
Study of material interpolation
for 3D lightweight structures

Document:

Appendix

Author:

Geli I Cerdan, Jofre

Director:

Ferrer Ferre, Alex

Degree:

Bachelor’s Degree in Aerospace Technology Engineering

Examination session:

Spring, 2022.

Study of material interpolation for 3D lightweight structures

Contents

1 Git example 1
1.1 Git and GitHub commands . 1
1.2 Branching . 4

2 Object oriented programming example 7

3 Testing example 11
3.1 Testing . 11
3.2 Code coverage . 12
3.3 UMLs . 13

4 Hashin Shtrikman Bounds 16

5 Swan code modified scripts 24

i

Study of material interpolation for 3D lightweight structures

List of Figures

1 Directory of the ’Example.m’ stored in the internal memory of the computer 1
2 List of files inside the ’TFG Jofre’ in GitHub repository before the example commit 1
3 Status of the ’Example.m’ file as null . 1
4 Source control options for a file not tracked by Git 2
5 Status of the ’Example.m’ file as added . 2
6 Commit window in Matlab for the first commit . 2
7 Status of the ’Example.m’ after the first commit . 3
8 Status of the ’Example.m’ file after the modification 3
9 Commit window in Matlab for the second commit 3
10 Status of the ’Example.m’ file after the second commit 3
11 List of files inside the ’TFG Jofre’ repository in GitHub after the push action 4
12 Branches pop-up window, where there is only one branch named ’main’ 4
13 Lower part of the branches window, where a new branch has been created with the

name ’BranchA’ . 5
14 Branches pop-up, after the creation of the master (main) and ’BranchA’ 5
15 Branches pop-up window of the highlighted merging button 6
16 Branches pop-up window, where the only existing branch and the delete button

highlighted . 6
17 UML for factory group in ’Codi Cante’ . 7
18 Result from ’SolverTest.m’ function . 12
19 Source coverage display of ’SolverFactory.m’ function 13
20 Source coverage display of ’IterativeSolver.m’ function 13

ii

Study of material interpolation for 3D lightweight structures

List of Tables

1 Percentage results from ’TestRunner.m’ function . 12

iii

Study of material interpolation for 3D lightweight structures

1 Git example

In order to show the features of Git within MATLAB, an example has been made. The following
example can be divided into two parts, the first one is focused on Git and GitHub commands,
whereas the second part is a continuation of the first one but centered on the branches.

1.1 Git and GitHub commands

This example starts with a script named ’Example.m’, where the following commentary has been
added.

1 %% Example

The figure below shows the directory where the script has been stored. It is important to note, that
the script is in a folder named ’Git example’, and at the same time it is inside the folder ’TFG Jofre’.
This last folder has been tracked by Git and also saved in GitHub, as it can be seen in Figure 2.

Figure 1: Directory of the ’Example.m’ stored in the internal memory of the computer

Figure 2: List of files inside the ’TFG Jofre’ in GitHub repository before the example commit

Since ’Example.m’ has not been tracked by git yet, it is shown as a dot in the ’Current Folder’
section within the MATLAB main window program, see Figure 3.

Figure 3: Status of the ’Example.m’ file as null

A right-click has been made over the script name and then a click over the ’Source control’ option,
and the Figure 4 pop-up has appeared. It should be pointed out that the figure below diverges from

1

Study of material interpolation for 3D lightweight structures

Figure 9 (report), because in this case the file has not been tracked whereas in the other image it
has.

Figure 4: Source control options for a file not tracked by Git

From this point the status has changed to a ’+’ sign, as seen in image 5. This plus sign means that
the file has been added and moved to the staging area, see Figure 1 (report), but not committed.

Figure 5: Status of the ’Example.m’ file as added

A commit has been made using the ’Source control’ options of Figure 9 (report). It has been named
as follows.

Figure 6: Commit window in Matlab for the first commit

2

Study of material interpolation for 3D lightweight structures

Figure 7: Status of the ’Example.m’ after the first commit

The script has been modified as follows, and the status has changed to a blue square. It means that
’Example.m’ has been modified but not captured by Git.

1 %% Example

2

3 disp('Hello world ');

Figure 8: Status of the ’Example.m’ file after the modification

Using the same procedure followed in the first commit, a second commit has been realized, see
Figures 9 and 10.

Figure 9: Commit window in Matlab for the second commit

Figure 10: Status of the ’Example.m’ file after the second commit

Finally, using once again the menu from Figure 9 (report), a push has been made. It is noteworthy
to mention that the files within the ’TFG Jofre’ folder are being tracked by Git and stored in
GitHub.

3

Study of material interpolation for 3D lightweight structures

Figure 11: List of files inside the ’TFG Jofre’ repository in GitHub after the push action

1.2 Branching

The second part of the example starts once the file has been stored in GitHub. Nevertheless, this
part follows the example shown in Figure 7 (report). In this case, the main branch is intended to be
indirectly modified by means of a second branch.
In terms of branches, the script only exists in the master branch. Therefore, at the beginning of
this part, of the example, the code of the main branch is as follows.
Master branch code:

1 %% Example

2

3 disp('Hello world ');

Moreover, by clicking on the ’Branches’ option in the ’Source control’ menu, it can be seen that the
current branch is the main (master), see Figure 12.

Figure 12: Branches pop-up window, where there is only one branch named ’main’

4

Study of material interpolation for 3D lightweight structures

On the other hand, using the branch creation tool, which is located at lower part of the branches
window, a new branch tagged ’BranchA’ has been created.

Figure 13: Lower part of the branches window, where a new branch has been created with the
name ’BranchA’

Consequently, two branches exist for the file ’Example.m’. In order to modify a branch, the user
must switch to the desired one. In this case, it has been switched to the ’BranchA’. It is noteworthy
to mention that the code for each of the branches looks as follows.

Master branch code:

1 %% Example

2

3 disp('Hello world ');

Branch ’A’ code:

1 %% Example

2

3 disp('Hello world ');

Furthermore, the new branch can be seen in the branches window, Figure 14.

Figure 14: Branches pop-up, after the creation of the master (main) and ’BranchA’

A new modification has been implemented in the branch ’A’ code, in consequence, the modified
code is:
Branch ’A’ code:

1 %% Example

2

3 disp('Hello world ');
4

5 disp('Git is an outstanding tool');

5

Study of material interpolation for 3D lightweight structures

This new version of the code has been committed using the same procedure explained in subsection
1.1.

Figure 15: Branches pop-up window of the highlighted merging button

Once the merging process had been successfully completed, the branch ’A’ has been deleted using
the button of Figure 16.

Figure 16: Branches pop-up window, where the only existing branch and the delete button
highlighted

Finally, the master branch was modified indirectly, and the resultant code in the main branch is:

Master branch code:

1 %% Example

2

3 disp('Hello world ');
4

5 disp('Git is an outstanding tool');

6

Study of material interpolation for 3D lightweight structures

2 Object oriented programming example

The main features of objected oriented programming used in the thesis are shown in this example.
It is based on a specific group of classes from ’CodiCante’, which can be accessed: https://github.
com/Jof-syntax/CodiCanteUML. The set of classes create an interesting group to be discussed.
The aim of the set is to select and execute an specific solver chosen by the user. Furthermore, the
group’s structure can be seen in the following UML.

