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Abstract

We show that if every NP set is <F,,-reducible to some P-selective set, then NP

is included in DTIME(T‘OH/ l0”)). The result is extended for some unbounded
reducibilities such as Sﬁosn)o“,_"-reducibility.
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1 Introduction

One of the important questions in structural complexity theory is whether every NP problem is
solvable by polynomial-size circuits, i.e., NP C? P/poly. Furthermore, it has been asked what
is the deterministic time complexity of NP problems (e.g., NP C P) if NP C P/poly. That is,
if NP is easy in the nonuniform complexity measure, how easy is NP in the uniform complexity
measure? We study such type of questions in this paper.

Let RE(SPARSE) be the class of languages that are polynomial-time Turing reducible to
some sparse set. (In general, let R.(SPARSE) be the class of languages that are polynomial-time
r reducible to some sparse set. Since we consider only polynomial-time reducibilities, we often
omit “polynomial-time” in the following.) In other words, L is in RE(SPARSE) if and only if L
is recognizable by some polynomial-time deterministic Turing machine using some sparse set as
an oracle. Since P/poly = RE(SPARSE), the above question is equivalent to the following one:
For which uniform complexity class C do we have NP C RE(SPARSE) = NP C C? While no
nontrivial answer is known to this question!, we have obtained several interesting results under
stronger assumptions that NP is contained in certain subclasses of RE(SPARSE).

Since RE(SPARSE) is the class of languages that are Turing reducible to some sparse set, one
way of obtaining subclasses of RE(SPARSE) is to consider some restriction on the reducibility.
For example, Mahaney [Mah82] showed that if all NP sets are many-one reducible to some sparse
set, then P = NP. That is,

NP C RE(SPARSE) = NP C P.

Recently, Ogiwara and Watanabe [OW91] proved a similar result for bounded truth-table re-
ducibility, one restriction of the Turing reducibility which is more general than the many-one

reducibility. They extended Mahaney’s result by showing that

NP C RE,(SPARSE) = NP C P.

This result has been improved further more recently; see [AHH*93]. However, it is open whether

the result can be improved for b(n)-bounded truth-table reducibility for some nonconstant func-

1We should note here that we have some evidence indicating that NP C P/poly is unlikely. That is, it has
been proved that NP C P/poly = PH C L} [KL82]. However, although PH C Zf indirectly shows that NP is

not as difficult as we expect, it does not give any specific upper deterministic time bound for NP.
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tion b(n). Indeed, Saluja [Sal92] showed that such an improvement is impossible with any
relativizable technique.

Other subclasses of RE(SPARSE) are obtained by considering P-selective sets introduced
by Selman [Sel79]. A set A is P-selective, if there exists a polynomial-time computable func-
tion that selects one of two given input strings such that if any of the two strings is in A,
then also the selected one. Let SELECT denote the class of P-selective sets, and for any
polynomial-time reducibility 7, let R,(SELECT) denote the class of languages that are r re-
ducible to some P-selective set. It follows from Theorem 12 of [Sel82b} and Theorem 3 of [K083]
that RE(SELECT) = RE(SPARSE). Thus, by using a restricted reducibility =, we de-
fine some subclass R,.(SELECT) of RE(SPARSE) that can be different from R,(SPARSE).
(For example, R, (SELECT) # RF(SPARSE) because RF,(SPARSE) = RE(SPARSE) but
RE.(SELECT) & RE(SELECT) [Wat90].)

For some of those R,(SELECT) subclasses, we have been able to solve our question. Sel-
man [Sel79] proved that no NP set is many-one reducible to a P-selective set unless P = NP.
Furthermore, by extending this argument slightly, one can also prove that no NP set is 1-truth
table reducible to a P-selective set unless P = NP [HHO%93]. That is,

NP C RFP,(SELECT) = NP C P.
For a more general type of reducibility, Toda [Tod91] and Beigel [Bei88] proved the following.
NP C RF(SELECT) = NP C R. (1.1)

Note that the last upper bound of NP (namely, the class R) is a randomized complexity class.
Thus, one interesting question is to show some deterministic upper bound from more general
assumption than “NP C R, (SELECT)”. In this paper, we study this question and obtain the

following result:
NP C RE,(SELECT) == NP C DTIME(2"*"/V"™), (1.2)

The result is extended to Rf(n)_"(SELECT) for some polynomial-time computable function b(n),
e.g., b(n) = (logn)°W.

