normally appears the free-stream

velocity and other geometric data such as the AoA.

• Solution of the linear set of equations: Once the influence coefficients and the RHS of the matrix

equation are known, the whole set can be calculated making use of standard numerical solvers.

47

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Figure B.14 Influence of a rectilinear vortex ring. (Source: [7])

• Secondary computations: The solution of the matrix equation gives the velocity field and the

singularity strengths, which were assumed unitary at first. Secondary parameters can be computed

then, like the pressure distribution using the Bernoulli equation or the aerodynamic loads by adding all

the elements’ values.

In the following subsections, the singularity elements considered in this work are to be further explained, as

well as the vortex methods that apply to each of them.

B.2.2 Singularity elements

As previously mentioned, the solution of potential flow problems is based on the distribution of elementary

solutions, which are obtained by imposing the zero normal flow condition on the solid boundaries. Therefore,

this subsection puts emphasis on two typical numerical 3D elements, which are the key to the two numerical

solutions exposed later.

Vortex Ring

On the one hand, the vortex ring is a quadrilateral element in which the induced velocity at a point is

the addition of the four segments (see Figure B.14). The routine to compute the components of the just

mentioned induced velocity inputs the coordinates of the element and the vortex line strength, which is

assumed unitary at first.

Horseshoe Vortex

On the other hand, the horseshoe vortex is a simplified case of the vortex ring. As depicted in Figure B.15, the

vortex line is placed on the xy plane; the two vortex segments are parallel to the x-axis while the finite-length

vortex is parallel to the y-axis.

The induced velocity in the xy plane only has a component in the negative z direction. For a straight vortex

48

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Figure B.15 Representation of a horseshoe vortex element. (Source: [7])

segment, as in this case, it can be computed using an extension of the Biot-Savart law (see [7], pp. 54-55)

uz(x, y, 0) = − Γ

4π d
(cosβ1 − cosβ2) (B.54)

where the negative sign is a result of the velocity pointing in the −z direction.

Using this last equation in each of the three straight segment one gets the total vertical induced velocity in

the horseshoe element

uz(x, y, 0) =
−Γ

4π (y − ya)

1 +
√
(x− xa)

2
+ (y − ya)

2

x− xa

+

Γ

4π (y − yb)

1 +
√
(x− xa)

2
+ (y − yb)

2

x− xa

(B.55)

This result is programmed in a routine to compute the total induced velocity at each collocation point in the

Horseshoe Vortex Method.

B.2.3 The Horseshoe Vortex Method

The HVM solves a lifting line problem of a finite wing by horseshoe elements. It is one of the simplest

aerodynamic computational methods b, based on the analytical Prandtl’s lifting line model), but it can

include geometric effects such as wing taper, wing sweep or dihedral. Although the following resolution only

considers one chordwise vortex, it can be easily extended to include more of them.

The hypothesis are:

• Small-disturbance assumption

• Thin lifting wing

49

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Figure B.16 Horseshoe vortex singularity element. (Source: [7])

• Large aspect ratio (AR > 4)

The problem aims to solve Laplace’s equation, thus the vortex line is a solution of it. Moreover, the only

boundary condition to be satisfied is the zero normal flow across the wing’s solid surface

∇ (Φ + Φ∞) · n = 0 (B.56)

Then, as the wing is placed on the xy plane, this boundary condition requires that the sum of the three

normal components of the velocity (the one induced by the wing’s bound vortices, by the wake and by the

freestream velocity) is zero

uz,b + uz,i + U∞α = 0 (B.57)

where the subscripts b and i refer to the bound vortices and the wake.

Now, following the six steps defined in subsection B.2.1, the numerical solution is built.

• Singularity element:

To solve this problem the quadrilateral horseshoe vortex composed by four linear lifting lines depicted

in Figure B.7 is selected. It consists of a straight bound vortex segment BC that models the lifting

properties and of two semi-infinite trailing vortices representing the wake. The effect of segment AD is

negligible because the wake segments extend far away from the TE of the wing.

Since the small AoA approximation is considered, the trailing vortices are parallel to the wake. Therefore

the model adopted, assuming a planar wing with a spanwise vortex distribution, is the one presented in

Figure B.17, with all the vortices placed on the xy plane.

The typical spanwise element appears in Figure B.18. The collocation point, where the normal surface

vector of the element is located, is place at the center of the panel’s three-quarter chord line whereas

the bound vortex is placed at the panel quarter chord line. Apart from that, the positive circulation is

also depicted.

The velocity induced by one of these elements at an arbitrary point P (x, y, z) can be computed by

50

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Figure B.17 Horseshoe vortex model for solving the lifting-line problem. (Source: [7])

Figure B.18 Spanwise horseshoe vortex element with all the points and distances. (Source: [7])

51

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

applying three times the vortex line routine; for the AB, BC and CD segments. It is assumed that

yA = yB , yC = yD and xA = xD → ∞, meaning that beyond A and D the influence is negligible12. The

mentioned routine is summarized in the following:

– The formula to solve the velocity at an arbitrary point P is, if the vortex segment points from 1 to

2,

V1,2 =
Γ

4π

r1 × r2

|r1 × r2|2
r0 ·

(
r1
r1

− r2
r2

)
(B.58)

– So the first step is to compute the cross product between r1 and r2,

(r1 × r2)x = (yp − y1) · (zp − z2)− (zp − z1) · (yp − y2)

(r1 × r2)y = − (xp − x1) · (zp − z2) + (zp − z1) · (xp − x2)

(r1 × r2)z = (xp − x1) · (yp − y2)− (yp − y1) · (xp − x2)

(B.59)

Its squared absolute value gives

|r1 × r2|2 = (r1 × r2)
2
x + (r1 × r2)

2
y + (r1 × r2)

2
z (B.60)

– Then, the distances r0, r1 and r2 need to be found,

r0 =

√
(x2 − x1)

2
+ (y2 − y1)

2
+ (z2 − z1)

2

r1 =

√
(xp − x1)

2
+ (yp − y1)

2
+ (zp − z1)

2

r2 =

√
(xp − x2)

2
+ (yp − y2)

2
+ (zp − z2)

2

(B.61)

– The singularities must be checked. In this case, the solution is singular when point P lies on the

vortex thus a tolerance needs to be added. The segment is assumed to have a very small radius so

that the singular condition is avoided. If any value is inferior to this radius, the velocity output is

zero.

– Next, the computation of the dot product:

r0 · r1 = (x2 − x1) (xp − x1) + (y2 − y1) (yp − y1) + (z2 − z1) (zp − z1)

r0 · r2 = (x2 − x1) (xp − x2) + (y2 − y1) (yp − y2) + (z2 − z1) (zp − z2)
(B.62)

– Finally, the initial formula is solved for each of the components of the velocity.

Once the routine is run for each of the three segments, the induced velocity is then

(ux, uy, uz) = (uxAB
, uyAB

, uzAB
) + (uxBC

, uyBC
, uzBC

) + (uxCD
, uyCD

, uzCD
) (B.63)

As it will be seen in the loads computation, it is convenient to separate the wake-induced downwash

12From the potential point of view, infinite is assumed to be at least twenty wing spans behind the wing.

52

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

from the velocity induced by the bound vortex. Omitting the bound segment the equation states

(ux, uy, uz)
∗ = (uxAB

, uyAB
, uzAB

) + (uxCD
, uyCD

, uzCD
) (B.64)

• Discretization and grid:

As show in Figure B.17, the wing is divided into several spanwise elements, with the wake segments

parallel to the x axis and the bound ones that go through the quarter chord points of the panels.

Then, Figure B.18 depicts all the data necessary to define in each element, highlighting the circulations,

the collocation point (three-quarter chord) and the bound point (quarter chord). At the collocation

point, assuming planar wing, the normal vector can be computed as

nj = (sinαj , cosαj) (B.65)

where j refers to an arbitrary panel, it is the counter that goes from the first one to the last.

Other geometrical data such as the element’s surface Sj or the mid-chord value in the spanwise direction

are also calculated.

• Influence coefficients:

It is probably the most important step in the development because the influence coefficients matrix is

the key element to solve the aerodynamic system. So, to fulfill the normal velocity component boundary

condition Equation B.56 must be true at each collocation point.

Considering N discrete elements, the system of equations consists of finding, for each collocation point,

the induced velocities due to all the horseshoe elements in the wing13. This can be written as

[(ux, uy, uz)11Γ1 + (ux, uy, uz)12Γ2 + . . .+ (ux, uy, uz)1NΓN + (Ux,∞, Uy,∞, Uz,∞)] · n1 = 0 (B.66)

where the first subscript refers to the collocation point and the second to the element (each collocation

point must consider all of the elements’ contributions to the induced velocity) and the strengths of the

vortices, Γj , are not known.

13The circulation to compute the induced velocities is assumed unitary, although the system solved next gives the real values.

53

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Establishing the same procedure at each collocation point:

a11Γ1 + a12Γ2 + a13Γ3 + · · ·+ a1NΓN = −Q∞ · n1

a21Γ1 + a22Γ2 + a23Γ3 + · · ·+ a2NΓN = −Q∞ · n2

a31Γ1 + a32Γ2 + a33Γ3 + · · ·+ a3NΓN = −Q∞ · n3

...
...

aN1Γ1 + aN2Γ2 + aN3Γ3 + · · ·+ aNNΓN = −Q∞ · nN

(B.67)

where the influence coefficients are defined as

aij ≡ (ux, uy, uz)ij · ni (B.68)

and the subscript i refers to the collocation point.

• RHS vector:

At this point, the matrix system of equations is almost finished. The only element left is the RHS. As

seen in the influence coefficients computations, it can be written as

RHSi = −(Ux,∞, Uy,∞, Uz,∞) · ni (B.69)

This way, a set of N linear algebraic equations with N unknown circulation can be defined in matrix

form:
a11 a12 . . . a1N
a21 a22 . . . a2N
a31 a32 . . . a3N
...

. . .
...

aN1 aN2 . . . aNN

Γ1

Γ2

Γ3

...

ΓN

 = −V∞ sinα

1

1

1
...

1

 (B.70)

When finding the influence coefficients matrix two loops are required, one for the collocation points and

the other hand for the vortex elements that contribute to the induced velocity in the collocation point.

The steps to follow are:

– Initialize a for loop for the collocation points considering the subscript i to refer to each of them.

– At this i collocation point, compute the RHS multiplying the negative components of the freestream

velocity by the normal vector of the element.

– Initialize another for loop for the vortex elements, which contribute to the induced velocity at the

collocation point. The subscript is j.

– Compute the coefficients aij and bij of the element.

Here bij ≡ (ux, uy, uz)
∗
ij · ni is the normal component of the wake-induced downwash. It will be used

54

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

for the computation of the induced drag.

• Solve set of equations:

The solution of the above problem can be obtained using standard methods for matrix systems of

equations. The most direct case, although it is computationally expensive, is to calculate the inverse of

the influence coefficients matrix and multiply it by the RHS of the matrix system of equations.

• Secondary computations:

By solving the set of equations one obtains the circulations or vortex strengths of each element.