Figure 17: UML for factory group in ’Codi Cante’

In order to fully comprehend the signs and information provided in the previous image, it is
important to see the 4.4 subsection (report).

Solver.m

The main class of the group is the Solver.m file. As it can be seen in the following script, the class
is composed of three properties and three methods.

Regarding the properties’ attributes, since the access is protected, the class and subclasses can
access the information. Nevertheless, the ’solution’ property has also a public Get-access, it means
that Matlab can displays in the command window the name and value of the property.

On the other hand, the first method is static (does not need an obj) and its aim is to call
the SolverFactory.m and execute the specific solver type. The second method is intended to be called
from the child subclasses, it avoids the definition in each subclass. In case of further modifications,
e.g. more inputs needed, the init() Solver.m’s function has only to be modified. It avoids the modi-
fication of an specific init() function for each subclass. Finally, the last method defines and abstract
function with protected access. The objective is to avoid the definition of a generalized computa-
tion function, instead a specific compute function for each solver type can be defined in each subclass.

1 classdef Solver < handle

2

3 % solution is the output of the problem

4 properties (GetAccess = public , SetAccess = protected)

5 solution

6 end

7

7

https://github.com/Jof-syntax/CodiCanteUML
https://github.com/Jof-syntax/CodiCanteUML

Study of material interpolation for 3D lightweight structures

8 % A and B are input matrices

9 properties (Access = protected)

10 A

11 B

12 end

13

14 methods (Static , Access = public)

15

16 function obj = create(cParams)

17 % Run the SolverFactory.create (), which selects the specific solver

18 obj = SolverFactory.create(cParams);

19 % Execute of the abstract function 'compute ()' defined in the

subclasses

20 obj.compute ();

21 end

22

23 end

24

25 methods (Access = protected)

26

27 function init(obj ,cParams)

28 % Stores the parameters A and B as object properties

29 obj.A = cParams.A;

30 obj.B = cParams.B;

31 end

32

33 end

34

35 methods (Abstract , Access = protected)

36 % Function created in the Solver class but defined in another subclass (

Abstract)

37 compute(obj);

38 end

39 end

SolverFactory.m

The script below works as a switch, where depending on the user’s input the executed func-
tion can be the ’DirectSolver’ or the ’IterativeSolver’ subclasses. It is important to note that
the method is static and there is no constructor in the class. Consequently, the class is called as
SolverFactory.create(cParams) in the Solver.m class. The output of the class is the execution of the
chosen solver.

1 classdef SolverFactory < handle

2

3 methods (Access = public , Static)

4

5 function computeSolver = create(cParams)

6 % Switch chooses between 'direct ' or 'iterative ' option

7 switch cParams.type

8 case 'direct '
9 % Executes the DirectSolver.m script

10 computeSolver = DirectSolver(cParams);

11 case 'iterative '
12 % Executes the IterativeSolver.m script

13 computeSolver = IterativeSolver(cParams);

14 otherwise

8

Study of material interpolation for 3D lightweight structures

15 % Error when the switch do not have to possibility to choose

between 'direct ' or 'iterative '
16 error('Invalid solver type.');
17 end

18 end

19

20 end

21 end

DirectSolver.m & IterativeSolver.m

The following classes are subclasses of Solver.m, as it can be see in the heading of the scripts
(classdef XXX < Solver). They allow the computation of the solution by means of the compute()
function. In this case, the input information is provided by the properties of the Solver.m class.
Both cases show a similar structure. On the one hand, a public method, which initiates the problem
by calling the init() Solver.m’s function. On the other hand, a protected method, which computes
the actual solution of the problem.

1 classdef DirectSolver < Solver

2

3 methods (Access = public)

4

5 % The constructor initiates the script by calling the init() parent 's
function , which recovers the A and B matrices from cParams

6 function obj = DirectSolver(cParams)

7 obj.init(cParams);

8 end

9

10 end

11

12 methods (Access = protected)

13

14 function obj = compute(obj)

15 A = obj.A;

16 B = obj.B;

17 % The solution is computed by means of the '/' Matlab operator

18 obj.solution = A\B;

19 end

20

21 end

22

23 end

1 classdef IterativeSolver < Solver

2

3 methods (Access = public)

4

5 % The constructor initiates the script by calling the init() parent 's
function

6 function obj = IterativeSolver(cParams)

7 obj.init(cParams);

8 end

9

10 end

11

12 methods (Access = protected)

13

9

Study of material interpolation for 3D lightweight structures

14 function obj = compute(obj)

15 A = obj.A;

16 B = obj.B;

17 % The solution is computed by means of the pcg Matlab function (

iterative function)

18 obj.solution = pcg(A, B);

19 end

20

21 end

22

23 end

It is important to note that the classes are defined in a general way, so as to allow the re-usability
in other projects. The intention to write a generalized code is further discussed in the Clean Code
section, see section 5 (report).

10

Study of material interpolation for 3D lightweight structures

3 Testing example

In order to show the testing techniques used in MATLAB, an example is provided. The following
example can be divided into three parts. The first one is focused on how to write tests, the second
part is an example of code coverage, and finally, the third one shows two examples of UMLs.

3.1 Testing

During the refactoring of the ’CodiCante’, tests for each class have been created. The tests can
be seen in: https://github.com/Jof-syntax/CodiCanteUML . It is remarkable that these tests
follow the static stored data scheme described in subsection 4.1 (report). On the other hand, the
script structure of each test has been done following the next three points:

• Compute current results: By means of the tested class, the outputs are obtained using the
same inputs that had been used to compute the expected results.

• Load expected results: These outputs are the reference values to check the current outputs
results. They are obtained at the beginning of the refactoring and are considered as the correct
values of the program.

• Verify results: Comparison of the current and expected results, where the comparison’s answer
is a string in the command window.

In order to better comprehend the previous points, the example of the ’GliderAnalyser.m’ test
function is provided below.

1 function TestGliderAnalyser ()

2 % Obtain current results

3 InputData = load('TestData/Input data/TestClassDataGliderAnalyser.mat').
cParams;

4 test = GliderAnalyser(InputData);

5 test.compute ();

6 % Load stored results (expected)

7 expectedResult = load('TestData/Outputdata/ResultTestGliderAnalyser.mat').test
;

8 % Verify the expected and current results

9 computeError(test , expectedResult , 'TestGliderAnalyser ');
10 end

Depending on the comparison result, the outputs of this test function can be Figure 16 or 17 (report)
from Section 4 (report). Furthermore, the called function ’computeError(test, expectedResult,
Name)’ is defined as follows.

1 function computeError(test , expectedResult , Name)

2 % test: Object of current results

3 % expectedResult: Object of expected results

4 % Name: String that appears to indicate the executed test

5 if isequaln(test , expectedResult)

6 % Satisfactory message in command window

7 cprintf('green ',[Name ,' --> ']);
8 cprintf('green ',' PASSED. \n');
9 else

10 % Unsatisfactory message in command window

11 cprintf('red',[Name ,' --> ']);
12 cprintf('red',' FAILED. \n');
13 end

14 end

11

https://github.com/Jof-syntax/CodiCanteUML

Study of material interpolation for 3D lightweight structures

3.2 Code coverage

The coverage of the tests presented in subsection 3.1 has been done by means of the functions
shown in section 4.2 (report). For this specific example, a repository containing the reposi-
tory from subsection 3.1 and the two new functions has been created. It can be found in:
https://github.com/Jof-syntax/TestRunnerCodiCante . The aim of this new repository is
to allow the easy execution of the ’TestRunner.m’, so as to avoid the unnecessary move of scripts
inside the folders.

