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1 Git example

In order to show the features of Git within MATLAB, an example has been made. The following
example can be divided into two parts, the first one is focused on Git and GitHub commands,
whereas the second part is a continuation of the first one but centered on the branches.

1.1 Git and GitHub commands

This example starts with a script named ’Example.m’, where the following commentary has been
added.

%% Example

The figure below shows the directory where the script has been stored. It is important to note, that
the script is in a folder named ’Git example’, and at the same time it is inside the folder "TFG_Jofre’.
This last folder has been tracked by Git and also saved in GitHub, as it can be seen in Figure 2.

T2/ » Users » joff » Documents » Universitat GRETA » Github » TFG_Jofre » Git example

Figure 1: Directory of the 'Example.m’ stored in the internal memory of the computer

3 Jof-syntax | TFG_Jofre « public <% Pin

<> Code Issues Pull requests Actions Projects Security Insights Settings

¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~ Code ~

fI'i Jof-syntax okay?

CheckEg.m minior update

Demostracio.m mini desplagament imposat per veure que estan superop
EtaComputer2D.m minior u

EtaComputer3D.m

HashinShtrikmanBounds.m

SIMPALL.m Versio correcte

SIMPALLcoefficients.m update

Figure 2: List of files inside the "TFG_Jofre’ in GitHub repository before the example commit

Since 'Example.m’ has not been tracked by git yet, it is shown as a dot in the 'Current Folder’

section within the MATLAB main window program, see Figure 3.

Current Folder )
E Name ¥ Git
“| Example.m

Figure 3: Status of the ’Example.m’ file as null

A right-click has been made over the script name and then a click over the ’Source control’ option,
and the Figure 4 pop-up has appeared. It should be pointed out that the figure below diverges from
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Figure 9 (report), because in this case the file has not been tracked whereas in the other image it
has.

Manage Files...

View Details

a— View and Commit Changes...
¥ Fetch

® Push

&L pull

& Remote

£ Branches

7 Submodules

® Stashes

& Refresh Git Status

Revert Local Changes
Extract Conflict Markers to File

Show Revisions
Compare to Ancestor
Compare to Revision
Revert using Git

Figure 4: Source control options for a file not tracked by Git

From this point the status has changed to a '+’ sign, as seen in image 5. This plus sign means that
the file has been added and moved to the staging area, see Figure 1 (report), but not committed.

Current Folder

lE Name ¥

‘& Example.m

Figure 5: Status of the ’Example.m’ file as added

A commit has been made using the ’Source control’ options of Figure 9 (report). It has been named
as follows.

(] @ View and Commit Changes

Modified files in /Users/joff/Documents/Universitat GRETA/Github/TFG Jofre

+| Name - Status
[] Git example/Example.m +
Comment
Void scripf]

Figure 6: Commit window in Matlab for the first commit



Study of material interpolation for 3D lightweight structures @

Current Folder
BlE Name ¥ Git

- ¥ Example.m . |

Figure 7: Status of the 'Example.m’ after the first commit

The script has been modified as follows, and the status has changed to a blue square. It means that
"Example.m’ has been modified but not captured by Git.

%% Example

disp('Hello world');

Current Folder @
‘ Name ¥ Git
#) Example.m [ |

Figure 8: Status of the ’Example.m’ file after the modification

Using the same procedure followed in the first commit, a second commit has been realized, see
Figures 9 and 10.

8] @ View and Commit Changes

Modified files in /Users/jofi/Documents/Universitat GRETA/Github/TFG _Jofre

</ Name ~ Status
v Git example/Example.m "
Comment
Disp added

Commit Cancel

Figure 9: Commit window in Matlab for the second commit

Current Folder
IE Name ¥ Git

| ¥ Example.m -

Figure 10: Status of the 'Example.m’ file after the second commit

Finally, using once again the menu from Figure 9 (report), a push has been made. It is noteworthy
to mention that the files within the "TFG_Jofre’ folder are being tracked by Git and stored in
GitHub.
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& Jof-syntax /| TFG_Jofre ' Public X Pin

<> Code Issues Pull requests Actions Projects Security Insights Settings

¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~ Code ~

fl’ Jof-syntax Git is amazing 2 21 minutes ago Y 24 commits

BB Git example Git is amazing 21 minute
B CheckEgq.m minior upd

Demostracio.m mini d

EtaComputer2D.m minior u

EtaComputer3D.m minio™pd

HashinShtrikmanBounds.m

SIMPALL.m Versio cor

SIMPALLcoefficients.m update

A Jof-syntfix | TFG_Jofre  pubi & Pi ®Unwatch 1 ~

<> Code Issues Pull requests Actions Projects i Security Insights Settings

¥ main ~  TFG_Jofre / Git example / Go'ta file Add file ~

flﬂ Jof-syntax Git is amazing 488 21 minutes dsQ O History

(Y __Example.m

Figure 11: List of files inside the "TFG Jofre’ repository in GitHub after the push action

1.2 Branching

The second part of the example starts once the file has been stored in GitHub. Nevertheless, this
part follows the example shown in Figure 7 (report). In this case, the main branch is intended to be
indirectly modified by means of a second branch.

In terms of branches, the script only exists in the master branch. Therefore, at the beginning of
this part, of the example, the code of the main branch is as follows.

Master branch code:

%% Example

disp('Hello world');

Moreover, by clicking on the 'Branches’ option in the ’Source control’ menu, it can be seen that the
current branch is the main (master), see Figure 12.

Current Branch
Name: main

HEAD: abb5d266f19b052f464410b7cecOea0cf51f8343 £5) Revert to HEAD
Branch Browser

Branches: main [®] Merae 1 -

Author ID: abb5d266f19b052f464410b7cecOealcf51f8343

{main | HEAD DIFEETE: Author: Jof-syntax
Void script Jof-synt... (70135822 +Jof-syntax@users.noreply.github.com)
e

N SR

Figure 12: Branches pop-up window, where there is only one branch named 'main’
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On the other hand, using the branch creation tool, which is located at lower part of the branches
window, a new branch tagged 'BranchA’ has been created.

Branch and Tag Creation v

Specify a source by clicking in the Branch Browser. You can also enter a tag, branch or commit node.
New: @ Branch Tag

Source: ahb5d266f19b052f464410b7cecOealcf518343

Name: ganchA Create
Help Close

Figure 13: Lower part of the branches window, where a new branch has been created with the
name 'BranchA’

Consequently, two branches exist for the file ’TExample.m’. In order to modify a branch, the user
must switch to the desired one. In this case, it has been switched to the 'BranchA’. It is noteworthy
to mention that the code for each of the branches looks as follows.