Recently, Jenner and Tordn [JT93] obtained a weaker subexponential upper bound for NP
(from a weaker assumption) by a very different technique. However, it seems impossible [Tor93]
to obtain the same upper bound by their technique.

In the following, we briefly explain the outline of our proof, but let us first review the proof
of (1.1). First note that the following fact [Tod91, Bei88]:

UP C RE(SELECT) = UP C P,

where UP is the class of languages recognized by polynomial-time nondeterministic Turing ma-

chines that have at most one accepting path on each input. Indeed, from NP C RF (SELECT),
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one can deduce a slightly stronger consequence: (*) for any polynomial-time nondeterministic
computation, if it has ezactly one accepting path, then the path is computable in deterministic
polynomial-time. This is used to show NP C R. For any polynomial-time nondeterministic ma-
chine and any input, consider its nondeterministic computation on the input. This computation
can be regarded as a tree T. Roughly speaking, by using Valiant-Vazirani’s randomized hashing
technique [VV86], we can define subtrees T, ...,Tm of T so that if T has some accepting path,
then, say, 1/4 of T, ..., T, has exactly one accepting path. (These subtrees share the same root
with T, and hence, each subtree’s accepting path is also T’s accepting path.) Then from (#),
for such T} with exactly one accepting path, one can compute the accepting path. Thus, by
choosing T; randomly for several times, one can compute some accepting path of 7 with high
probability if T' indeed has an accepting path. This is the idea of showing NP C R.

We also use () for proving (1.2). Consider again any nondeterministic computation tree T'.
From our assumption, namely, NP C RE,.(SELECT), we can define subtrees Ty,...; T} of T such
that if T has some accepting path, then some 7} has exactly one accepting path. Again from (»),
if Ty has exactly one accepting path, then it is verified by some polynomial-time deterministic
machine M. Thus, the NP question “Does T have an accepting path?” is reduced to another NP
question “Is there any k such that M verifies that T} has an accepting path?”. The important
point here is that n can be taken fairly small compared with the number of pathsin T. (Cf. The
randomized hashing technique needs to define large number of subtrees.) Hence, for solving the
reduced NP question, one need smaller number of nondeterministic guesses. Therefore, iterating
this process, we can finally solve the original problem deterministically. This is the outline of

obtaining our deterministic upper bound.

2 Preliminaries

In this abstract, we follow the standard definitions and notations in computational complexity
theory (see, e.g., [BDG88, BDG91)).

Throughout this abstract, we fix our alphabet to & = {0,1}. For any set X, we denote
the complement of X as X. Natural numbers are encoded in £~ in an ordinary way. For any
string z, let |z| denote the length of z, and for any set X, let || X || denote the cardinality of
X. The standard lexicographical ordering of * is used; that is, for strings z,y € X*, z is
lezicographically smaller than y (denoted by z < y) if either (i) || < |y|, or (ii) |z| = |y| and
there exists z € X" such that z = 20u and y = 21v. We consider a standard one-to-one pairing
function from £* x £* to * that is computable and invertible in polynomial time. For inputs
z and y, we denote the output of the pairing function by (z,y); this notation is extended to
denote any n tuple. We may assume that |(z,y)| < 2(|z| + |y| + 1). For a function f, we simply
write f(z,y) instead of f((z,y)). A set S of strings is called sparse if for some polynomial p and
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for all n, || §5"|| < p(n), where S js the set of strings z € S of length < n.