Since all the tests are specific cases of the ’testGliderAnalyser.m’ test function, the coverage
has been made tracking it. On the other hand, the results from this coverage are provided below:

SolverTest.m From this function, the results are shown in the command window, see the figure below.

Figure 18: Result from ’SolverTest.m’ function

From figure 18, it can be seen that the test has been satisfactory. It means that the test has been
executed without problems and the output results from the expected and current are the same.

TestRunner.m This function has generated a plugin, whose results are recovered in the following
table.

FILE NAME LINE COVERAGE EXECUTABLE LINES EXECUTED LINES MISSED LINES

CGComputer.m 100% 22 22 0

CheckSafety.m 100% 14 14 0

ConservativeForcesComputer.m 100% 49 49 0

DOFSplitterComputer.m 100% 24 24 0

Dimension.m 100% 11 11 0

DirectSolver.m 100% 4 4 0

DisplacementComputer.m 100% 39 39 0

DynamicSolver.m 100% 54 54 0

ExternalInfluence.m 100% 15 15 0

ForcesComputer.m 100% 47 47 0

GliderAnalyser.m 100% 44 44 0

GliderData.m 100% 40 40 0

GliderGeometry.m 100% 24 24 0

GliderMass.m 100% 22 22 0

GliderMaterial.m 100% 29 29 0

IterativeSolver.m 0% 4 0 4

MatrixAndVectorSplitter.m 100% 13 13 0

NodeForceComputer.m 100% 68 68 0

NotConservativeForcesComputer.m 100% 45 45 0

PlotBarStress.m 100% 47 47 0

ResultComputer.m 100% 17 17 0

Solver.m 100% 4 4 0

SolverFactory.m 42.85% 7 3 4

SolverTest.m 100% 8 8 0

StiffnessMatrixComputer.m 100% 55 55 0

StressComputer.m 100% 44 44

TOTAL FILES LINE COVERAGE EXECUTABLE LINES EXECUTED LINES MISSED LINES

27 97.74% 755 738 17

Table 1: Percentage results from ’TestRunner.m’ function

12

https://github.com/Jof-syntax/TestRunnerCodiCante

Study of material interpolation for 3D lightweight structures

Looking at the previous table, the global coverage has only been 97.74%. Nevertheless, this result can
be explained as a consequence of the ’inputs’. They only take into consideration the ’direct’ solving
method. It can be seen in the table, specifically the files ’SolverFactory.m’ and ’IterativeSolver.m’.
These functions are shown below for reference proposes. Furthermore, the executable lines have
been highlighted depending on the case with green or red.

Figure 19: Source coverage display of ’SolverFactory.m’ function

Figure 20: Source coverage display of ’IterativeSolver.m’ function

It is remarkable that the number of executed and not executed lines coincide with the ’Executed
lines’ and ’Missed lines’ respectively, from table 1. Moreover, it is noteworthy to mention that
these test mistakes have been made in purpose in order to show the scope of the source coverage in
MATLAB. Nevertheless, the not executed lines can be avoided by adding two extra tests. One that
covers the iterative case (cParams.type=’iterative’) and another test that executes the otherwise
option (cParams.type!=’iterative’ AND cParams.type!=’direct’). Consequently, the covered lines
from ’TestRunner.m’ function ought to be 100 %.

3.3 UMLs

In the following pages, two UML examples are provided. The first UML example corresponds
to the final version of ”Codi Cante”, which can be found in: https://github.com/Jof-syntax/
CodiCanteUML . It allowed the refactoring of ’codi cante’ in a swift manner. On the other hand,
the second example corresponds to the FEM functionality of the Swan code, which can be found in:
https://github.com/SwanLab/Swan/blob/master/FEM/FEM.m . This UML helped in the process
of understanding the way Swan code works. It is remarkable that some of the boxes are highlighted
in yellow, in order to shown that these are functions instead of classes.

13

https://github.com/Jof-syntax/CodiCanteUML
https://github.com/Jof-syntax/CodiCanteUML
https://github.com/SwanLab/Swan/blob/master/FEM/FEM.m

Study of material interpolation for 3D lightweight structures

Codi Cante UML

14

Study of material interpolation for 3D lightweight structures

Swan’s FEM functionality UML

Note: Since the number of classes that appear is considerable, the association relation has been omitted.

15

Study of material interpolation for 3D lightweight structures

4 Hashin Shtrikman Bounds

The purpose of the present section consists on the derivation of bounds for the effective elastic
moduli of multiphase materials in ’N’ dimensions using the original work ”A variational approach
to the theory of elastic behaviour of multiphase materials” by Z. Hashin and S. Shtrikman [1].

Introduction to the variational principle

Let an elastic deformed body with known stress (σo
ij) and strain (ϵoij) tensor fields have N di-

mensions as volume (V) and N − 1 dimensions as boundery (Γ). Hooke’s law is given by

σo
ij = λo ϵ

o
kk δij + 2µo ϵ

o
ij = Lo : ϵ

o
ij (1)

The Lamé parameters λo and µo represent the Lamé constant and shear modulus in ’N’ dimensions,
respectively, which for simplicity are taken constant throughout the body. Besides that, the
subscripts are whole numbers from 1 to N, a repeated subscript denotes summation and δij is the
Kronecker delta. On the other hand, the strains are given in terms of displacements by

ϵoij =
1

2

(
∂uoi
∂xj

+
∂uoj
∂xi

)
(2)

Let part or whole of the body be modified with a new material and uoi (Γ) be held fixed. As a
consequence, the new stress and strains fields are unknown matrices in the new body.

Also allow the Hooke’s law for the new body be defined as

σij = λ ϵkk δij + 2µ ϵij (3)

Furthermore, let the stress polarization tensor (pij) be defined as follows

σij = L : ϵij = Lo : ϵij + pij (4)

where L and Lo are given by (1) and (3), respectively. It is remarkable that pij gives information of
both, the new stress caused by the insertion of the new material and the loss of it when mass is
subtracted from the original one. Define also

u′i = ui − uoi

u′j = uj − uoj
(5)

Consequently
ϵ′ij = ϵij − ϵoij (6)

It is remarkable that σij and ϵij can be found from (4) and (6) once pij and ϵ′ij are found.

Let the variational principle be defined as sum of volume integrals

Up = Uo + Up ϵo (7)

where

Uo =
1

2

∫
σo
ij : ϵ

o
ij dV (8)

Up ϵo =
1

2

∫
pij : ϵ

o
ij dV (9)

16

Study of material interpolation for 3D lightweight structures

While the first equation (8) is the strain energy associated to the original body, equation (9) is the
energy caused by pij that would have the original body if the stress pij had been applied.