Master branch code:

%% Example

disp('Hello world');

Branch ’A’ code:

%% Example

disp('Hello world');

Furthermore, the new branch can be seen in the branches window, Figure 14.

Zurrent Branch
Name: BranchA

HEAD: abb5d266f19b052f464410b7cecOealcf51f8343 5) Revert to HEAD

3ranch Browser

Branches: BranchA B @ switch I\ Merge -

so

Author ID: abb5d266f19b052f464410b7cecOealcf51f8343

| BranchA | main | HEAD [ C L LY Author: Jof-syntax
Void scriot Jof-synt... | (70135822+Jof-syntax@users.noreply.github.com)
Figure 14: Branches pop-up, after the creation of the master (main) and 'BranchA’
A new modification has been implemented in the branch A’ code, in consequence, the modified

code is:
Branch ’A’ code:

%% Example
disp('Hello world');

disp('Git is an outstanding tool');
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This new version of the code has been committed using the same procedure explained in subsection
1.1.

Current Branch
Name: BranchA

HEAD: abb5d266f19b052f464410b7cecOea0cf51f8343 5) Revert to HEAD

Branch Browser

Branches: main B @ switch J3\ Merge | -
Author ID: abb5d266f19b052f464410b7cecOealcf51f8343
[BranchA [ main| HEAD I RT LI Author: Jof-syntax
Q Void script Jof-synt... (70135822 +Jof-syntax@users.noreply.github.com)

Figure 15: Branches pop-up window of the highlighted merging button

Once the merging process had been successfully completed, the branch A’ has been deleted using
the button of Figure 16.

Current Branch
Name: main
HEAD: 52ce48853cfcf2c8a7cc4d90fdef0fdd3641f49a %5) Revert to HEAD

Branch Browser
Branches: main B @ svitch I\ Merge D
Author ID: 52ce48853cfcf2c8a7cc4d90fdef0fdd3641f49a

X0 EEFS) Git is amazing Author: Jof-syntax
Disp added Jof-synt... | (70135822+Jof-syntax@users.noreply.github.com)
.,

H ‘Ammittar: Inf_cuntav

Figure 16: Branches pop-up window, where the only existing branch and the delete button
highlighted

Finally, the master branch was modified indirectly, and the resultant code in the main branch is:

Master branch code:

%% Example
disp('Hello world');

disp('Git is an outstanding tool');
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2 Object oriented programming example

The main features of objected oriented programming used in the thesis are shown in this example.
It is based on a specific group of classes from ’CodiCante’, which can be accessed: https://github.
com/Jof-syntax/CodiCanteUML. The set of classes create an interesting group to be discussed.
The aim of the set is to select and execute an specific solver chosen by the user. Furthermore, the
group’s structure can be seen in the following UML.

I

Solver

+solution

(Abstract) compute ‘
+create

SolverFactory

+create

IterativeSolver DirectSolver

Figure 17: UML for factory group in '’Codi Cante’

In order to fully comprehend the signs and information provided in the previous image, it is
important to see the 4.4 subsection (report).

Solver.m

The main class of the group is the Solver.m file. As it can be seen in the following script, the class
is composed of three properties and three methods.

Regarding the properties’ attributes, since the access is protected, the class and subclasses can
access the information. Nevertheless, the 'solution’ property has also a public Get-access, it means
that Matlab can displays in the command window the name and value of the property.

On the other hand, the first method is static (does not need an obj) and its aim is to call
the SolverFactory.m and execute the specific solver type. The second method is intended to be called
from the child subclasses, it avoids the definition in each subclass. In case of further modifications,
e.g. more inputs needed, the init() Solver.m’s function has only to be modified. It avoids the modi-
fication of an specific init() function for each subclass. Finally, the last method defines and abstract
function with protected access. The objective is to avoid the definition of a generalized computa-
tion function, instead a specific compute function for each solver type can be defined in each subclass.

classdef Solver < handle

% solution is the output of the problem

properties (GetAccess = public, SetAccess = protected)
solution

end
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% A and B are input matrices
properties (Access = protected)
A
B
end

methods (Static, Access = public)

function obj = create(cParams)
% Run the SolverFactory.create(), which selects the specific solver
obj = SolverFactory.create(cParams);
% Execute of the abstract function 'compute()' defined in the
subclasses
obj.compute () ;
end

end
methods (Access = protected)
function init (obj,cParams)
% Stores the parameters A and B as object properties

obj.A = cParams.A;
obj.B cParams .B;

end
end

methods (Abstract, Access = protected)
% Function created in the Solver class but defined in another subclass (
Abstract)
compute (obj);
end
end

SolverFactory.m

The script below works as a switch, where depending on the user’s input the executed func-
tion can be the 'DirectSolver’ or the ’IterativeSolver’ subclasses. It is important to note that
the method is static and there is no constructor in the class. Consequently, the class is called as
SolverFactory.create(cParams) in the Solver.m class. The output of the class is the execution of the
chosen solver.

classdef SolverFactory < handle
methods (Access = public, Static)

function computeSolver = create(cParams)
% Switch chooses between 'direct' or 'iterative' option
switch cParams.type
case 'direct'
% Executes the DirectSolver.m script
computeSolver = DirectSolver (cParams);
case 'iterative'
% Executes the IterativeSolver.m script
computeSolver = IterativeSolver (cParams);
otherwise
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15 % Error when the switch do not have to possibility to choose
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between 'direct' or 'iterative
16 error ('Invalid solver type.');
17 end

18 end

20 end
21| end

DirectSolver.m & IterativeSolver.m

The following classes are subclasses of Solver.m, as it can be see in the heading of the scripts
(classdef XXX < Solver). They allow the computation of the solution by means of the compute()
function. In this case, the input information is provided by the properties of the Solver.m class.
Both cases show a similar structure. On the one hand, a public method, which initiates the problem
by calling the init() Solver.m’s function. On the other hand, a protected method, which computes
the actual solution of the problem.

i|classdef DirectSolver < Solver

3 methods (Access = public)

5 % The constructor initiates the script by calling the init() parent's
function, which recovers the A and B matrices from cParams

6 function obj = DirectSolver (cParams)

7 obj.init (cParams) ;

8 end

9

10 end

11

12 methods (Access = protected)

13

14 function obj = compute (obj)

15 A = obj.A;

16 B = obj.B;

17 % The solution is computed by means of the '/' Matlab operator

18 obj.solution = A\B;

19 end

20

21 end

22

23| end

classdef IterativeSolver < Solver

3 methods (Access = public)

5 % The constructor initiates the script by calling the init() parent's
function

6 function obj = IterativeSolver (cParams)

7 obj.init (cParams) ;

8 end

10 end

12 methods (Access = protected)
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function obj = compute (obj)
A = obj.A;
B = obj.B;

% The solution is computed by means of the pcg Matlab function (
iterative function)
obj.solution = pcg(A, B);
end

end

end

It is important to note that the classes are defined in a general way, so as to allow the re-usability
in other projects. The intention to write a generalized code is further discussed in the Clean Code
section, see section 5 (report).