We use the standard Turing machine as our computation model. P (resp., NP) denotes the
class of languages that can be recognized by some polynomial-time DTM (resp., NDTM). (DTM
(resp., NDTM) is an abbreviation of “deterministic (resp., nondeterministic) Turing machine”.)
We assume that for any nondeterministic computation, every nondeterministic configuration of a
Turing machine has exactly two succeeding ones, and hence, each nondeterministic computation
corresponds naturally to a binary string.

For any sets A and B, we say that A is many-one reducible to B (and write A <F B) if
there is some polynomial-time computable function f, the reduction, such that for any z € £*,
we have z € A <= f(z) € B. A set C is called NP-complete if (i) every NP set is many-one
reducible to C, and (ii) C itself is in NP. The reducibility notions that we are interested in are
generalization of this “many-one reducibility”. We say that A is truth-table reducible to B (and
write A <[, B) if there are two polynomial-time computable functions, generator g that. for a
given z € X~ produces a set of strings, and evaluator e that, when knowing which of the strings

produced by g are in B, decides membership of z in A. That is, for any z € &=,
T €A < e(z,9(z),9(z)N B) =1,

where we assume that g(z) (resp., g(z) N B) is encoded as a string by some appropriate coding
method. For any b(n) > 0, we say that A is b(n)-truth-table reducible to B (and write A pr(n)_“
B) if the generator g produces at most b(n) strings for each input of length n. If A is <F -
reducible to B for some constant k£ > 0, we say that A is bounded-truth-table reducible to B (and
write A Sg“ B). A set H is pr(n)_u-hard (resp., Sgn-hard) for NP if every NP set is pr(n)_n-
(resp., g{ju-) reducible to H.

P-selective sets were introduced by Selman [Sel79] as the polynomial-time analog of semi-
recursive sets [Joc68]. A set A is P-selective, if there exists a polynomial-time computable

function f, called a P-selector for A, such that for all z,y € &=,

(1) f(z.y) € {z,y}, and
(2) ifz € Aory€ A, then f(z,y) € A.

Intuitively, f selects the one of two given strings that is “more likely” to be in A. More formally,
if f(z,y) =z and y € A, then z € A.

Ko [Ko083] showed that from the P-selector function f of a P-selective set A, one can define a
linear ordering on a quotient of £* such that A is the union of an initial segment of this ordering.
Toda [Tod91] modified this to an ordering on a given finite set Q (instead of £=). Here, we use
this ordering. That is, the relation </ on @ is defined as follows: For all z,y € Q,

T2y <= 321,...,2 €Q: f(z,zig1) =z fori=1,...,n~1,
f(I,Zl) =z, a'nd f(znay)z Zn.
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Define z oy <= = <;0 y Ay Z5,@ - Then Zyqisan equivalence relation on Q. and <40
induces a linear ordering on the quotient Q/ =;¢q. This is reflected by the following partial
ordering <;, on Q:

<0y < T35QY N TEQY

For simplicity, we omit the subscripts f and @ when both are clear from the context. For
technical reasons, we introduce a minimum and a maximum element, denoted as L and T
respectively, such that L <z < T,forall z € Q.

It is easy to see that the relations < and = are decidable in polynomial-time in ) ;eq |z].

The crucial point is that AN Q is an initial segment of Q with respect to <. That is, we have

(x) 3z€QU{l): QnA={yeQly=<z}andQ@QnA={yeQ|y>=z}

We call a string z witnessing (*) a cutpoint of A in ¢ (with respect to <X). A consequence of

this property is that Vz,y€ Q: t XyAy€A=1z¢€ A.

3 Main Result

Here, we state the proof of our main result. We begin by recalling some notion and result that

will be used in our proof.

Definition 3.1. [ESY84] A promise problem is a pair of sets (Q, R). Aset Lis called a solution
of the promise problem (@, R), if for all z € Q wehavez € R<=z € L.

- Toda [Tod91] showed that if all NP sets are <P .reducible to some P-selective set, then the
promise problem (1SAT,SAT) has a solution in P, where I1SAT is the set of Boolean formulas
that have at most one satisfying assignment. We restate his theorem in a slightly more general

form.

