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We theoretically investigate the magnetic properties and nonequilibrium dynamics of two inter-
acting ultracold polar and paramagnetic molecules in a one-dimensional harmonic trap in external
electric and magnetic fields. The molecules interact via a multichannel two-body contact poten-
tial, incorporating the short-range anisotropy of intermolecular interactions. We show that various
magnetization states arise from the interplay of the molecular interactions, electronic spins, dipole
moments, rotational structures, external fields, and spin-rotation coupling. The rich magnetization
diagrams depend primarily on the anisotropy of the intermolecular interaction and the spin-rotation
coupling. These specific molecular properties are challenging to calculate or measure. Therefore, we
propose the quench dynamics experiments for extracting them from observing the time evolution of
the analyzed system. Our results indicate the possibility of controlling the molecular few-body mag-
netization with the external electric field and pave the way towards studying the magnetization of
ultracold molecules trapped in optical tweezers or optical lattices and their application in quantum
simulation of molecular multichannel many-body Hamiltonians and quantum information storing.

I. INTRODUCTION

In the last two decades, experiments with ultracold
atoms in optical lattices have provided tools allowing for
unprecedented control and detection of ultracold quan-
tum many-body systems [1–6] and resulted in successful
quantum simulations of quantum many-body Hamiltoni-
ans of increasing complexity [7–14]. These successes have
been achieved even though atomic gases are typically
governed by relatively simple isotropic and short-range
interatomic interactions that are well described by the
contact interaction [15]. Replacing atoms with molecules
opens new possibilities resulting from the molecular
rich internal structure, complex short-range interactions,
and stronger long-range and anisotropic dipolar interac-
tions [16–18].

A molecules’ rich internal structure has earned them
a prominent role in the precision measurements of fun-
damental constants [19–27], while intermolecular dipo-
lar interactions promise exciting applications in quan-
tum information processing [28–32]. Ultracold molecules
have also been employed in the ground-breaking experi-
ments on quantum-controlled chemistry [33–39] enabled
by the extensive control of internal states and relative
motion of molecules with external electromagnetic fields
[40–49]. Numerous applications of ultracold molecules
in quantum simulations have been introduced, with a
particular interest in studying quantum magnetism [50].
Molecular rotational states (in which pseudo-spins can
be encoded with microwave-field dressing) combined with
the dipolar interaction have allowed for several propos-
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als to realize various models of quantum magnetism [51–
56]. Other theoretical works have concerned molecular
quantum simulations of polarons [57, 58], rotating po-
larons [59, 60], magnetic Frenkel exciton [61], topolog-
ically nontrivial states [51], and exotic phases such as
supersolid [62, 63].

A more complex internal structure of molecules, as
compared to atoms, is responsible for greater experimen-
tal difficulties in molecular formation, cooling, and trap-
ping. Despite these challenges, several species of ultra-
cold molecules in their ground states have been produced
via association of ultracold atoms [64–68] or recently us-
ing direct laser cooling from higher temperatures [69, 70].
Ultracold ground-state molecules have also been loaded
into optical lattices [71], and dipolar spin-exchange in-
teractions between lattice-confined polar molecules have
been observed [72], opening the way towards quantum
simulations with molecules. On the other hand, the
methods of full quantum control, deterministic prepara-
tion, and detection at the single-particle level, developed
for ultracold atoms in optical tweezers [5, 6], can readily
be employed to molecules [73, 74], further extending the
range of applications of ultracold molecules [75].

Precise spectroscopic characterization of molecular
few-body systems of increasing complexity and recon-
struction of underlying Hamiltonians may be both exper-
imentally and theoretically challenging. One of the pos-
sible solutions may be quench dynamics experiments [76–
78]. In such a scenario, the system parameters, such as
the interparticle interaction strength, trapping potential
or external fields, are suddenly changed [79]. This excites
the system from the ground state and induces its time
evolution, whose observation may reveal the system’s in-
trinsic properties. The quench dynamics has been thor-
oughly studied for two [80–83] and three [76] ultracold
atoms in a trap. Quantum quenches also allow one to
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study nonequilibrium dynamics [84–86].
In this work, we study the magnetic properties and

nonequilibrium dynamics of two interacting ultracold po-
lar and paramagnetic molecules in a one-dimensional har-
monic trap (see Fig. 1). Intriguing features of the sys-
tem arise from the interplay of the molecular electronic
spins, dipole moments, rotational structures, external
electric and magnetic fields, and spin-rotation coupling.
We present rich diagrams of the system’s magnetization
and explain the mechanisms allowing its control on the
example of molecules with spins 1/2 and 3/2. We iden-
tify the anisotropic part of the intermolecular interaction
and the spin-rotation coupling as crucial for observing the
system’s nontrivial magnetic behavior. We propose the
quench dynamics experiments to probe and reconstruct
the system’s molecular characteristics from observing its
time evolution. We show that the strong anisotropic in-
teraction leaves a clear mark on the system’s time evolu-
tion after the quench of the interaction strength. On the
other hand, the time evolution of the system’s magnetiza-
tion, after the electric field quench, depends significantly
on the spin-rotation coupling strength. The results show
an intimate coupling between the electric and magnetic
properties of the system and indicate the possibility of
controlling the molecular few-body magnetization with
the external electric field. In this way, we complement
the previous studies on the coupling between the molec-
ular electronic spins and external electric field in the free-
space collisions [42–44]. The investigated model system
paves the way towards studying the controlled magneti-
zation of ultracold molecules trapped in optical tweezers
or optical lattices and their application in quantum sim-
ulation of molecular multichannel many-body Hamilto-
nians and quantum information storing. Recent experi-
ments with molecules in optical tweezers [73, 74] lay the
grounds for the realization of the considered system.

The plan of the paper is as follows. Section II de-
scribes the theoretical model, its experimental feasibil-
ity, and used numerical methods. Section III presents
and discusses the analysis of the magnetic properties of
the system and shows how the quench dynamics can un-
ravel its underlying molecular characteristics. Section IV
summarizes our paper and considers future possible ap-
plications and extensions.

II. THEORETICAL MODEL AND METHODS

We consider two interacting distinguishable ultracold
molecules bound to move along one dimension, chosen
to be a z axis, due to the presence of a strong trans-
verse confinement. They are further confined in the z-
direction by a harmonic potential of frequency ω. The
molecules are described within the rigid rotor approxi-
mation, have the same mass m and spin s, and are in the
same vibrational state. We approximate the interaction
between molecules with the intermolecular isotropic and
anisotropic contact potential. The theoretical model is
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FIG. 1. Schematic representation of the investigated system
and its features. (a) Two interacting molecules in a one-
dimensional harmonic trap under the influence of the electric
and magnetic fields can be described by a magnetization dia-
gram depending on the field strengths. The fields are parallel
to each other and to the direction of molecular motion. (b)
Time evolution of the system’s observable after the quench
can reveal information on the underlying molecular charac-
teristics by using the Fourier transform.

presented in detail in Ref. [87], along with all necessary
assumptions and approximations discussed. The com-
puter code allowing for reproducing the present results is
available on GitHub [88].

