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a b s t r a c t 

Background and Objective: Chronic obstructive pulmonary disease (COPD) requires a multifactorial assess- 

ment, evaluating the airflow limitation and symptoms of the patients. The 6-min walk test (6MWT) is 

commonly used to evaluate the functional exercise capacity in these patients. This study aims to propose 

a novel predictive model of the major 6MWT outcomes for COPD assessment, without physical perfor- 

mance measurements. 

Methods: Cardiopulmonary and clinical parameters were obtained from fifty COPD patients. These pa- 

rameters were used as inputs of a Bayesian network (BN), which integrated three multivariate models 

including the 6-min walking distance (6MWD), the maximum HR (HR max ) after the walking, and the HR 

decay 3 min after (HRR 3 ). The use of BN allows the assessment of the patients’ status by predicting the 

6MWT outcomes, but also inferring disease severity parameters based on actual patient’s 6MWT out- 

comes. 

Results: Firstly, the correlation obtained between the estimated and actual 6MWT measures was strong 

( R = 0.84, MAPE = 8.10% for HR max ) and moderate ( R = 0.58, MAPE = 15.43% for 6MWD and R = 0.58, 

MAPE = 32.49% for HRR 3 ), improving the classical methods to estimate 6MWD. Secondly, the classifica- 

tion of disease severity showed an accuracy of 78.3% using three severity groups, which increased up to 

84.4% for two defined severity groups. 

Conclusions: We propose a powerful two-way assessment tool for COPD patients, capable of predicting 

6MWT outcomes without the need for an actual walking exercise. This model-based tool opens the way 

to implement a continuous monitoring system for COPD patients at home and to provide more personal- 

ized care. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Chronic respiratory diseases are among the most common dis- 

ases associated with high morbidity and premature mortality in 

he adult population. In particular, chronic obstructive pulmonary 

isease (COPD) represents the fourth leading cause of death world- 
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ide [1] COPD is characterized by progressive airflow limitation, 

esulting in shortness of breath and the patients often experience 

 sudden worsening of symptoms, also known as an exacerbation. 

he clinical condition of COPD patients is rather complex and re- 

uires a multidimensional assessment. This usually includes lung 

unction test, as well as several questionnaires to evaluate the 

ymptoms, the impact of the disease on the patients’ quality of life, 

nd the risk of future events [2] . 
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Table 1 

Demographic and anthropometric data for the study population. 

Clinical characteristics n = 46 

Male (Female) 34 (12) 

Age, yr 65.00 (60.00 - 69.00) 

Height, cm 169.50 (164.00 - 178.00) 

BMI, kg/m 

2 24.85 (22.27 - 29.04) 

Smoker, n (%) 

Current smoker 9 (19.57) 

Former smoker 37 (80.43) 

Comorbidities, n (%) 43 (93.48) 

Asthma 10 (21.74) 

Lung cancer 9 (19.57) 

Cardiovascular disorders 14 (30.43) 

Obstructive sleep apnea syndrome 8 (17.39) 

6MWD, m 435 (370 - 498) 

FVC% pred 86.45 (72.20 - 110.90) 

FEV 1 % pred 52.15 (42.80 - 68.60) 

80% ≤ FEV 1 % pred, n (%) 5 (10.87) 

50% ≤ FEV 1 % pred < 80%, n (%) 20 (43.48) 

30% ≤ FEV 1 % pred < 50%, n (%) 18 (39.13) 

FEV 1 % pred < 30%, n (%) 3 (6.52) 

The data are presented as median (first - third quartile) and in the 

case of grouping, as the number and percentage of patients. BMI: body 

mass index; FVC: forced vital capacity; FEV 1 : forced expiratory volume 

in one second. 
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The 6-minute walk test (6MWT) is a simple and standardized 

ool that is commonly used to assess the functional exercise capac- 

ty of patients with chronic respiratory diseases [3] . The outcomes 

f the 6MWT include the total distance walked by the patient 

6MWD), as well as other relevant cardiopulmonary parameters 

uch as the heart rate (HR), and the oxygen saturation level (SpO 2 

easured before and after the test). The 6MWD is considered the 

ain clinical outcome from the test, which correlates with physical 

ctivity measures from other tests such as the incremental shuttle 

alk test [ 4 , 5 ] and has been associated with increased risk for hos-

italization and mortality in COPD patients [ 6 , 7 ]. The most com-

on models used to estimate the distance involve patients’ phys- 

cal characteristics such as age, height, and weight [ 8 , 9 ]. However,

hese models may not properly estimate the 6MWD in COPD pa- 

ients and additional potential modulators are needed. The accu- 

ate prediction of the 6MWD can provide a more precise estima- 

ion of the medical condition and functional exercise performance 

f the patients. 

Although the guidelines for the 6MWT state the measurement 

f HR and SpO 2 as optional [10] , these outcomes are commonly 

ecorded and have proven to be relevant markers about the pa- 

ients’ condition [ 7 , 11–13 ]. In particular, the heart rate recovery 

i.e., the rate of decrease in HR after the walk cessation) has been 

uggested as a valuable predictor of worsening and mortality in 

atients with respiratory diseases [11–13] . In addition, the heart 

ate values measured at different stages of the test can potentially 

ontribute to describe the 6MWD [14] . More recent studies also in- 

luded parameters regarding the influence of the test intensity rep- 

esented as the variation of HR [15–17] . Therefore, it can be con- 

luded that not only the 6MWD provides clinically valuable infor- 

ation, but also other relevant outcomes should be considered to 

llow a more comprehensive assessment of the patients’ functional 

tatus and progression. 

Recently, the use of Bayesian Networks (BNs) for medical ap- 

lications represents a field of great interest [18] , because of the 

nterpretability of the resulting models, avoiding the limitations of 

lack box models. BNs can effectively deal with decision-support 

odels for complex clinical problems, in which multiple factors are 

nteracting. Among its advantages, BNs offer a powerful framework 

o combine evidence from different sources. For instance, clinical 

nowledge and published evidence obtained from meta-analyses 

an help to design the network structure [19] , while the parame- 

ers can be learned from data using even small datasets. In partic- 

lar, Bayesian approaches have been used in COPD patients to pre- 

ict disease severity from clinical parameters [20,21] as well as its 

ssociation with mortality and patient’s quality of life [22] . Based 

n these premises, we used the power of BNs to integrate different 

ultivariate models that can predict the main 6MWT outcomes 

nder uncertainty and unobserved variables. The network should 

ombine symptoms and clinical parameters, measures of respira- 

ory functional capacity, and cardiovascular function obtained in 

OPD patients. 