Theorem 3.2. [Tod91] If NP C RE(SELECT), then, for any NP machine N the promise
problem (IL(N), L(N)) has a solution in P, where 1L(N) is the set of strings = such that N
has at most one accepting path on input z. Furthermore, if N is p(n)-time bounded, then the

solution is in DTIME(gr(p(n))), for some fixed polynomial gt.
Now, we prove our main theorem.

Theorem 3.3. If there exists a P-selective set that is Sgu-hard for NP, then NP C
DTIME(2r%" VI ™),
- Remark The following proof also works for some “ynbounded” reducibility. For example, the

theorem is provable for SEog n)o(,)_n-reducibility.
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Proof. Let us first define two NP sets. The first one is similar to the canonical universal

NP-complete set except that the number of nondeterministic steps is stated explicitly.

UNIV = { (M,z,0%0!) | there exists w € £¢ such that
DTM M accepts input (z,w) in at most t steps }.

A string w € I? is called a nondeterministic path of (M,z,0%,0t), and if w witnesses
(M,z,04,0t) € UNIV, it is called an accepting path of (M,z,0%,0). Obviously, UNIV is
NP-complete.

Our second set is defined similarly except that it has, as an additional component, the prefix

of an accepting path for the considered machine.

PrefizPATH = { (M,z,0% 0% u) | there exists v € £¢~Iul such that
DTM M accepts input (z,uv) in at most ¢ steps }.

Consider any instance r = (M, z,0%,0t) for UNIV, and let it be fixed for a while. We can
regard 7's nondeterministic paths as paths in some binary tree 7. That is, T is a binary tree
whose nodes are of the form (7, u), for u € £<¢. T’s root is (7, A) (where A is empty string), and
T’s leaves are nodes (r,u) such that |u| = d. A binary string « € £59 is regarded as a path from
the root to (7,u). A string w € £¢ is called an accepting path of T if M accepts input (z, w).
Clearly. 7 € UNIV if and only if there exists an accepting path in T.

Let ¢ and e be some integers that will be specified later. Below, we define c[?/¢] subtrees
Ty of T in such a way that if there is an accepting path in T, then there exist a subtree T} that

has ezactly one accepting path. That is,

T € UNIV <= 3Jw e X?: wisan accepting path in T (3.3)
<= 3k < cf¥/el: T, has exactly one accepting path. .

At this point, we can explain our proof idea; that is, the strategy of deciding whether 7 € UN/IV
in deterministic subexponential-time. Consider a promise problem (1SubTREE, SubTREE).
where ISubTREE is the set of Tx with at most one accepting path, and SubTREE is the
set of T} with an accepting path. Then since we are assuming that NP C RF(SELECT), by
Theorem 3.2, this promise problem has a solution in P. Thus if T) has exactly one accepting
path, we can verify it in polynomial-time. Hence, the second condition of (3.1) is an NP-type
predicate. Thus, we now have two NP-type predicates in (3.1) for deciding whether 7 € UNIV .
While there are 2¢ possibilities for w, we can reduce the scope of k by choosing e large; in other
words, while d (binary) nondeterministic guesses are necessary for the first NP-type predicate,

1 .
¢loge guesses are enough for the second. On the other hand, enlarging e will increase the

time to decide the promise problem. We will see below that by appropriately choosing e (i.e.,

e ~ logclogn), we can reduce the number of nondeterministic guesses by about 1/logn factor,
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without increasing the time to decide the promise problem so much. That is, the original NP-
type predicate is reduced to a simpler one. By iterating this process, we can finally solve the
problem without using guesses, i.e., deterministically, and we will see that the whole process can
be done in subexponential-time.