10
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3 Testing example

In order to show the testing techniques used in MATLAB, an example is provided. The following
example can be divided into three parts. The first one is focused on how to write tests, the second
part is an example of code coverage, and finally, the third one shows two examples of UMLs.

3.1 Testing

During the refactoring of the ’CodiCante’, tests for each class have been created. The tests can
be seen in: https://github.com/Jof-syntax/CodiCanteUML . It is remarkable that these tests
follow the static stored data scheme described in subsection 4.1 (report). On the other hand, the
script structure of each test has been done following the next three points:

e Compute current results: By means of the tested class, the outputs are obtained using the
same inputs that had been used to compute the expected results.

e Load expected results: These outputs are the reference values to check the current outputs
results. They are obtained at the beginning of the refactoring and are considered as the correct
values of the program.

e Verify results: Comparison of the current and expected results, where the comparison’s answer
is a string in the command window.

In order to better comprehend the previous points, the example of the 'GliderAnalyser.m’ test
function is provided below.

function TestGliderAnalyser ()
% Obtain current results
InputData = load('TestData/Input data/TestClassDataGliderAnalyser.mat').
cParams;
test = GliderAnalyser (InputData);
test.compute () ;
% Load stored results (expected)
expectedResult = load('TestData/Outputdata/ResultTestGliderAnalyser.mat').test
% Verify the expected and current results
computeError (test, expectedResult, 'TestGliderAnalyser');
end

Depending on the comparison result, the outputs of this test function can be Figure 16 or 17 (report)
from Section 4 (report). Furthermore, the called function ’computeError(test, expectedResult,
Name)’ is defined as follows.

function computeError(test, expectedResult, Name)
% test: Object of current results
% expectedResult: Object of expected results
% Name: String that appears to indicate the executed test
if isequaln(test, expectedResult)
% Satisfactory message in command window
cprintf ('green',[Name,' --> ']);
cprintf ('green',' PASSED. \n');
else
% Unsatisfactory message in command window
cprintf ('red',[Name,' --> '1);
cprintf('red',' FAILED. \n');
end
end

11
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3.2 Code coverage

The coverage of the tests presented in subsection 3.1 has been done by means of the functions

shown in section 4.2 (report).

For this specific example, a repository containing the reposi-
tory from subsection 3.1 and the two new functions has been created.
https://github.com/Jof-syntax/TestRunnerCodiCante .

It can be found in:
The aim of this new repository is

to allow the easy execution of the "TestRunner.m’; so as to avoid the unnecessary move of scripts

inside the folders.

Since all the tests are specific cases of the ’testGliderAnalyser.m’ test function, the coverage
has been made tracking it. On the other hand, the results from this coverage are provided below:

SolverTest.m From this function, the results are shown in the command window, see the figure below.

Name

Passed

Failed Incomplete

Duration

Details

{'SolverTest/testGliderAnalyser'}

true

false false

0.62801

{1x1 struct}

Figure 18: Result from ’SolverTest.m’ function

From figure 18, it can be seen that the test has been satisfactory. It means that the test has been
executed without problems and the output results from the expected and current are the same.

TestRunner.m This function has generated a plugin, whose results are recovered in the following

table.

FILE NAME LINE COVERAGE | EXECUTABLE LINES | EXECUTED LINES | MISSED LINES
CGComputer.m 100% 22 22 0
CheckSafety.m 100% 14 14 0
ConservativeForcesComputer.m 100% 49 49 0
DOFSplitterComputer.m 100% 24 24 0
Dimension.m 100% 11 11 0
DirectSolver.m 100% 4 4 0
DisplacementComputer.m 100% 39 39 0
DynamicSolver.m 100% 54 54 0
Externallnfluence.m 100% 15 15 0
ForcesComputer.m 100% 47 47 0
Glider Analyser.m 100% 44 44 0
GliderData.m 100% 40 40 0
GliderGeometry.m 100% 24 24 0
GliderMass.m 100% 22 22 0
GliderMaterial.m 100% 29 29 0
IterativeSolver.m 0% 4 0 4
MatrixAndVectorSplitter.m 100% 13 13 0
NodeForceComputer.m 100% 68 68 0
NotConservativeForcesComputer.m 100% 45 45 0
PlotBarStress.m 100% 47 47 0
ResultComputer.m 100% 17 17 0
Solver.m 100% 4 4 0
SolverFactory.m 42.85% 7 3 4
SolverTest.m 100% 8 8 0
StiffnessMatrixComputer.m 100% 55 55 0
StressComputer.m 100% 44 44

TOTAL FILES LINE COVERAGE | EXECUTABLE LINES | EXECUTED LINES | MISSED LINES
27 97.74% 755 738 17

Table 1: Percentage results from *TestRunner.m’ function

12
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Looking at the previous table, the global coverage has only been 97.74%. Nevertheless, this result can
be explained as a consequence of the ’inputs’. They only take into consideration the ’direct’ solving
method. It can be seen in the table, specifically the files ’SolverFactory.m’ and ’IterativeSolver.m’.
These functions are shown below for reference proposes. Furthermore, the executable lines have
been highlighted depending on the case with green or red.

classdef SolverFactory < handle
methods (Access = public, Static)

function computeSolver = create(cParams) % la funcio es diu create

OOV W N

1 switch cParams.type
1 case 'direct'’
1 computeSolver = DirectSolver (cParams);
9 0 case 'iterative'
10 0 computeSolver = IterativeSolver(cParams);
11 0 otherwise
12 0 error('Invalid solver type.');
13 end
14 end
15
16 end
17 end

18
19

Figure 19: Source coverage display of *SolverFactory.m’ function

1 classdef IterativeSolver < Solver

2

3 methods (Access = public)

4

5 function obj = IterativeSolver(cParams)
6 0 obj.init(cParams) ;

7 end

8

9 end

10

11 methods (Access = protected)

12

s function obj = compute(obj)
14 0 A = obj.A;

15! 0 B = obj.B;

16 0 obj.solution = pcg(A, B);
17 end

18

19 end

20

21 end

Figure 20: Source coverage display of ’IterativeSolver.m’ function

It is remarkable that the number of executed and not executed lines coincide with the 'Executed
lines’ and 'Missed lines’ respectively, from table 1. Moreover, it is noteworthy to mention that
these test mistakes have been made in purpose in order to show the scope of the source coverage in
MATLAB. Nevertheless, the not executed lines can be avoided by adding two extra tests. One that
covers the iterative case (cParams.type=’iterative’) and another test that executes the otherwise
option (cParams.type!=’iterative’ AND cParams.type!="direct’). Consequently, the covered lines
from 'TestRunner.m’ function ought to be 100 %.