In general, parameters obtained from a 6MWT provide valuable 

rognostic information about COPD patients. However, the test is 

erformed only once or a few times per year in most cases. Since 

hanges in patient’s status can occur any time between these mea- 

urements, a continuous monitoring system able to predict ma- 

or 6MWT outcomes would have a clinically relevant impact. Con- 

retely, the present study aims to propose a novel predictive re- 

ression model for major 6MWT outcomes (such as distance and 

R recovery), using anthropometric information, clinical parame- 

ers such as measures of pulmonary function and HR indices de- 

ived from data acquired during rest. Different regression models 

ere integrated into a multivariate BN, enabling the prediction of 

ll relevant outcomes simultaneously. Likewise, it also allows to 

ake inferences about the progression of a patient’s functional sta- 
2 
us, by updating any change that occurs in the patient’s clinical 

ariables or the outcomes derived from the 6MWT. The final model 

ould serve to reinforce the home-monitoring of COPD patients by 

racking relevant parameter changes over time. Its potential appli- 

ation in a digital healthcare system will enable a more personal- 

zed assessment of the patients’ status on a daily basis. 

. Methods 

.1. Sample population and experimental protocol 

Fifty COPD patients were recruited during their consultation at 

iekenhuis Oost-Limburg (Genk, Belgium). The institutional medi- 

al ethics committee from Ziekenhuis Oost-Limburg approved the 

tudy (reference 18/0047 U). The study follows the World Medi- 

al Association of Helsinki on Ethical Principles for Medical Re- 

earch Involving Humans Subjects. All subjects were diagnosed 

ith COPD before study inclusion and provided written informed 

onsent prior to study participation. The exclusion criteria applied 

o the patient’s recruitment were: younger than 18 years old, in- 

bility to give informed consent, no previous consultation or reha- 

ilitation sessions, pregnant women, suffering from cognitive dis- 

ases and being unable to perform the experiment. The proto- 

ol included three phases, a five-minute resting phase, a walking 

hase, and a five-minute recovery phase. During the resting and 

ecovery phases, the patients were seated in a wheelchair. The 

alking phase consisted of the execution of the 6MWT by the pa- 

ients. During the test, the patients were asked to walk as far as 

ossible along a 45-meter corridor for six minutes [10] , while none 

f them used supplementary oxygen during the walk. The distance 

as measured as the total number of laps completed by the pa- 

ients along the corridor plus the meters of the last non-completed 

ap. 

Anthropometric data and spirometry parameters were collected 

or each patient by a clinical technician as well as relevant clini- 

al information from the patient’s record. A summary of the main 

linical parameters is listed in Table 1 . In particular, the spirom- 

try parameters comprised the most commonly used parameters 

n COPD patients, the forced vital capacity (FVC), the forced expi- 

atory volume in one second (FEV 1 ), and the ratio between these 

arameters (FEV /FVC). All these parameters expressed as a per- 
1 
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entage of the predicted value for a healthy person with similar 

nthropometrics measures. 

.2. Physiological data 

At the end of the resting phase and shortly after the walking 

hase, the peripheral capillary oxygen saturation (SpO 2 ) and the 

eart rate (HR) were measured by a pulse oximeter (Model 3230, 

onin Medical Inc.). The patients were also asked to score their 

evel of dyspnea and fatigue, using the modified Borg scale (mBorg) 

23] before and after exercise. 

Electrocardiogram (ECG) was recorded during the entire resting 

nd recovery phases. The ECG recording was continuously mea- 

ured using lead II by a wearable prototype device (Stichting imec 

he Netherlands) using Ag/AgCl electrodes (Kendall H92SG, Covi- 

ien Inc.). The ECG signals were sampled at 512 Hz. 

.3. Extraction of HRV indices from ECG 

The R-peaks from the ECG signals were detected using a 

avelet-based technique, using the resampled signal at 500 Hz 

y spline interpolation [24] , followed by manual rejection of 

isdetections and ectopic beats after visual inspection. The se- 

ection of only normal heartbeats aimed to obtain normal-to- 

ormal intervals (NN intervals) from the RR time series before 

ny further processing. This correction step was performed by a 

rained/specialized researcher. The RR intervals were computed by 

he time differences for each pair of R detections to get the RR 

ime series. All the RR time series were selected to have the same 

ength, 255.75 s, and 322.25 s, for the last part of resting and the 

rst part of recovery phases, respectively. 

The series of RR intervals were used to compute classical heart 

ate variability (HRV) indices which provide information about dif- 

erent aspects of the cardiovascular system, like autonomic reg- 

lation or adjustment. In particular, we computed time-domain, 

requency-domain, and non-linear HRV indices only for the resting 

hase where stationarity in the RR time-series is guaranteed. 

.3.1. Time-domain HRV indices 

We computed Standard Deviation of NN intervals (SDNN), the 

ercentage of successive NN intervals that differ by more than 

0 ms (pNN50), and the Root Mean Square of Successive NN in- 

erval Differences (RMSSD) [25] . 

.3.2. Frequency-domain HRV indices 

Before computing the frequency HRV indices, we applied cubic 

pline interpolation to the NN time series to 4 Hz to get a uni- 

orm sampling. The spectral density of the series was estimated by 

he Welch periodogram of the resampled NN series using windows 

f 64 s. The frequency-domain indices consisted of the absolute 

nd normalized energy of the time series in different frequency 

ands. Particularly, we computed the energy in the low-frequency 

and between 0.04 and 0.15 Hz (LF) and the energy in the high- 

requency band, between 0.15 and 0.40 Hz (HF). The former re- 

ecting sympathetic and the latter the parasympathetic activity of 

he nervous system [25] . The LF and HF indices were divided by 

he sum of the two energy bands to get also normalized indices 

nLF and nHF). Moreover, the ratio between LF and HF energy was 

alculated (HF/LF). 