Therefore, the lift of each bound vortex segment is obtained by using the KJ theorem:

∆Lj = ρV∞Γj∆yj (B.71)

where ∆yj is the projection of the bound vortex normal to the freestrem (∆b in Figure B.18).

The induced drag computation is a little more complex as it appears due to the trailing vortices. That

is why, when computing the b coefficients, the bound vortex segment contribution to the velocity is not

considered. The formula states

∆Dj = −ρ uz,indjΓj∆yj (B.72)

where the induced downwash uz,indj at each collocation point j is computed by summing the induced

velocities of all the trailing vortex segments. The matrix formulation of the procedure is

uz,ind1

uz,ind2

uz,ind3

...

uz,indN

 =

b11 b12 . . . b1N
b21 b22 . . . b2N
b31 b32 . . . b3N
...

. . .
...

bN1 bN2 . . . bNN

Γ1

Γ2

Γ3

...

ΓN

 (B.73)

Finally, the total lift and drag forces are obtained by adding all the panel contributions:

L =

N∑
j=1

∆Lj

D =

N∑
j=1

∆Dj

This is the most simple method to solve the aerodynamic potential problem. However, it is a very good base

to understand the general concepts and steps to be followed.

B.2.4 The Vortex Lattice Method

The VLM method is an extension of the HVM. It uses a different singularity element, the vortex ring, and

requires very little programming effort. The wing studied can have different shapes and add camber line as if

a profile is considered thus the result is closer to a real case.

55

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Figure B.19 Vortex ring model for a thin lifting surface. (Source: [7])

As in the previous method, the solution is based on the vortex line solution obtained via the incompressible

continuity equation. Therefore, the boundary condition that needs to be satisfied is the zero normal component

of the velocity across the wing’s surface (see Equation B.56).

Then, following with the small-disturbance lifting line formulation (see subsection B.1.4), the boundary

condition can be expressed as

−1

4π

∫
wing+wake

γy(x− x0)− γx(y − y0)

[(x− x0)2 + (y − y0)2]
3/2

dx0 dy0 = Q∞

(
∂ηc
∂x

− α

)

So to solve this lifting line problem numerically, the wing is divided into several vortex ring elements as in

Figure B.19.

As for the HVM, the six steps to obtain a solution are followed.

• Singularity element:

In this case, as stated previously, the singularity element is the vortex ring. Its notation is depicted in

Figure B.20 and consists of four segments of strength Γ. Again, the leading segment of the vortex ring

is placed on the quarter chord of the panel while the collocation point (where the normal vector of the

element is defined) is at the center of the three-quarter chord line.

Moving on to the numerical approach, Figure B.21 shows the indexation of the vortex rings or panels.

The indices are i in the chordwise direction and j in the spanwise.

The velocity induced by one of these elements (indices i, j) at an arbitrary point P (x, y, z) can be

56

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Figure B.20 Nomenclature for the vortex ring elements. (Source: [7])

Figure B.21 Arrangement of vortex rings in a rectangular array. (Source: [7])

computed using the vortex line routine detailed in the previous section. It is then

(ux, uy, uz) = (ux1 , uy1 , uz1) + (ux2 , uy2 , uz2) + (ux3 , uy3 , uz3) + (ux4 , uy4 , uz4) (B.74)

where the subscripts 1, 2, 3 and 4 refer to the four segments that compose the vortex ring. Segment 1

is the leading segment and goes from (i, j) to (i, j + 1), segment 2 goes from (i, j + 1) to (i+ 1, j + 1),

segment 3 from (i+ 1, j + 1) to (i+ 1, j) and segment 4 from (i+ 1, j) to (i, j).

Thanks to Figure B.21, when identifying the i and j indices of each panel, the coordinates of the four

points of the element are known. Moreover, for the induced drag computation it is also convenient to

find the induced velocity by the trailing vortex segments only. The trailing segments are 2 and 4 so

omitting the two others

(ux, uy, uz)
∗ = (ux2

, uy2
, uz2) + (ux4

, uy4
, uz4) (B.75)

At this point, the definition of the singularity element is finished. The next steps are directly related to

57

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

dividing the solid body in elements and building the system of equations.

• Discretization and grid:

As depicted in Figure B.19, the wing is divided into several quadrilateral elements, now following

a 2D distribution (in the chordwise and spanwise directions). Then, Figure B.20 shows the typical

elements with all the distances and values to define, such as the collocations points at the center of the

three-quarter chord line or the leading segment of the vortex ring on the panel’s quarter chord line.

The normal vector, which is key to the formulation of the set of equations, is also defined at the

collocation point. It can be computed by doing the cross product of the vector from point (i, j) to

(i+ 1, j + 1) and the one from (i+ 1, j) to (i, j + 1).

A positive circulation Γ is defined using the right-hand rule, as shown in Figure B.20. However, in this

case there is an important difference with respect to the HVM. For the pressure or lift distributions the

local circulation is needed, which for the LE panel is equal Γi but for the other panels it is equal to

Γi − Γi−1.

• Influence coefficients:

The influence coefficients calculation is similar to the method presented in last subsection. However, in

here it is necessary to scan the panels in a 2D way, that is to say, one loop for each direction.

This way, the computational routine consists of the following parts:

– Scan the collocation points using two for loops, one for the chordwise direction (M divisions) and

the other for the spanwise one (N divisions).

– For each collocation point all the contributions of the vortex rings need to be computed so two

more for loops are to be defined. Similarly to the previous step the loop are for both directions of

the discretization.

– Compute the induced velocities by the whole vortex ring and by the trailing vortices only.

– Add all the contributions at each collocation points so to find the influence coefficients aij and bij .

When computing the contribution to the induced velocity by a vortex ring in the TE, a free wake vortex

ring with the same strength is added to cancel the circulation in the spanwise direction (see Figure

B.22). Therefore, the influence coefficient formula is

aij ≡ [(ux, uy, uz)ij + (ux, uy, uz)ijW] · ni (B.76)

where the subscript W refers to the free wake vortex added to the vortex ring in the TE.

Apart from the influence coefficient, the components which contribute to the induced drag are obtained

thanks to another coefficient, which is

bij ≡
[
(ux, uy, uz)

∗
ij + (ux, uy, uz)

∗
ijW

]
· ni (B.77)

58

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

Figure B.22 Adding a vortex wake panel to fulfill the Kutta condition in the TE panels. (Source: [7])

• RHS vector:

The RHS is calculated for each collocation point, giving as a result a vector, by only making use of

the normal vector of the element and the three components of the freestream velocity. Equation B.69

shows the mathematical form.

• Solve set of equations

When having both the influence coefficients matrix and the RHS vector the system of equations is

immediately formulated (see Equation B.70).

It comes from applying the zero normal flow boundary condition on each of the collocation points thus

if there are N collocation points, the result will be a N-sized vector with the circulation at each point.

• Secondary computations

Once the system of N algebraic equations is solved, the lift of each bound vortex segment is obtained

by using the KJ theorem. It is important to notice that now the discretization is 2D, so the formulas

depend on whether the panel is in the LE or not. That said, for the majority of panels (i > 1)

∆Lij = ρV∞ (Γi,j − Γi−1,j)∆yij (B.78)

but for the LE ones (i = 1)

∆Lij = ρV∞Γi,j∆yij (B.79)

where ∆yij is the panel width (see Figure B.20).

Then, the induced drag computation follows the same principle as for the HVM thus it is due to the

trailing vortices. The formulas state, for the middle panels (i > 1)

∆Dij = −ρ uz,indi,j (Γi,j − Γi−1,j)∆yij (B.80)

59

B.2. COMPUTATIONAL APPROACH APPENDIX B. AERODYNAMIC THEORY

and for the LE ones (i = 1)

∆Dij = −ρ uz,indi,jΓi,j∆yij (B.81)

where the induced downwash uz,indj
at each collocation point j is computed by summing the induced

velocities of all the trailing vortex segments. The matrix formulation of the procedure is described in

Equation B.73.

Finally, the total lift and drag forces are obtained by adding all the panel contributions:

L =

M∑
i=1

N∑
j=1

∆Lij

D =

M∑
i=1

N∑
j=1

∆Dij

The VLM is a more detailed method to solve the potential flow problem because the discretization is 2D and

the addition of the profile camber, for example, brings the result closer to realistic situations.

60

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

Appendix C

Validation of Separate Codes

Appendix C is divided into two parts. On the one hand, results of the two structural elements which make

up the project mesh are validated. These elements are the beam and the plate.

On the other hand, steady aerodynamic results of two different methods are also compared with literature.

The two methods are the Horseshoe Vortex Method (HVM) and the Vortex Lattice Method (VLM).

C.1 Structural Codes

Both codes are based on the Finite Element Method (FEM), using the Gauss quadrature to evaluate the

integrals.

C.1.1 Beam element

The case which is studied in this section is a cantilever beam with uniform load along the longitudinal

direction, see figure C.1. Although the beam can be studied in 1D with linear elements, the code is written

in 3D, in case it needs to be extended for more complex analyses.

Figure C.1 Cantilever beam with uniform load along its longitudinal axis.

61

C.1. STRUCTURAL CODES APPENDIX C. VALIDATION OF SEPARATE CODES

According to (Tejerizo, 2015) [9], the following analytical data can be extracted:

• Clamped reaction force −→ R (x = 0) = pL

• Clamped reaction moment −→ M (x = 0) = pL2

2

• Shear stress distribution along longitudinal axis −→ T (x) = p (L− x)

• Bending moment distribution along longitudinal axis −→ M (x) = −p (L−x)2

2

Then, applying the Mohr’s second theorem, the expression of the vertical displacement at the tip of the beam

is found.

w (x = L) =
pL4

8EI
(C.1)

Introducing numerical parameters so to obtain solutions of the equations, they can be compared to the

solutions of the FEM MATLAB code. Table C.1 shows the comparison.

• Distributed load −→ p = −105 Pa

• Beam length −→ L = 2m

• Young’s modulus −→ E = 69 · 109 Pa

• Cross-sectional inertia −→ Iz = 3.25 · 10−3 m4

Table C.1 Analytical and computational comparison of the results of a cantilever beam with uniform load.

Analytical FEM MATLAB Error (%)

Shear stress (x=0) −2 · 105 N −2 · 105 N 0

Shear stress (x=L) 0 N 0 N 0

Bending moment (x=0) 2 · 105 Nm 2 · 105 Nm 0

Bending moment (x=L) 0 Nm 0 Nm 0

Tip displacement 0.8918 mm 0.9069 mm 1.69

Finally, the deformed beam and the internal forces and moments in each direction are plotted in MATLAB,

confirming they follow the same distributions as in (Tejerizo, 2015) [9].

Figure C.2 Vertical displacement along the longitudinal direction of the beam.

62

C.1. STRUCTURAL CODES APPENDIX C. VALIDATION OF SEPARATE CODES

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1
A

x
ia

l
fo

rc
e
 (

N
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

S
h
e
a
r

fo
rc

e
 (

N
)

Nodes
-2

-1

0

V
e
rt

ic
a
l
fo

rc
e
 (

N
) 105

Figure C.3 Internal forces along the longitudinal direction of the beam in the three directions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

T
o
rs

io
n
 m

o
m

e
n
t
(N

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

B
e
n
d
in

g
 m

o
m

e
n
t
(N

m
)

105

Nodes
-1

0

1

V
e
rt

ic
a
l
m

o
m

e
n
t
(N

m
)

Figure C.4 Internal moments along the longitudinal direction of the beam in the three directions.

