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Coherent phase slips in coupled matter-wave circuits
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Quantum phase slips are a dual process of particle tunneling in coherent networks. Besides being of central
interest to condensed matter physics, quantum phase slips are resources that are sought to be manipulated in
quantum circuits. Here, we devise a specific matter-wave circuit enlightening quantum phase slips. Specifically,
we investigate the quantum many-body dynamics of two side-by-side ring-shaped neutral bosonic systems
coupled through a weak link. By imparting a suitable magnetic flux, persistent currents flow in each ring with
given winding numbers. We demonstrate that coherent phase slips occur as winding number transfer among the
two rings, with the populations in each ring remaining nearly constant. Such a phenomenon occurs as a result of
a specific entanglement of circulating states, that, as such, cannot be captured by a mean-field treatment of the
system. Our work can be relevant for the observation of quantum phase slips in cold-atom experiments and their
manipulation in matter-wave circuits. To make contact with the field, we show that the phenomenon has clear
signatures in the momentum distribution of the system providing the time-of-flight image of the condensate.

DOI: 10.1103/PhysRevResearch.4.L022038

Introduction. Phase slips are jumps of the phase of the
wave function. In coherent systems such as superconducting
and cold-atom networks, they occur because of the suppres-
sion of the amplitude of the superconducting/superfluid order
parameter making the phase unrestricted and able to jump
by a discrete amount (in multiples of 2π ) [1,2]. When such
suppression is caused by thermal fluctuations, a thermal phase
slip occurs. Quantum phase slips (QPSs), instead, are induced
by quantum fluctuations. A way to engineer QPSs in meso-
scopic physics is through Josephson junctions, in which such
events correspond to tunneling of the phase of the order pa-
rameter [1,3]. Intriguingly, relying on a phase-charge duality,
it was argued that such tunneling events occur in proximity to
the Coulomb-blocked regime [4,5].

In cold-atom settings, QPSs have been investigated in dif-
ferent settings with enhanced control and flexibility of the
physical conditions [6–10]. Atomtronic circuits, in partic-
ular, define coherent networks to study mesoscopic effects
and quantum transport of ultracold atoms [11–15]. In the
interesting configuration of bosonic condensates in a toroidal
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geometry, thermal and QPSs have been suggested as the
main mechanisms responsible for the dynamics of the atoms’
persistent flow through the nucleation of vortex states and
associated phonon emission, or through the formation of
dark solitons activated thermally or by the stirring protocol
[16–23].

Although over the past three decades several phenomena
in superconducting networks have been related to QPSs’ for-
mation [24–31], convincing experimental evidence of their
occurrence in solid state physics has been obtained only
recently [32]. In cold atoms, instead, QPSs, as a coherent
transfer of vortices or flux, have not been observed yet.

Besides their interest in fundamental physics, QPSs can
be a resource for quantum technology. Josephson-junction-
based quantum devices harnessing QPSs have been carried out
[31,33,34]. For atomtronic ring circuits interrupted by weak
links, defining the atomic counterparts of SQUID devices,
QPSs localized at the weak link play a crucial role for creating
the superposition of the current states that is expected to be
especially important for quantum sensing [21,35–39].

Relying on the considerable know-how achieved in
magneto-optic circuit design and atom manipulation tech-
niques, integrated atomtronic circuits define an interesting
direction of the field [12,13]. In this context, simple circuits of
coupled rings and waveguides have been considered [37,40–
49]. Coupled-ring condensates, in particular, are prototype
systems for the definition of coherent cold-atom networks in
which matter-wave flows are manipulated as a resource. Even
though several attempts have been done in this direction, the
analyses carried out so far show that independent winding
numbers can coexist in the two rings separately [45,46]. The
transfer of winding numbers, though, has not been achieved.
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FIG. 1. Schematic diagram of an optical lattice consisting of
two-sided rings of five sites each. We represent the small link be-
tween rings, tl , with a small interfering pattern connecting the rings.
Both rings have an effective artificial gauge field denoted by �L and
�R.