.3.3. Non-linear index 

The non-linear index was a common HR fragmentation index 

omputed as the percentage of inflection points (PIP) of the NN 

ime series, that is the percentage of zero-crossing points in the 

rst derivative of the NN series [26] . 
3 
.3.4. Heart rate recovery 

We analyzed the heart rate recovery (HRR) using a biexponen- 

ial approach [27] applied to the NN time series of the recovery 

hase, after the 6MWT. In particular, we computed the decay in 

eart rate after the test at minute 1, 2, and 3 of recovery (HRR 1 ,

RR 2 and HRR 3 ). These decays in HR have been investigated in 

any studies, commonly after an exercise peak, as a predictor of 

ardiovascular death [28] . 

.4. Modeling 6MWT outputs 

The aim of the study was to implement a predictive model able 

o estimate relevant outputs of the 6MWT from baseline clinical 

nformation, without the need of performing the test. In particular, 

he 6MWT outputs to be modeled were: the total distance walked 

y the patient (i.e., 6MWD), the maximum heart rate achieved 

hen completing the test (i.e., HR max ), and the heart rate recov- 

ry index evaluated after 3 min of the patient’s recuperation (i.e., 

RR 3 ). To estimate the 6MWT outputs, a total of 32 features (see 

ppendix A, Table A.1) including clinical markers of disease sever- 

ty, patients’ anthropometric characteristics, and HRV indices ob- 

ained during the pre-walking period were included to the initial 

eature space. 

.4.1. Feature selection with lasso regularization 

Firstly, we modeled each 6MWT output independently before 

ntegrating them in a global model. The initial feature space served 

s input to a multivariate regression analysis, that includes least 

bsolute shrinkage and selection operator (LASSO) regularization 

o retain the most predictive parameters [29] . This regularization 

echnique allows to obtain sparse models and thus a better inter- 

retation of the final outcomes. 

The LASSO approach was applied individually for each 6MWT 

utput to obtain three independent multivariate regression models 

hich are described below. The most predictive features retained 

fter the LASSO regularization were then used to obtain the final 

odels, this time through ordinary least square (OLS) regression. 

etailed information about this two-stage procedure can be found 

n Appendix A. 

.4.2. Model for estimating the walked distance 

For COPD patient assessment using the 6MWT, the distance 

alked by the patients represents one of the most important clini- 

al outputs beyond spirometer tests. Many studies proposed equa- 

ions to empirically predict the 6MWD for healthy subjects. The 

ollowing equation, including physical characteristics of the subject, 

s commonly used [30] 

 MW D pred = 218 + [ 5 . 14 ∗height − 5 . 32 ∗age ] 

−[ 1 . 80 ∗weight + 51 . 36 ∗sex ] (1) 

However, the above equation applies to healthy subjects and 

oes not consider other factors associated with the patient’s con- 

ition like clinical parameters, that can affect the walked distance, 

s it may happen in COPD patients. Therefore, apart from the co- 

ariates in Eq. (1) , we introduced other factors to the model. In 

articular, the multivariate model included new potential features 

rom the following categories: 

1. Clinical parameters associated with the patient’s diagnosis: 

FEV 1 , FVC, FEV 1 /FVC ratio, Borg-scale index 

2. Parameters measured during rest and before the test: HR, HRV 

indices, SpO 2 

3. Parameters obtained after exercise: HR max 

Although the maximum heart rate, HR max , reached by the pa- 

ient can only be measured when the test is completed, we have 

dded it as a potentially useful variable closely related to the 
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alked distance. Finally, the most predictive features retained via 

he LASSO were used in the final 6MWD model retrained on the 

hole population. 

.4.3. Model for the maximum heart rate HR max 

Following the same procedure as for the distance model, we de- 

ermined the best feature subset that explains the variance in the 

alues of HR max , using LASSO regularization. Unlike the distance 

stimation, only the parameters measured during the baseline pe- 

iod and related to the clinical status of the patient (features listed 

n categories 1 and 2) are considered in this model, which means 

hat the distance walked, and the recovery heart rate were not in- 

luded among the input covariates. This strategy will facilitate the 

urther coupling of the individual models, described in later sec- 

ions. 

.4.4. Model for heart rate recovery index HRR 3 
In the case of the HRR 3 model, both the distance walked, and 

he maximum heart rate reached were used as input covariates 

f the LASSO procedure, in addition to the aforementioned base- 

ine features (categories 1 and 2). It was expected that the HRR 3 

arker could be influenced by both markers, especially by HR max , 

s it is measured during the stage following the end of the test. 

ikewise, parameters assessed during baseline, especially those of 

ardiac origin, are expected to contribute significantly to the recov- 

ry response. 

.5. Coupling individual models using a Bayesian network 

.5.1. Converting individual 6MWT models into Bayesian network 

Except for the HR max output, the models obtained for HRR 3 and 

MWD might depend on each other and thus on certain features 

nly known after the test execution (i.e., HR max ). However, if these 

eatures are unknown, the 6MWT outputs can simultaneously be 

stimated by coupling the previous individual models through a 

ayesian network (BN). That is possible because this probabilistic 

pproach makes it possible to infer any variable within the net- 

ork, once it has been trained with the original dataset. 

In general, the structure of a BN can be learned from data, or 

anually constructed based on expert knowledge. In this study, 

e designed our network by coupling the predictive models ob- 

ained previously for each 6MWT output. Therefore, we can obtain 

 sparse BN just focused on predicting the quantities of interest 

6MWD, HR max , HRR 3 ). Moreover, the feature selection step based 

n the LASSO guarantees a good trade-off between simplicity and 

odel performance. 

.5.2. A versatile, two-way 6MWT model, using Bayesian network 

The above strategy would be sufficient to predict the results of 

he 6MWT test. However, this solution by itself might not allow to 

nfer, if unknown, the severity of the patients in case of knowing 

he results of the test. 