63

C.1. STRUCTURAL CODES APPENDIX C. VALIDATION OF SEPARATE CODES

C.1.2 Plate element

The plate structure adds a dimension with respect to the beam one, the problem is considered in 2D. This

second section of Annex A studies a squared flat plate with all the edges clamped.

According to (Young, Budynas and Sadegh, 2012) [10] the maximum displacement appears, naturally, at the

center of the structure for the case with all edges fixed. Its value is found using equation C.2, for a Poisson

coefficient ν = 0.3.

wmax =
αqb4

Et3
(C.2)

E is the Young’s modulus, b is the short edge length, q is the distributed load, t is the plate thickness and α

is a dimensionless tabulated coefficient. The latter is obtained from the relation between the short and long

edge, being 1 for a squared plate.

If one introduces numbers to each parameter in equation C.2, the maximum displacement can be obtained.

• Distributed load −→ q = 106 Pa

• Plate edge length −→ b = 2m

• Young’s modulus −→ E = 69 · 109 Pa

• Plate thickness −→ t = 0.05m

• Dimensionless coefficient −→ α = 0.0138

• Poisson coefficient −→ ν = 0.3

Once the analytical solution is settled, the code solution must be analyzed. Figure C.5 and figure C.6

represent the plate’s behaviour when the distributed load is applied together with the convergence with the

number of discrete elements used.

Finally, comparing the analytical and computational results, the code performance can be evaluated. Table

C.2 summarizes the results, picking the numerical one for 32 elements in each direction.

Table C.2 Analytical and computational comparison of the results of an all-edges-clamped plate with uniform
load.

Analytical FEM MATLAB Error (%)

Maximum displacement 25.6 mm 30.1 mm 17.58

64

C.1. STRUCTURAL CODES APPENDIX C. VALIDATION OF SEPARATE CODES

Figure C.5 Plate’s vertical displacement distribution along its surface.

0 5 10 15 20 25 30 35

N
e

0.027

0.0275

0.028

0.0285

0.029

0.0295

0.03

0.0305

u
m

a
x

Figure C.6 Plate’s maximum displacement as a function of the number of 2D elements.

65

C.2. AERODYNAMIC CODES APPENDIX C. VALIDATION OF SEPARATE CODES

Table C.3 EZASE and project codes comparison of the main aerodynamic forces together with the analytical
values.

Solution Lift (N) Error L (%) Induced Drag (N) Error Di (%)

EZASE VLM 13100.4013 1.45 259.4182 12.6

Analytical 13293.2797 0 296.8210 0

Project VLM 13111.6585 1.37 277.3525 6.6

C.2 Aerodynamic Codes

The computational aerodynamic methodology for the VLM is based on [7]. The HVM does not need to be

validated because it is explained as an introduction to the VLM.

C.2.1 Vortex Lattice Method

The results to check in this part are the steady lift and induced drag obtained using the VLM development.

The wing dimensions and flying condition are:

• Span −→ b = 3.354m

• Root chord −→ cr = 0.838m

• Taper ratio −→ TR = 1

• Sweep angle −→ SW = 0◦

• Angle of attack −→ α = 4◦

• Sideslip angle −→ β = 0◦

• Freestream density −→ ρ∞ = 1.225 kg/m3

• Freestream velocity −→ V∞ = 0.5Vsound,SL
1 = 170.15m/s

The EZASE code created by NASA [11] plot the VLM lift and induced drag and compare them to the

analytical values from the 3D Prandtl’s lifting line theory. On the other hand, the code developed in this

work is based on the methodology in [7]. Figures C.7 and C.8 correspond to the later while Figures C.9 and

C.10 to the NASA code.

Then, in Table C.3 the analytical results are compared to the VLM ones obtained using both the EZASE

and this work’s code.

1It refers to the speed of sound at sea level, being 340.3 m/s.

66

C.2. AERODYNAMIC CODES APPENDIX C. VALIDATION OF SEPARATE CODES

Figure C.7 Lift distribution along the wing computed using the developed VLM code.

Figure C.8 Induced drag distribution along the wing computed using the developed VLM code.

67

C.2. AERODYNAMIC CODES APPENDIX C. VALIDATION OF SEPARATE CODES

Figure C.9 Lift distribution along the wing computed using the VLM tutorial in EZASE NASA code.
(Source: [11])

Figure C.10 Induced drag distribution along the wing computed using the VLM tutorial in EZASE NASA
code. (Source: [11])

68

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

Appendix D

Aeroelastic Code

1 %---%

2 % TFG (Includes Aeroelastic Study modifying TR , SW , AR, Mp)

3 %---%

4 % Date: 15/02/2022

5 % Author/s: Guillermo Adroher Bolla

6

7 clc;

8 clear;

9 close all;

10

11 %% INPUT DATA

12

13 %_______

14 % STRUCTURAL INPUTS

15 %_______

16

17 % Material properties ----------------- Aluminum 6061-T6 (NASA paper)

18 rhoAl = 2700; % density [kg/m^3]

19 Emod = 68.9e9; % Young ’s modulus [Pa]

20 Gmod = 26e9; % shear modulus [Pa]

21 nu = 0.33; % poisson ratio

22 h = 3.06e-3; % wing thickness [m]

23

24 %_______

25 % AERODYNAMIC INPUTS

26 %_______

27

28 % Geometric data

29 b = 2.2946; % semi span length [m] Orig: 3.354 and 737: 2.2946

30 cr = 0.838; % root chord length [m]

31 TR = 0.159; % wing ’s taper ratio 737: 0.159

32 SW = 25; % wing ’s sweep angle [deg] 737: 25

33 ct = cr*TR; % tip chord length [m]

69

APPENDIX D. AEROELASTIC CODE

34 S = (cr+ct)*b/2; % semi wing surface [m^2]

35 AR = b^2/S; % wing ’s aspect ratio

36 mac = 2/3*cr.*(1+TR+TR.^2) ./(1+TR) ; % mean aerodynamic chord [m]

37

38 % Velocity and environment variables

39 M = 0.5;

40 Vsound = 340.3; % speed of sound at SL [m/s]

41 Qinf = M*Vsound; % free -stream speed in wind axes [m/s]

42 mu = 1.983e-5;

43 rho = 1.225; % density [kg/m^3]

44 Re = rho*Qinf*mac ./(2*mu); % computed at the mean chord (cr+ct)/2

45

46 %_______

47 % PLOTTING INPUTS

48 %_______

49

50 mesh_plots = 0; % 1 to plot them and 0 not to plot them

51 modes_plots = 0;

52 torsion_bending_plots = 0;

53 flutter_plot = 1;

54 modes_plots_dyn = 0;

55

56 %% MESH GENERATION MODULE - Bilinear Quadrilateral Elements

57

58 % Input mesh data

59 xel = 10; % number of elements in the semi span direction (multiple of

60 % 10, if not check the spars ’ position)

61 yel = 16; % number of elements in the chord direction (20 EZASE)

62 xnod = xel+1;

63 ynod = yel+1;

64

65 % Mwing = 63.6146; % computed analytically integrating (TR=1 and SW=0)

66 Mwing2 = 25.22; % (TR =0.159 and SW=25)

67 mp = 0.4454* Mwing2; % point mass to add at some nodes 737: 0.4454

68 n_ribs = [5,6]; % in which ribs the mass is added 737 Orig: [4,5]

69 rib_nodes = [1,2]; % in which nodes of the rib the mass is added [1,2]

70 mp_nod = zeros(size(n_ribs ,1),size(n_ribs ,2)*size(rib_nodes ,2));

71 for r = 1:size(n_ribs ,2)

72 mp_nod (1+(r-1)*size(rib_nodes ,2):r*size(rib_nodes ,2)) = ...

73 rib_nodes +(n_ribs(r) -1)*xnod;

74 end

75 mp_nodes = mp_nod (:,[1 2 4 3]);

76

77 Dy = b/yel; % element chordwise length [m]

78 Dx = zeros(ynod ,1);

79 c = zeros(ynod ,1); % chord length at each y position [m]

80 c4 = zeros(ynod ,1); % quarter chord coordinate at each y position [m]

81 for i = 1:ynod

82 c4(i) = 1/4*cr+Dy*(i-1)*tan(SW*pi/180);

70

APPENDIX D. AEROELASTIC CODE

83 c(i) = (ct -cr)/b*Dy*(i-1)+cr;

84 Dx(i) = c(i)/xel;

85 end

86

87 % Ribs and Spars cross -section parameters

88 % Spars ’ properties (|| cross -sectional area)

89 nspar = 2; % number of spars

90 ks_prime = [0 0 1]’;

91 % LE spar (bigger)

92 Hos_LE = 0.0508; % initial height LE spar

93 Wos_LE = 0.0508*0.5; % initial width LE spar

94 Hfs_LE = 0.0254; % final height LE spar

95 Wfs_LE = 0.0254*0.5; % final width LE spar

96 for i = 1:ynod

97 H_LE(i) = (Hfs_LE -Hos_LE)/b*Dy*(i-1) + Hos_LE;

98 W_LE(i) = (Wfs_LE -Wos_LE)/b*Dy*(i-1) + Wos_LE;

99 end

100 As_LE = H_LE.*W_LE; % cross -sectional area [m^2]

101 Iys_primeLE = H_LE .^4/12; % area inertias [m^4]

102 Izs_primeLE = W_LE .^4/12;

103 JsLE = H_LE.*W_LE .^3.*(16/3 -3.36.* W_LE./H_LE .*(1- W_LE .^4./...

104 (12* H_LE .^4)));

105 IpsLE = Iys_primeLE+Izs_primeLE; % polar inertia [m^4]

106 % TE spar (smaller)

107 Hos_TE = 0.0381; % initial height TE spar

108 Wos_TE = 0.0381*0.5; % initial width TE spar

109 Hfs_TE = 0.0254; % final height TE spar

110 Wfs_TE = 0.0254*0.5; % final width TE spar

111 for i = 1:ynod

112 H_TE(i) = (Hfs_TE -Hos_TE)/b*Dy*(i-1) + Hos_TE;

113 W_TE(i) = (Wfs_TE -Wos_TE)/b*Dy*(i-1) + Wos_TE;

114 end

115 As_TE = H_TE.*W_TE; % cross -sectional area [m^2]

116 Iys_primeTE = H_TE .^4/12; % area inertias [m^4]

117 Izs_primeTE = W_TE .^4/12;

118 JsTE = H_TE.*W_TE .^3.*(16/3 -3.36.* W_TE./H_TE .*...

119 (1-W_TE .^4./(12* H_TE .^4)));

120 IpsTE = Iys_primeTE+Izs_primeTE; % polar inertia [m^4]

121

122 kys = 5/6; % shear and torsion correction factors

123 kzs = 1; % Onate Vol 2 page 42

124

125 % Ribs ’ properties (|| cross -sectional area , H = 25.4mm and W = 25.4mm)

126 jr_prime = [0 1 0]’;