A. Hamiltonian and basis set

The Hamiltonian describing our system is

Ĥ = Ĥtrap + Ĥmol + Ĥfield + Ĥint , (1)

where Ĥtrap describes the motion of molecules in a one-

dimensional harmonic trap, Ĥmol = Ĥrot + Ĥspin−rot de-
scribes the internal rotational structure of molecules and
the spin-rotation coupling between the electronic spin
and the rotational angular momentum of each molecule,
Ĥfield = ĤStark + ĤZeeman describes the interaction
of molecules with external electric and magnetic fields
through the Stark and Zeeman effects, and Ĥint describes
the intermolecular interaction between molecules. Ex-
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plicitly,

Ĥtrap =

2∑
i=1

p̂2
i

2m
+

2∑
i=1

1

2
mωz2

i ,

Ĥrot =

2∑
i=1

B ĵ2i ,

Ĥspin−rot =

2∑
i=1

γ ŝi · ĵi ,

ĤStark = −
2∑
i=1

d̂i · E ,

ĤZeeman = 2µB

2∑
i=1

ŝi · B ,

(2)

where B is the rotational constant, γ is the spin-rotation
coupling strength, ĵi is the i-th molecule’s rotational an-
gular momentum operator, ŝi is the i-th molecule’s elec-
tronic spin angular momentum operator, d̂i is the i-th
molecule’s electric dipole moment operator, and E and
B are the external electric and magnetic field strengths,
respectively. For the convenience, we use units of energy
and interaction strength that correspond to ω = m =
~ = 1. This amounts to measuring energies in units of
~ω, lengths in units of the harmonic oscillator character-
istic length aho =

√
~/(mω), and interaction strengths

in units of ~ωaho.
The rotational constant B in this study is set to π ~ω.

It corresponds to a less pronounced molecular character
of the system as compared to Ref. [87], where very small
rotational constants were selected to enhance the impact
of molecular features. Now, trap levels are more dense
than rotational ones, which is a regime closer to exper-
imental conditions (in which molecular rotational con-
stants are usually much larger than a trap frequency).
Still, we select the relatively small rotational constant to
reveal an important role played by the rotational degree
of freedom. With a choice of an irrational value, we ad-
ditionally avoid accidental degeneracies of energy levels.

We separate the center-of-mass and relative motions
in the Hamiltonian of Eq. (1) and represent the wave
function of the relative motion in the following basis set:

|n〉 |J,MJ , j1, j2〉 |S,MS , s1, s2〉 ≡ |α〉 , (3)

which is composed of the eigenstates of the one-
dimensional harmonic oscillator |n〉, eigenstates of the to-

tal rotational angular momentum operator Ĵ denoted as
|J,MJ , j1, j2〉, and eigenstates of the total electronic spin

angular momentum operator Ŝ denoted as |S,MS , s1, s2〉.
We limit the set of |n〉 to even functions due to the triv-
ial behavior of odd states as showed in Ref. [87]. The
mentioned total angular momenta are the sums of the
angular momenta of individual molecules, Ĵ = ĵ1 + ĵ2
and Ŝ = ŝ1 + ŝ2. The total angular momentum of
the system is then the sum of the total rotational and

spin angular momenta Ĵtot = Ĵ + Ŝ, and its projection
Mtot = MJ + MS is a sum of projections of the total
rotational MJ and spin MS angular momenta.

The Hamiltonian describing the interaction between
molecules is

Ĥint = Ĥiso + Ĥaniso , (4)

where we distinguish the isotropic part Ĥiso having
the same nature as the spherically symmetric interac-
tion between S-state atoms in the electronic ground
state and the anisotropic part Ĥaniso responsible for the
transfer of the internal rotational angular momenta be-
tween molecules and resulting from the molecular inter-
nal structure and orientation dependence of intermolec-
ular interactions. The more detailed discussion of vari-
ous models of the anisotropic interaction is provided in
Ref. [87]. Here, we restrict our model to the leading order
of the anisotropic interaction described by the following
effective Hamiltonians:

Ĥiso =
∑

J,M,j1,j2

g0δ(z1 − z2)P̂0 ,

Ĥaniso =
∑

J,M,j1 6=′1,j2 6=′2

g±1δ(z1 − z2)P̂±1

(5)

with

P̂0 = |J,M, j1, j2〉 〈J,M, j1, j2| ,
P̂±1 = |J,M, j1 ± 1, j2〉 〈J,M, j1, j2 ∓ 1|+ H.c. ,

(6)

where g0 and g±1 are the strengths of the isotropic
and anisotropic interactions, respectively, and δ(z) is the
Dirac delta function imposing the contact-type interac-
tion. The summation is performed over all basis set func-
tions describing the systems’ rotational degrees of free-
dom.

B. Magnetization and quench dynamics

In the first step, we calculate the magnetization 〈Ŝz〉
of the analyzed system in the several lowest eigenstates,
which is an expectation value of the z-component of the
total electronic spin operator. In the second step, we
analyze the nonequilibrium dynamics of the system after
the quench.

The quench dynamics experiments may allow to probe
the internal parameters of the Hamiltonian governing the
analyzed system. In a quench scenario, the system pre-
pared initially in the chosen state |Ψ〉 (e.g. the ground

state) of a Hamiltonian Ĥini, evolves unitarily in time
following the sudden change (quench) of the parameters

to a final Hamiltonian Ĥfin [79]. This dynamics can be
expressed in terms of overlaps of the initial eigenstate |Ψ〉
of Ĥini with the eigenstates

∣∣∣Ψ̃j

〉
of Ĥfin:

|Ψ(t)〉 = e−iĤfint |Ψ(0)〉 =
∑
j

〈
Ψ̃j

∣∣∣Ψ(0)
〉
e−iEjt

∣∣∣Ψ̃j

〉
.

(7)
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The time evolution of any observable Ô can be then de-
scribed as:

〈Ψ(t)| Ô |Ψ(t)〉 =

=
∑
j,j′

〈
Ψ̃j

∣∣∣Ψ(0)
〉〈

Ψ̃′j

∣∣∣Ψ(0)
〉
e−i(Ej−Ej′ )t

〈
Ψ̃j′

∣∣∣ Ô ∣∣∣Ψ̃j

〉
=

=
∑
j

∣∣∣〈Ψ̃j

∣∣∣Ψ(0)
〉∣∣∣2 〈Ψ̃j

∣∣∣ Ô ∣∣∣Ψ̃j

〉
+

+2
∑
j<j′

〈
Ψ̃j

∣∣∣Ψ(0)
〉〈

Ψ̃j′

∣∣∣Ψ(0)
〉

cos [(Ej − Ej′)t]
〈

Ψ̃j′

∣∣∣ Ô ∣∣∣Ψ̃j

〉
.

We choose to study the evolution of two observables:
magnetization 〈Ŝz〉 of the system and the cloud size 〈r̂2〉.
The formula for the cloud size is provided in ESI†. The
dynamics is calculated till time t = 10 000 2π

ω with a time

step of 0.1 2π
ω . Elongating the dynamics calculations pro-

vides no additional frequency peaks of amplitudes larger
than 10−4 in the corresponding discrete Fourier trans-
forms (DFT). We perform the Fourier transform of the
observables’ evolution using SciPy package [89].

C. Convergence with the basis set size

The systems’ eigenstates are calculated using the ex-
act diagonalization method with the basis set composed
of quantum harmonic oscillator eigenfunctions up to
nmax = 20, and quantum rigid rotor eigenfunctions up to
jmax = 4. The slow convergence with nmax is asymptoti-
cally proportional to 1√

nmax
[90], however in the analyzed

system nmax = 20 provides a satisfying convergence for
the lowest-energy states, which are the main focus of this
paper.