To add this functionality to the network, we first explored 

hich features are the most relevant to accurately predict FEV 1 

alues, using a similar approach as for the previous models. Then, 

he new relevant selected variables were included when learning 

he global structure of the network as new observed nodes, with- 

ut affecting the previous models obtained for the 6MWT outputs. 

or this step, the global structure of the network was designed by 

xing some arcs according to the sparse models obtained for each 

MWT output, while other relevant arcs or relationship between 

he input variables including the FEV 1 , were learned from data us- 

ng the Hill-Climbing (HC) learning algorithm [ 31 , 32 ]. 

At this point, the global Bayesian network would also permit 

he prediction of disease severity based on the 6MWT outputs and 

ther inputs, that is, running the model in reverse to predict an 
4 
nknown input by the observed outputs. All the above is possible 

ecause the information can flow in any direction in BNs, depend- 

ng on which variables are observed or unknown [33] . Therefore, 

e developed a unified global model to estimate the outputs of 

he 6MWT based on the baseline parameters, or to predict disease 

everity after the execution of the test if unknown for a particu- 

ar patient. A global overview of this versatile tool is illustrated in 

ig. 1 . 

.5.3. Parameter learning 

After the definition of the network structure (final variables 

nd arcs), the next step was to estimate the network parameters. 

his step can be performed automatically for the entire network 

sing the maximum likelihood estimator (MLE), which is equiv- 

lent to apply linear regression for continuous nodes [34] . How- 

ver, the parameters can also be defined manually, by setting the 

ode coefficients obtained from the LASSO or any other regulariza- 

ion technique, while root nodes (i.e., nodes without parents) are 

xed with the distribution parameters of their associated contin- 

ous variables. In this work, we used the MLE method, since the 

ASSO was mainly applied for feature selection. Once the param- 

ters of the BN are learned, it is possible to generate new ran- 

om synthetic observations from the conditional distribution of 

he nodes, conditional on the evidence. The simulations are per- 

ormed using an approximate inference algorithm (logic sampling) 

ased on Monte Carlo particle filters [33] . This allows, for instance, 

o generate more representative samples for those patient groups 

ith fewer cases. Consequently, a more balanced dataset can be 

btained and used to retrain the network, thus improving its ro- 

ustness and accuracy. 

.6. Model assessment and validation 

The metrics used to assess the performance of individual mod- 

ls included root mean squared error (RMSE) and predictive cor- 

elation (R), while for model selection we applied leave-one-out 

ross-validation. The RMSE and R were used for the prediction 

f continuous variables represented by the 6MWT outputs. In the 

ase of FEV 1 , we aimed to predict which group each patient be- 

onged to, rather than estimating the absolute values of FEV 1 . 

herefore, the overall performance was estimated by the weighted 

ccuracy (Acc) metric, representing the average accuracy over all 

lasses, considering the fraction of correct predictions in each class. 

ifferent grouping strategies were also applied when assessing the 

odel accuracy, in order to get more balanced data among sever- 

ty groups. It was achieved by merging some of the initially de- 

ned four groups ( G = 4), thus generating fewer groups ( G = 3

nd G = 2). The reason for these strategies was the reduced num- 

er of patients presented in some of the initial groups, which were 

efined according to the patients’ FEV 1 values. 

.7. Sensitivity analysis 

Finally, we performed a sensitivity analysis to quantify the rela- 

ive effect of the input parameters on the 6MWT model outputs, 

MWD, HR max and HRR 3 . In particular, we applied a variance- 

ased sensitivity analysis presented by Sobol, which measures the 

ncertainty of model output because of the input’s variance [35] . 

e computed the main effect indices, S i , defined as the effect of 

arying x i on the output y, 

 i = 

V ar [ E [ y | x i ] ] 
V ar [ y ] 

(2) 

In addition, we also computed the total-order effect indices 

hich consider the impact of the variation of two or more param- 

ters. We followed the approach presented in the study of Satelli 
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Fig. 1. Flowchart of the final system used in this study. BSdyspnea: Dyspnea score of the patient before the test, based on the mBorg scale; FEV 1 : forced expiratory volume 

in one second, FVC: forced vital capacity, HR base : Heart rate of the patient before the test, HR max : Heart rate maximum after the test, HRR 3 : the heart rate recovery index 

evaluated after 3 min of patient’s recovery, PIP: percentage of inflection points in RR time seires, RR mean : mean RR interval before the test, SpO 2 : peripheral capillary oxygen 

saturation. 

e

t

S

i

o

d

w

p

o

o

3

3

a

c

s

T

t

T

c

3

o

i

a

c

6

a

t

i

r

B

p

r

T

t

d

3

c

v

H

m

r

f

t al. [36] to reduce the number of combinations. Consequently, 

he total-order indices, ST i were calculated as: 

T i = S i + 

∑ 

i � = j 
S i j + 

∑ 

i � = j � = l 
S i jl + . . . + S 123 ... k = 1 (3) 

The main difference between the main and total-order indices 

s that the main effect indices, S i quantify the variability of the 

utput by the input parameters alone, whereas, the total-order in- 

ices, ST i , consider the parameter and its interactions. The indices 

ere calculated for each model output and its corresponding in- 

uts. These indices provide better knowledge about the input and 

utput relations and measure the robustness of the model in case 

f variance. 

. Results 

.1. Study population 

The cohort for this study includes 50 COPD patients, 38 males 

nd 12 females. Four patients were excluded from the analysis be- 

ause of the presence of a pacemaker interfering with the ECG 

ignal (one patient) or a low signal-to-noise ratio (three patients). 

able 1 shows the patients’ demographic and anthropometric data. 