On the other hand, by means of equation (6), Up can be expanded as follows

Up = Uo −
1

2

∫
−pij : (−ϵij + ϵ′ij + 2 ϵoij) dV (10)

Taking into consideration (4), the variational principal involving pij and ϵ′ij can be formulated as

Up = Uo −
1

2

∫ (
pij :

1

L− Lo
: pij − pij : ϵ

′
ij − 2 pij : ϵ

o
ij

)
dV (11)

which is subjected to
∂(Lo : ϵ

′
ij + pij)

∂xj
= 0 (12)

and
u′i(Γ) = 0 (13)

It can be proven that the variational principle is stationary for

pij = L : ϵij − Lo : ϵij (14)

It is noteworthy to mention that the result match with equation (4).

Finally, regarding equations (1) and (3), the variational principal (Up) is an absolute maximum
when

λ > λo , µ > µo (15)

and an absolute minimum when
λ < λo , µ < µo (16)

It has been proven that the variational principle has an absolute maximum and an absolute minimum
when part or whole of the original body is modified with another material.

General bounds for the effective moduli of multi-phase materials

Let the quasi-homogenity of the multi-phase material be obtained from any reference cube in
the composite material which is large compared to the size of the non-homogeneities, but small
compared to the hole body. Consequently, the volume average of a quantity such as strain, displace-
ment, stress or phase volume fraction is the same for the whole body and the reference cube.

Furthermore, let the elastic strain energy in a reference cube of unit volume be represented
as follows.

U =
1

2
(N2κ∗ ϵo2 + 2µ∗ eoij e

o
ij) (17)

where the mean strains ϵoij are split into isotropic and deviatoric forms

ϵoij = ϵo δij + eoij (18)

being

ϵo =
ϵkk
N

(19)

17

Study of material interpolation for 3D lightweight structures

Finally, κ∗ and µ∗ are the effective bulk and shear moduli.

Besides that, the bulk parameter (κ) for the problem is defined as

κ = λ+
2

N
µ (20)

Imposing the variational principle from the previous part to the unit volume and assuming that
the displacements uoi (Γ) are impressed on a homogeneous body whose elastic moduli are κo and µo,
from the theory of elasticity follows that the strains throughout the body are constant and equal to
ϵoij . Therefore, if u

o
i (Γ) = ϵoij xj (being ϵoij constant and xj the Cartesian co-ordinates of an inertial

system) in composite body is prescribed, the strains have to be

ϵij = ϵoij + ϵ′ij (21)

By definition of (21), since ϵ′ij is a deviation from the mean strain ϵoij , the following statement must
be true.

ϵ′ij = 0 (22)

Then, the volume is divided into rth phases, where each division is denoted by Vr. Therefore,

r=n∑
r=1

Vr

V
= 1 (23)

Moreover, the polarization tensor pij is considered constant within the division.

pij = prij in Vr (24)

Transforming all tensors from (11) into isotropic and deviatoric parts, introducing (24) and using
(22) yields the result

Up = Uo + U ′ − 1

2

r=n∑
r=1

[
(pr)2

κr − κo
+

f r
ij f

r
ij

2(µr − µo)
− 2N pr ϵo − 2f r

ij e
o
ij

]
Vr

V
(25)

where

Uo =
1

2
(N2κo ϵ

o2 + 2µo ϵ
o
ij ϵ

o
ij) (26)

U ′ =
1

2

∫
(N pϵ′ + fij e

′
ij)dV (27)

By means of the Fourier methods and making use of (13) and (51), U ′ can be evaluated in terms of
the polarization field (24). The resultant equation is provided below

U ′ =
1

2

αo

r=n∑
r=1

(pr)2
Vr

V
−

(
r=n∑
r=1

pr
Vr

V

)2
+ βo

[
r=n∑
r=1

f r
ij f

r
ij

Vr

V
−

r=n∑
r=1

f r
ij

Vr

V

r=n∑
r=1

f r
ij

Vr

V

] (28)

where αo and βo are

αo = − 1

2µo +
(
κo − 2

N µo

) (29)

βo = − (κo + 2µo) (N − 1)

(N2 +N − 2)µo

(
κo − 2

N µo

) (30)

18

Study of material interpolation for 3D lightweight structures

Introducing (28) into (25), Up becomes

Up = Uo −
1

2

r=n∑
r=1

[
(pr)2

κr − κo
− αo (p

r)2 +
f r
ij f

r
ij

2(µr − µo)
− βo f

r
ij f

r
ij − 2N pr ϵo + ...

...− 2f r
ij e

o
ij

]
Vr

V
− αo

2

(
r=n∑
r=1

pr
Vr

V

)2

− βo
2

r=n∑
r=1

f r
ij

Vr

V

r=n∑
r=1

f r
ij

Vr

V
(31)

Regarding the maximum condition (15), whenever κo and µo satisfy the following inequalities, the
energy inequality is also satisfied

κr > κo , µr > µo which implies Up < U (32)

Similarly, from (16), whenever κo and µo are lower than κr and µr, the following inequalities are
satisfied

κr < κo , µr < µo which implies Up > U (33)

From this point a myraid of bounds on the effective elastic moduli have been found. Nevertheless,
in order to obtain the best bounds for a polarization tensor of the type (24), Up must be maximized
for condition (32) and minimized for condition (33). Therefore,

∂Up

∂pr
= 0 =⇒

r=n∑
r=1

[
− pr

κr − κo
+ αo p

r

(
1− Vr

V

)
+N ϵo

]
Vr

V
= 0 (34)

∂Up

∂f r
ij

= 0 =⇒
r=n∑
r=1

[
−

f r
ij

2(µr − µo)
+ βo f

r
ij

(
1− Vr

V

)
+ eoij

]
Vr

V
= 0 (35)

Introducing (34) and (35) into (31), Up can be refactored for the extreme cases as follows

Ûp = Uo +
1

2
(Np̂ ϵo + f̂ij e

o
ij) (36)

where the mean values p̂ and f̂ can be determined from (34) and (35) by solving for pr and f r
ij and

obtaining the mean values by means of (24). The results are

p̂ = ϵo
N A

1 + αoA
(37)

f̂ij = eoij
B

1 + βoB
(38)

where

A =
r=n∑
r=1

Vr
V

1
κ1−κo

− αo
(39)

B =
r=n∑
r=1

Vr
V

1
2(µ1−µo)

− βo
(40)

In order to find bounds for the effective bulk modulus let a mean strain system of the form

ϵoij = ϵo δij (41)

19

Study of material interpolation for 3D lightweight structures

be applied to the composite material. Then, it can be proven from (17), (32), (33), (36) and (37)
that

κ∗ ≶ κo +
A

1 + αoA
(42)

In line with the previous deduction, the bounds for the effective shear can be found imposing a
purely deviatoric form

ϵoij = eoij , eokk = 0 (43)

then from (17), (32), (33), (36) and (38),

µ∗ ≶ µo +
1

2

B

1 + βoB
(44)

where the upper inequality signs applies for the conditions (32) and the lower signs for the conditions
(33).

Finally, it can be proven that equations (42) and (44) are equivalent to inequalities (45) when
κo = κA, µo = µA for the lower bounds and κo = κB, µo = µB for the upper bounds being n = 2.