127 Hor = 0.0508; % initial height rib

128 Wor = 0.0508*0.5; % initial width rib

129 Hfr = 0.0254; % final height rib

130 Wfr = 0.0254*0.5; % final width rib

131 for i = 1:ynod

71

APPENDIX D. AEROELASTIC CODE

132 for j = 1:xnod

133 Hr(j,i) = (Hfr -Hor)/(c(i))*Dx(i)*(j-1)+Hor;

134 Wr(j,i) = (Wfr -Wor)/(c(i))*Dx(i)*(j-1)+Wor;

135 end

136 end

137 Ar = Hr.*Wr; % cross -sectional area [m^2]

138 Iyr_prime = Hr .^4/12; % area inertias [m^4]

139 Izr_prime = Wr .^4/12;

140 Jr = Hr.*Wr .^3.*(16/3 -3.36.* Wr./Hr.*(1-Wr .^4./(12* Hr.^4)));

141 Ipr = Iyr_prime+Izr_prime; % polar inertia [m^4]

142 kyr = 5/6; % shear and torsion correction factors

143 kzr = 1; % Onate Vol 2 page 42

144

145 % Dimensions plate

146 dim.nd = 3; % problem dimension

147 dim.nel = xel*yel; % number of elements

148 dim.nnod = xnod*ynod; % total number of nodes

149 dim.nne = 4; % number of nodes in an element

150 dim.ni = 6; % degrees of freedom per node (in case 3D extension)

151 dim.ndof = dim.nnod*dim.ni; % total number of degrees of freedom

152

153

154 % Generating and plotting the mesh

155 nrib = ynod; % number of ribs

156 [X,Xs,Xr ,Tn,Tns ,Tnr ,Tnp ,Tmp ,Tdp ,c75elem ,c4corner ,c4elem ,normals ,Sel ,npan ,...

157 Up] = meshFunction_STRUCT2(dim ,Dx,Dy ,xnod ,ynod ,c,c4 ,b,nspar ,nrib ,...

158 mesh_plots);

159

160

161 %% AERODYNAMIC MODULE

162

163 % Assembly of the influence coefficients matrix

164 [A,B] = infcoeff_VLM(npan ,Tnp ,Tmp ,Tdp ,xel ,yel ,c4corner ,c75elem ,normals);

165

166

167 %% STRUCTURAL MODULE

168

169 % Compute stiffness matrix of the shell elements

170 [Kplate ,Mplate ,R,N4,S4] = stiffnessPlate_STRUCT(X,Tn ,dim ,h,Emod ,nu ,rhoAl);

171

172 % Compute stiffness matrix of the spar elements

173 [KsparLE ,MsparLE] = stiffnessSpars_STRUCT(X,Tns (1:16 ,:),dim ,ks_prime ,...

174 Emod ,Gmod ,As_LE ,JsLE ,Iys_primeLE ,Izs_primeLE ,kys ,kzs ,yel ,rhoAl);

175 [KsparTE ,MsparTE] = stiffnessSpars_STRUCT(X,Tns (17:32 ,:),dim ,ks_prime ,...

176 Emod ,Gmod ,As_TE ,JsTE ,Iys_primeTE ,Izs_primeTE ,kys ,kzs ,yel ,rhoAl);

177

178 Kspars = KsparLE + KsparTE;

179 Mspars = MsparLE + MsparTE;

180

72

APPENDIX D. AEROELASTIC CODE

181 % Compute stiffness matrix of the rib elements

182 Kribs = zeros(dim.ndof ,dim.ndof);

183 Mribs = zeros(dim.ndof ,dim.ndof);

184 for i = 1:nrib

185 [Krib ,Mrib] = stiffnessRibs_STRUCT(X,Tnr (1+(i-1)*xel:i*xel ,:),dim ,...

186 jr_prime ,Emod ,Gmod ,Ar(:,i),Jr(:,i),Iyr_prime(:,i),Izr_prime(:,i) ,...

187 kyr ,kzr ,xel ,rhoAl);

188 Kribs = Kribs + Krib;

189 Mribs = Mribs + Mrib;

190 end

191

192 K = Kplate+Kribs+Kspars;

193 M = Mplate+Mribs+Mspars;

194

195 for i = mp_nodes

196 M(dim.ni*(i-1) +(1:3) ,dim.ni*(i-1) +(1:3)) = M(dim.ni*(i-1) +(1:3) ,...

197 dim.ni*(i-1) +(1:3)) + mp/(size(rib_nodes ,2)*size(n_ribs ,2))*eye(3);

198 end

199

200 % K = Kplate;

201 % M = Mplate;

202

203

204 %% COUPLING MODULE

205

206 % D matrix --> Relate AoA with vertical (z) displacement of the nodes

207 D = matrixD_STRUCT(dim ,Tn,X);

208

209 % Q matrix --> Relate pressure distribution with external forces

210 Q = matrixQ_STRUCT(dim ,Tn,xel ,X);

211

212 % E matrix --> Relate structural velocity in the collocation points (’z’

213 % direction) to velocity vector {u_point}

214 E = matrixE_STRUCT(dim ,Tn);

215

216

217 %% SOLVER (Post -Process)

218

219 % Boundary conditions

220 u = zeros(dim.ndof ,1);

221 [Ip ,If] = dofVec(Up ,dim);

222

223 % STATIC CASE

224 % Modal analysis (eigenvalues and eigenvectors)

225 neig = 18;

226

227 Kf = K;

228 invA = inv(A);

229 Mf = -(2*Q*invA*D);

73

APPENDIX D. AEROELASTIC CODE

230

231 Kf = Kf(If,If); % only picking the free nodes

232 Mf = Mf(If,If);

233

234 Phi = zeros(dim.ndof ,neig);

235 [Phi(If ,:),Lambda] = undampedFreq(Mf,Kf,neig); % natural frequencies and vibration modes

236 % Lambda gives q_inf

237 Vdiv = sqrt(Lambda .*2./ rho);

238 for i = 1: length(Vdiv)

239 if imag(Vdiv(i)) ~= 0

240 Vdiv(i) = 0;

241 end

242 end

243

244 if modes_plots == 1

245 plotModes(X,Tn,Phi ,Lambda);

246 end

247

248 PhiAoA = D*Phi *180/pi; % AoA matrix (Phi is the vertical displacements matrix)

249

250 if torsion_bending_plots == 1

251 % Bending plots (along span per mode)

252 sumZdisp = zeros(neig ,ynod); % Z displacements sum for each ’y’ position divided by

253 % the number of ’x’ nodes for that ’y’

254 ydof = dim.ni*ynod;

255 xdof = dim.ni*xnod;

256 figure ()

257 for mod = [1:6 15:18]

258 for j = 1:ynod

259 sumZdisp(mod ,j) = real(sum(Phi(3+ xdof*(j-1):6:j*xdof -3,mod)));

260 end

261 plot(X(1: xnod:dim.nnod ,2) ’,sumZdisp(mod ,:)./xnod ,’DisplayName ’ ,...

262 [’Mode ’ num2str(mod)]); hold on;

263 lgd = legend(’show’,’Location ’,’southwest ’,’NumColumns ’ ,2);

264 title(lgd ,’Bending ’);

265 xlabel(’b (m)’,’Interpreter ’,’Latex ’)

266 ylabel(’u_{z} (m)’,’Interpreter ’,’Latex’)

267 end

268

269 % Torsion plots (along span per mode)

270 torsY = zeros(neig ,ynod); % LE and TE ’z’ displacement difference (LE-TE) for

271 % each ’y’ position divided by the chord in that

272 % ’y’ position (effective torsion angle)

273 figure ()

274 for mod = 7:14

275 for j = 1:ynod

276 torsLE = real((Phi(3+ xdof*(j-1),mod)));

277 torsTE = real((Phi(j*xdof -3,mod)));

278 torsY(mod ,j) = (torsLE -torsTE)/c(j);

74

APPENDIX D. AEROELASTIC CODE

279 torsY_deg(mod ,j) = torsY(mod ,j).*180/ pi;

280 end

281 plot(X(1: xnod:dim.nnod ,2) ’,torsY_deg(mod ,:),’DisplayName ’ ,...

282 [’Mode ’ num2str(mod)]); hold on;

283 lgd = legend(’show’,’Location ’,’southwest ’,’NumColumns ’ ,2);

284 title(lgd ,’Torsion ’);

285 xlabel(’b (m)’,’Interpreter ’,’Latex ’)

286 ylabel(’θ_{y} ($^{\ circ}$)’,’Interpreter ’,’Latex ’)

287 end

288 end

289

290

291 %% DYNAMIC CASE

292 % Modal analysis (eigenvalues and eigenvectors)

293 Uinf = 0:1:60; % ’speed sweep ’

294 Vbar = zeros (2*dim.ndof ,length(Uinf),neig);

295 LambdaDyn = zeros(neig ,length(Uinf));

296 pR = zeros(length(Uinf),neig);

297 pI = zeros(length(Uinf),neig);

298 PhiDyn = zeros(dim.ndof ,length(Uinf),neig);

299

300 for i = 1: length(Uinf)

301 Ca = -1/2*rho*Uinf(i)*(2*Q*invA*E);

302 Ka = K + 1/2* rho*Uinf(i)^2*(2*Q*invA*D);

303

304 Mbar = [Ca(If,If) M(If ,If); -eye(length(If)) zeros(length(If))];

305 Kbar = [Ka(If,If) zeros(length(If)); zeros(length(If)) eye(length(If))];

306 [Vbar([If If+dim.ndof],i,:),LambdaDyn(:,i)] = undampedFreq(Mbar ,...

307 Kbar ,neig);

308

309 pR(i,:) = real(-LambdaDyn(:,i)); % real part

310 pI(i,:) = imag(-LambdaDyn(:,i)); % imaginary part

311 PhiDyn(:,i,:) = Vbar (1:dim.ndof ,i,:);

312

313 [maxPr_vec , ind_vec] = maxk(pR(i,:) ,5); % envelope

314 if maxPr_vec (1) < 1e-4 && maxPr_vec (1) > -1e-4

315 if maxPr_vec (2) < 1e-4 && maxPr_vec (2) > -1e-4

316 if maxPr_vec (3) < 1e-4 && maxPr_vec (3) > -1e-4

317 if maxPr_vec (4) < 1e-4 && maxPr_vec (4) > -1e-4

318 maxPr(i) = maxPr_vec (5);

319 ind(i) = ind_vec (5);

320 else

321 maxPr(i) = maxPr_vec (4);

322 ind(i) = ind_vec (4);

323 end

324 else

325 maxPr(i) = maxPr_vec (3);

326 ind(i) = ind_vec (3);

327 end

75

APPENDIX D. AEROELASTIC CODE

328 else

329 maxPr(i) = maxPr_vec (2);

330 ind(i) = ind_vec (2);

331 end

332 else

333 maxPr(i) = maxPr_vec (1);

334 ind(i) = ind_vec (1);

335 end

336 end

337

338 if flutter_plot == 1

339 figure ()

340 envel = plot((Uinf),maxPr ,’-b’,’linewidth ’ ,2,...

341 ’DisplayName ’,’Envelope ’); hold on;

342 for mod = 1:neig

343 plot((Uinf),pR(:,mod),’.k’,’DisplayName ’ ,...