Here, we solve the above bottleneck and demonstrate a
coherent QPS in two coupled rings arranged side-by-side as in
Fig. 1. Bosonic particles in a side-by-side ring geometry, with
no external artificial gauge fields, has already been realized in
experiment with high control on tunneling rates and on-site
interactions [50]; see also [51,52]. In the two rings system
devised here, matter-wave currents with different winding
numbers are assumed to be imparted through effective mag-
netic flux [53], feasible with suitable laser fields [12,13],
through phase mask or trap depth manipulation [54]. We will
argue that to observe such an effect it is important that the
system work in the full-fledged quantum regime. Indeed, the
QPS that we observe results from an oscillation of entangled
states of angular momentum states of the two rings.

The model. We consider a system of bosonic atoms trapped
in a lattice of two coupled coplanar rings, each of Ns sites,
and subjected to an effective magnetic flux �α , α = L, R. See
Fig. 1 for a schematic picture of the system. The system’s
Hamiltonian reads

H = HL + HR + HI (τ ),

Hα =
Ns−1∑
i=0

[
U

2

(
n̂2

α,i − n̂α,i
) − t

(
e−i 2π�α

Ns â†
α,iâα,i+1 + H.c.

)]
,

HI (τ ) = −tl (τ )(â†
L,0âR,0 + â†

R,0âL,0). (1)

âα,i and â†
α,i annihilate and create, respectively, a boson

in the site i of the ring α, satisfying periodic conditions
âα,Ns = âα,0, â†

α,Ns
= â†

α,0, and the bosonic number operator is

n̂α,i = â†
α,iâα,i. The parameters t and U � 0 are the intra-ring

hopping amplitude and repulsive interaction; tl describes the
tunneling among the two rings. We set t = 1.

The limits U = 0 and U → ∞ can be treated analytically
for tl = 0. The former reduces to the one-particle problem,
while the latter maps to tight-binding hard-core bosons [55].
We focus on the regime with weak inter-ring coupling tl < t ,
allowing us to work out both the numerical simulations ob-
tained by exact diagonalization and perturbative analysis in
tl/t .

For uncoupled symmetric rings, tl = �L = �R = 0, the
energy spectrum is invariant under the exchange of left and
right states, or under the inversion of angular momentum
directions in each separate ring, resulting in specific degen-
eracies in the spectrum of (1).

(a)

(b)

FIG. 2. Particle number’s expectation value, standard deviation,
and current oscillations after quenching a system of two rings of five
sites, Ns = 5, and tl = 0.05. The initial fluxes are �L = 1, �R =
0 and the final ones �L = �R = 0.05. (a) Noninteracting (single-
particle) case, U = 0, Np = 1. (b) Interactions set to U = 100 and
Np = 2 (Np > 2 is considered in Fig. 4). See Fig. 3 to compare the
periods for different tl .

For �L = �R > 0, the rotational symmetry is broken, and
clockwise and counterclockwise current states split into sep-
arate energy levels. In this regime, the eigenstates are found
to be either nondegenerate or twofold degenerate. A finite tl
splits the remaining degenerate energy levels, and the new
eigenvectors become a superposition of the uncoupled degen-
erate states. We shall see that such level splitting is important
for the formation of specific entangled states enabling the
QPS (see Supplemental Material [56] for an example of such
energy splittings).

Quench protocol. We first construct a state with the same
density of particles in each ring, Np

2 , but with zero angular
momentum on the right, 〈JR〉 = 0, and a nonvanishing current
on the left, 〈JL〉 .= Jmax. We denote such state as |Lj ; R0〉 .=
|Np

2 , Jmax; Np

2 , 0〉, resulting to be an eigenstate of the system
when �L = j, �R = 0, with j integer. Next, we perform
the quench on the system to �L = �R � 0. Then, the state
|Lj ; R0〉 is a superposition of quasidegenerate eigenvectors,
each with the same particle number Np

2 and total current Jmax.
After the quench, a time evolution occurs on the expectation
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(a)

(b)

FIG. 3. Energy gap (such that periods T = 2π

�E ) as a function of
the interring coupling tl and �L = �R = 0.01, 0.05, 0.1 for (a) one
particle (�E = 2tl

Ns
), (b) two particles and U = 100 (�E ∝ t2

l ).
Dashed black lines in both plots mark the energy gaps for tl = 0.05,
corresponding to T = 314 (a) and T = 18793 (b), the periods in
Fig. 2.

value of the number of particles 〈n̂α〉, its variance σ 2
α , and the

current 〈Jα〉, defined as

σ 2
α = 〈

n̂2
α

〉 − 〈n̂α〉2, (2)

〈Jα〉 = −i
∑

k

〈â†
α,k âα,k+1 − â†

α,k+1âα,k〉, (3)

with n̂α = ∑
i n̂α,i.