θ

2µB − 2µ∗
UB

⩽
1

2µB − 2µA
+

(1− θ) (κB + 2µB) (N − 1)

µB (N2 +N − 2)
(
κB + 2µB − 2µB

N

)
1− θ

2µ∗
LB − 2µA

⩽
1

2µB − 2µA
+

θ (κA + 2µA) (N − 1)

µA (N2 +N − 2)
(
κA + 2µA − 2µA

N

)
θ

κB − κ∗UB

⩽
1

κB − κA
+

1− θ

κB + 2µB − 2µB
N

1− θ

κ∗LB − κA
⩽

1

κB − κA
+

θ

κA + 2µA − 2µA
N

(45)

Proofs and relations of the variational principle

In order to fully understand the steps carried out in the previous parts, the following relations and
proofs are provided.

Strain relation

First, let (5) be differentiated with its orthogonal direction as follows.

∂u′i
∂xj

=
∂ui
∂xj

− ∂uoi
∂xj

∂u′j
∂xi

=
∂uj
∂xi

−
∂uoj
∂xi

(46)

Second, combine the previous equations and multiply the resultant expression by a factor of 0.5.

1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

2

(
∂uoi
∂xj

+
∂uoj
∂xi

)
(47)

Finally, regarding equation (2), equation (47) becomes (6).

The stationary value

20

Study of material interpolation for 3D lightweight structures

The proof relies on the derivation of the Variational principle (Up). It can be done with an extra
parameter λ following the restricted optimization method. In this differentiation the parameter λ is
maximized, while p and ϵ minimized. Therefore

max λ min p ϵ Uo −
1

2

∫ (
pij :

1

L− Lo
: pij − pij : ϵ

′
ij − 2 pij : ϵ

o
ij

)
dV + ...

...+ λ
∂(Lo : ϵ

′
ij + pij)

∂xj
(48)

In order to simplify the calculus, λ ∂
∂xj

is replaced by ϵλ.

The next consist on the differentiation of Up for each of the terms.

∂Up

∂pij
= 0 =⇒ −pij

L− Lo
+

ϵ′ij
2

+ 2 ϵo + ϵλ = 0

∂Up

∂ϵ′ij
= 0 =⇒ pij

2
+ ϵλ Lo = 0

∂Up

∂ϵλ
= 0 =⇒ pij + Lo ϵ

′
ij = 0

(49)

Solving the system for pij and applying the relation (6), the stationary condition (14) is obtained.

Subsidiary condition in terms of u′i

On the one hand, the subsidiary condition (12) can be expanded by means of equation (2) as

∂

∂j

(
Lo :

1

2

(
∂u′j
∂ji

+
∂u′i
∂jj

))
+

∂pij
∂j

= 0 (50)

On the other hand, replacing Lo with its definition in (1), the following equation is obtained.(
λo

2
+ µo

)
∂u′j
∂ji

+ µo
∂u′i
∂jj

+
∂pij
∂j

= 0 (51)

Ûp deduction from Up

Insulating ϵo and eoij from (34) and (35) respectively, and introducing the results in (31) yields

Ûp = Uo −
1

2

r=n∑
r=1

(
Np̂r

Vr

V

)
ϵo +Np̂ ϵo − 1

2

r=n∑
r=1

(
f̂ r
ij

Vr

V

)
ϵo + f̂ij eij (52)

Simplifying the summation expressions as the mean values p̂ and f̂ij

Ûp = Uo −
N

2
p̂ ϵo +Np̂ ϵo − 1

2
f̂ij eij + f̂ij eij (53)

Then, equation (53) can be simplified into (36).

HS inequalities deduction from absolute energy

21

Study of material interpolation for 3D lightweight structures

By means of the inequalities (32) and (32), and making use of expressions (17) and (36), the
equation below is obtained

U ≶ Uo +
1

2
(Np̂ ϵo + f̂ij e

o
ij) (54)

Expanding this expression with the bulk and shear elastic strain energy

1

2
(N2κ∗ (ϵo)2 + 2µ∗ eoij e

o
ij) ≶

1

2
(N2κo (ϵo)2 + 2µo e

o
ij e

o
ij) +

1

2
(Np̂ ϵo + f̂ij e

o
ij) (55)

Introducing (37) in the previous equation and splitting it into its isotropic part as

N2κ∗ (ϵo)2 ≶ N2κo (ϵo)2 +N
N A

1 + αoA
(ϵo)2 (56)

Using the same deduction with (38), the deviatoric part is obtained

2µ∗ eoij e
o
ij ≶ 2µo e

o
ij e

o
ij +

B

1 + βoB
eoij e

o
ij (57)

Finally, the previous equations can be simplified and consequently (42) and (44) are obtained.

Deduction of Allaire inequalities from HS inequalities

First, recovering the shear equation (44) and replacing the parameter µo for µA

µ∗ − µA =
1

2

B

1 + βoB
(58)

Introducing (40), imposing the case vr = 1−θ (being θ the porosity) and expanding the denominator
from the left hand side

(µ∗ − µA)

(
1 + βo

1− θ
1

2(µB−µA) − βo

)
=

1

2

1− θ
1

2(µB−µA) − βo
(59)

being µB the shear from the other material. Then, simplifying and ordering the equation

1− θ

2(µ∗ − µA)
=

1

2(µB − µA)
− θ βo (60)

Finally, replacing βo for (30) and taking into account the inequalities from (33)

1− θ

2µ∗
LB − 2µA

⩽
1

2µB − 2µA
+

θ (κA + 2µA) (N − 1)

µA (N2 +N − 2)
(
κA + 2µA − 2µA

N

) (61)

Similarly, the upper bound can be found by means of equation (44), replacing the parameter µo

for µB, imposing the case vr = θ and following the same procedure used for the lower bound. The
result is provided below

θ

2µB − 2µ∗
UB

⩽
1

2µB − 2µA
+

(1− θ) (κB + 2µB) (N − 1)

µB (N2 +N − 2)
(
κB + 2µB − 2µB

N

) (62)

On the other hand, the bulk equation (42) needs to be modified by changing the parameter κo for
κA

κ∗ − κA =
A

1 + αoA
(63)

22

Study of material interpolation for 3D lightweight structures

Introducing (39), imposing the case vr = 1− θ and expanding the denominator from the left hand
side

(κ∗ − κA)

(
1 + αo

1− θ
1

κB−κA
− αo

)
=

1− θ
1

2(κB−κA) − αo
(64)

being κB the bulk from the other material. Then, simplifying and ordering the equation

1− θ

κ∗ − κA
=

1

κB − κA
− θ αo (65)

Then, replacing αo for (29) and taking into account the inequalities from (32)

1− θ

κ∗LB − κA
⩽

1

κB − κA
+

θ

κA + 2µA − 2µA
N

(66)

Finally, the bulk upper bound can be found by means of equation (42), replacing the parameter κo
for κB, imposing the case vr = θ and following the same procedure used for the lower bound. The
result is provided below

θ

κB − κ∗UB

⩽
1

κB − κA
+

1− θ

κB + 2µB − 2µB
N

(67)

23

Study of material interpolation for 3D lightweight structures

5 Swan code modified scripts

1 classdef MaterialInterpolation < handle

2

3 properties (Access = protected)

4 nstre

5 ndim

6 pdim

7 nElem

8 muFunc

9 dmuFunc

10 kappaFunc

11 dkappaFunc

12 matProp

13 isoMaterial

14 end

15

16 methods (Access = public , Static)

17

18 function obj = create(cParams)