344 [’Mode ’ num2str(mod)]); hold on;

345 end

346 flut = yline(0,’-’,’Flutter Condition ’,’DisplayName ’,’Flutter ’ ,...

347 ’LabelHorizontalAlignment ’,’left’);

348 legend ([envel flut],’Location ’,’Best’);

349 xlabel(’$V_{\infty} (m/s)$’,’Interpreter ’,’Latex ’)

350 ylabel(’Eigenvalue p’,’Interpreter ’,’Latex ’)

351 % title(sprintf(’Flutter Condition for $m_p =12.87$ kg ’),’Interpreter ’,’Latex ’)

352 end

353

354 % Flutter Velocity

355 ind_sign = find(maxPr (2:end -1).* maxPr (3:end) <0)+1;

356 Vflutter = interp1(maxPr([ind_sign ,ind_sign +1]),Uinf([ind_sign ,...

357 ind_sign +1]) ,0);

358

359 % Dynamic Modes

360 Ca_F = -1/2*rho*Vflutter *(2*Q*invA*E);

361 Ka_F = K + 1/2* rho*Vflutter ^2*(2*Q*invA*D);

362

363 Vbar_F = zeros (2*dim.ndof ,neig);

364 LambdaDyn_F = zeros(neig ,1);

365 Mbar_F = [Ca(If,If) M(If,If); -eye(length(If)) zeros(length(If))];

366 Kbar_F = [Ka(If,If) zeros(length(If)); zeros(length(If)) eye(length(If))];

367 [Vbar_F ([If If+dim.ndof],:),LambdaDyn_F (:,1)] = undampedFreq(Mbar ,Kbar ,...

368 neig);

369

370 if modes_plots_dyn == 1

371 plotModes(X,Tn,real(Vbar_F (1:dim.ndof ,:)),real(LambdaDyn_F (:,1)));

372 end

373

374 % END

Listing D.1 Main script of the aeroelastic code developed to study the flutter instability.

76

APPENDIX D. AEROELASTIC CODE

1 function [X,Xs,Xr ,Tn,Tns ,Tnr ,Tnp ,Tmp ,Tdp ,c75elem ,c4corner ,c4elem ,normals ,...

2 Sel ,npan ,Up] = meshFunction_STRUCT2(dim ,Dx,Dy ,xnod ,ynod ,c,c4,b,...

3 nspar ,nrib ,mesh_plots)

4

5 yel = ynod -1;

6 xel = xnod -1;

7 w_length = 20*b; % wake limit points (theoretically infinite)

8

9 % Coordinates matrix X

10 X = zeros(xnod ,ynod ,dim.nd);

11 for i = 1:xnod

12 for j = 1:ynod

13 X(i,j,1) = c4(j) - 1/4*c(j) + (i-1)*Dx(j);

14 X(i,j,2) = (j-1)*Dy;

15 end

16 end

17 X = reshape(X,dim.nnod ,dim.nd);

18

19 % Forward spars (along ’y’ direction)

20 pspar = [0.2*xel ,0.7* xel]; % xel in which each forward spar is located

21 % (for each ynod), at 20% and 70% of the chord

22 Xspars = zeros(ynod ,dim.nd,nspar);

23 for nspar = 1: nspar

24 for j = 1:ynod

25 Xspars(j,1,nspar) = (c4(j) -1/4*c(j)) + pspar(nspar)*Dx(j);

26 Xspars(j,2,nspar) = (j-1)*Dy;

27 end

28 end

29

30 % Ribs (along ’x’ direction)

31 Xribs = zeros(xnod ,dim.nd ,nrib);

32 for nrib = 1:nrib

33 for i = 1:xnod

34 Xribs(i,1,nrib) = (c4(nrib) -1/4*c(nrib)) + (i-1)*Dx(nrib);

35 Xribs(i,2,nrib) = (nrib -1)*Dy;

36 end

37 end

38

39 % Connectivities matrices Tn, Tnr , Tns

40 nod_num = 1:dim.nnod;

41 nod_num = reshape(nod_num ,xnod ,ynod);

42

43 Tn = zeros(dim.nel ,dim.nne);

44 Tn(:,1) = reshape(nod_num (1:xnod -1,1:ynod -1),dim.nel ,1);

45 Tn(:,2) = reshape(nod_num (2:xnod ,1:ynod -1),dim.nel ,1);

46 Tn(:,3) = reshape(nod_num (2:xnod ,2: ynod),dim.nel ,1);

47 Tn(:,4) = reshape(nod_num (1:xnod -1,2: ynod),dim.nel ,1);

48

49 Tns = zeros(yel ,2,nspar); % Linear 2-noded elements

77

APPENDIX D. AEROELASTIC CODE

50 for nspar = 1: nspar

51 for j = 1:yel

52 Tns(j,1,nspar) = (pspar(nspar)+1)+(j-1)*xnod;

53 Tns(j,2,nspar) = (pspar(nspar)+1)+j*xnod;

54 end

55 end

56

57 Tnr = zeros(xel ,2,nrib); % Linear 2-noded elements

58 for nrib = 1:nrib

59 for i = 1:xel

60 Tnr(i,1,nrib) = i+xnod*(nrib -1);

61 Tnr(i,2,nrib) = i+xnod*(nrib -1)+1;

62 end

63 end

64

65 X = reshape(X,xnod ,ynod ,dim.nd);

66

67 % Panel collocation points (three -quarter chord of each element ,

68 % x-direction)

69 c75elem = zeros(dim.nel ,dim.nd); % panel collocation points

70 c_mid = zeros(dim.nel ,dim.nd); % chord length at elements midpoint

71 cont2 = 1;

72 for j = 1:yel

73 for i = 1:xel

74 c_mid(cont2 ,1) = (c(j)+c(j+1))/(2* xel);

75 c75elem(cont2 ,1) = 1/2*(X(1,j,1)+X(1,j+1,1)) + 3/4*...

76 c_mid(cont2)+ (i-1)*c_mid(cont2);

77 c75elem(cont2 ,2) = 1/2*(X(1,j,2)+X(1,j+1,2));

78 cont2 = cont2 +1;

79 end

80 end

81

82 % Panel corner points (quarter chord in each y-division)

83 c4corner = zeros(ynod*(xnod +1),dim.nd); % panel corner points

84 cont = 1;

85 for j = 1:ynod

86 for i = 1:xnod+1

87 if i < xnod+1

88 c4corner(cont ,1) = X(1,j,1) + 1/4*Dx(j) + (i-1)*Dx(j);

89 c4corner(cont ,2) = X(1,j,2);

90 elseif i == xnod+1

91 c4corner(cont ,1) = c4corner(cont -1,1) + w_length;

92 c4corner(cont ,2) = X(1,j,2);

93 end

94 cont = cont +1;

95 end

96 end

97

98 % Connectivities matrix Tnp of the wing aerodynamic panels

78

APPENDIX D. AEROELASTIC CODE

99 nod_num2 = 1:size(c4corner ,1);

100 nod_num2 = reshape(nod_num2 ,xnod+1,ynod);

101

102 npan = (xel +1)*yel; % number of aerodynamic panels

103 Tnp = zeros(npan ,dim.nne);

104 Tnp(:,1) = reshape(nod_num2 (1:xnod ,1:ynod -1),npan ,1);

105 Tnp(:,2) = reshape(nod_num2 (1:xnod ,2: ynod),npan ,1);

106 Tnp(:,3) = reshape(nod_num2 (2: xnod +1,2: ynod),npan ,1);

107 Tnp(:,4) = reshape(nod_num2 (2: xnod +1,1:ynod -1),npan ,1);

108

109 c4elem = c4corner;

110 wake_pos = (xnod +1):(xnod +1):size(c4corner ,1);

111 c4elem(wake_pos ,:) = []; % eliminating the corner points from the

112 % freestream field

113

114 % Materials connectivities matrix Tmp of the wing aerodynamic panels

115 Tmp = ones(npan ,1);

116 cont = 1;

117 for e = 1:npan

118 if e == cont*xnod

119 Tmp(e) = 0;

120 cont = cont +1;

121 end

122 end

123

124 % DOF connectivities matrix Tdp of the wing aerodynamic panels

125 Tdp = zeros(npan ,1);

126 cont = 0;

127 for e = 1:npan

128 Tdp(e) = e-cont;

129 if e == (cont +1)*xnod

130 cont = cont +1;

131 Tdp(e) = Tdp(e-1);

132 end

133 end

134

135 %__________

136 X = reshape(X,dim.nnod ,dim.nd); % coordinates matrix is dim.ndof*dim.nd

137 %__________

138

139 % Normal vector computation (of each element at the collocation point)

140 normals = zeros(dim.nel ,dim.nd);

141 Sel = zeros(dim.nel ,dim.nd);

142 for e = 1:dim.nel

143 Ak = c4elem(Tn(e,3) ,:)’ - c4elem(Tn(e,1) ,:) ’;

144 Bk = c4elem(Tn(e,4) ,:)’ - c4elem(Tn(e,2) ,:) ’;

145 Sel(e,:) = cross(Ak,Bk)/2; % element surface

146 normals(e,:) = Sel(e,:)/norm(Sel(e,:)); % normal vector of the

147 % flat shell element

79

APPENDIX D. AEROELASTIC CODE

148 end

149

150 % Plotting the Finite Element mesh

151 if mesh_plots == 1

152 XX = X(:,1);

153 YY = X(:,2);

154 ZZ = X(:,3);

155

156 figure ()

157 view (90 ,90)

158 patch(XX(Tn ’),YY(Tn ’),ZZ(Tn ’),’facecolor ’,’none’,’edgecolor ’,’k’);

159 for nspar = 1: nspar

160 if nspar == 1

161 patch(Xspars(:,1,nspar),Xspars(:,2,nspar),Xspars(:,3,nspar) ,...

162 ’facecolor ’,’none’,’edgecolor ’,’b’,’linewidth ’ ,1.5);

163 else

164 patch(Xspars(:,1,nspar),Xspars(:,2,nspar),Xspars(:,3,nspar) ,...

165 ’facecolor ’,’none’,’edgecolor ’,’b’);

166 end

167 end

168 for nrib = 1:nrib

169 patch(Xribs(:,1,nrib),Xribs(:,2,nrib),Xribs(:,3,nrib) ,...

170 ’facecolor ’,’none’,’edgecolor ’,’r’);

171 end

172 % title(’Finite Element Structural Mesh of 2D Wing ’);

173 set(gca ,’DataAspectRatio ’ ,[1,1,1],’xcolor ’,’none’,’ycolor ’ ,...

174 ’none’,’zcolor ’,’none’,’color’,’none’);

175 legend(’Wing Panels ’,’LE Spar’,’TE Spar’,’Ribs’,’Location ’ ,...