Results. Current oscillations between left and right rings
are found for small and large interactions, U � 0.01 and U �
10, when following the quench. See Fig. 2 for the cases U = 0
and U = 100. The currents in each ring oscillate completely
out of phase, between a maximum value Jmax and zero:

|L(τ ); R(τ )〉 = cos (ω τ )|Lj ; R0〉 + sin (ω τ )|L0; Rj〉, (4)

with ω = �E
2π

, �E being the energy gap between the involved
states. Importantly, the expectation number 〈n̂α〉 in each of
the two rings results in being nearly constant at all times:
no net transfer of particles between rings occurs and current
oscillations happen due to the phase slipping through the weak
link. Note that the phase by itself does not carry any angular
momentum or direction, and for the current to change, an
arbitrary small flux �L/R = �α is required to be applied in
each ring.

The specific particle configuration nα and σ 2
α , and the max-

imum current Jmax in |Lj ; R0〉 and |L0; Rj〉 depend on U and
Np (see Table I and Supplemental Material [56] for a more
detailed analysis). By using perturbation analysis, we find

TABLE I. Expected value of the occupation and variance in each
ring, amplitude and period (T = 2π/ω) of current oscillations, in the
case of no interactions and for U → ∞.

〈n̂〉 σ 2 Jmax Period

U = 0 Np

2
Np

4 Np sin ( 2π

Ns
) πNs

tl

U → ∞ Np even Np

2 0 4(Nb + 1) cos ( π

Ns
) sin ( πNe

2Ns
) ∝ 1

t2
l

Np odd Np

2
1
4 4(Nb + 1) cos ( π

Ns
) cos ( π

2Ns
) sin ( πNe

2Ns
) ∝ 1

tl

that ω depends linearly on tl for U = 0, and quadratically for
large U (except for odd Np; see Fig. 3 and Table I). Impor-
tant insights on the effect of the interaction can be obtained
by studying the limit U → ∞ (see Supplemental Material
[56] for more details on the U and tl dependence). Although
the expected number of particles results in being barely af-
fected by U , its variance σα does. For U = 0, σ 2

α = Np

4 . For
large interactions, instead, any measurement of the occupation
would always find half the particles in each ring, and therefore
σ 2

α = 0 is found (or Np±1
2 particles in each ring and σ 2

α = 1
4

for Np odd). We also remark that, because of the particle-hole
symmetry holding for large interactions, QPSs for holes occur
similarly to the particle ones (see Fig. 4). As for the maximum
current, in the case of U = 0, it results in scaling linearly with
the number of particles, Jmax = Np sin ( 2π

Ns
), while for large

interactions we find Jmax ∝ (Nb + 1) sin ( πNe
2Ns

), with Nb and
Ne the background and excess of particles such that Np =
2Ns × Nb + Ne. To transfer larger currents, one can simply
start with an integer flux �L in 1 < n < kmax. Numerical tests

FIG. 4. Each plot compares QPSs where (excess) particles Ne

and holes 2Ns − Ne are exchanged in the strongly interacting regime,
U = 1000, and in rings of Ns = 3 sites. Particle-hole symmetry is
displayed for two different commensurate fillings, such that the total
number of particles is Np = 2Ns × Nb + Ne, with Nb = 0 (left plots)
and Nb = 1 (right plots), and Ne = {2, 4} (top plots) and Ne = {1, 5}
(bottom plots). We quench from �L = 1, �R = 0, to �L = 0.01,
�R = 0.01, and from tl = 10−5 to tl = 0.01. Note that the period
substantially changes for each commensurate filling Nb = 0, 1, de-
spite having the same number of particles and holes. These changes
appear because the energy levels shift proportionally to Nb.
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FIG. 5. Time-of-flight expansion of the left ring. Parameters
are �L = 1, �R = 0 to �L = 0.01, �R = 0.01, tl = 0 to tl = 0.05,
Np = 2, Ns = 5 in each ring, U = 10. Triangles indicate the times at
which the TOF snapshots where taken.

for various ring sizes and initial currents corroborate that
QPSs are still found as Np and angular momenta are increased
(see Fig. 4).