On average patients walked 431 m during the 6MWT. During 

he test, 7 patients paused and resumed walking at least once. 

hese patients have a low FEV 1 % pred, being below 50%, thus indi- 

ating a greater severity. 
5 
.2. Complete Bayesian network scheme highlighting 6MWT outputs 

The schemes in Fig. 2 represent the global Bayesian network 

btained for modeling the 6MWT outputs. This network resulted 

n part from the coupling of the three individual models obtained 

fter the LASSO regularization step. More details on the coeffi- 

ients of the final models and the variables selected for each 

MWT output are described in Appendix A. The remaining vari- 

bles, FEV 1 /FVC, RR mean and SpO 2, not included in the aforemen- 

ioned models, are mainly related to the FEV 1 parameter, and allow 

nferring the patient’s severity group based on the actual 6MWT 

esults. Nodes with gray background (Age, Height, PIP, FVC, FEV 1 

S dyspnea , HR base ) represent the input variables from which the out- 

uts (6MWD, HR max and HRR 3 ) were obtained, and defined by the 

ed arcs. Black arcs define the direct relationship between inputs. 

herefore, by instantiating just all the gray nodes with evidence, 

he values of 6MWD, HR max and HRR 3 can be simultaneously pre- 

icted using the maximum a posteriori (MAP) queries. 

.3. Performance metrics for the individual and global models 

The performance of the individual models was measured by the 

orrelation coefficient R and the RMSE using leave-one-out cross- 

alidation. The performance metrics for the 6MWD, HR max and 

RR 3 are presented in Table 2 . The individual models showed a 

oderate correlation (above 0.60) for the 6MWD, and a strong cor- 

elation for the HR- related outputs, specifically, 0.8360 and 0.8763 

or the HR max and HRR predictions, respectively. On the other 
3 
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Fig. 2. Bayesian networks obtained for modeling the main outputs of the 6-minute walking test (6MWT) and disease severity (FEV 1 ). A) Network highlighting in gray those 

nodes (variables) needed to estimate 6MWD, HR max and HRR 3 according to individual models obtained. B) Network highlighting the most relevant nodes for estimating the 

spirometry related variable, FEV 1 , and thus the patient’s severity, assuming that both FVC and FEV 1 /FVC are unknown. In both networks, blue nodes indicate the dependent 

variables, while nodes in white stand for the unknown variables. Arcs in red are related to the models obtained for individual 6MWT outputs. Black arcs mean interactions 

between input variables that are useful for the accurate prediction of FEV 1 if the 6MWT outputs are known. BS dyspnea : Dyspnea score gave by the patient before the test 

based on the mBorg scale, FEV 1 : forced expiratory volume in one second, FVC: forced vital capacity, HR base : Heart rate of the patient before the test, HR max : Heart rate 

maximum after the test, HRR 3 : the heart rate recovery index evaluated after 3 min of recovery, PIP: percentage of inflection points, RR mean : mean time difference between 

beats before the test, SpO 2 : peripheral capillary oxygen saturation. 

6 
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Table 2 

Average performance metrics for the 6MWD, HR max and HRR 3 models selected by leave-one-out cross-validation. 

Individual models Bayesian network 

R(95%CI) RMSE MAPE R(95%CI) RMSE MAPE 

6MWD [m] 0.602 

(0.38–0.76) 

75.90 15.60 0.583 

(0.35–0.75) 

77.16 15.43 

HR max [bpm] 0.836 (0.72–0.90) 10.29 8.10 0.8369 

(0.72–0.91) 

10.26 8.10 

HRR 3 [bpm] 0.876 

(0.79–0.93) 

4.34 18.29 0.577 

(0.34–0.74) 

7.36 32.49 

The performance metrics, correlation (R), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) were computed for the individual models and 

the Bayesian network. 
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and, the RMSE and MAPE values were, respectively, 75.9 m and 

5.60% for the 6MWD, 10.29 bpm and 8.10% for the HR max and 

.34 bpm and 18.29% for the HRR 3 . Note that these values were 

easured for the individual models, while the values for the com- 

lete Bayesian network of Fig. 2 are also shown in Table 2 . The per-

ormance metrics obtained for the output nodes when the outputs 

re all unknown, slightly worsened for 6MWD and to a greater 

xtent for HRR 3 , due to the error propagation occurring between 

he links connecting these model outputs. Nevertheless, the corre- 

ation, RMSE and MAPE values still exhibited a moderate perfor- 

ance in such a situation. 

.4. Relationship between relevant inputs and 6MWT outputs 

After training of the Bayesian network, synthetic samples were 

imulated for each variable within the network. The aim of the 

ew randomly generated samples is not to get strong correlations 

etween variables, but to increase understanding of their existing 

elationships, especially increasing the understanding between in- 

uts and outputs. Fig. 3 displays the 6MWT outputs against se- 

ected relevant inputs from both the 50 0 0 simulated samples and 

he 46 original samples used for training the network. Correlation 

alues (Pearson’s coefficient) between variables and the associated 

 values are added to each graph. All correlations were statisti- 

ally significant ( P < .001). The results indicate an inverse relation- 

hip, that is a negative correlation, between 6MWD, and HR base , 

ge, and HR max , while the correlation between 6MWD and FVC 

as positive. 

Regarding HR max , its relationship with HR base was positive as 

xpected. On the other hand, the relationship of HR max with Age 

nd the spirometry values, FEV 1 and FVC, was inverse. Finally, the 

ecovery output, HRR 3 had a positive correlation with the other 

utputs, 6MWD and HR max whereas its correlation with HR base was 

egative. Note that there is no correlation between HRR 3 and PIP. 

.5. Sensitivity analysis 

Fig. 4 shows the results obtained from the sensitivity analysis 

erformed for the analyzed 6MWT outputs. Both the main effect 

S i ) corresponding to each individual input alone, and total effect 

ST i ) considering also the interactions with other inputs are shown. 

or all models, values of S i and ST i are almost similar, indicating 

hat interactions between inputs are negligible and thus the mod- 

ls are mostly additive. 

The HR max is significantly influenced by the heart rate at base- 

ine, HR base , with a contribution above 50%. Spirometry results 

easured through the FEV 1 and the Borg-scale index related to 

he lungs each contribute more than 10% to HR max . The remain- 

ng variables associated with patient physical characteristics such 

s Age and Height together with PIP have a smaller contribution. 

Regarding the total distance walked, HR base is again the com- 

onent with the largest effect (40%). Its influence is more than 2- 

old larger than the influence of both Age and Height (less than 
7 
0% each). Age and Height are commonly used in clinical models 

or distance estimates for healthy subjects. FVC and HR max had a 

ore modest effect on 6MWD but still notable ( > 10%). The model 

redicting 6MWD was the most heterogeneous among all, its vari- 

bles are related to the cardiorespiratory system and the physical 

roperties of the subject. 