176 ’southeast ’,’Interpreter ’,’Latex’);

177

178

179 % Plotting the Finite Element mesh

180 % AA -> mesh Acoll -> collocation Acorn -> corner points

181 Xcoll = c75elem (:,1); Xcorn = c4elem (:,1);

182 Ycoll = c75elem (:,2); Ycorn = c4elem (:,2);

183 Zcoll = c75elem (:,3); Zcorn = c4elem (:,3);

184

185 figure ()

186 view (40 ,50)

187 patch(XX(Tn ’),YY(Tn ’),ZZ(Tn ’),’facecolor ’,’none’,’edgecolor ’,’k’);

188 hold on

189 plot3(Xcorn ,Ycorn ,Zcorn ,’.b’);

190 plot3(Xcoll ,Ycoll ,Zcoll ,’.r’);

191 quiver3(Xcoll ,Ycoll ,Zcoll ,normals (:,1),normals (:,2) ,...

192 normals (:,3),’g’);

193 % title(’Finite Element Aerodynamic Mesh of 2D Wing ’);

194 set(gca ,’DataAspectRatio ’ ,[1,1,1],’xcolor ’,’none’,’ycolor ’ ,...

195 ’none’,’zcolor ’,’none’,’color’,’none’);

196 legend(’Wing panels ’,’Bounded points $\left (1/4 \cdot c\right)$’ ,...

80

APPENDIX D. AEROELASTIC CODE

197 ’Collocation points $\left (3/4 \cdot c\right)$’,’Location ’ ,...

198 ’southeast ’,’Interpreter ’,’Latex’);

199 end

200

201 Xspars = permute(Xspars ,[1 3 2]);

202 Xspars = reshape(Xspars ,ynod*nspar ,dim.nd);

203 Xribs = permute(Xribs ,[1 3 2]);

204 Xribs = reshape(Xribs ,xnod*nrib ,dim.nd);

205

206 Tns = permute(Tns ,[1 3 2]);

207 Tns = reshape(Tns ,yel*nspar ,2);

208 Tnr = permute(Tnr ,[1 3 2]);

209 Tnr = reshape(Tnr ,xel*nrib ,2);

210

211 Xs = zeros(dim.nnod ,dim.nd);

212 n = 1;

213 for k = 1:(nspar*yel)

214 Xs(Tns(k,1) ,:) = Xspars(k,:);

215 if k == n*yel

216 Xs(Tns(k,2) ,:) = Xspars(k+1,:);

217 n = n+1;

218 end

219 end

220

221 Xr = zeros(dim.nnod ,dim.nd);

222 m = 1;

223 for k = 1:(nrib*xel)

224 Xr(Tnr(k,1) ,:) = Xribs(k,:);

225 if k == m*xel

226 Xr(Tnr(k,2) ,:) = Xribs(k+1,:);

227 m = m+1;

228 end

229 end

230

231

232 % Fixed DOFs matrix Up

233 Up = zeros(xnod*dim.ni ,3); % all left nodes are campled (y = 0)

234 cont = 0;

235 for nod = 1:dim.nnod

236 if X(nod ,2) == 0

237 for ni = 1:dim.ni

238 Up(cont+ni ,2) = nod;

239 Up(cont+ni ,3) = ni;

240 end

241 cont = cont+dim.ni;

242 end

243 end

Listing D.2 Function that discretizes the mesh and computes the boundary conditions.

81

APPENDIX D. AEROELASTIC CODE

1 function [A,B] = infcoeff_VLM(npan ,Tnp ,Tmp ,Tdp ,xel ,yel ,c4corner ,c75elem ,normals)

2

3 A = zeros(xel*yel ,xel*yel); % influence coefficient matrix

4 B = zeros(xel*yel ,xel*yel); % influence coefficient in the streamwise

5 % direction matrix

6 gamma = 1; % unitary circulation

7

8 for i = 1:xel*yel

9 np = normals(i,:) ’;

10 PC = c75elem(i,:); % collocation point ’i’

11 for e = 1:npan

12 P = c4corner(Tnp(e,:) ,:);

13 P1 = P(1,:);

14 P2 = P(2,:);

15 P3 = P(3,:);

16 P4 = P(4,:);

17

18 if Tmp(e) == 1 % v_ind due to vortex ring

19 u12 = vortxl_VLM(P1,P2 ,PC,gamma); % Vortex Head 1-2

20 u23 = vortxl_VLM(P2,P3 ,PC,gamma); % Right side Vortex 2-3

21 u34 = vortxl_VLM(P3,P4 ,PC,gamma); % Free Stream Vortex 3-4

22 u41 = vortxl_VLM(P4,P1 ,PC,gamma); % Left Side Vortex 4-1

23

24 u_ind = u12+u23+u34+u41; % Induced Velocity

25 u_ind_stream = u23+u41; % Induced Velocity in the

26 % freestream direction

27

28 elseif Tmp(e) == 0 % v_ind due to horseshoe vortex

29 u41 = vortxl_VLM(P4,P1 ,PC,gamma); % Left Side Vortex 4-1

30 u12 = vortxl_VLM(P1,P2 ,PC,gamma); % Vortex Head 1-2

31 u23 = vortxl_VLM(P2,P3 ,PC,gamma); % Right Side Vortex 2-3

32

33 u_ind = u41+u12+u23;

34 u_ind_stream = u23+u41;

35

36 end

37 A(i,Tdp(e)) = A(i,Tdp(e)) + dot(u_ind ,np);

38 B(i,Tdp(e)) = B(i,Tdp(e)) + dot(u_ind_stream ,np);

39 end

40 end

Listing D.3 Function that computes the influence coefficients matrix.

82

APPENDIX D. AEROELASTIC CODE

1 function u = vortxl_VLM(X1,X2 ,XP,gamma) % ’X2-X1’ form the vortex line

2 % ’XP’ is the control point

3 % ’gamma ’ is the circulation

4 % ’u’ is the velocity induced by

5 % the vortex line

6 inv_4pi = 0.25/ pi;

7

8 r0 = X2-X1;

9 r1 = XP-X1; % defined as -(X-XP) to have beta in the right side

10 r2 = XP-X2;

11

12 norm_r1 = norm(r1);

13 norm_r2 = norm(r2);

14

15 r1xr2 = cross(r1 ,r2);

16 norm_r1xr2 = norm(r1xr2);

17

18 tol = 1.0e-6 ;

19

20 if (norm_r1 >tol && norm_r2 >tol && norm_r1xr2 >tol)

21 inv_r1xr2 = 1 / norm_r1xr2;

22 inv_r1 = 1 / norm_r1;

23 inv_r2 = 1 / norm_r2;

24

25 a = r0 * inv_r1xr2;

26 b = r1*inv_r1 - r2*inv_r2;

27 c = dot(a,b);

28

29 u = inv_4pi*gamma*c*r1xr2*inv_r1xr2;

30 else

31 u = 0;

32 end

Listing D.4 Function that computes the induced velocity by a quadrilateral vortex element.

83

APPENDIX D. AEROELASTIC CODE

1 function [K,M,R,N4 ,S4] = stiffnessPlate_STRUCT(X,Tn,dim ,h,E,nu,rho)

2 % Initialization of the global stiffness and mass matrices

3 K = zeros(dim.ndof ,dim.ndof);

4 M = zeros(dim.ndof ,dim.ndof);

5

6 % Assembly process

7 for el = 1:dim.nel

8 % (a) Compute rotation matrix

9 S = cross((X(Tn(el ,3) ,:)’ - X(Tn(el ,1) ,:) ’) , ... % element surface

10 (X(Tn(el ,4) ,:)’ - X(Tn(el ,2) ,:) ’))/2;

11 k_prime = S/norm(S); % normal vector of the flat shell element

12 d = (X(Tn(el ,2) ,:)’ + X(Tn(el ,3) ,:)’ - X(Tn(el ,4) ,:)’ - X(Tn(el ,1) ,:) ’);

13 i_prime = d/norm(d); % i_prime = i’

14 j_prime = cross(k_prime ,i_prime);

15 R_prime = [i_prime j_prime k_prime zeros (3,3);

16 zeros (3,3) i_prime j_prime k_prime]’;

17 R(:,:,el) = [R_prime zeros (6,6) zeros (6,6) zeros (6,6);

18 zeros (6,6) R_prime zeros (6,6) zeros (6,6);

19 zeros (6,6) zeros (6,6) R_prime zeros (6,6);

20 zeros (6,6) zeros (6,6) zeros (6,6) R_prime];

21

22 % (b) Get nodal coefficients for the shape functions

23 a = [-1 1 1 -1];

24 b = [-1 -1 1 1];

25

26 % (c) Compute element matrices

27 % (c1) 1 Gauss point quadrature matrices

28 N1 = [1 1 1 1]’/4;

29 N1xi = a/4;

30 N1eta = b/4;

31 J1 = zeros (2,2);

32 for nne = 1:dim.nne % dim.nne = number of nodes per element

33 J1 = J1 + [N1xi(nne);N1eta(nne)]*X(Tn(el,nne) ,:)*...

34 [i_prime j_prime];

35 end

36 N1x_prime = J1\[N1xi;N1eta];

37 S1 = 4*det(J1);

38

39 % (c1.1) Ficticious

40 for nne = 1:dim.nne

41 Bt_prime_nod (1,:,nne) = [0 0 0 0 0 N1(nne)]; % each element

42 end

43 Ct_prime = 5*h*E/(12*(1+ nu));

44 Bt_prime (1,:,el) = [Bt_prime_nod (1,:,1) Bt_prime_nod (1,:,2)...

45 Bt_prime_nod (1,:,3) Bt_prime_nod (1,:,4)];

46 Kt(:,:,el) = S1*(R(:,:,el) ’*Bt_prime (1,:,el)’*Ct_prime *...

47 Bt_prime (1,:,el)*R(:,:,el));

48

49 % (c1.2) Shear

84

APPENDIX D. AEROELASTIC CODE

50 for nne = 1:dim.nne

51 Bs_prime_nod (:,:,nne) = [0 0 N1x_prime(1,nne) 0 N1(nne) 0;

52 0 0 N1x_prime(2,nne) -N1(nne) 0 0];

53 end

54 Cs_prime = [1 0; 0 1]*5*h*E/(12*(1+ nu));

55 Bs_prime (:,:,el) = [Bs_prime_nod (:,:,1) Bs_prime_nod (:,:,2) ...

56 Bs_prime_nod (:,:,3) Bs_prime_nod (:,:,4)];

57 Ks(:,:,el) = S1*(R(:,:,el) ’*Bs_prime (:,:,el)’*Cs_prime *...

58 Bs_prime (:,:,el)*R(:,:,el));

59

60 % (c1.3) Membrane

61 for nne = 1:dim.nne

62 Bm_prime_nod (:,:,nne) = [N1x_prime (1,nne) 0 0 0 0 0;

63 0 N1x_prime(2,nne) 0 0 0 0;

64 N1x_prime(2,nne) N1x_prime(1,nne) 0 0 0 0];

65 end

66 Cm_prime = [1 nu 0; nu 1 0; 0 0 (1-nu)/2]*h*E/(1-nu^2);

67 Bm_prime (:,:,el) = [Bm_prime_nod (:,:,1) Bm_prime_nod (:,:,2) ...

68 Bm_prime_nod (:,:,3) Bm_prime_nod (:,:,4)];

69 Km(:,:,el) = S1*(R(:,:,el) ’*Bm_prime (:,:,el)’*Cm_prime *...

70 Bm_prime (:,:,el)*R(:,:,el));

71

72 % (c2) 4 Gauss point quadrature matrices

73 Kb = zeros (4*dim.ni ,4*dim.ni,dim.nel); % 4 Gauss points x dof/node

74 Me = zeros (4*dim.ni ,4*dim.ni,dim.nel); % 4 Gauss points x dof/node

75 xi4 = 1/(3^(1/2))*[-1 1 1 -1];