3.3 UMLs

In the following pages, two UML examples are provided. The first UML example corresponds
to the final version of ”Codi Cante”, which can be found in: https://github.com/Jof-syntax/
CodiCanteUML . It allowed the refactoring of ’codi cante’ in a swift manner. On the other hand,
the second example corresponds to the FEM functionality of the Swan code, which can be found in:
https://github.com/SwanLab/Swan/blob/master/FEM/FEM.m . This UML helped in the process
of understanding the way Swan code works. It is remarkable that some of the boxes are highlighted
in yellow, in order to shown that these are functions instead of classes.

13
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4 Hashin Shtrikman Bounds

The purpose of the present section consists on the derivation of bounds for the effective elastic
moduli of multiphase materials in N’ dimensions using the original work ” A variational approach
to the theory of elastic behaviour of multiphase materials” by Z. Hashin and S. Shtrikman [1].

Introduction to the variational principle

Let an elastic deformed body with known stress (of;) and strain (ef;) tensor fields have N di-
mensions as volume (V') and N — 1 dimensions as boundery (I'). Hooke’s law is given by

05 = o €gp 0ij + 2 o €7; = Lo @ €7 (1)

The Lamé parameters A, and pu, represent the Lamé constant and shear modulus in ’N’ dimensions,
respectively, which for simplicity are taken constant throughout the body. Besides that, the
subscripts are whole numbers from 1 to N, a repeated subscript denotes summation and ¢;; is the
Kronecker delta. On the other hand, the strains are given in terms of displacements by

1 /oue Ou?
o ) J
0 — _ 2
K 2(8%7+a@> @
Let part or whole of the body be modified with a new material and u¢(I') be held fixed. As a
consequence, the new stress and strains fields are unknown matrices in the new body.

Also allow the Hooke’s law for the new body be defined as
Tij = Negk 05 + 2 € (3)
Furthermore, let the stress polarization tensor (p;;) be defined as follows
oij = L €5 = Lo : €5 + pij (4)

where L and L, are given by (1) and (3), respectively. It is remarkable that p;; gives information of
both, the new stress caused by the insertion of the new material and the loss of it when mass is
subtracted from the original one. Define also

I ... .0
U; = Ui — U (5)
/I .. .0
u] = u] 'LLJ
Consequently
/! _ ... _ L0
€5 = €ij — € (6)

It is remarkable that o;; and €;; can be found from (4) and (6) once p;; and €;; are found.

Let the variational principle be defined as sum of volume integrals

Uy=U, + Upeo (7)

where .
UO—2/U% g dV (8)
Upeo = ;/pij e;; AV (9)
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While the first equation (8) is the strain energy associated to the original body, equation (9) is the
energy caused by p;; that would have the original body if the stress p;; had been applied.

On the other hand, by means of equation (6), U, can be expanded as follows

1
U,=U, — B / —pij : (—€ij + €+ 2€;) dV (10)

Taking into consideration (4), the variational principal involving p;; and e;j can be formulated as
1 1 / o
Up:Uo_§ pijZmipij—pijieij—Qpij:Eij av (11)
which is subjected to

(Lo : € + pij)
8x]~

=0 (12)

and
ui(T) =0 (13)

It can be proven that the variational principle is stationary for
pij =L € — Lo : €5 (14)
It is noteworthy to mention that the result match with equation (4).

Finally, regarding equations (1) and (3), the variational principal (U,) is an absolute maximum
when
A> A, o> o (15)

and an absolute minimum when
A< Ay, W< o (16)

It has been proven that the variational principle has an absolute maximum and an absolute minimum
when part or whole of the original body is modified with another material.

General bounds for the effective moduli of multi-phase materials

Let the quasi-homogenity of the multi-phase material be obtained from any reference cube in
the composite material which is large compared to the size of the non-homogeneities, but small
compared to the hole body. Consequently, the volume average of a quantity such as strain, displace-
ment, stress or phase volume fraction is the same for the whole body and the reference cube.

Furthermore, let the elastic strain energy in a reference cube of unit volume be represented
as follows.

1
U= 5(N2/-$* €% 42 ey €i) (17)

9.

7; are split into isotropic and deviatoric forms

where the mean strains e

6;-)]- = ¢€° 51']‘ + 6% (18)
being
= (19)
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Finally, * and p* are the effective bulk and shear moduli.

Besides that, the bulk parameter (k) for the problem is defined as

2
— = 2
K )\+Nu (20)

Imposing the variational principle from the previous part to the unit volume and assuming that
the displacements u¢(I') are impressed on a homogeneous body whose elastic moduli are x, and p,,
from the theory of elasticity follows that the strains throughout the body are constant and equal to
€;;- Therefore, if ul(l') =€ 5 T (being €;; constant and z; the Cartesian co-ordinates of an inertial
system) in composite body is prescrlbed the strains have to be

€ij = €5 + €5 (21)

By definition of (21), since €, i; 1s a deviation from the mean strain €7;, the following statement must
be true.
E'ij =0 (22)

Then, the volume is divided into 7" phases, where each division is denoted by V,. Therefore,

r=n
V.
AN 23
>+ (23)
r=1
Moreover, the polarization tensor p;; is considered constant within the division.

pij =p;; in V; (24)

Transforming all tensors from (11) into isotropic and deviatoric parts, introducing (24) and using
(22) yields the result

U, :U(,—I-U/—lrz:é1 )" + i 11 —2Np"e® —2f] el Ve (25)
P 2 | kr — Ko 2(pr — o) R 7
where )
U, = 5(N2,'{O €% + 2u, €77 €i;) (26)
1
U = 5 /(Npel + fij e;j)dV (27)

By means of the Fourier methods and making use of (13) and (51), U’ can be evaluated in terms of
the polarization field (24). The resultant equation is provided below

r=n r=n 2
oot (e[S (£r) ]

r=1 r=1

WAASIWAD WAL NNE

where a, and S, are
1
ap = — 5 (29)
240 + (Ko = FHo)

(Ko +2p0) (N — 1)
(N2+N_2)MO (’fo_ %Mo)

Bo:_

(30)

18
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Introducing (28) into (25), U, becomes