Finally, the recovery dynamic of heart rate during the post- 

alking phase was mostly modulated by the effects of HR max and 

R base as expected. Both inputs together accounted for more than 

5% of the total output variance, while the effects of the other in- 

uts accounted for the remaining 5%. Hence, we can proceed by 

runing all the others and keep only these 2 dominant markers. 

.6. Inferring disease severity from 6MWT outputs 

In the previous sections, we described the results predicting the 

utputs of the walking test. However, a BN also allows to infer 

he inputs (i.e., pulmonary status) of the network from the out- 

uts (6MWD, HR max , HRR 3 ). The Bayesian network designed in this 

tudy allows to estimate the severity of the patients by know- 

ng the 6MWT outputs and the relevant clinical variables. Fig. 2 -B 

ighlights in gray color, which nodes are more relevant to this spe- 

ific task. Despite the fact that they were acquired before the test, 

ariables FVC and FEV 1 /FVC are assumed to be unknown together 

ith FEV 1 . On the other hand, the node RR mean depends on Age 

nd HR base . Therefore, by instantiating the gray nodes, the condi- 

ional probability of belonging to a particular severity group can 

e estimated for any patient. 

Fig. 5 (top chart) shows the classification results by group- 

ng the patients into four classes: Very severe (FEV 1 ≤ 30%), Se- 

ere (FEV 1 : 30% – 50%), Moderate (FEV 1 : 50% – 80%), and Mild 

FEV 1 > 80%). Since some classes had very few samples in the 

riginal database, the Bayesian network was retrained using simu- 

ated samples distributed uniformly among all classes. This allows 

or improved performance when classifying patients from minority 

lasses. The overall weighted accuracy achieved for the initial four 

lasses was Acc = 67.4% (95%CI: 52.0 – 80.5). As the Very severe 

roup had only three individuals, the overall performance was also 

eported for three and two classes, being Acc = 78.3% (95%CI: 63.6 

 89.1) using three groups, while for two groups was Acc = 84.8% 

95%CI: 71.1 – 93.7). With three classes, the groups were defined by 

erging the Very severe and Severe patients ( n = 21), while Mod- 

rate and Mild remained identical. When only two classes were 

sed, the groups are formed by joining Very severe with Severe 

lass, and Moderate with Mild class, with n = 21 and n = 25, re-

pectively (see Fig. 5 bottom chart). The classification results ob- 

ained for the two and three groups are summarized in Table 3 

nd Table 4 , respectively. 

.7. Inferring patient progression for personalized therapy 

In addition to estimating patient severity, the proposed network 

ould make it possible to infer the progression of the patients if 
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Fig. 3. Relationship between the model inputs and outputs, 6MWD, HR max and HRR 3 . The colored points represent the simulated data, whereas the black points are the real 

data used in the model. The blue lines are the linear regression resulting from the simulated and real data. 6MWD: six-minute walking distance, FEV 1 : forced expiratory 

volume in one second, FVC: forced vital capacity, HR base : Heart rate of the patient before the test, HR max : Heart rate maximum after the test, HRR 3 : the heart rate recovery 

index evaluated after 3 min of recovery, PIP: percentage of inflection points. 

Table 3 

Confusion matrix associated with the classification results obtained for only three classes (Very Severe + Severe, Moderate and Mild) according to 

disease severity. 

True class 

Population ( N = 46) Very severe + Severe Moderate Mild Total 

Predicted class 

Very severe + Severe 15 1 0 16 

Moderate 6 17 1 24 

Mild 0 2 4 6 

Total 21 20 5 46 

Table 4 

Confusion matrix associated with the classification results obtained for only two classes (Very Severe + Severe and Moderate + Mild) 

according to disease severity. 

True class 

Population ( N = 46) Very severe + Severe Moderate + Mild Total 

Predicted class 

Very severe + Severe 15 1 16 

Moderate + Mild 6 24 30 

Total 21 25 46 
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ne or more parameters change over time. For instance, we could 

nfer how a patient would evolve as he or she gets older, or if 

he heart rate decreases, or both. Such a tool would be of great 

linical value for tailoring the most effective treatment for each 

atient. Fig. 6 shows the estimate of the conditional probability 

CP) belonging to each severity group in two patients, as a func- 

ion of varying one of the parameters. That is, only one param- 

ter is modified at a time, while the rest remains fixed. The ex- 
8 
mple in Fig. 6 -A corresponds to a patient diagnosed as Severe; 

hose actual parameter values are highlighted with vertical blue 

ines. Based on these graphics, it can be deduced that an increase 

n HR base or HR max above 110 bpm and 150 bpm, respectively, can 

esult in a worsening of the patient. The same occurs when the PIP 

xceeds 60%. On the contrary, an increase in FVC% pred above 110% 

ould improve the patient’s condition as expected, while the re- 

aining parameters (not shown in the figure) had little influence. 
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Fig. 4. Global sensitivity analysis using Sobol indices for HR max , 6MWD and HRR 3 . 

First-order (main) effects S i (sensitivity to individual parameter variations) are rep- 

resented by red bars and while green bars indicate total-order effects ST i (sensitiv- 

ity to parameter interactions). 
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he same analysis is conducted in Fig. 6 -B for a Moderate diag- 

osed patient. In that case, the influence of each parameter is very 

imilar to that of the Severe patient, with the actual values being 

ithin the expected region. Note that any desired combination of 

arameters changes can be tested as well, and more than one may 
ig. 5. Conditional probability associated with each class estimated for all patients. Top:

olid black squares (TRUE) indicate patients that were correctly classified while colors rep

9 
e unknown when estimating the CP. However, such inference ex- 

mples are only based on what the network has learned from our 

mall study population. 