The convergence of the cloud-size time-evolution cal-
culations with nmax, however, is problematic. On the
one hand, the mean value of the cloud size, 〈n| r̂2 |n′〉,
calculated for two harmonic oscillator eigenfunctions, in-
creases rapidly with the harmonic oscillator levels, n, be-
coming divergent for large n (see ESI†). In the quench
dynamics, this divergence is faster than the decrease of
the overlap between the ground state and the highly
excited states leading to the divergence of the cloud-
size excitation. However, this nonphysical behavior can
be neglected by restricting the basis sets size, knowing
that all realistic traps have a finite size, and all real-
istic quenches have a finite time. On the other hand,
the highest-energy eigenstates in a finite basis set are
not converged [90, 91] and a nonphysically larger occu-
pation of the highest-energy eigenstate can be observed.
We solve this problem by neglecting unconverged part of
spectrum from the quench dynamics calculations, namely

by removing eigenfunctions
∣∣∣Ψ̃j

〉
of Ĥfin with the contri-

bution from any basis state with |nmax〉 larger than 10%.
The removed part of eigenfunctions is a few percent of
the whole spectrum.
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FIG. 2. The rotational constant, B, and estimated electric
dipole moment, d, of the exemplary 87Rb133Cs molecule in
the lowest triplet state, as functions of the mean distance be-
tween atoms 〈r〉, corresponding to different vibrational levels.
Similar behavior may be expected for other weakly-bound
molecules.

According to our previous convergence analysis [92],
selected jmax already enables convergence for the signifi-
cant part of the spectrum as well as good convergence of
the quench dynamics.

D. Experimental feasibility

The smaller the ratio of the molecular rotational
constants to the harmonic trap frequency, B/ω, the
more pronounced the analyzed system’s molecular char-
acter [87]. However, typical ultracold molecular ex-
perimental set-ups [64, 65, 67] use three-dimensional
trap frequencies ranging from around 1 kHz to at
most 1 MHz [93], while studied ground-state molecules
have rotational constants reaching hundreds of MHz or
more [94]. This combination amounts to the ratio of
B/ω � 1 and results in the rotational levels separated
by many harmonic trap states. In such a scenario, the
molecular features related to the molecular rotational
structure are less important.

In this work, we analyze the regime of B/ω ≈ 3, which
can be reached with tight traps (e.g., a nanoplasmonic
one [95]) and weakly-bound molecules (e.g., Feshbach
molecules [96]). Feshbach molecules have rotational con-
stants up to few MHz, but their electric dipole moments
may be vanishingly small, as they scale asymptotically
as R−7 with the internuclear separation R [97]. Figure 2
presents the dependence of the rotational constant and
permanent electric dipole moment on the mean distance
between atoms in the 87Rb133Cs molecule in the low-
est electronic state with non-zero spin, i.e., a3Σ. The
choice of this species is just exemplary as we expect
other classes of weakly-bound molecules to have similar
characteristics. One of the highest vibrational levels of
a3Σ 87Rb133Cs, v = 39, corresponds to the mean distance
between atoms equal to 51 bohr. We estimate the corre-
sponding electric dipole moment of 10−4 D and rotational



5

constant of 13.5 MHz. To reach the B/ω ratio of the or-
der of the selected one, the trap frequency needs to be at
least around 0.5 MHz. Note that the upper limit for ω is
set also by the size of two molecules, which increases for
weakly-bound states. The choice of the trap frequency
determines the time scale used within this work. For ex-
ample, the time evolution plotted in Figs. 7 and 8 takes
200 (2π/ω) ≈ 2.5 ms for ω = 0.5 MHz.

Within our work, we also analyze the time evolution
of the cloud size after the quench of the intermolecular
interaction. The sudden change of the intermolecular
interaction strength can be achieved via the change of
the magnetic field strength and related Feshbach reso-
nances, the change of the molecular vibrational state,
or the change of the trapping frequency. However, the
selective quench of intermolecular interaction is impossi-
ble to achieve, as, in reality, all molecular characteristics
are intimately connected that leads to emergent behav-
ior and challenging description. For example, changing
the vibrational state impacts the interaction but also the
polarization of molecules that modifies their response to
external fields. The quench of the trapping frequency
should correspond to the most uncorrelated change of the
intermolecular interaction [76]. Regarding the observ-
ables whose time evolution we study, the internal state
of molecules can be probed with quantum gas microscopy
[1, 2, 4], and the cloud size can be measured via destruc-
tive time-of-flight experiments as realized for ultracold
atoms [98–100].

Non-reactive trapped alkali dimers in the lowest rovi-
brational states have been recently shown to form four-
atom complexes that are long-lived in the dark but are
prone to decay under the trapping field that results in
losses [101–103]. The lifetime of such complexes is pro-
portional to the density of states at the collision thresh-
old. The density of states of weakly-bound molecules,
compared to deeply-bound, can be up to eight orders of
magnitude smaller [104]. Therefore, the weakly-bound
molecules may be less prone to such losses. Addition-
ally, vibrationally-excited molecules may undergo reac-
tive collisions and other decoherence or loss processes
may occur, whose detailed characterization is, however,
out of the scope of the present study. Search for the
molecules which exhibit low losses in a trap is a chal-
lenging and very impactful task. They probably should
be lighter and have a less dense spectrum of electronic
states such as AlF [105]. Regarding the non-zero or
large electronic spin, it may be realized with alkaline-
earth-metal fluoride molecules in the doublet 2Σ+ elec-
tronic state [106], alkali-metal molecules in the triplet
3Σ+ electronic state [107, 108], or molecules containing
highly-magnetic atom [109, 110], respectively. Thus, the
considered system may potentially be realized in state-
of-the-art experiments on ultracold molecules trapped in
optical tweezers [73, 74]. However, exact experimental
conditions have to be yet carefully researched and de-
signed.

III. RESULTS

We begin by studying the magnetic properties of two
interacting ultracold molecules in a one-dimensional har-
monic trap. We focus on the system’s magnetization. We
analyze how it depends on the intermolecular interaction
between molecules and the coupling between the elec-
tronic spins and the molecular rotational momenta. We
present how the system’s magnetization can be controlled
and how this control depends on the molecular proper-
ties. Next, we study the quench dynamics designed to
extract the strengths of the spin-rotation coupling as well
as the isotropic and anisotropic interaction strengths be-
tween the molecules.

A. Magnetic properties and its control

Mechanisms that allow control over the system’s mag-
netization can be observed from the energy spectra. Fig-
ure 3 shows calculated energy spectra as functions of the
isotropic interaction strength g0. We select a set of inter-
nal and external Hamiltonian parameters to present the
interplay between the system’s magnetic properties and
the external fields.

Figure 3(a) presents the energy spectrum of two
molecules in a one-dimensional harmonic trap with a
strongly anisotropic intermolecular interaction g±1 = 10
without external fields or spin-rotation coupling. The
comparison with the neighboring panel (b) shows the im-
pact of the external electric field on the system. The
electric field moves the energy levels by a Stark shift and
removes their degeneracy with respect to the total ro-
tational angular momentum, J . The electric field splits
states with J = 1 and J = 2 into two and three states, re-
spectively, according to the different number of possible
projections of total rotational angular momentum, MJ .
Shifted states then often anticross due to the coupling
between different total rotational momentum states.