L ) o Jul;
U, - =S | P e g e _oN e
D ] o ey St R
V r=n V 2 B r=n V’r:n V
(0%
Y P (Y (R N s 1
fzyew % 2 <T:1p V) 2 r:1fzjv r:1fz]V (3)

Regarding the maximum condition (15), whenever x, and pu, satisfy the following inequalities, the
energy inequality is also satisfied

Kr > Ko, fr > fto  which implies U, <U (32)

Similarly, from (16), whenever k, and pu, are lower than s, and pu,, the following inequalities are
satisfied
Kr < Ko, pr < fto  which implies U, > U (33)

From this point a myraid of bounds on the effective elastic moduli have been found. Nevertheless,
in order to obtain the best bounds for a polarization tensor of the type (24), U, must be maximized
for condition (32) and minimized for condition (33). Therefore,

dU, [ 7 14 14

= — o (1=~ ) +Ne| = 4
sy — Z[ o (1) Ve =0 (34)
oU, — i Vv, v,

-0 _ . A ol (1 — — o0 — =0 35
o, = Zj g (1) e (35)

Introducing (34) and (35) into (31), U, can be refactored for the extreme cases as follows
. 1 R
Up = Uo+§(NP€O+fij e;) (36)

where the mean values p and f can be determined from (34) and (35) by solving for p” and f;; and
obtaining the mean values by means of (24). The results are

. NA
D= oA 87
. , B
fl] 1) 1 + ﬁoB (38)

where

=1 ri—re Yo
A
_ Vv

r=1 2(#1‘#0)
In order to find bounds for the effective bulk modulus let a mean strain system of the form

€7 = €%y (41)

)
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be applied to the composite material. Then, it can be proven from (17), (32), (33), (36) and (37)
that A

* < -

oS Kot 1+a,A

In line with the previous deduction, the bounds for the effective shear can be found imposing a
purely deviatoric form
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(42)

E?j = egjv e, =0 (43)

then from (17), (32), (33), (36) and (38),

1 B

21+ 6,B (44)

1S po +

where the upper inequality signs applies for the conditions (32) and the lower signs for the conditions
(33).

Finally, it can be proven that equations (42) and (44) are equivalent to inequalities (45) when
Ko = KA, lo = 4 for the lower bounds and k, = kp, t, = up for the upper bounds being n = 2.

4 < 1 n (1—0) (kp+2up) (N —1)
2up=20p 21 =20A pup (N2+ N = 2) (kp+2pup - 242 )
1-6 o 1 N 0 (ka+2pa) (N—-1)
2pp —2ma 20 =204, (N2 4 N —2) <KA+2MA—2%) (45)
0 1 1-0
KB — K} S KB — K + _ 2iB
UB B A HB+2MB N
1—-6 1 0
< +

~X
KL —RA  KB—KA  Ka+2pa— 22

Proofs and relations of the variational principle

In order to fully understand the steps carried out in the previous parts, the following relations and
proofs are provided.

Strain relation

First, let (5) be differentiated with its orthogonal direction as follows.

Oou;  Ou; 0w

8l’j N axj B 8:(:j
ou; _Ouj ous

(46)

Second, combine the previous equations and multiply the resultant expression by a factor of 0.5.

1 [0l 8u§ 1 (Ou; Ouj 1 [ouy 81{?
2(axj +8xi> _2<axj +ax,-> _2(8x]~ " axi) 0

Finally, regarding equation (2), equation (47) becomes (6).

The stationary value

20
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The proof relies on the derivation of the Variational principle (Up). It can be done with an extra
parameter A\ following the restricted optimization method. In this differentiation the parameter \ is
maximized, while p and € minimized. Therefore

. 1 1
max A min pe UO—/ pij:7:pij—pij:6;j—2pij:efj av + ...
2 L—-L,

I(Lo : € + pij)

LA 48
+ 5 (48)
In order to simplify the calculus, A 6%]_ is replaced by €.
The next consist on the differentiation of U, for each of the terms.
U, —pij |, €ij
— =0 = — =+ 2¢° =0
apij L—LO+2+ € + €x
oU, i
P — D L,=0 (49)
8% 2
oU,
(9?)}\):0 — pij—i-Loe;j:O

Solving the system for p;; and applying the relation (6), the stationary condition (14) is obtained.

Subsidiary condition in terms of u}

On the one hand, the subsidiary condition (12) can be expanded by means of equation (2) as

0 1 (0u;  oul Opij
—(Lo: = (=2 . 2 =0 50
g (B3 (5 v 31)) + 5 (50)
On the other hand, replacing L, with its definition in (1), the following equation is obtained.
Ao 8“; o) apij
ry o] .. o Z = 0 51
<2+M>aﬂ+uaﬂ+3] (51)

U'p deduction from U,

Insulating €” and ef; from (34) and (35) respectively, and introducing the results in (31) yields
. 1 r=n N,«‘/r A 1 r=n . V;~ .
Up:Uo—ZTz:;(NP V> €O+NP€O—2;<UV> €’ + fij e (52)

Simplifying the summation expressions as the mean values p and fij

o N | R 1. R
U,=U, — Epeo + Npe® — ifij eij + fij €ij (53)

Then, equation (53) can be simplified into (36).

HS inequalities deduction from absolute energy
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By means of the inequalities (32) and (32), and making use of expressions (17) and (36), the
equation below is obtained

1 .
U§UO+§(Nﬁeo+fijefj) (54)

Expanding this expression with the bulk and shear elastic strain energy

1 1 1 A
§(N2f<&* () +2u" g ef)) S 5(1\’2%0 (€)% + 2p0 €F; €7;) + S (NPe” + fij eij) (55)

Introducing (37) in the previous equation and splitting it into its isotropic part as

NA

Nzlﬁ* (60)2 §N2Ro (60)2+N1+OCOA

(€%)? (56)

Using the same deduction with (38), the deviatoric part is obtained

B

* _O o o o o o
2/,L eij eij § 2“06"6 + mew e,ij

iJ “1J
Finally, the previous equations can be simplified and consequently (42) and (44) are obtained.