. Discussion 

This study proposes a novel comprehensive tool for the assess- 

ent of walking capacity by modeling the 6MWT outcomes using 

ayesian networks. To the best of our knowledge, it is the first time 

hat Bayesian networks are used for modeling the 6MWT within a 

nified framework. The results showed that the prediction of the 

MWT outcomes, including 6MWD, HR max and HRR 3 , was good by 

nly using clinical and physiological patient data. Furthermore, the 

mplemented Bayesian network has the capacity of inferring the 

nput variables from other known or measured data, and conse- 

uently, the pulmonary function parameters can be inferred from 

he 6MWT data. Therefore, our model provides a dual-function 

ool. Firstly, the trained model allows the prediction of the 6MWT 

utcomes and thus, the evaluation of the functional exercise capac- 

ty of the patients. And secondly, it can assess the disease severity 

nd progression by inferring the predefined FEV 1 % pred groups, and 

ow disease severity might progress (i.e., improved or worsened) 

y modifying the available patient data. Both capabilities enable 

he proposed model to be used for more personalized monitoring 

f COPD patients in their home environment, where only the re- 

ults of the analysis are reported occasionally to the medical doc- 

ors supervising them. 

Previous studies have proposed different models to predict the 

MWD [ 16 , 17 , 30 , 37 ] and compare the test performance of the pa-

ients to spirometry values. Many of these studies were, how- 

ver, focused on healthy subjects. On the contrary, we modeled 

he 6MWD in COPD patients to obtain a more reliable charac- 

erization, considering the disease condition beyond the standard 

hysical characteristics. We found that age, height, HR at base- 

ine, HR max , and FVC% pred of the COPD patients are significantly 

ssociated with 6MWD and consequently, they were included in 

he multivariate regression model. Unlike our study, the most fre- 

uent parameters presented in previous 6MWD models include 
 all patienst grouped in four classes; Bottom: all patients grouped in two classes. 

resent the classes. 
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Fig. 6. Conditional probability (CP) estimated for each of the four disease severity groups as a function of parameters HR base HR max , FVC, and PIP. A) Example of the four CP 

trends computed for a Severe patient and, B) for a Moderate patient. The colored areas represent the probability of the actual patient to belong to a specific severity group: 

Mild (FEV 1 ≥ 80%), Moderate (50% ≤ FEV 1 < 80%), Severe (30% ≤ FEV 1 < 50%), Very severe (FEV 1 < 30%), when shifting the analyzed parameter towards higher or lower 

values. Vertical blue lines indicate the actual values corresponding to the analyzed parameters at the time of measurement, which usually fall within the patient’s actual 

group. FEV 1 : forced expiratory volume in one second, FVC: forced vital capacity, HR base : Heart rate of the patient before the test, HR max : Heart rate maximum after the test, 

PIP: percentage of inflection points. 
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ge and height, while some studies also included HR information, 

hose findings partially agree with our results [15–17] . In particu- 

ar, Poh et al. [17] reported an inverse and direct relationship be- 

ween 6MWD and both the age and height, respectively, in line 

ith our results (see Fig. 3 ). That study also included in the model

 measure of HR max , but the authors did not report the same in-

erse relationship that we observed between 6MWD and HR max . 

t was probably as a result of the different ways the measure was 
10 
xpressed. Here, we used absolute HR values expressed in bpm, 

hile they used a percentage of the theoretical maximum HR, esti- 

ated as 220 − age . However, the same behavior seen in our study 

egarding HR max and 6MWD relationship was also observed in the 

tudy of Casanova et al. [ 16 ]. 

On the other hand, only a few studies focused on healthy sub- 

ects included spirometry values. Camarri et al. [37] reported that 

eight and FEV 1 were the only significant parameters in the mul- 
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ivariate regression in healthy subjects. On the contrary, although 

EV 1 was not significant in this study, a closely related parame- 

er like FVC was included in our model. These differences in the 

odels might be due to differences in the populations and con- 

equently, the ranges and distribution of the FEV 1 values are dif- 

erent. Regarding COPD populations, Zeng et al. [38] , investigated 

he relationship between 6MWD and COPD severity. This study 

eported the relationships between 6MWD and both the age and 

VC% pred , which agree with our results, displayed in Fig. 3 . As ex-

ected, both results suggest that a reduced FVC or an older patient 

mplied a lower 6MWD. Moreover, we found an inverse relation of 

MWD with HR base and HR max , suggesting that larger HR increases 

uring the test are linked to shorter 6MWD, and thus with a re- 

uced functional exercise capacity. 

The primary aim of the previous studies was to model the 

MWD whereas the other test outcomes have been investigated 

s modulators of it or to provide relevant information about dis- 

ase prognosis. We additionally modeled HR max and HRR 3 because 

revious studies suggested them as predictors of disease wors- 

ning and mortality in respiratory diseases [11–13] . Furthermore, 

RR 3 after the 6MWT provided valuable information about sever- 

ty and comorbidities in COPD patients [ 39 , 40 ]. Importantly, unlike 

he 6MWD model, the models obtained for both the HR max and 

RR 3 included a HRV index, namely a marker representative of the 

eart rate fragmentation (PIP). Consequently, the proposed addi- 

ional models contribute to a more complete model of the 6MWT 

erformance in COPD. 

The relationships exhibited in Fig. 3 were expected based on 

revious studies and theoretical equations. On the other hand, the 

irect relationship between 6MWD and HRR 3 was also observed 

n previous studies that evaluated the heart rate recovery in res- 

iratory diseases [11–13] . Therefore, the proposed models are in 

art supported by previous findings from other studies. But they 

re novel in the way they are integrated within a BN for assess- 

ng COPD patients, either by estimating the 6MWT outcomes, or 

y inferring disease severity from the test performance measures. 

Results derived from the variance-based sensitivity analysis per- 

ormed on the 6MWT models highlighted the most important in- 

ut variables affecting the output variance. Several factors modu- 

ated almost equally the 6MWD except for HR max which accounted 

or 40% of its total variance. As expected, this model shows that 

he prediction of 6MWD depends on both the cardiac and respira- 

ory systems, as well as physical metrics. Therefore, it allows us 

o obtain a cardiopulmonary assessment of patients rather than 

ust a pulmonary assessment. The other two models were, as ex- 

ected, modulated mostly by HR-related measures, such as the HR 

easured at baseline and maximum HR achieved at the end of 

he walking phase. These two inputs alone represented more than 

0% of the HRR 3 variance. Other variables associated with physi- 

al characteristics and pulmonary function had a smaller influence 

et were not negligible, notably for the HR max model. Overall, the 

odels were mostly additive, and the results provide a hint to 

hich variables should be prioritized over the rest when not all 

an be measured. 