A comparison of panels (a) and (c) in Fig. 3 shows
the impact of the medium magnetic field on the spec-
trum of two molecules with a small spin-rotation coupling
(γ = 0.3 ~ω). The only conserved quantum number is
Mtot, i.e., the sum of projections of total rotational, MJ ,
and spin, MS , angular momenta. States split accordingly
to the Zeeman shift. States with the positive projection
of the total spin angular momentum MS are high-field
seekers, while energies of states with negative MS de-
crease with the magnetic field strength. Shifted states
then often anticross due to a non-zero spin-rotation cou-
pling, which mixes states with different J, S,MJ , and MS

(see the corresponding Hamiltonian elements in ESI†).
The impact of the spin-rotation coupling on the system
increases with the absolute values of states’ total rota-
tional and spin angular momenta’ projections, MJ and
MS . The larger |MJ | and |MS |, the more numerous are
possible combinations of the projections of individual ro-
tational and spin angular momenta, mi,msi , which are
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FIG. 3. Energy spectra of the relative motion for two interacting molecules with the spin s = 1/2 and rotational constant
B = π ~ω in a one-dimensional harmonic trap as a function of the isotropic interaction strength g0 with the anisotropic
interaction strength g±1 = 10 and (a) no external fields, (b) electric field strength dE = 5 ~ω, and (c) the magnetic field
strength B = 0.5 ~ω/µB and spin-rotation coupling constant γ = 0.3 ~ω. Solid and dashed lines are for states of even and odd
spatial symmetries, respectively.

mixed by the spin-rotation coupling.

Figure 4 presents rich magnetization diagrams of the
studied system in the ground state as functions of the
magnetic and electric fields. The upper row shows results
for two molecules with electronic spins 1/2 and Mtot = 0,
while the bottom one - with spins 3/2 and Mtot = 2.
The primary observation is that the number of possible
magnetization values of the ground state is limited by
the total electronic spin momenta of molecules and the
selected Mtot value. This restriction results from the def-
inition of Mtot = MJ +MS , but also because low-energy
states are characterized by small values of rotational an-
gular momenta, j1 and j2, resulting in MJ values, which
are close to zero.

The main reason for all magnetization changes in Fig. 4
is the interplay between the Zeeman and Stark effects.
The magnetic field linearly brings down energies of the
states with negative MS , with speed depending on the
MS value. The Stark effect lowers the ground state’s
energy, composed mostly of the basis state with J = M =
j1 = j2 = 0, faster than the lowest state with negative
magnetization, composed mostly of the basis state with
J = M = 1. Therefore, larger external electric field
strengths effectively force larger magnetic field strengths
for the magnetization change to happen, when the lowest
states exchange their order. Such underlying interplay is
visible in all panels of Fig. 4.

1. Magnetization for spins 1/2

Panels (a)-(d) of Fig. 4 present the ground-state mag-
netization diagrams for the system composed of two in-
teracting molecules with spins 1/2 and Mtot = 0. The

choice of Mtot limits the number of possible 〈Ŝz〉 val-
ues. In this case, two states are mainly responsible for
the magnetization change, namely the ground state dom-
inated by the J = MJ = j1 = j2 = 0 and MS = 0 basis
state and the excited state dominated by the J = MJ = 1
and MS = −1 basis state.

Panels (a)-(b) of Fig. 4 show the magnetization dia-
grams for medium strength of the anisotropic interaction
(g±1 = 4). In the absence of the spin-rotation coupling,
the magnetization change results simply from the Zee-
man and Stark effects’ interplay. Figure 5(b) depicts in
black the energies of states taking part in such a change.
The black line in the panel (a) of the same figure presents

the resulting 〈Ŝz〉 of the ground state. The electric field
can control the magnetic field’s strength at which the
change takes place.

The sharply crossing states are not coupled either
by the electric field (which conserves MJ) or the spin-
rotation coupling (which conserves j1 and j2). How-
ever, if both couplings are present, the intermediate state
dominated by the J = 1,MJ = 0 basis state, pro-
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FIG. 4. Ground-state magnetization diagrams as functions of the electric dE and magnetic µBB field strengths for two interacting
molecules with the rotational constants B = π ~ω in a one-dimensional harmonic trap for medium isotropic interaction strength
g0 = 4. Panels (a)-(d) and (e)-(h) present results for spins s = 1/2 (Mtot = 0) and 3/2 (Mtot = 2), respectively. The first
two and last two columns show results for medium g±1 = 4 and large g±1 = 10 anisotropic interaction strengths, respectively.
Moreover, the first and third columns present results for a medium spin-rotation coupling γ = 1 ~ω, and the second and the
fourth columns - for strong spin-rotation coupling γ = 3 ~ω, respectively.

vides the second-order coupling between the discussed
states, which results in their anticrossing visible in red in
Fig. 5(a)-(b). The repulsion between states grows with
the spin-rotation coupling strength, as seen when com-
paring the magnetization diagrams in panels (a) and (b)
of Fig. 4. The spin-rotation coupling also lowers the en-
ergy of states with the largest absolute values of MJ and
MS , allowing for the magnetization change in the weaker
magnetic field.

The importance of the intermolecular interaction
anisotropy is visible when comparing the first two
columns (g±1 = 4) with the last two ones (g±1 = 10) of
Fig. 4, i.e., panels (a)-(b) with (c)-(d). Firstly, the sys-
tems with the larger anisotropic interaction strength re-
quire smaller external fields for the ground-state magneti-
zation change related to the crossing of the lowest-energy
states. For electric field strengths larger than a few ~ω,
the 〈Ŝz〉 change takes place within the same two mecha-
nisms described above. States with different magnetiza-
tion either cross in the absence of the spin-rotation cou-
pling or anticross when both the electric field and spin-
rotation coupling are present. However, the intermolec-
ular interaction’s large anisotropy allows an additional
mechanism for small electric field strengths. It brings
down the states with higher total rotational momenta,

including J = 1 (as seen in Fig. 3 (b)), and non-zero
MJ and MS . So when the magnetic field, through the
Zeeman effect, lifts the degeneracy of MS , the two states
strongly repel each other thanks to the spin-rotation cou-
pling, as seen in blue in Fig. 5(a),(c). The larger the
spin-rotation coupling strength, the larger electric field
strength is needed to push down the state with J = 0
and reproduce the mechanisms described for smaller g±1.

2. Magnetization for spins 3/2

Panels (e)-(h) of Fig. 4 show the ground-state magne-
tization diagrams of two interacting molecules with spins
3/2 and Mtot = 2. This choice results in a larger num-

ber of possible 〈Ŝz〉 values, ranging from -3 to 3. Also,
the states taking part in the magnetization changes have
much higher rotational angular momenta than ones in
the previous section.

In the case of the medium anisotropic interaction
strength, the choice of Mtot = 2 in the absence of exter-
nal fields results in a ground state with MJ = 0,MS = 2.
In the absence of the electric field or the spin-rotation
coupling, the lowest states cross each other due to the
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FIG. 5. (a) Ground-state magnetization of two interacting
molecules with the rotational constants B = π ~ω, spins
s = 1/2, and Mtot = 0 in a one-dimensional harmonic trap
with medium isotropic and strong anisotropic intermolecu-
lar interaction strengths (g0 = 4 and g±1 = 10) as a func-
tion of the magnetic field strength µBB for different elec-
tric field strengths dE and spin-rotation coupling constants γ.
(b)-(c) Energies of the analyzed ground states and coupled
lowest-energy excited states as functions of the magnetic field
strength µBB. Color code indicates the strengths of the elec-
tric field dE and the spin-rotation coupling γ.