Deduction of Allaire inequalities from HS inequalities

First, recovering the shear equation (44) and replacing the parameter u, for p4

B

1
21+ 8,B (58)

B pa =

Introducing (40), imposing the case v, = 1—6 (being 0 the porosity) and expanding the denominator
from the left hand side

—9 —9
(u*—uA)<1+Bo 11 _5>=; 11 (59)

Q(MB_H'A) Q(NB_HA) - BO
being pup the shear from the other material. Then, simplifying and ordering the equation

1-6 1
— — 98,
2(p* —pa)  2(uB — pa) 2 (60)

Finally, replacing 3, for (30) and taking into account the inequalities from (33)

1-6 < 1 0 (ka+2pa) (N—1)

. < + (61)
2utp—2pa  2uB—2p4 pa (N2 4+ N —2) (KA+2,UA—M>

N
Similarly, the upper bound can be found by means of equation (44), replacing the parameter u,

for up, imposing the case v, = 6 and following the same procedure used for the lower bound. The
result is provided below

4 < 1 (1—0) (kp+2up) (N —1)
2up = 24pp 248 =204 ,p (N2 4N —2) (k5 +2u5 — 242)

(62)

On the other hand, the bulk equation (42) needs to be modified by changing the parameter &, for

RA A
K —HA:m (63)

22



o

Introducing (39), imposing the case v, = 1 — 6 and expanding the denominator from the left hand

side
1—6 1-0
(K* — KA) <1+ao i - ) = T (64)

KB—FKA 2(kp—Fa) Qo
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being xp the bulk from the other material. Then, simplifying and ordering the equation

1-0 1
= — Doy, (65)

I-i*—H,A_IiB—IiA

Then, replacing «, for (29) and taking into account the inequalities from (32)

1-6 1 0
" < + 5 (66)
KLp — KA KB —HKA Ko+ 2ps — KA

Finally, the bulk upper bound can be found by means of equation (42), replacing the parameter &,
for kp, imposing the case v, = 6 and following the same procedure used for the lower bound. The
result is provided below

0 1 1-6
<

_ * ~ _ _2/13
kB — Kkyp KB —KA Kp+2up -~

(67)
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5 Swan code modified scripts

classdef Materiallnterpolation < handle

properties (Access = protected)
nstre
ndim
pdim
nElem
muFunc
dmuFunc
kappaFunc
dkappaFunc
matProp
isoMaterial

end

methods (Access = public, Static)

function obj = create(cParams)
f = MateriallnterpolationFactory;
obj = f.create(cParams);

end

end
methods (Access = public)
function mp = computeMatProp(obj,rho)

mu = obj.muFunc (rho);
kappa = obj.kappaFunc(rho);
dmu = obj.dmuFunc (rho);
dkappa = obj.dkappaFunc(rho);
mp . mu = mu;
mp . kappa = kappa;
mp . dmu = dmu;
mp .dkappa = dkappa;

end
end
methods (Access = protected)

function init (obj,cParams)
obj.nElem = cParams.nElem;
obj.pdim cParams.dim;
obj.computeNDim(cParams) ;
obj.saveYoungAndPoisson (cParams) ;
obj.createIsotropicMaterial ();
obj.computeMuAndKappaInO () ;
obj.computeMuAndKappaInl () ;

end

function computeNDim(obj,cParams)
switch cParams.dim
case '2D'

obj.ndim = 2;
case '3D'
obj.ndim = 3;

end
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end

function saveYoungAndPoisson(obj,cParams)

cP = cParams.constitutiveProperties;
obj.matProp.rhol = cP.rho_plus;
obj.matProp.rho0 = cP.rho_minus;
obj.matProp.E1l = cP.E_plus;
obj.matProp.EO = cP.E_minus;
obj.matProp.nul = cP.nu_plus;
obj.matProp.nu0 = cP.nu_minus;

end

function createlsotropicMaterial (obj)

s.pdim = obj.pdim;
s.ptype = 'ELASTIC';
obj.isoMaterial = Material.create(s);

end

function computeMuAndKappalInO (obj)

EO = obj.matProp.EO;
nu0 = obj.matProp.nul;
obj.matProp.mu0 = obj.computeMu(EO,nul) ;

obj.matProp.kappa0 obj.computeKappa (EO,nu0) ;
end

function computeMuAndKappalni (obj)

El = obj.matProp.El;

nul = obj.matProp.nul;

obj.matProp.mul = obj.computeMu(El,nul);
obj.matProp.kappal = obj.computeKappa(El,nul);

end

function computeSymbolicInterpolationFunctions (obj)
[muS , dmuS , kS, dkS] obj.computeSymbolicMuKappa () ;
obj.muFunc = matlabFunction (muS);
obj .dmuFunc = matlabFunction (dmuS) ;
obj .kappaFunc matlabFunction (kS) ;
obj.dkappaFunc matlabFunction (dkS) ;

end

function [muS,dmuS,kS,dkS] = computeSymbolicMuKappa(obj)
[muS, dmusS] obj.computeMuSymbolicFunctionAndDerivative () ;
[kS,dkS] = obj.computeKappaSymbolicFunctionAndDerivative () ;

end

function mu = computeMu(obj,E,nu)

mat = obj.isoMaterial;

mu = mat.computeMuFromYoungAndNu(E,nu);
end

function k = computeKappa (obj,E,nu)

mat = obj.isoMaterial;

k = mat.computeKappaFromYoungAndNu (E,nu) ;
end

function computeNstre (obj)
ndim = obj.ndim;
obj.nstre = 3*(ndim-1);

end
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end

methods (Access = protected, Abstract)
computeMuSymbolicFunctionAndDerivative (obj)
computeKappaSymbolicFunctionAndDerivative (obj)
end

end

classdef MateriallnterpolationFactory < handle
methods (Access = public, Static)

function obj = create(cParams)
switch cParams.typeOfMaterial
case 'ISOTROPIC'
switch cParams.interpolation
case 'SIMPALL'
if "isfield(cParams, 'simpAllType')
cParams.simpAllType = 'EXPLICIT';
end
switch cParams.simpAllType
case 'EXPLICIT'
obj = SimpAllInterpolationExplicit (cParams);
case 'IMPLICIT'
switch cParams.dim
case '2D'
obj = SimpAllInterpolationImplicit2D(

cParams) ;
case '3D'
obj = SimpAllInterpolationImplicit3D(
cParams) ;
otherwise
error ('Invalid problem dimension.');
end
otherwise
error ('Invalid SimpAll type.');
end
case 'SIMP_Adaptative'
obj = SimpInterpolationAdaptative (cParams);
case 'SIMP_P3'
obj = SimpInterpolationP3(cParams) ;
otherwise
error ('Invalid Material Interpolation method.');
end
otherwise
error ('Invalid type of material');
end
end
end