19 f = MaterialInterpolationFactory;

20 obj = f.create(cParams);

21 end

22

23 end

24

25 methods (Access = public)

26

27 function mp = computeMatProp(obj ,rho)

28 mu = obj.muFunc(rho);

29 kappa = obj.kappaFunc(rho);

30 dmu = obj.dmuFunc(rho);

31 dkappa = obj.dkappaFunc(rho);

32 mp.mu = mu;

33 mp.kappa = kappa;

34 mp.dmu = dmu;

35 mp.dkappa = dkappa;

36 end

37

38 end

39

40 methods (Access = protected)

41

42 function init(obj ,cParams)

43 obj.nElem = cParams.nElem;

44 obj.pdim = cParams.dim;

45 obj.computeNDim(cParams);

46 obj.saveYoungAndPoisson(cParams);

47 obj.createIsotropicMaterial ();

48 obj.computeMuAndKappaIn0 ();

49 obj.computeMuAndKappaIn1 ();

50 end

51

52 function computeNDim(obj ,cParams)

53 switch cParams.dim

54 case '2D'
55 obj.ndim = 2;

56 case '3D'
57 obj.ndim = 3;

58 end

24

Study of material interpolation for 3D lightweight structures

59 end

60

61 function saveYoungAndPoisson(obj ,cParams)

62 cP = cParams.constitutiveProperties;

63 obj.matProp.rho1 = cP.rho_plus;

64 obj.matProp.rho0 = cP.rho_minus;

65 obj.matProp.E1 = cP.E_plus;

66 obj.matProp.E0 = cP.E_minus;

67 obj.matProp.nu1 = cP.nu_plus;

68 obj.matProp.nu0 = cP.nu_minus;

69 end

70

71 function createIsotropicMaterial(obj)

72 s.pdim = obj.pdim;

73 s.ptype = 'ELASTIC ';
74 obj.isoMaterial = Material.create(s);

75 end

76

77 function computeMuAndKappaIn0(obj)

78 E0 = obj.matProp.E0;

79 nu0 = obj.matProp.nu0;

80 obj.matProp.mu0 = obj.computeMu(E0 ,nu0);

81 obj.matProp.kappa0 = obj.computeKappa(E0 ,nu0);

82

83 end

84

85 function computeMuAndKappaIn1(obj)

86 E1 = obj.matProp.E1;

87 nu1 = obj.matProp.nu1;

88 obj.matProp.mu1 = obj.computeMu(E1 ,nu1);

89 obj.matProp.kappa1 = obj.computeKappa(E1 ,nu1);

90 end

91

92 function computeSymbolicInterpolationFunctions(obj)

93 [muS ,dmuS ,kS,dkS] = obj.computeSymbolicMuKappa ();

94 obj.muFunc = matlabFunction(muS);

95 obj.dmuFunc = matlabFunction(dmuS);

96 obj.kappaFunc = matlabFunction(kS);

97 obj.dkappaFunc = matlabFunction(dkS);

98 end

99

100 function [muS ,dmuS ,kS,dkS] = computeSymbolicMuKappa(obj)

101 [muS ,dmuS] = obj.computeMuSymbolicFunctionAndDerivative ();

102 [kS,dkS] = obj.computeKappaSymbolicFunctionAndDerivative ();

103 end

104

105 function mu = computeMu(obj ,E,nu)

106 mat = obj.isoMaterial;

107 mu = mat.computeMuFromYoungAndNu(E,nu);

108 end

109

110 function k = computeKappa(obj ,E,nu)

111 mat = obj.isoMaterial;

112 k = mat.computeKappaFromYoungAndNu(E,nu);

113 end

114

115 function computeNstre(obj)

116 ndim = obj.ndim;

117 obj.nstre = 3*(ndim -1);

118 end

25

Study of material interpolation for 3D lightweight structures

119

120 end

121

122 methods (Access = protected , Abstract)

123 computeMuSymbolicFunctionAndDerivative(obj)

124 computeKappaSymbolicFunctionAndDerivative(obj)

125 end

126

127 end

1 classdef MaterialInterpolationFactory < handle

2

3 methods (Access = public , Static)

4

5 function obj = create(cParams)

6 switch cParams.typeOfMaterial

7 case 'ISOTROPIC '
8 switch cParams.interpolation

9 case 'SIMPALL '
10 if ~isfield(cParams ,'simpAllType ')
11 cParams.simpAllType = 'EXPLICIT ';
12 end

13 switch cParams.simpAllType

14 case 'EXPLICIT '
15 obj = SimpAllInterpolationExplicit(cParams);

16 case 'IMPLICIT '
17 switch cParams.dim

18 case '2D'
19 obj = SimpAllInterpolationImplicit2D(

cParams);

20 case '3D'
21 obj = SimpAllInterpolationImplicit3D(

cParams);

22 otherwise

23 error('Invalid problem dimension.');
24 end

25 otherwise

26 error('Invalid SimpAll type.');
27 end

28 case 'SIMP_Adaptative '
29 obj = SimpInterpolationAdaptative(cParams);

30 case 'SIMP_P3 '
31 obj = SimpInterpolationP3(cParams);

32 otherwise

33 error('Invalid Material Interpolation method.');
34 end

35 otherwise

36 error('Invalid type of material ');
37 end

38

39 end

40

41 end

42

43 end

1 classdef SimpAllInterpolationExplicit < MaterialInterpolation

2

3 methods (Access = public)

4

26

Study of material interpolation for 3D lightweight structures

5 function obj = SimpAllInterpolationExplicit(cParams)

6 obj.init(cParams);

7 obj.computeNstre ();

8 obj.computeSymbolicInterpolationFunctions ();

9 end

10

11 end

12

13 methods (Access = protected)

14

15 function [mS,dmS] = computeMuSymbolicFunctionAndDerivative(obj)

16 mS = obj.computeSymMu ();

17 dmS = diff(mS);

18 end

19

20 function [kS,dkS] = computeKappaSymbolicFunctionAndDerivative(obj)

21 kS = obj.computeSymKappa ();

22 dkS = diff(kS);

23 end

24

25 function mu = computeSymMu(obj)

26 m0 = obj.matProp.mu0;

27 m1 = obj.matProp.mu1;

28 k0 = obj.matProp.kappa0;

29 k1 = obj.matProp.kappa1;

30 eta0 = obj.computeEtaMu(m0,k0);

31 eta1 = obj.computeEtaMu(m1,k1);

32 c = obj.computeCoeff(m0 ,m1 ,eta0 ,eta1);

33 mu = obj.computeRationalFunction(c);

34 end

35

36 function kappa = computeSymKappa(obj)

37 m0 = obj.matProp.mu0;

38 m1 = obj.matProp.mu1;

39 k0 = obj.matProp.kappa0;

40 k1 = obj.matProp.kappa1;

41 eta0 = obj.computeEtaKappa(m0);

42 eta1 = obj.computeEtaKappa(m1);

43 c = obj.computeCoeff(k0 ,k1 ,eta0 ,eta1);

44 kappa = obj.computeRationalFunction(c);

45 end

46

47 function etaMu = computeEtaMu(obj ,mu,kappa)

48 N = obj.ndim;

49 num = -mu*(4*mu - kappa*N^2 - 2*mu*N^2 + 2*mu*N);