By controlling tl in time, and relying on our condition
of weak ring-ring coupling, we note that different entangled
states of angular momenta can be engineered by our scheme.
The transfer of angular momentum can be obtained by ma-
nipulating tl on τ = T

2 × (2n + 1), with T the period. For
τ = T

4 × (2n + 1), for example, the entangled state |Lj ; R0〉 +
|L0; Rj〉 can be achieved.

Readout of the QPSs. Matter-wave currents can be detected
through time-of-flight (TOF) measurements [57,58]. Such
measurements in the far field are directly related to the mo-
mentum distribution at the moment in which the condensate
is released from the ring trap. Therefore, the time evolution of
the persistent current is reflected in the time evolution of the
momentum distribution: n(k, τ ) = ∑

i, j eik·(Ri−Rj )Ci, j (τ )

with Ci, j (τ ) = 〈ψ (τ )|a†
i a j |ψ (τ )〉 being the one-body

correlation function between different sites and R j denoting
the position of the lattice sites of the ring. In each ring, we
find that n(k, τ ) evolves from a peak momentum distribution
to the characteristic circular-shaped one as soon as the system
acquires one unit of angular momentum. Such dynamics in
the TOF provides the readout of the transfer of coherent phase
slips between zero and one unit of angular momentum. See
Fig. 5.

Discussion and conclusions. We have theoretically demon-
strated QPSs between two tunnel-coupled rings of interacting

bosons: We prepare two different phase states of the two sep-
arated rings; after quenching the tunnel between the rings, we
observe a coherent oscillation between the phase states with
nearly vanishing population fluctuations (in each of the two
rings). Once calibrated, the scheme can be used to produce,
transfer, and entangle current states by turning on and off the
the weak link at specific times after the quenching protocol.
We find that the phase slips faster from one ring to the other
for stronger inter-ring couplings. Interactions reduce the max-
imum current in each ring, and make phase slips slower (see
Supplemental Material [56] for the interplay between interac-
tions and period of oscillations). Indeed, such phenomenon
occurs as a direct consequence of the entangled state cre-
ated between the phase states of the two rings (macroscopic
superposition of all particles rotating with different angular
momenta in each ring). The coherent oscillations of the QPSs
are characterized by the simultaneous creation and destruction
of current states in each ring (see Supplemental Material [56]
for specific examples). As such, QPS transfer is a genuine
quantum effect that cannot be captured by standard mean-
field analysis such as a Gross-Pitaevskii based approach. In
fact, the latter neglects entanglement and, to the best of our
knowledge, cannot describe coherent transfer of matter-waves
without transfer of population (which is an essential trait of
our demonstration). We note that the coupling between the
rings is perturbative and as such, the corresponding emergence
of quasidegenerate states involving a superposition of left and
right current states holds for large particle numbers. The scope
of our results can be further enlarged by resorting to a suitable
particle-hole symmetry. Therefore, our QPSs are expected to
occur also in systems with large particle numbers. We studied
the momentum distribution that is the standard method to an-
alyze neutral matter-wave currents in cold-atom experiments
[57–62].

Our work provides a specific platform to observe QPSs
in cold atoms, which are a well known open problem in the
field and a fundamental pillar in the development of quantum
technologies. At the same time, our work results are relevant
to progress in the implementation of integrated atomtronic
circuits [12,13]. Specifically, our results effectively enable
atomtronic circuits based on coupled atomic rings: In a sense
analogs to the “rapid single flux quantum logic” conceived
with SQUIDs [63], complex structures where the information
is encoded in the phase slips inherent to the different rings
could be implemented.

Our proposal is within the current know-how in ultracold-
atom experiments. Coupled ring circuits have been previously
investigated [50]. We note the recent advances on the design of
matter wave circuits of ultracold atoms of any shape and inten-
sity with full control and flexibility of the physical conditions
as well as with multiple examples of experimentally control-
ling persistent currents in ring-shaped circuits (see [12,13] for
a summary of the relevant experimental achievements in the
field). Specifically for our scheme, relying on the microsecond
refresh rates of digital micrometer devices [64,65] and the
painting technique [66], it is feasible to impart the effective
magnetic flux on the two different rings separately. A pos-
sible protocol could be to impart the rotation to two distant
rings and then adiabatically approaching them or using phase
masks, whose micrometer resolution has been demonstrated,
to address each ring [67].
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