3| end

classdef SimpAllInterpolationExplicit < Materiallnterpolation

methods (Access = public)
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function obj SimpAllInterpolationExplicit (cParams)
obj.init (cParams);
obj.computelNstre () ;
obj.computeSymbolicInterpolationFunctions ();

end

end

methods (Access

function [mS,dmS]

mS
dmS
end

function [kS,dkS]

protected)

obj.computeSymMu () ;
diff (mS);

kS = obj.computeSymKappa();
dkS = diff (kS);
end
function mu = computeSymMu(obj)
m0 = obj.matProp.mul;
mil = obj.matProp.mul;
k0 = obj.matProp.kappal;
k1 obj .matProp.kappal;
eta0 = obj.computeEtaMu(m0,k0);
etal = obj.computeEtaMu(mil, k1) ;
c = obj.computeCoeff (m0,ml,etal,etal);
mu = obj.computeRationalFunction(c);
end
function kappa = computeSymKappa (obj)
mO0 = obj.matProp.mul;
ml = obj.matProp.mul;
k0 = obj.matProp.kappal;
k1 = obj.matProp.kappal;
eta0 = obj.computeEtaKappa(mO);
etal = obj.computeEtaKappa(ml);
c = obj.computeCoeff (kO,kl,etal,etal);
kappa = obj.computeRationalFunction(c);

end

function etaMu

computeEtaMu (obj ,mu, kappa)

computeMuSymbolicFunctionAndDerivative (obj)

computeKappaSymbolicFunctionAndDerivative (obj)

N = obj.ndim;

num = -mu*(4*mu - kappa*N"2 - 2*xmu*N"2 + 2*xmuxN);
den = 2xNx(kappa + 2*mu);

etaMu = num/den;

end

function etaKappa

computeEtaKappa (obj ,mu)

N = obj.ndim;

num = 2*mux(N-1) ;
den = N;

etaKappa = num/den;

end

end

methods (Access

protected, Static)
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function c¢
c.n01
.n0
.nl
.do
.d1

o o o o0

end

function £
rho
n01
no
nil
do
d1
num
den
£ =

end

end

7| end

computeCoeff (f0,f1,etal,etal)
-(f1 fO)*(etal etal) ;
fOx(f1 + etal);

f1*x(f0 + etal);

(f1 + etal);

(f0 + etal);

computeRationalFunction(s)

sym('rho', 'positive');

s.n01;

s.n0;

s.nl;

s.do0;

s.dil;

n01*(1-rho)*(rho) + nO*(1-rho) + nil*rho;
dO*(1-rho) + dil*rho;

num/den;

classdef SimpAllInterpolationImplicit < Materiallnterpolation

properties (Ac
dmuO
dmu1l
dkO
dk1
end

methods (Acces

function [mS,dmS]

s.f0

s.f1

s.dfo

s.df1

[mS,dm
end

function [
s.f0
s.f1l
s.dfo
s.df1l
[kS,dk
end

function [
c
rho
fSym
dfSym
f
df

end

cess protected)

s protected)

computeMuSymbolicFunctionAndDerivative (obj)
obj.matProp.mul;

obj.matProp.mul;

obj.dmu0;

obj.dmul;
obj.computeParameterInterpolationAndDerivative(s);

S]

kS, dkS] computeKappaSymbolicFunctionAndDerivative (obj)
obj.matProp.kappaO;

obj.matProp.kappal;

obj.dkO;

obj.dki1;
obj.computeParameterInterpolationAndDerivative (s);

s]

f,df] computeParameterInterpolationAndDerivative (obj,s)
obj.computeCoefficients(s);

sym('rho', 'positive');

obj.rationalFunction(c,rho);
obj.rationalFunctionDerivative (c,rho);

simplify (£Sym) ;

simplify (dfSym) ;

28




Study of material interpolation for 3D lightweight structures

function ¢ = computeCoefficients (obj,s)
f1 = s.f1;
f0 = s.10;
df1 = s.dfl;
dfo = s.df0;
cl = sym('cl','real');
c2 = sym('c2','real');
c3 = sym('c3','real');
cd = sym('c4','real');
coef = [cl c2 c3 c4];
ril = obj.matProp.rhol;
r0 = obj.matProp.rhoO;
eq(1l) = obj.rationalFunction(coef,rl) - f1;
eq(2) = obj.rationalFunction(coef ,r0) - £0;
eq(3) = obj.rationalFunctionDerivative (coef ,r1) - df1l;
eq(4) = obj.rationalFunctionDerivative (coef,r0) - dfO0;
c = solve(eq,[cl,c2,c3,cd]);
c = struct2cell(c);
c = [c{:3}];
end

end

methods (Access = protected, Static)

function r = rationalFunction(coef,rho)
cl = coef(1);
c2 = coef(2);
c3 = coef(3);
c4d = coef(4);
num = (cl*rho”2 + c2*rho + 1);
den = (c4 + rho*c3);
r = num/den;
end
function dr = rationalFunctionDerivative (coef ,rho)
cl = coef(1);
c2 = coef(2);
c3 = coef(3);
c4 = coef(4);
nl = c2 + 2*xrhoxcl;
dl = c4 + rhox*c3;
drl = ni1/d1;
n2 = -c3*(cl*rho”2 + c2*rho + 1);
d2 = (c4 + rho*c3) " "2;
dr2 = n2/42;
dr = drl + dr2;
end

end

| end

classdef SimpAllInterpolationImplicit2D < SimpAllInterpolationImplicit
methods (Access = public)
function obj = SimpAllInterpolationImplicit2D(cParams)

obj.init (cParams) ;
obj.computeNstre () ;
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8 obj.computeSymbolicInterpolationFunctions ();

9 obj.dmu0O = obj.computeDmuO () ;

10 obj.dmul = obj.computeDmul ();

11 obj.dk0 = obj.computeDKappaO();

12 obj.dkl = obj.computeDKappal();

13 end

14

15 end

16

17 methods (Access = protected)

18

19 function [pMu,pKappal = computePolarizationTensorAsMuKappa(eMatrix,
eInclusion,nuMatrix ,nulnclusion)

20 coef = obj.compute2Dcoefficients(eMatrix,eInclusion,nuMatrix,
nulnclusion);

21 [p1,p2] = obj.computeP1P2(coef);

22 [pMu, pKappal = obj.computePkappaPmu(pl, p2);

23 end

24

25 function dmuO = computeDmuO (obj)

26 E1 = obj.matProp.E1l;

27 E0O = obj.matProp.EO;

28 nul = obj.matProp.nul;

29 nu0 = obj.matProp.nul;

30 mu0 = obj.matProp.mul;

31 [pMu0,”] = obj.computePolarizationTensorAsMuKappa (EO,E1,nu0,nul);

32 dmuO = -muO*pMuO;

33 end

34

35 function dmul = computeDmul (obj)

36 El = obj.matProp.El;

37 EO = obj.matProp.EO;

38 nul = obj.matProp.nul;

39 nu0 = obj.matProp.nul;

10 mul = obj.matProp.mul;

41 [pMul ,”] = obj.computePolarizationTensorAsMuKappa(E1,EO0,nul,nu0);