Zeeman effect, resulting in abrupt ground-state magne-
tization changes. Blue lines in Fig. 6(a)-(b) present an
example of the magnetization and energies of such states
as a function of the magnetic field strength.

When the spin-rotation coupling is present, the spectra
become dense and exhibit multiple anticrossings, due to
mixing of J , S, and projections of individual molecular
rotational and spin angular momenta m1,m2,ms1 ,ms2 .
The anticrossing strength depends on two factors. The
strongest anticrossings occur between states belonging to
the same harmonic level, as both the spin-rotation cou-
pling and electric field conserve n. Another factor is the
anticrossing states’ composition of individual rotational
angular momenta, j1 and j2. The larger difference be-
tween them, the smaller is the coupling induced by the
electric field. This is why the anticrossing strength de-
creases with the difference of states’ magnetization, as
presented in Fig. 6, where states depicted in red change
the magnetization from 2 to 0 and 0 to -3. Due to con-
served Mtot, the change of MS is compensated by the
increase of MJ . Larger MJ forces higher rotational mo-
menta, j1 and j2. Therefore, the larger magnetization
change, the larger difference between the states’ rota-
tional momenta, and the smaller coupling between anti-
crossing states.

The spin-rotation coupling’s stronger impact on states
with large absolute values of MS and MJ is more promi-
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FIG. 6. (a) Ground-state magnetization of two interacting
molecules with the rotational constants B = π ~ω, spins
s = 3/2, and Mtot = 2 in a one-dimensional harmonic trap
with medium isotropic and anisotropic intermolecular inter-
action strengths (g0 = g±1 = 4) as a function of the magnetic
field strength µBB for the electric field strength dE = 15 ~ω
and different spin-rotation coupling constants γ. (b)-(c) Ener-
gies of the analyzed ground states and coupled lowest-energy
excited states as functions of the magnetic field strength µBB.
Color code indicates the spin-rotation coupling constants γ.

nent for spins 3/2 than for spins 1/2. A comparison be-
tween panels (e) and (f) as well as (g) and (h) of Fig. 4
shows that the larger spin-rotation coupling can not only
bring the magnetization change to lower magnetic field
strengths, but also effectively limits the number of acces-
sible magnetization values, as in the case of panels (f)
and (h).

The same dependencies determine the magnetization
diagrams for the systems with large anisotropy of the
intermolecular interaction (g±1 = 10), as seen in panels
(g) and (h) of Fig. 4. The main difference comes from an

additional 〈Ŝz〉 value accessible for weaker electric fields
due to bringing down the state with higher rotational
angular momentum with 〈Ŝz〉 = 3 by the anisotropy of
the intermolecular interaction.

B. Quench dynamics

The analyzed system’s magnetic properties depend
strongly on the anisotropic part of the intermolecular in-
teraction and the spin-rotation coupling. These molec-
ular properties are challenging to calculate or measure.
However, they can be extracted through the analysis of
the quench dynamics of observables that they influence.

Therefore, first, we study the nonequilibrium dynamics
of the cloud size, 〈r̂2〉, after the quench of the intermolec-
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ular interaction which can be achieved via the change of
the trapping frequency [76] (see the discussion in sec-
tion II D). We aim at identifying dynamical signatures of
isotropic and anisotropic part of the interaction between
the molecules. Next, we analyze the time evolution of
the magnetization, 〈Ŝz〉, after the quench of the exter-
nal electric or magnetic field. It provides insight into
the strength of the spin-rotation coupling present in the
molecular system.

To reconstruct couplings governing the dynamics, we
perform the discrete Fourier transform (DFT) of the cor-
responding time evolution. The resulting function indi-
cates the frequencies dictating the time evolution. These
frequencies can then be transformed into energy differ-
ences between states whose coupling causes the system’s
nontrivial dynamics. The strength of the coupling is re-
lated to the peak’s amplitude at the corresponding fre-
quency.

1. The isotropic and anisotropic intermolecular interactions

Figure 7 presents the nonequilibrium dynamics of the
analyzed molecular system with total rotational angular
momentum, J = 1, after the quench of the interaction,
starting from the noninteracting case, with the initial
state |Ψ0〉 = |n = 0, J = 1, j1 = 0, j2 = 1〉.

Panel (a) shows the time evolution of the cloud size
after quenching the isotropic part of the intermolecular
interaction from zero to medium strength g0 = 4, which
couples states composed of different harmonic trap lev-
els. The inset of panel (a) presents the DFT of the
studied time evolution, which can be used to unravel
couplings between states governing the quench dynam-
ics. The molecular system’s dynamics in these condi-
tions is almost identical to two ultracold atoms in a one-
dimensional harmonic trap, even though the rotational
structure is present, and J is nonzero. The reason is the
lack of the anisotropic part of the intermolecular inter-
action and the absence of couplings between the rota-
tional states. As a result, the multiple peaks visible in
the DFT correspond to the couplings with different har-
monic states only, which are almost exactly evenly sep-
arated by 2ω (we ignore odd states in this work). The
divergence from the single ladder of frequencies comes
from the slightly different influence that the isotropic
interaction has on the system’s ground state, as com-
pared to excited ones, as known for both atomic [91]
and molecular [87] cases. The additional ladder of fre-
quencies slightly below 2ω comes from the couplings of
higher-energy harmonic states to the ground state. If the
isotropic intermolecular interaction is quenched to neg-
ative strengths, the multiple peaks would become more
detached. In the case of the quench to the strongly re-
pulsive interaction, entering the Tonks-Girardeau regime,
the DFT would show a single ladder of peaks evenly sep-
arated by 2ω. The analysis above is independent of the
total rotational angular momentum value, J as long as
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FIG. 7. The time evolution of the cloud size, 〈r̂2〉, after the
quench of the intermolecular interaction strength between two
interacting molecules without spin and with the rotational
constants B = π~ω in a one-dimensional harmonic trap with
the total rotational angular momentum J = 1. The isotropic
and anisotropic interaction is quenched from zero g0 = g±1 =
0 to (a) g0 = 4, g±1 = 0, (b) g0 = 0, g±1 = 4, and (c) g0 = 4,
g±1 = 10. Insets present the discrete Fourier transforms of
the studied time evolutions.

the anisotropic part of the interaction is zero.