50 den = 2*N*(kappa + 2*mu);

51 etaMu = num/den;

52 end

53

54 function etaKappa = computeEtaKappa(obj ,mu)

55 N = obj.ndim;

56 num = 2*mu*(N-1);

57 den = N;

58 etaKappa = num/den;

59 end

60

61 end

62

63 methods (Access = protected , Static)

64

27

Study of material interpolation for 3D lightweight structures

65 function c = computeCoeff(f0,f1,eta0 ,eta1)

66 c.n01 = -(f1 - f0)*(eta1 - eta0);

67 c.n0 = f0*(f1 + eta0);

68 c.n1 = f1*(f0 + eta1);

69 c.d0 = (f1 + eta0);

70 c.d1 = (f0 + eta1);

71 end

72

73 function f = computeRationalFunction(s)

74 rho = sym('rho','positive ');
75 n01 = s.n01;

76 n0 = s.n0;

77 n1 = s.n1;

78 d0 = s.d0;

79 d1 = s.d1;

80 num = n01*(1-rho)*(rho) + n0*(1-rho) + n1*rho;

81 den = d0*(1-rho) + d1*rho;

82 f = num/den;

83 end

84

85 end

86

87 end

1 classdef SimpAllInterpolationImplicit < MaterialInterpolation

2

3 properties (Access = protected)

4 dmu0

5 dmu1

6 dk0

7 dk1

8 end

9

10 methods (Access = protected)

11

12 function [mS,dmS] = computeMuSymbolicFunctionAndDerivative(obj)

13 s.f0 = obj.matProp.mu0;

14 s.f1 = obj.matProp.mu1;

15 s.df0 = obj.dmu0;

16 s.df1 = obj.dmu1;

17 [mS,dmS] = obj.computeParameterInterpolationAndDerivative(s);

18 end

19

20 function [kS,dkS] = computeKappaSymbolicFunctionAndDerivative(obj)

21 s.f0 = obj.matProp.kappa0;

22 s.f1 = obj.matProp.kappa1;

23 s.df0 = obj.dk0;

24 s.df1 = obj.dk1;

25 [kS,dkS] = obj.computeParameterInterpolationAndDerivative(s);

26 end

27

28 function [f,df] = computeParameterInterpolationAndDerivative(obj ,s)

29 c = obj.computeCoefficients(s);

30 rho = sym('rho','positive ');
31 fSym = obj.rationalFunction(c,rho);

32 dfSym = obj.rationalFunctionDerivative(c,rho);

33 f = simplify(fSym);

34 df = simplify(dfSym);

35 end

36

28

Study of material interpolation for 3D lightweight structures

37 function c = computeCoefficients(obj ,s)

38 f1 = s.f1;

39 f0 = s.f0;

40 df1 = s.df1;

41 df0 = s.df0;

42 c1 = sym('c1','real');
43 c2 = sym('c2','real');
44 c3 = sym('c3','real');
45 c4 = sym('c4','real');
46 coef = [c1 c2 c3 c4];

47 r1 = obj.matProp.rho1;

48 r0 = obj.matProp.rho0;

49 eq(1) = obj.rationalFunction(coef ,r1) - f1;

50 eq(2) = obj.rationalFunction(coef ,r0) - f0;

51 eq(3) = obj.rationalFunctionDerivative(coef ,r1) - df1;

52 eq(4) = obj.rationalFunctionDerivative(coef ,r0) - df0;

53 c = solve(eq ,[c1 ,c2 ,c3 ,c4]);

54 c = struct2cell(c);

55 c = [c{:}];

56 end

57

58 end

59

60 methods (Access = protected , Static)

61

62 function r = rationalFunction(coef ,rho)

63 c1 = coef (1);

64 c2 = coef (2);

65 c3 = coef (3);

66 c4 = coef (4);

67 num = (c1*rho^2 + c2*rho + 1);

68 den = (c4 + rho*c3);

69 r = num/den;

70 end

71

72 function dr = rationalFunctionDerivative(coef ,rho)

73 c1 = coef (1);

74 c2 = coef (2);

75 c3 = coef (3);

76 c4 = coef (4);

77 n1 = c2 + 2*rho*c1;

78 d1 = c4 + rho*c3;

79 dr1 = n1/d1;

80 n2 = -c3*(c1*rho^2 + c2*rho + 1);

81 d2 = (c4 + rho*c3)^2;

82 dr2 = n2/d2;

83 dr = dr1 + dr2;

84 end

85

86 end

87

88 end

1 classdef SimpAllInterpolationImplicit2D < SimpAllInterpolationImplicit

2

3 methods (Access = public)

4

5 function obj = SimpAllInterpolationImplicit2D(cParams)

6 obj.init(cParams);

7 obj.computeNstre ();

29

Study of material interpolation for 3D lightweight structures

8 obj.computeSymbolicInterpolationFunctions ();

9 obj.dmu0 = obj.computeDmu0 ();

10 obj.dmu1 = obj.computeDmu1 ();

11 obj.dk0 = obj.computeDKappa0 ();

12 obj.dk1 = obj.computeDKappa1 ();

13 end

14

15 end

16

17 methods (Access = protected)

18

19 function [pMu ,pKappa] = computePolarizationTensorAsMuKappa(eMatrix ,

eInclusion ,nuMatrix ,nuInclusion)

20 coef = obj.compute2Dcoefficients(eMatrix ,eInclusion ,nuMatrix ,

nuInclusion);

21 [p1,p2] = obj.computeP1P2(coef);

22 [pMu ,pKappa] = obj.computePkappaPmu(p1 , p2);

23 end

24

25 function dmu0 = computeDmu0(obj)

26 E1 = obj.matProp.E1;

27 E0 = obj.matProp.E0;

28 nu1 = obj.matProp.nu1;

29 nu0 = obj.matProp.nu0;

30 mu0 = obj.matProp.mu0;

31 [pMu0 ,~] = obj.computePolarizationTensorAsMuKappa(E0 ,E1 ,nu0 ,nu1);

32 dmu0 = -mu0*pMu0;

33 end

34

35 function dmu1 = computeDmu1(obj)

36 E1 = obj.matProp.E1;

37 E0 = obj.matProp.E0;

38 nu1 = obj.matProp.nu1;

39 nu0 = obj.matProp.nu0;

40 mu1 = obj.matProp.mu1;

41 [pMu1 ,~] = obj.computePolarizationTensorAsMuKappa(E1 ,E0 ,nu1 ,nu0);

42 dmu1 = mu1*pMu1;

43 end

44

45 function dkappa0 = computeDKappa0(obj)

46 E1 = obj.matProp.E1;

47 E0 = obj.matProp.E0;

48 nu1 = obj.matProp.nu1;

49 nu0 = obj.matProp.nu0;

50 kappa0 = obj.matProp.kappa0;

51 [~,pKappa0] = obj.computePolarizationTensorAsMuKappa(E0,E1,nu0 ,nu1);

52 dkappa0 = -kappa0*pKappa0;

53 end

54

55 function dkappa1 = computeDKappa1(obj)

56 E1 = obj.matProp.E1;

57 E0 = obj.matProp.E0;

58 nu1 = obj.matProp.nu1;

59 nu0 = obj.matProp.nu0;

60 kappa1 = obj.matProp.kappa1;