12 dmul = mul*pMul;

13 end

44

15 function dkappa0 = computeDKappaO (obj)

16 E1 = obj.matProp.E1l;

a7 EO = obj.matProp.EOQ;

18 nul = obj.matProp.nul;

19 nu0 = obj.matProp.nul;

50 kappa0 = obj.matProp.kappaO;

51 [*,pKappaO] = obj.computePolarizationTensorAsMuKappa (EO,E1,nu0,nul);

52 dkappaO = -kappaO*pKappaO;

53 end

54

55 function dkappal = computeDKappal (obj)

56 E1 = obj.matProp.E1l;

57 EO = obj.matProp.EOQ;

58 nul = obj.matProp.nuil;

59 nu0 = obj.matProp.nul;

60 kappal = obj.matProp.kappal;

61 [*,pKappal]l = obj.computePolarizationTensorAsMuKappa (E1,E0,nul,nu0);

62 dkappal = kappalx*pKappal;

63 end

64

65 end
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methods (Access = protected, Static)

function coef = compute2Dcoefficients(eMatrix,eInclusion,nuMatrix,
nulnclusion)
coef.a = (1 + nuMatrix)/(1 - nuMatrix);
coef.b = (3 - nuMatrix)/(1 + nuMatrix);
coef.gam = eInclusion/eMatrix;
coef.taul = (1 + nuInclusion)/(1 + nuMatrix);
coef.tau2 = (1 - nulInclusion)/(1 - nuMatrix);
coef.tau3 = (nulnclusion*(3*nuMatrix - 4) + 1)/(nuMatrix*(3*nuMatrix -
4) + 1);
end

function [pl,p2] = computeP(s)

a = s.a;
b = s.b;
gam = s.gam;
taul = s.taul;
tau2 = s.tau2;
tau3 = s.tau3;
pl = 1/(b*xgam+taul) *(1+b) *(taul-gam) ;
p2 = 0.5%x(a-b)/(b*gam+taul)*(gam*(gam-2*taul3)+taul*tau2)/(axgam+tau2
)
end
function [pMu,pKappal = computePKappaMu(pl, p2)
pMu = pl;
pKappa = 2xp2 + pil;
end
end

end

classdef SimpAllInterpolationImplicit3D < SimpAllInterpolationImplicit
methods (Access = public)

function obj = SimpAllInterpolationImplicit3D(cParams)
obj.init (cParams) ;
obj.computeNstre () ;
obj.dmu0 = obj.computeDmu0 () ;
obj.dmul = obj.computeDmul ();

obj.dkO0 = obj.computeDKappaO();
obj.dkl = obj.computeDKappal();
obj.computeSymbolicInterpolationFunctions ();

end
end
methods (Access = protected)

function [dMu,dKappal = computePolarizationParametersAsMuKappa (obj,
eMatrix,eInclusion,nuMatrix,nulnclusion)
[m1,m2] = obj.compute3Dcoefficients(eMatrix,eInclusion ,nuMatrix,
nulnclusion);
[dMu, dKappal = obj.computeDkappaDmu(ml,m2);
end
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function dmuO

El1 = obj.matProp.E1l;
EO = obj.matProp.EOQ;
nul = obj.matProp.nul;
nu0 = obj.matProp.nul;
mu0 = obj.matProp.mul;
mul = obj.matProp.mul;
[dMu0,”] = obj.computePolarizationParametersAsMuKappa (EO,E1,nu0,nul);
qmnu0 = dMuO/(muO*(mul-mu0)) ;
dmu0 = muO*(mul-mul)*qmuo;
end
function dmul = computeDmul (obj)
El1 = obj.matProp.E1l;
E0O = obj.matProp.EO0;
nul = obj.matProp.nul;
nu0 = obj.matProp.nu0;
mu0 = obj.matProp.mul;
mul = obj.matProp.mul;
[dMul,”] = obj.computePolarizationParametersAsMuKappa (E1,E0,nul,nu0);
gmul = dMul/(mul*(muO-mul));
dmul = mul*(mul-mu0)*qmul;
end
function dkappa0 = computeDKappaO (obj)
E1 = obj.matProp.E1l;
EO = obj.matProp.EOQ;
nul = obj.matProp.nul;
nu0 = obj.matProp.nuol;
kappa0 = obj.matProp.kappaO;
kappal = obj.matProp.kappal;
[~ ,dKappa0O] = obj.computePolarizationParametersAsMuKappa (EO,E1,nu0,nul
)
gKappaO = dKappaO/(kappaO*(kappal-kappaO));
dkappa0 = kappaOx*(kappal-kappa0)*qgKappaO;
end
function dkappal = computeDKappal (obj)
E1 = obj.matProp.E1l;
EO = obj.matProp.EQ;
nul = obj.matProp.nul;
nu0 = obj.matProp.nul;
kappa0 = obj.matProp.kappal;
kappal = obj.matProp.kappal;
[*,dKappal]l] = obj.computePolarizationParametersAsMuKappa (E1,E0,nul,nu0
)
gKappal dKappal/(kappal*(kappaO-kappal));
dkappal = kappal*(kappal-kappaO)*gKappal;
end
end
methods (Access = protected, Static)

function [m1,

nulnclusion)
mu
mul
mu2
lambda

computeDmuO (obj)

m2]

compute3Dcoefficients (eMatrix,eInclusion,nuMatrix,

eMatrix/(2*(1+nuMatrix)) ;
eInclusion/(2*(1+nulnclusion));

mu - mul;

eMatrix*nuMatrix/((1+nuMatrix) *(1-2*nuMatrix));
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81 lambdal = eInclusion*nulnclusion/((1+nulnclusion)*(1-2*xnulnclusion));

82 lam2 = lambda - lambdal;

83 min = 15*mu*mu2* (nuMatrix-1);

84 mid = 15*mu*(l1-nuMatrix) +2*mu2*(5*nuMatrix-4) ;

85 ml = min/mid;

86 m2n = lam2*(15*mu*lambda*(1-nuMatrix) + 2*lambda*mu2*(5*nuMatrix
-4)) - 2*xmu2*(lambda*mu2-5*mu*nuMatrix*lam?2) ;

87 m2d = b*xmu2*(3*mu*lambda*(1l-nuMatrix) -3*mu*nuMatrix*lam2-lambdax*
mu2*(1-2%xnuMatrix)) ;

88 m2 = m2n/m2d;

89 end

91 function [dMu,dKappal] = computeDkappaDmu (ml,m2)

92 dMu = ml;
93 dKappa = ml1*m2+2/3%*ml;
94 end
95
96 end
97
98| end
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