Panel (b) of Fig. 7 presents the dynamics after the
quench of the anisotropic part of the intermolecular in-
teraction from zero to medium strength g±1 = 4, keeping
the isotropic part equal to zero. The anisotropic interac-
tion couples not only different harmonic trap states but
also rotational ones, preserving J . It impacts the spec-
trum in two ways. Firstly, as showed in Ref. [87], the
anisotropic interaction splits each harmonic trap state
with J = 1 into two states, the antisymmetric and sym-
metric one. The splitting depends slightly on the har-
monic level and is largely similar across the spectrum,
except for the lowest-energy state. The antisymmetric
ground state, resulting from the splitting of the lowest-
energy harmonic state, is brought down rapidly by the
anisotropic part of the interaction. Both effects can be
seen in the DFT of the time evolution of the cloud size in
Fig. 7(b) as well as in the system’s spectrum presented in
Fig. 3(a). The described splitting results in two close lad-
ders of excited symmetric and antisymmetric eigenstates
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with frequencies close to 2ω. The ladder of frequencies
separated by ≈ 1.9ω comes from the couplings between
the symmetric states, while the neighboring ladder start-
ing from ≈ 2.1ω results from the couplings between the
antisymmetric states. The couplings with the separated
ground state cause an additional ladder starting for a fre-
quency equal to the energy difference between the ground
energy and the nearest excited antisymmetric state (here
around 4.4ω). The ground state’s sensitivity to the
anisotropic interaction strength allows for using this fre-
quency as a quite precise signature of this molecular prop-
erty. Invisible for the quench dynamics are states with
j1 = j2, as nothing couples them to the system’s initial
state. If the initial state, |Ψ0〉, is antisymmetric, instead
of composed solely by |n = 0, J = 1, j1 = 0, j2 = 1〉, the
only couplings governing the system are the ones between
antisymmetric states. The time evolution of 〈r̂2〉 is then
simpler, and the DFT contains no splittings of the main
frequency ladder. If |Ψ0〉 is chosen to be symmetric,
the couplings to the antisymmetric ground state disap-
pear, rendering this quench scenario less sensitive to the
anisotropic interaction strength.

Panel (c) of Fig. 7 shows the time evolution of the cloud
size after quenching both parts of the intermolecular in-
teraction, i.e., the isotropic part from zero to medium
strength g0 = 4 and anisotropic part from 0 to large
strength g±1 = 10. In this case, the DFT shows a fre-
quency ladder similar to the one observed in panel (a)
and the additional ladder starting from the frequency
around 6.5ω analogous to the panel (b). However, the
result is not a simple sum of two interaction parts’ ef-
fects, but it rather comes from the competition between
them. Firstly, the ground state, detached from the rest
of the spectrum by the anisotropic part of the interac-
tion, is pushed back up by the isotropic part, as seen in
Fig. 3(a). For a molecular system with the dominantly
isotropic interactions or with an anisotropic part equal to
isotropic, the separated ground state is gone and the ad-
ditional ladder in the corresponding DFTs. On the other
hand, the larger frequency at which the additional lad-
der starts, the larger is the dominance of the anisotropy
over the isotropy of the intermolecular interaction. The
splittings between ladders starting around 2ω are an-
other signature of the intermolecular interaction. They
get negligible small, resulting in a single ladder, in two
cases. The first case is entering the Tonks-Girardeau
regime with a very strong isotropic part of the interac-
tion. Second, when the anisotropic part of the interac-
tion’s strength is equal to the isotropic one. This regime
corresponds to the metastable gas-like super-Tonks states
[87, 111–113], being a molecular equivalent of the Tonks-
Girardeau regime.

The results showed in Fig. 7 and discussed above con-
cern the system with the total rotational angular momen-
tum J = 1. They present the possibility of extracting the
relative strength of the anisotropic part of the intermolec-
ular interaction, g±1, compared to the isotropic part, g0.
On the other hand, the quench analysis of the system

with a zero total rotational angular momentum allows
determining g0. The reason is the lack of the depen-
dence of eigenstates with J = 0 on the anisotropic part of
the intermolecular interaction. Therefore, to extract the
full information about intermolecular interactions, one
should start with the interaction quench performed in
the system with J = 0, interpreted as in Fig. 7(a), fol-
lowed by the investigation of the quench dynamics of the
system with J = 1 or higher.

2. The spin-rotation coupling

Figure 8 presents the nonequilibrium dynamics of the
magnetization, 〈Ŝz〉, of the analyzed molecular system
with molecular electric spins 1/2 with zero projection of
the total angular momentum, Mtot = 0, after the quench
of external electric or magnetic field with different spin-
rotation coupling strengths, γ. To see a nontrivial time
evolution of 〈Ŝz〉, i.e., its value changing in time with
a significant amplitude, the initial state, |Ψ0〉, must be

coupled to a subset of the final eigenfunctions,
∣∣∣Ψ̃j

〉
, with〈

Ψ̃j

∣∣∣ Ŝz ∣∣∣Ψ̃j′

〉
6= 0. These conditions are not met in the

system without the spin-rotation coupling, as it is the
only part of the Hamiltonian, which mixes states with
different projections of the total spin angular momentum,
MS . Therefore, in general, the smaller γ, the smaller
amplitude of 〈Ŝz(t)〉 after a quench of any external field.
However, the presence of the spin-rotation coupling is not
a sufficient condition for the nontrivial dynamics. The
quench of the external fields must also be performed in
the vicinity of the magnetization change, discussed in

Sec. III A, otherwise the value of
〈

Ψ̃j

∣∣∣ Ŝz ∣∣∣Ψ̃j′

〉
becomes

negligibly small.
Panels (a) and (b) of Fig. 8 present the time evolution

of the magnetization, 〈Ŝz〉, for the system under the con-
stant impact of the external magnetic field of 3 ~ω, after
the quench of the electric field from 0 to 7.5 ~ω, for the
medium (γ = 1 ~ω) and large (γ = 3 ~ω) spin-rotation
coupling strengths, respectively. The corresponding mag-
netization diagrams are presented in panels (a) and (b)
of Fig. 4. The initial state of the system, |Ψ0〉, is anti-
symmetric with J = 1, MJ = 1, and MS = −1. It is
composed predominantly of the |0〉 harmonic trap state.

Firstly, we see that the amplitude of 〈Ŝz(t)〉 variation in-
creases with the spin-rotation strength. For a medium γ,
the 〈Ŝz〉 changes by around 20% of its value, while for

a large γ – by 100%. As already stated, the 〈Ŝz〉 value
would be constant without the spin-rotation coupling.

Secondly, the DFT in insets of panels (a) and (b) of
Fig. 8 indicates that the dynamics is governed by a man-
ifold of couplings. They result from the intermolecular
interaction mixing the harmonic levels, the magnetic field
lifting the degeneracy with respect to the projection of
the total spin angular momentum, MS , the electric field
mixing the rotational states, and finally the spin-rotation
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coupling, which mixes states with different J, S,MJ , and
MS . The quench aims to assess the spin-rotation cou-
pling strength, γ. Therefore we compare results from
panels (a) and (b). While the number of present cou-
plings is vast, most of them are negligible, especially in
panel (a). Their impact on the dynamics grows with
the spin-rotation coupling strength. Therefore, while just
two couplings dominate the time evolution of 〈Ŝz〉 for a
medium γ, they are joined by many new ones for a large
γ. In both cases, the dominant coupling is between the
states taking part in the magnetization change, described
in Sec. III A 1. The strength of this coupling grows with
the spin-rotation coupling strength γ.

Summing up, in the case of the quench of the elec-
tric field, there are two signatures of the spin-rotation
coupling strength in the time evolution of the magne-
tization, 〈Ŝz〉. First is the size of 〈Ŝz(t)〉 amplitude,
which increases with γ. Second is the number of cou-
plings present in the system and the amplitude of the
dominant coupling, increasing with γ.