76 eta4 = 1/(3^(1/2))*[-1 -1 1 1];

77 w4 = [1 1 1 1];

78

79 for k = 1: length(xi4)

80 J4 = zeros (2,2);

81 for nne = 1:dim.nne

82 N4(nne) = (1+a(nne)*xi4(k))*(1+b(nne)*eta4(k))/4;

83 N4xi(1,nne) = a(nne)*(1+b(nne)*eta4(k))/4;

84 N4eta(1,nne) = b(nne)*(1+a(nne)*xi4(k))/4;

85 J4 = J4 + [N4xi(nne); N4eta(nne)]*X(Tn(el ,nne) ,:)*...

86 [i_prime j_prime];

87 end

88 N4x_prime = J4\[N4xi; N4eta];

89 S4(el,k) = w4(k)*det(J4);

90

91 % (c2.1) Bending

92 for nne = 1:dim.nne

93 Bb_prime_nod (:,:,nne) = [0 0 0 0 N4x_prime(1,nne) 0;

94 0 0 0 N4x_prime (2,nne) 0 0;

95 0 0 0 -N4x_prime(1,nne) N4x_prime(2,nne) 0];

96 end

97 Cb_prime = [1 nu 0; nu 1 0; 0 0 (1-nu)/2]*h^3*E/...

98 (12*(1 -nu^2));

85

APPENDIX D. AEROELASTIC CODE

99 Bb_prime (:,:,el,k) = [Bb_prime_nod (:,:,1) ...

100 Bb_prime_nod (:,:,2) Bb_prime_nod (:,:,3) ...

101 Bb_prime_nod (:,:,4)];

102 Kb(:,:,el) = Kb(:,:,el) + S4(el,k)*(R(:,:,el) ’*...

103 Bb_prime (:,:,el,k) ’*Cb_prime*Bb_prime (:,:,el,k)*R(:,:,el));

104

105 % (c2.2) Mass matrix

106 for nne = 1:dim.nne

107 Nnod(:,:,nne) = N4(nne)*eye(dim.ni);

108 end

109 rhoM = rho*h*[eye(3) zeros (3,3);

110 zeros (3,3) [h^2/12 0 0; 0 h^2/12 0; 0 0 0]];

111 N(:,:,el ,k) = [Nnod(:,:,1) Nnod(:,:,2) Nnod (:,:,3) Nnod (:,:,4)];

112 Me(:,:,el) = Me(:,:,el)+S4(el,k)*(R(:,:,el)’*N(:,:,el,k) ’*...

113 rhoM*N(:,:,el,k)*R(:,:,el));

114 end

115

116 % (d) Assembly to global matrices

117 for ni = 1:dim.ni

118 Idof(ni ,1) = dim.ni*(Tn(el ,1) -1) + ni;

119 Idof(dim.ni + ni ,1) = dim.ni*(Tn(el ,2) -1) + ni;

120 Idof (2*dim.ni + ni ,1) = dim.ni*(Tn(el ,3) -1) + ni;

121 Idof (3*dim.ni + ni ,1) = dim.ni*(Tn(el ,4) -1) + ni;

122 end

123 K(Idof ,Idof) = K(Idof ,Idof)+Km(:,:,el)+Kb(:,:,el)+Ks(:,:,el)+Kt(:,:,el);

124 M(Idof ,Idof) = M(Idof ,Idof)+Me(:,:,el);

125 end

Listing D.5 Function that computes the stiffness and mass matrices of the structural plate element.

86

APPENDIX D. AEROELASTIC CODE

1 function [K,M] = stiffnessSpars_STRUCT(X,Tn ,dim ,k_prime ,E,G,A,J,Iy_prime ,...

2 Iz_prime ,ky,kz,yel ,rho)

3

4 % Initialization of the global stiffness and mass matrices

5 K = zeros(dim.ndof ,dim.ndof);

6 M = zeros(dim.ndof ,dim.ndof);

7 el_spar = yel; % elements in each spar

8

9 % Assembly process

10 for el = 1: el_spar

11 % (a) Compute rotation matrix

12 l = norm(X(Tn(el ,2) ,:)-X(Tn(el ,1) ,:));

13 i_prime = (X(Tn(el ,2) ,:)’-X(Tn(el ,1) ,:) ’)/l;

14 j_prime = cross(k_prime ,i_prime); % normal vector of the linear elem

15 R_prime = [i_prime j_prime k_prime zeros (3,3);

16 zeros (3,3) i_prime j_prime k_prime]’;

17 R(:,:,el) = [R_prime zeros (6,6);

18 zeros (6,6) R_prime];

19

20 % (b) Compute shape function derivatives

21 Nx_prime (1) = -1/l;

22 Nx_prime (2) = 1/l;

23

24 % (c) Compute each element matrix

25 % (c1) Axial component of stiffness matrix

26 Ba_prime (1,:,el) = [Nx_prime (1) 0 0 0 0 0 Nx_prime (2) 0 0 0 0 0];

27 Ca_prime = E*((A(el)*A(el+1))/2);

28 Ka(:,:,el) = l*(R(:,:,el)’*Ba_prime (1,:,el)’*Ca_prime *...

29 Ba_prime (1,:,el)*R(:,:,el));

30

31 % (c2) Bending component of stiffness matrix

32 Bb_prime (:,:,el) = [0 0 0 0 Nx_prime (1) 0 0 0 0 0 Nx_prime (2) 0;

33 0 0 0 0 0 Nx_prime (1) 0 0 0 0 0 Nx_prime (2)];

34 Cb_prime = E*[(Iy_prime(el)+Iy_prime(el+1))/2 0;

35 0 (Iz_prime(el)+Iz_prime(el+1))/2];

36 Kb(:,:,el) = l*(R(:,:,el)’*Bb_prime (:,:,el)’*Cb_prime *...

37 Bb_prime (:,:,el)*R(:,:,el));

38

39 % (c3) Shear component of stiffness matrix

40 N = 1/2; % shape functions assuming only 1 Gauss point

41 Bs_prime (:,:,el) = [0 Nx_prime (1) 0 0 0 -N 0 Nx_prime (2) 0 0 0 -N;

42 0 0 Nx_prime (1) 0 N 0 0 0 Nx_prime (2) 0 N 0];

43 Cs_prime = G*((A(el)*A(el+1))/2)*[ky 0; 0 kz];

44 Ks(:,:,el) = l*(R(:,:,el)’*Bs_prime (:,:,el)’*Cs_prime *...

45 Bs_prime (:,:,el)*R(:,:,el));

46

47 % (c4) Torsion component of stiffness matrix

48 Bt_prime (1,:,el) = [0 0 0 Nx_prime (1) 0 0 0 0 0 Nx_prime (2) 0 0];

49 Ct_prime = G*((J(el)*J(el+1))/2);

87

APPENDIX D. AEROELASTIC CODE

50 Kt(:,:,el) = l*(R(:,:,el)’*Bt_prime (1,:,el)’*Ct_prime *...

51 Bt_prime (1,:,el)*R(:,:,el));

52

53 % (c5) Mass matrix

54 xi = 1/(3^(1/2))*[1;1]; % Gauss points coordinates

55 w = [1;1]; % Gauss points weights

56 Ael = (A(el)*A(el+1))/2;

57 Jel = (J(el)*J(el+1))/2;

58 Iy_prime_el = (Iy_prime(el)+Iy_prime(el+1))/2;

59 Iz_prime_el = (Iz_prime(el)+Iz_prime(el+1))/2;

60 rhoM = rho.*[Ael;Ael;Ael;Jel;Iy_prime_el;Iz_prime_el].*eye(dim.ni);

61 Me(:,:,el) = zeros (2*dim.ni ,2*dim.ni);

62 for k = 1: length(xi)

63 Nnod (1) = (1-xi(k))/2;

64 Nnod (2) = (1+xi(k))/2;

65 Nmat(:,:,el ,k) = [Nnod (1)*eye(dim.ni) Nnod (2)*eye(dim.ni)];

66 Me(:,:,el) = Me(:,:,el)+w(k)*l*(R(:,:,el)’*Nmat(:,:,el ,k) ’*...

67 rhoM*Nmat(:,:,el ,k)*R(:,:,el))/2;

68 end

69

70 % (d) Assembly to global matrices

71 for ni = 1:dim.ni

72 Idof(ni ,1) = dim.ni*(Tn(el ,1) -1) + ni;

73 Idof(dim.ni + ni ,1) = dim.ni*(Tn(el ,2) -1) + ni;

74 end

75 K(Idof ,Idof) = K(Idof ,Idof)+Ka(:,:,el)+Kb(:,:,el)+Ks(:,:,el)+Kt(:,:,el);

76 M(Idof ,Idof) = M(Idof ,Idof)+Me(:,:,el);

77

78 end

Listing D.6 Function that computes the stiffness and mass matrices of the spar beam elements.

88

APPENDIX D. AEROELASTIC CODE

1 function [K,M] = stiffnessRibs_STRUCT(X,Tn ,dim ,j_prime ,E,G,A,J,Iy_prime ,...

2 Iz_prime ,ky,kz,xel ,rho)

3

4 % Initialization of the global stiffness and mass matrices

5 K = zeros(dim.ndof ,dim.ndof);

6 M = zeros(dim.ndof ,dim.ndof);

7 el_rib = xel; % elements in each rib

8

9 % Assembly process

10 for el = 1: el_rib

11 % (a) Compute rotation matrix

12 l = norm(X(Tn(el ,2) ,:)-X(Tn(el ,1) ,:));

13 i_prime = (X(Tn(el ,2) ,:)’-X(Tn(el ,1) ,:) ’)/l;

14 k_prime = cross(i_prime ,j_prime); % normal vector of the linear elem

15 R_prime = [i_prime j_prime k_prime zeros (3,3);

16 zeros (3,3) i_prime j_prime k_prime]’;

17 R(:,:,el) = [R_prime zeros (6,6);

18 zeros (6,6) R_prime];

19

20 % (b) Compute shape function derivatives

21 Nx_prime (1) = -1/l;

22 Nx_prime (2) = 1/l;

23

24 % (c) Compute each element matrix

25 % (c1) Axial component of stiffness matrix

26 Ba_prime (1,:,el) = [Nx_prime (1) 0 0 0 0 0 Nx_prime (2) 0 0 0 0 0];

27 Ca_prime = E*((A(el)*A(el+1))/2);

28 Ka(:,:,el) = l*(R(:,:,el)’*Ba_prime (1,:,el)’*Ca_prime *...

29 Ba_prime (1,:,el)*R(:,:,el));

30

31 % (c2) Bending component of stiffness matrix

32 Bb_prime (:,:,el) = [0 0 0 0 Nx_prime (1) 0 0 0 0 0 Nx_prime (2) 0;

33 0 0 0 0 0 Nx_prime (1) 0 0 0 0 0 Nx_prime (2)];