61 [~,pKappa1] = obj.computePolarizationTensorAsMuKappa(E1,E0,nu1 ,nu0);

62 dkappa1 = kappa1*pKappa1;

63 end

64

65 end

30

Study of material interpolation for 3D lightweight structures

66

67 methods (Access = protected , Static)

68

69 function coef = compute2Dcoefficients(eMatrix ,eInclusion ,nuMatrix ,

nuInclusion)

70 coef.a = (1 + nuMatrix)/(1 - nuMatrix);

71 coef.b = (3 - nuMatrix)/(1 + nuMatrix);

72 coef.gam = eInclusion/eMatrix;

73 coef.tau1 = (1 + nuInclusion)/(1 + nuMatrix);

74 coef.tau2 = (1 - nuInclusion)/(1 - nuMatrix);

75 coef.tau3 = (nuInclusion *(3* nuMatrix - 4) + 1)/(nuMatrix *(3* nuMatrix -

4) + 1);

76 end

77

78 function [p1,p2] = computeP(s)

79 a = s.a;

80 b = s.b;

81 gam = s.gam;

82 tau1 = s.tau1;

83 tau2 = s.tau2;

84 tau3 = s.tau3;

85 p1 = 1/(b*gam+tau1)*(1+b)*(tau1 -gam);

86 p2 = 0.5*(a-b)/(b*gam+tau1)*(gam*(gam -2* tau3)+tau1*tau2)/(a*gam+tau2

);

87 end

88

89 function [pMu ,pKappa] = computePKappaMu(p1, p2)

90 pMu = p1;

91 pKappa = 2*p2 + p1;

92 end

93

94 end

95

96 end

1 classdef SimpAllInterpolationImplicit3D < SimpAllInterpolationImplicit

2

3 methods (Access = public)

4

5 function obj = SimpAllInterpolationImplicit3D(cParams)

6 obj.init(cParams);

7 obj.computeNstre ();

8 obj.dmu0 = obj.computeDmu0 ();

9 obj.dmu1 = obj.computeDmu1 ();

10 obj.dk0 = obj.computeDKappa0 ();

11 obj.dk1 = obj.computeDKappa1 ();

12 obj.computeSymbolicInterpolationFunctions ();

13 end

14

15 end

16

17 methods (Access = protected)

18

19 function [dMu ,dKappa] = computePolarizationParametersAsMuKappa(obj ,

eMatrix ,eInclusion ,nuMatrix ,nuInclusion)

20 [m1,m2] = obj.compute3Dcoefficients(eMatrix ,eInclusion ,nuMatrix ,

nuInclusion);

21 [dMu ,dKappa] = obj.computeDkappaDmu(m1 ,m2);

22 end

23

31

Study of material interpolation for 3D lightweight structures

24 function dmu0 = computeDmu0(obj)

25 E1 = obj.matProp.E1;

26 E0 = obj.matProp.E0;

27 nu1 = obj.matProp.nu1;

28 nu0 = obj.matProp.nu0;

29 mu0 = obj.matProp.mu0;

30 mu1 = obj.matProp.mu1;

31 [dMu0 ,~] = obj.computePolarizationParametersAsMuKappa(E0 ,E1 ,nu0 ,nu1);

32 qmu0 = dMu0/(mu0*(mu1 -mu0));

33 dmu0 = mu0*(mu1 -mu0)*qmu0;

34 end

35

36 function dmu1 = computeDmu1(obj)

37 E1 = obj.matProp.E1;

38 E0 = obj.matProp.E0;

39 nu1 = obj.matProp.nu1;

40 nu0 = obj.matProp.nu0;

41 mu0 = obj.matProp.mu0;

42 mu1 = obj.matProp.mu1;

43 [dMu1 ,~] = obj.computePolarizationParametersAsMuKappa(E1 ,E0 ,nu1 ,nu0);

44 qmu1 = dMu1/(mu1*(mu0 -mu1));

45 dmu1 = mu1*(mu1 -mu0)*qmu1;

46 end

47

48 function dkappa0 = computeDKappa0(obj)

49 E1 = obj.matProp.E1;

50 E0 = obj.matProp.E0;

51 nu1 = obj.matProp.nu1;

52 nu0 = obj.matProp.nu0;

53 kappa0 = obj.matProp.kappa0;

54 kappa1 = obj.matProp.kappa1;

55 [~,dKappa0] = obj.computePolarizationParametersAsMuKappa(E0,E1,nu0 ,nu1

);

56 qKappa0 = dKappa0 /(kappa0 *(kappa1 -kappa0));

57 dkappa0 = kappa0 *(kappa1 -kappa0)*qKappa0;

58 end

59

60 function dkappa1 = computeDKappa1(obj)

61 E1 = obj.matProp.E1;

62 E0 = obj.matProp.E0;

63 nu1 = obj.matProp.nu1;

64 nu0 = obj.matProp.nu0;

65 kappa0 = obj.matProp.kappa0;

66 kappa1 = obj.matProp.kappa1;

67 [~,dKappa1] = obj.computePolarizationParametersAsMuKappa(E1,E0,nu1 ,nu0

);

68 qKappa1 = dKappa1 /(kappa1 *(kappa0 -kappa1));

69 dkappa1 = kappa1 *(kappa1 -kappa0)*qKappa1;

70 end

71

72 end

73

74 methods (Access = protected , Static)

75

76 function [m1,m2] = compute3Dcoefficients(eMatrix ,eInclusion ,nuMatrix ,

nuInclusion)

77 mu = eMatrix /(2*(1+ nuMatrix));

78 muI = eInclusion /(2*(1+ nuInclusion));

79 mu2 = mu - muI;

80 lambda = eMatrix*nuMatrix /((1+ nuMatrix)*(1 -2* nuMatrix));

32

Study of material interpolation for 3D lightweight structures

81 lambdaI = eInclusion*nuInclusion /((1+ nuInclusion)*(1 -2* nuInclusion));

82 lam2 = lambda - lambdaI;

83 m1n = 15*mu*mu2*(nuMatrix -1);

84 m1d = 15*mu*(1- nuMatrix)+2* mu2 *(5* nuMatrix -4);

85 m1 = m1n/m1d;

86 m2n = lam2 *(15*mu*lambda *(1- nuMatrix) + 2* lambda*mu2 *(5* nuMatrix

-4)) - 2*mu2*(lambda*mu2 -5*mu*nuMatrix*lam2);

87 m2d = 5*mu2 *(3*mu*lambda *(1- nuMatrix) -3*mu*nuMatrix*lam2 -lambda*

mu2*(1-2* nuMatrix));

88 m2 = m2n/m2d;

89 end

90

91 function [dMu ,dKappa] = computeDkappaDmu(m1,m2)

92 dMu = m1;

93 dKappa = m1*m2+2/3* m1;

94 end

95

96 end

97

98 end

References

[1] Shtrikman S Hashin Z. A variational approach to the theory of the elastic behaviour of
multiphase materials. J Mech Phys Solids., (1st edition) edition, 1963, Vol. 11, pp. 127to
140.

33

	Git example
	Git and GitHub commands
	Branching

	Object oriented programming example
	Testing example
	Testing
	Code coverage
	UMLs

	Hashin Shtrikman Bounds
	Swan code modified scripts