Instead of quenching the electric field strength, the
magnetic field can also be suddenly turned on. Panel (c)

of Fig. 8 shows the time evolution of 〈Ŝz〉 of the studied
molecular system under the influence of the constant elec-
tric field of 5 ~ω, after the quench of the magnetic field
from 0 to 4 ~ω. The initial state, |Ψ0〉, is already im-
pacted by the constant electric field. It is predominantly
|Ψ0〉 = |n = 0, J = 0, j1 = j2 = 0, S = 0, MS = 0〉, but
mixed with the symmetric rotational state with j1 and
j2 equal to 0 and 1. It also has a significant contribution
from the higher harmonic states (n = 2, 4) due to the
intermolecular interaction. The selected quench of the
magnetic field does not modify the initial state signifi-
cantly, so in the end we probe only couplings between∣∣∣Ψ̃〉 ≈ |Ψ0〉 and other eigenstates of the final Hamilto-

nian. This significantly limits the number of couplings
influencing the dynamics, what is visible when compar-
ing the corresponding DFTs in Fig. 8. Moreover, the ini-
tial state has 〈Ŝz〉 = 0, therefore the only significant cou-

plings are between
∣∣∣Ψ̃〉 and the eigenstates with 〈Ŝz〉 6= 0,

which further limits the number of visible peaks in the
DFT. However, the remaining peaks are related to the
spin-rotation coupling as it is the only part of the Hamil-
tonian mixing states with different MS .

In the magnetic field’s quench, the initial state |Ψ0〉
has the largest overlap with the fourth excited state of
the final Hamiltonian, instead of the ground state, as
it is in the electric field’s quench. This means that
the couplings governing the dynamics are not between
the states taking part in the system’s magnetization
change. Moreover, the amplitude of 〈Ŝz(t)〉 variation is
not anymore linearly dependent on the spin-rotation cou-
pling strength. It grows with the spin-rotation coupling
strength till γ reaches medium values, and then remains
almost constant. Different sets of couplings govern these
two regimes. The first regime (small γ, 〈Ŝz(t)〉 ampli-
tude ∝ γ) is dominated by a single coupling between
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FIG. 8. The time evolution of the magnetization, 〈Ŝz〉, of the
system of two interacting molecules with the spins 1/2 and
rotational constants B = π~ω in a one-dimensional harmonic
trap, described by the medium isotropic and anisotropic in-
teraction strengths, g0 = g±1 = 4, and with zero projection
of the total angular momentum, Mtot = 0, after the quench
of (a) the electric field from 0 to dE = 7.5 ~ω for a system
with spin-rotation coupling γ = 1 ~ω and with the constant
magnetic field, µBB = 3 ~ω, (b) the electric field from 0 to
dE = 7.5 ~ω for a system with γ = 3 ~ω and constant mag-
netic field, µBB = 3 ~ω, and (c) the magnetic field from 0
to µBB = 4 ~ω with γ = 1 ~ω and the constant electric field
dE = 5 ~ω. Insets present the discrete Fourier transforms of
the studied time evolutions.

∣∣∣Ψ̃〉 ≈ |Ψ0〉 and the nearest antisymmetric eigenstate

with J = M = 1, MS = −1, and n = 2. This cou-
pling strength grows with γ till γ reaches medium values.
In the second regime (larger γ, constant 〈Ŝz(t)〉 ampli-
tude), the mentioned coupling strength decreases when γ
grows and a new coupling, with the ground state of the
quenched system, grows. Competition between two cou-
plings results in the 〈Ŝz(t)〉 amplitude being nearly inde-
pendent of the spin-rotation strength. This quench sce-
nario is thus less straightforward to determine the spin-
rotation coupling strength value than the quench of the
electric field. It still allows us to determine γ by fitting
the theoretical model to the experimental data.

The quench of the magnetic field strength proves useful
also in determining whether the anisotropic part of the
intermolecular interaction dominates the system’s prop-
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erties. As discussed in the Sec. III A 1, in the system
with medium interaction anisotropy, the main source of
coupling between states with different MS values is the
combination of the electric field and the spin-rotation
coupling. When the electric field is missing, the main
source of such a coupling is the large anisotropic part of
the intermolecular interaction which brings states with
higher rotational angular momenta to lower energies (see
Fig. 5(c)). It means that if the quench scenario from
Fig. 8(c) is performed without the constant electric field,

the nontrivial time evolution of 〈Ŝz〉 indicates that the
anisotropic part dominates the intermolecular interac-
tion.

IV. CONCLUSIONS

Within this work, we have studied the magnetic prop-
erties of two interacting ultracold polar and paramag-
netic molecules in a one-dimensional harmonic trap. We
have focused on the interplay of the molecular electronic
spins, electric dipole moments, rotational structures, ex-
ternal electric and magnetic fields, and spin-rotation cou-
pling. We have shown that control over the molecular
system’s magnetization could be achieved using an ex-
ternal electric field. This result is a complementary ex-
tension of the analogous studies focused on the free-space
collisions. We have also presented the resulting magne-
tization diagrams depending strongly on two molecular
properties of the system, namely the spin-rotation cou-
pling and the anisotropic part of the intermolecular in-
teraction. Motivated by the theoretical and experimen-
tal challenges in determining such molecular properties
of few-body systems, we have employed the quench dy-
namics to find signatures of the anisotropic intermolecu-
lar interaction strength and the electronic spin-rotation
coupling.

Our findings can be summarized as follows:

• The magnetization of the system can be controlled
via external fields. The main underlying mecha-
nism is the competition between the Zeeman and
Stark effects. The spin-rotation coupling strength
affects the smoothness of the transition between
possible magnetization values.

• The number of accessible magnetization values de-
pends on selected Mtot of the system, the electronic
spins of the molecules, and the strength of the
anisotropic part of the intermolecular interaction
as it brings the states with higher total rotational
momenta to lower energies.

• The time evolution of the system’s cloud size
after the quench of the intermolecular interac-
tion has clear signatures of the ratio between the
anisotropic, g±1, and isotropic, g0, part of the in-
teraction. In the regime of large g0 or g0 = g±1,
the dynamics is governed by couplings between

evenly separated harmonic states of the system.
For g±1 > g0, the ladder of additional couplings be-
comes visible in the Fourier transform of the time
evolution, coming from the antisymmetric ground
state of the system. This ground state is highly
sensitive to g±1 and may be used to determine its
strength compared to g0.

• The time evolution of the magnetization after the
electric field’s quench depends strongly on the
spin-rotation coupling strength. The larger spin-
rotation coupling, the larger is the amplitude of
the magnetization variation and the larger number
of couplings governing the dynamics. It can thus
be used to assess the strength of the spin-rotation
coupling in the molecular system.

• The time evolution of the magnetization after the
magnetic field’s quench is governed by a smaller
number of couplings than after the electric field’s
quench. In the studied example, it is caused by
a large similarity of the initial state to one of the
eigenstates of the system after the quench. The
dynamics probes then only couplings to this sin-
gle eigenstate. While it may allow to assess the
spin-rotation coupling strength, this scenario serves
better for probing the anisotropic part of the inter-
molecular interaction.

The presented intrinsic coupling between the electric
and magnetic properties of the studied model system
paves the way towards studying the controlled magne-
tization of the ultracold many-body molecular systems
trapped in optical tweezers or optical lattices. The results
provide also the first step in studying dynamical magnetic
properties of a few-body molecular systems with varied
geometries. The potential applications range from quan-
tum simulations of molecular multichannel many-body
Hamiltonians to quantum information storing.