34 Cb_prime = E*[(Iy_prime(el)+Iy_prime(el+1))/2 0;

35 0 (Iz_prime(el)+Iz_prime(el+1))/2];

36 Kb(:,:,el) = l*(R(:,:,el)’*Bb_prime (:,:,el)’*Cb_prime *...

37 Bb_prime (:,:,el)*R(:,:,el));

38

39 % (c3) Shear component of stiffness matrix

40 N = 1/2; % shape functions assuming only 1 Gauss point

41 Bs_prime (:,:,el) = [0 Nx_prime (1) 0 0 0 -N 0 Nx_prime (2) 0 0 0 -N;

42 0 0 Nx_prime (1) 0 N 0 0 0 Nx_prime (2) 0 N 0];

43 Cs_prime = G*((A(el)*A(el+1))/2)*[ky 0; 0 kz];

44 Ks(:,:,el) = l*(R(:,:,el)’*Bs_prime (:,:,el)’*Cs_prime *...

45 Bs_prime (:,:,el)*R(:,:,el));

46

47 % (c4) Torsion component of stiffness matrix

48 Bt_prime (1,:,el) = [0 0 0 Nx_prime (1) 0 0 0 0 0 Nx_prime (2) 0 0];

49 Ct_prime = G*((J(el)*J(el+1))/2);

89

APPENDIX D. AEROELASTIC CODE

50 Kt(:,:,el) = l*(R(:,:,el)’*Bt_prime (1,:,el)’*Ct_prime *...

51 Bt_prime (1,:,el)*R(:,:,el));

52

53 % (c5) Mass matrix

54 xi = 1/(3^(1/2))*[1;1]; % Gauss points coordinates

55 w = [1;1]; % Gauss points weights

56 Ael = (A(el)*A(el+1))/2;

57 Jel = (J(el)*J(el+1))/2;

58 Iy_prime_el = (Iy_prime(el)+Iy_prime(el+1))/2;

59 Iz_prime_el = (Iz_prime(el)+Iz_prime(el+1))/2;

60 rhoM = rho.*[Ael;Ael;Ael;Jel;Iy_prime_el;Iz_prime_el].*eye(dim.ni);

61 Me(:,:,el) = zeros (2*dim.ni ,2*dim.ni);

62 for k = 1: length(xi)

63 Nnod (1) = (1-xi(k))/2;

64 Nnod (2) = (1+xi(k))/2;

65 Nmat(:,:,el ,k) = [Nnod (1)*eye(dim.ni) Nnod (2)*eye(dim.ni)];

66 Me(:,:,el) = Me(:,:,el)+w(k)*l*(R(:,:,el)’*Nmat(:,:,el ,k) ’*...

67 rhoM*Nmat(:,:,el ,k)*R(:,:,el))/2;

68 end

69

70 % (d) Assembly to global matrices

71 for ni = 1:dim.ni

72 Idof(ni ,1) = dim.ni*(Tn(el ,1) -1) + ni;

73 Idof(dim.ni + ni ,1) = dim.ni*(Tn(el ,2) -1) + ni;

74 end

75 K(Idof ,Idof) = K(Idof ,Idof)+Ka(:,:,el)+Kb(:,:,el)+Ks(:,:,el)+Kt(:,:,el);

76 M(Idof ,Idof) = M(Idof ,Idof)+Me(:,:,el);

77

78 end

Listing D.7 Function that computes the stiffness and mass matrices of the rib beam elements.

90

APPENDIX D. AEROELASTIC CODE

1 function D = matrixD_STRUCT(dim ,Tn,X)

2

3 D = zeros(dim.nel ,dim.ndof);

4

5 for e = 1:dim.nel

6 d = (X(Tn(e,2) ,1)+X(Tn(e,3) ,1))/2 - (X(Tn(e,1) ,1)+X(Tn(e,4) ,1))/2;

7 D(e,Tn(e,:)*6-3) = 1/(2*d).*[1 -1 -1 1];

8 end

Listing D.8 Function that computes matrix D.

1 function Q = matrixQ_STRUCT(dim ,Tn,xel ,X)

2

3 Q = zeros(dim.ndof ,dim.nel);

4 e2 = 1:dim.nel; % adjacent element to ’e’ closer to LE

5 e2 = e2 -1;

6 eLE = 1:xel:dim.nel;

7 e2(eLE) = 0;

8

9 for e = 1:dim.nel

10 dy = (X(Tn(e,4) ,2)+X(Tn(e,3) ,2))/2 - (X(Tn(e,1) ,2)+X(Tn(e,2) ,2))/2;

11 Idof = Tn(e,:)*6-3;

12

13 Q(Idof ,e) = Q(Idof ,e) + dy/4;

14 if e2(e) ~= 0

15 Q(Idof ,e2(e)) = Q(Idof ,e2(e)) - dy/4;

16 end

17 end

Listing D.9 Function that computes matrix Q.

1 function E = matrixE_STRUCT(dim ,Tn)

2

3 E = zeros(dim.nel ,dim.ndof);

4

5 for e = 1:dim.nel

6 xi_c = 0.5; % isoparametric coordinates of the collocation point

7 eta_c = 0;

8 a = [-1 1 1 -1];

9 b = [-1 -1 1 1];

10 for i = 1:4

11 E(e,Tn(e,i)*6-3) = 1/4*(1+ xi_c*a(i))*(1+ eta_c*b(i));

12 % shape function at node ’i’ of element ’e’

13 end

14 end

Listing D.10 Function that computes matrix E.

91

APPENDIX D. AEROELASTIC CODE

1 function [Ip ,If] = dofVec(Up ,dim)

2 for p = 1:size(Up ,1)

3 Ip(p) = dim.ni*(Up(p,2) -1)+Up(p,3); % vector with prescribed DOFs

4 up(Ip(p) ,1) = Up(p,1);

5 end

6 If = setdiff (1: dim.ndof ,Ip); % vector with free DOFs

Listing D.11 Function that computes the fixed and free DOFs vectors.

1 function plotModes(X,Tn_s ,Phi ,w2) % Function to plot the modes shapes

2 % INPUTS:

3 % - X Nodal coordinates matrix

4 % - Tn_s Nodal connectivities matrix for shell elements

5 % - Phi Matrix with global degrees of freedom for each mode

6 % - each row correspond to a degree of freedom (same as ’u’)

7 % - each column corresponds to a different mode

8 % - w2 Squared natural frequencies vector

9

10 Nmodes = size(Phi ,2);

11 for i = 1:ceil(Nmodes /6)

12 figure ()

13 for j = 1:6

14 k = 6*(i-1)+j;

15 if k<= Nmodes

16 scale = 0.3/ max(abs(real([Phi (1:6:end ,k);Phi (2:6:end ,k);...

17 Phi (3:6:end ,k)])));

18 x = X(:,1)+scale*Phi (1:6:end ,k);

19 y = X(:,2)+scale*Phi (2:6:end ,k);

20 z = X(:,3)+scale*Phi (3:6:end ,k);

21 subplot(3,2,j);

22 hold on

23 patch(x(Tn_s)’,y(Tn_s)’,z(Tn_s)’,ones(size(Tn_s)) ’,...

24 ’facecolor ’ ,[0.8 ,0.8,0.8],’edgecolor ’,’k’);

25 set(gca ,’DataAspectRatio ’ ,[1,1,1],’xcolor ’,’none’,’ycolor ’,’none’,’zcolor ’,’none

’,’color ’,’none’);

26 view (150 ,10)

27 if nargin >3

28 % title(sprintf(’f = %g Hz’,sqrt(w2(k))/2/pi));

29 % % structural dynamics , vibrations

30

31 title(sprintf(’\\ textbf {(M%g) } $q_{\\ infty} = %g \\frac{kg}{m \\cdot s^2}

$’,(i-1)*6+j,w2(k)),’Interpreter ’,’latex’);

32 % aerodynamics , dynamic response

33 end

34 end

35 end

36 end

37 end

Listing D.12 Function that plot the eigenmodes.

92

APPENDIX D. AEROELASTIC CODE

1 function [MODES ,EIGENVAL] = undampedFreq(M,K,neig)

2

3 [MODES ,EIGENVAL] = eigs(K,M,neig ,’sm’); % ’sm ’ means smallest magnitude

4 % ’lm’ means largest magnitude

5 EIGENVAL = diag(EIGENVAL);

6

7 % Dynamic Response (Aerodynamics)

8 [EIGENVAL ,imodes] = sort(EIGENVAL);

9 MODES = MODES(:,imodes);

10

11 % % Vibrations (Structural Dynamics)

12 % FREQ = sqrt(EIGENVAL);

13 % [FREQ ,imodes] = sort(FREQ);

Listing D.13 Function that computes the eigenvalues and eigenvectors of a matrix modal equation.

93

Aeroelastic Study of the Flutter
Conditions of an Aircraft Wing

References

1. ROCA, David. Computational Engineering: FEM Beam Elements. Universitat Politècnica de Catalunya,

February 2022.

2. OÑATE, Eugenio. Structural analysis with the finite element method. Linear statics: volume 2: beams,

plates and shells. Springer Science & Business Media, 2013.

3. ROCA, David. Computational Engineering: FEM Plate and Shell Elements. Universitat Politècnica de

Catalunya, February 2022.

4. MEGAHED, K. Introduction to Nonlinear Finite Element Analysis. [N.d.].

5. ORTEGA, Enrique. Aerodynamics Module 2.1: Ideal Flow. Universitat Politècnica de Catalunya, October

2020.

6. ANDERSON JR, John David. Fundamentals of aerodynamics. Tata McGraw-Hill Education, 2010.

7. KATZ, Joseph; PLOTKIN, Allen. Low-speed aerodynamics. Cambridge university press, 2001.

8. KARAMCHETI, K. Principles of Ideal-Fluid Aerodynamics. Wiley, 1966.

9. TEJERIZO FERNÁNDEZ, Maribel. Elaboración de fórmulas anaĺıticas y tablas de cálculo para las

estructuras metálicas de acero según la normativa Eurocódigo 3. 2015.

10. YOUNG, Warren C; BUDYNAS, Richard G; SADEGH, Ali M. Roark’s formulas for stress and strain.

McGraw-Hill Education, 2012.

11. SUH, PM. EZASE Easy Aeroelasticity: A Tool to Simulate Aircraft Wing Geometry. NASA: Washington,

DC, USA. 2011.

94

	List of Figures
	List of Tables
	Listings
	Structural Theory
	Structural Basics
	Timoshenko beam theory
	Reissner-Mindlin plate theory
	Shear locking

	Computational Approach
	Beam development
	Flat shell development
	Computational elements

	Aerodynamic Theory
	Theory Basics
	Vortex quantities
	The Biot-Savart law
	The potential flow problem
	Zero-thickness cambered wing at AoA–lifting surfaces
	Vortex wake
	The Kutta-Joukowsky theorem

	Computational Approach
	Numerical panel methods
	Singularity elements
	The Horseshoe Vortex Method
	The Vortex Lattice Method

	Validation of Separate Codes
	Structural Codes
	Beam element
	Plate element

	Aerodynamic Codes
	Vortex Lattice Method

	Aeroelastic Code
	References