To bring all models together in one single tool, the versatil- 

ty of Bayesian networks was leveraged for this purpose. Using 

ayesian networks, we were able to represent causality between 

he different 6MWT output variables, as well as between the in- 

uts. By combining the use of regression techniques with regu- 

arization, prior clinical knowledge, and available data, we defined 

he structure and learned the parameters of the final network. 

his overcomes the limitations of purely data-driven approaches 

hat usually fail in representing disease mechanisms complexity, 

nd in making complex clinical decisions even if trained on very 

arge datasets [ 41 , 42 ]. On the other hand, Bayesian networks have

ome advantages compared to standard regression models, which 
11 
an model associations but not causal structure and operate un- 

er restrictive assumptions about the variables’ relationships. For 

nstance, BNs can model multiple outcomes in a single model, deal 

ith small datasets through data extension and constraints-based 

pproaches [43] , and in the presence of missing or incomplete data 

i.e., by modeling the joint probability distributions using the two- 

tep Expected Maximization (EM) algorithm) [44] . Moreover, they 

rovide a mechanism for updating knowledge when new evidence 

s available. Therefore, by using the same scheme, we could add 

ther new potential outcomes in the network and according to 

hysicians’ needs, in order to have a more comprehensive tool for 

OPD patients’ assessment. Alternatively, another important score 

f death risk like the BODE index can be easily obtained from 

he patient’s clinical parameters, including the BMI, FEV 1 pred, 

nd dyspnea assessed by the modified Medical Research Council 

MMRC) score, while exercise walked distance (6MWD) can be ob- 

ained from the model estimates [45] . 

The models reported for the 6MWD by previous studies are 

ainly based on standard regression analysis [ 30 , 37 ]. However, to 

esign our BN network, we first applied multivariate linear re- 

ression with LASSO regularization to identify the most predictive 

eatures for each 6MWT output using cross-validation. While do- 

ng this we obtained a sparse, easily explainable network, where 

everal variables are shared among the three defined multivariate 

odels. Our approach provides an important alternative towards 

he integration of individual but closely related models into BNs, 

hich is not possible with the available automatic algorithms used 

or network structure learning. Furthermore, the use of BN not only 

llows the prediction of the results of the 6MWT simultaneously 

nder uncertain conditions, but it also enables inferring disease 

everity from actual 6MWT measures and clinical parameters. In- 

eed, the results obtained in both cases are promising consider- 

ng the size of the database. Certainly, the more evidence becomes 

vailable, the more accurate estimation of the parameters of in- 

erest could be. That is supported by the results obtained when 

stimating the CP for fewer disease severity groups, defined as a 

unction of FEV 1 % pred. Finally, it was possible to estimate the 

ost probable patient disease condition, and thus the path of its 

rogression, if some change occurs in any of the network param- 

ters. However, this particular capability should be further tested 

nd validated by using follow-up information about the patients’ 

linical outcomes. 

Given all its different functionalities, our model represents thus 

 versatile tool for COPD patient assessment and monitoring. More 

mportantly, the cardiopulmonary patient’s assessment could be 

erformed several times a year, without the need to perform the 

ctual physical test, which is typically done yearly. Besides, the am- 

ulatory application of this model can provide relevant information 

n the patient’s status that can aid in defining specific personal- 

zed treatments. Therefore, its potential use in digitalized health- 

are systems as a decision support tool would reinforce the home- 

onitoring of COPD patients. 

.1. Limitations 

Although Bayesian networks have some advantages when deal- 

ng with small datasets and in the presence of incomplete data, 

ur study has been mostly limited by the small size of the pop- 

lation. This limitation becomes even more pronounced in some 

ubgroups, such as those belonging to the very severe and mild 

lasses. The classes are defined as a function of disease severity 

onsidering the FEV 1 values, therefore, including more patients in 

hese two minority groups would increase the overall classifica- 

ion performance. Nevertheless, it is possible to merge the minor- 

ty groups into those groups with more patients, which could still 

e suitable for clinical practice and warrant a higher prediction ac- 
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uracy. On the other hand, it should be noted that in our database, 

he patients conducted the six-minute walk test only once. In 

any studies, the test is performed two or more times, where 

he results are averaged or retained from the best-of-multiple at- 

empts, minimizing the impact on the test outcomes of several fac- 

ors such as the learning effect, path layout, or the patient fatigue 

nd pauses [ 46 , 47 ]. In that sense, our results regarding the pre-

iction of the walked distance (R ∼ 0.60) could be improved, if 

t least two walks were performed for each patient. This will be 

elpful because of the less propensity to execute a poor first at- 

empt due to lack of learning, or a poor second walked distance 

ue to patient fatigue or eventual pauses during the test. Moreover, 

he presence of comorbidities in these patients may also influence 

he 6MWT outcomes. However, it was not considered in the study 

ue to the diverse nature of these comorbidities, making it difficult 

o pool patients in nearby similarly distributed groups. Finally, the 

ack of a control group does not allow us to define significant dif- 

erences that can be detected between individual models obtained 

or healthy and COPD patients. 

. Conclusions 

A comprehensive model was developed for the assessment of 

he standardized 6-min walk test outcomes in COPD patients with- 

ut physical performance measures. Our model represents a first 

pproximation that would become a powerful tool to continuously 

onitor the COPD patient’s condition and disease progression at 

ome, without physical performance measures. The tool could also 

e suitable for being implemented together with wearable devices 

r even embedded. Moreover, it might serve to schedule or plan- 

ing personalized therapies for the patients, that can be easily ad- 

usted in accordance with their evolution. Further studies requiring 

arger patient cohorts, with equally distributed groups of disease 

everity and follow-up information, are needed to validate and re- 

ne the model, as well as to improve the overall performance, es- 

ecially for extreme low or high FEV 1 % measures. 
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