The studied model can be extended by including
the fermionic or bosonic statistics of indistinguishable
molecules or allowing dimers to be different. Another
direction is to incorporate the state dependence of molec-
ular characteristics and trapping potential. The interac-
tion potential with more realistic dependence on the rela-
tive distance between molecules may capture the physics
of four-atom complexes that are now of central inter-
est for ultracold molecular experiments. Another ex-
tension is the more realistic quench dynamics taking
into account all correlations and dependencies between
molecular characteristics. A natural extension to the
many-body limit is the double molecular Mott insula-
tor in an optical lattice with two molecules per site. The
present system constitutes exotic monomers for such a
system with large total rotational angular momenta in
the ground state and magnetization controllable with the
electric field.
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Appendix A: Derivation of the size of the molecular cloud in the used basis

The wave function of the studied molecular system is following:

|Ψk〉 =
∑

n,J,M,j1,j2,
S,MS ,s1,s2

Ckn,J,M,j1,j2,S,MS ,s1,s2 |n〉|J,M, j1, j2〉|S,MS , s1, s2〉 , (A1)

where

|n〉 =
1√

2nn!
π−1/4 exp

{
−z2

2
Hn(z)

}
,

|J,M, j1, j2〉 =
∑
m1,m2

〈j1,m1, j2,m2|J,M〉|j1,m1〉|j2,m2〉 ,

|S,MS , s1, s2〉 =
∑

ms1
,ms2

〈s1,ms1 , s2,ms2 |S,MS〉|s1,ms1〉|s2,ms2〉 .

(A2)

where Hn are the Hermite polynomials, 〈j1,m1, j2,m2|J,M〉 and 〈s1,ms1 , s2,ms2 |S,MS〉 are the Clebsch-Gordan
coefficients, while |ji,mi〉 and |si,msi〉 are the eigenfunctions of the rotational and spin angular momenta of the
molecule i. The size of the molecular cloud is then (with β ≡ J,M, j1, j2, S,MS , s1, s2):

〈r̂2〉 = 〈Ψk| r̂2 |Ψk〉 =
∑
n,n′,β

Ckn,βC
k
n′,β 〈n| r̂

2 |n′〉 =
∑
n,n′,β

Ckn,βC
k
n′,β√

2n+n′n!n′!
π−

1
2

∫ ∞
0

dr r2e−r
2

Hn(r)Hn′(r) (A3)

∫ ∞
0

dr r2e−r
2

Hn(r)Hn′(r)
1
= n!n′!

minn,n′∑
N=0

2N

(n−N)!(n′ −N)!N !

∫ ∞
0

dr r2e−r
2

Hn+n′−2N (r)

2
= n!n′!

minn,n′∑
N=0

2N (n+ n′ − 2N)!

(n−N)!(n′ −N)!N !

floor( n+n′
2 −N)∑

k=0

(−1)k2n+n′−2N−2k−1Γ(n+n′−2N+3
2 − k)

k!(n+ n′ − 2N − 2k)!

(A4)

Hermite polynomials’ properties used in calculations:

1 Hm(z)Hn(z) = m!n!
∑minm,n
N=0

2NHm+n−2N (z)
(m−N)!(n−N)!N ! [114],

2
∫∞

0
t2e−t

2

Hn(t)dt = n!
∑floor( n

2 )

k=0
(−1)k2n−2k−1Γ( n+3

2 −k)

k!(n−2k)! [115].

Appendix B: Spin-rotation coupling matrix elements in the used basis

Here, we provide matrix elements of the spin-rotation component of the Hamiltonian given by Eq. (1) and (2) in
the computation basis of |n, J,MJ , j1, j2, S,MS , s1, s2〉 ≡ |n〉|J,MJ , j1, j2〉|S,MS , s1, s2〉 as described in Sec. II.
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〈n, J,MJ , j1, j2, S,MS , s1, s2|Ĥspin–rot|n′, J ′,M ′J , j′1, j′2, S′,M ′S , s′1, s′2〉 =

δnn′δMtot,M ′tot
δj1j′1δj2j′2δs1s′1δs2s′2

×
j1∑

m1=−j1

j2∑
m2=−j2

j1∑
m′1=−j1

j2∑
m′2=−j2

〈j1m′1j2m′2|JMJ〉 〈j1m′1j2m′2|J ′M ′J〉

×
s1∑

ms1
=−s1

s2∑
ms2

=−s2

s1∑
m′s1

=−s1

s2∑
m′s2

=−s2

〈
s1m

′
s1j2m

′
2

∣∣SMS

〉 〈
s1m

′
s1s2m

′
s2

∣∣S′M ′S〉
×
(
δm1m′1

δm2m′2
δms1

m′s1
δms2

m′s2
γ(m1ms1 +m2ms2)

+
γ

2

(
δms1+1,m′s1

δms2 ,m
′
s2
δm1−1,m′1

δm2m′2
+ δms1 ,m

′
s1
δms2+1,m′s2

δm1m′1
δm2−1,m′2

+δms1−1,m′s1
δms2 ,m

′
s2
δm1+1,m′1

δm2,m′2
+ δms1 ,m

′
s1
δms2−1,m′s2

δm1m′1
δm2+1,m′2

))
,

(B1)
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M. Greiner, Nature 462, 74–77 (2009).

[2] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau,
I. Bloch, and S. Kuhr, Nature 467, 68–72 (2010).

[3] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N.
Wenz, and S. Jochim, Science 332, 336 (2011).

[4] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Ne-
spolo, L. Pollet, I. Bloch, and C. Gross, Science 353,
1257 (2016).

[5] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.
Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic,
M. Greiner, and M. D. Lukin, Science 354, 1024 (2016).
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R. Grimm, and H.-C. Nägerl, Phys. Rev. Lett. 113,
205301 (2014).

[67] J. W. Park, S. A. Will, and M. W. Zwierlein, Phys.
Rev. Lett. 114, 205302 (2015).

[68] X. He, K. Wang, J. Zhuang, P. Xu, X. Gao, R. Guo,
C. Sheng, M. Liu, J. Wang, J. Li, G. V. Shlyapnikov,
and M. Zhan, Science (80-. ). 370, 331 (2020).

[69] A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. An-
deregg, B. L. Augenbraun, J. M. Doyle, and J. Ye,
Phys. Rev. Lett. 121, 213201 (2018).

[70] L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky,
L. W. Cheuk, W. Ketterle, and J. M. Doyle, Nat. Phys.
14, 890 (2018).

[71] A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P.
Covey, M. Foss-Feig, A. M. Rey, D. S. Jin, and J. Ye,
Phys. Rev. Lett. 108, 080405 (2012).

[72] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R.
Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Nature 501,
521 (2013).

[73] L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler,
T. Rosenband, and K.-K. Ni, Science 360, 900 (2018).

[74] L. Anderegg, L. W. Cheuk, Y. Bao, S. Burchesky,
W. Ketterle, K.-K. Ni, and J. M. Doyle, Science 365,
1156 (2019).

[75] L. W. Cheuk, L. Anderegg, Y. Bao, S. Burchesky, S. S.
Yu, W. Ketterle, K.-K. Ni, and J. M. Doyle, Phys. Rev.
Lett. 125, 043401 (2020).

[76] M. A. Garc̀ıa-March, T. Fogarty, S. Campbell,
T. Busch, and M. Paternostro, New J. Phys. 18, 103035
(2016).
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