Let us define the subtrees more precisely. For this, we divide T into “blocks” of depth e.
In other words, for each h (0 < h < [d/e] — 1) and u € The. we consider? a set X(7,u) =
{(r,uv) | v € ¢} of nodes in T, which is regarded as a block of depth e. Notice that if
(1,u) € PrefizPATH, then some elements of X (7,u) also belong to PrefizPATH. Here, for the
decomposition of T satisfying (3.1), we would like to divide X(r,u) into Xi(mu)y .. Xo(T,0)
so that (if (r,u) € PrefizPATH then) some X;(7,u) has exactly one element in PrefitPATH.
Key point of our proof is that this is possible by using the assumption that PrefizPATH (€ NP)

is <P ,-reducible to some P-selective set. That is, we have the following lemma.

Key Lemma. Let L be any set that is <[, -reducible to some P-selective set. Then for any set
X of strings of length n, there exist r disjoint subsets Xq,..., X; of X (wherer < 6(|b/2]+1)—1),

with following property.
XNL#£0 < Jie{l,....r}: | XinL]||=1 (3.4)
Furthermore, we can compute Xj...., X, in polynomial-time w.r.t. n and [| X1

Since PrefiztPATH is in NP, it is Sf_u-reducible to some P-selective set by assumption.
Thus, from this lemma (with L = PrefiztPATH and X = X(r,u)) we can divide each X (7, u)
into ¢ disjoint subsets X1(7,u),..., Xc(7,u) of X(7,u) such that

(r.u) € PrefixtPATH

3.5
< 3j€{1,...,¢}: X;j(r,u) has exactly one element in PrefizPATH, (35)

where ¢ = 6(|b/2] 4+ 1) — 1. (For simplifying our discussion, we assume that X (7, u) is always
divided into exactly ¢ subsets; we may assume this by defining X;(r,u)=0,forallj,r <j< c.)
An important point to note here is that ¢ does not depend on e.

In order to define subtrees Ty of T, we assign an integer label k to each node (7, u), where
u = vyvy - - vy for some 1 < h < [d/e] and vy,...,vn € Z°. The label of (7, u) is determined by
the history (j1,...,jn) of indices, where each j; (1 € i < h) is the index such that (ryv1-+°04) €
X, (ryv1--+vi—1). Since the sets Xi(r, 01+ 1)y - ooy Xe(Tov10 .v;1) are pair-wise disjoint,
each node has an unique history and label. Note that each history is expressed as a path (from
the root to some node) of a c-ary tree. We give numbers to nodes of the c-ary tree as in Figure 3.1
and regard them as history labels. Then each node of T is given the label associated with its

history.

2Precisely speaking, when [u| = ([d/e] — 1)e (i.e., h = [d/e] — 1), X(r,u) should be {(r,uv) v € Td-lui} In

the following, we omit explaining such exceptional cases.
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Figure 3.1: 4-ary tree and its labeling

Define history(r,u) to be the history (j1,...,7) of (r,u), and define label(jy,...,Jn)
to be the label of the history (ji,...,5x) in the c-ary tree. Then label(T,u) is defined as
label( history(r,u)). It is easy to see that the label of (7,u) is bounded by ch*!; that is, no
node in T is assigned a label > cl?/¢]. Now, for each k, 1 < k < ¢[4/€]l, define T} is the subtree
of T consisting of all nodes with label k and their father nodes. Then from (3.3), we have the

following.

Claim 1. There exists an accepting path in T if and only if for some k, 1 < k < cl#/€] T} has

exactly one accepting path.

Next, consider the following set.

SubTREE, = { (M,z,0%,0%k%)|1 <k < cl¥/¢] and Ty has an accepting path,
where T} is the subtree of T defined by (M. z,04,0t) }.

For each e, we could now solve the promise problem (1SubTREFE,, SubTREE,) deterministi-
cally in polynomial-time (Theorem 3.2). But we should be careful about the polynomial-time
bound, which depends on the choice of e. Precisely speaking, (1SubTREE,, SubTREE,) has the

following upper bound.

Claim 2. For some polynomial gs, and for all e > 1, there exists a DTM M, such that (i) M,
is gs(n +2¢)-time bounded, and (ii) L(M.) is a solution of (1SubTREE., SubTREE.). (That is,
for every input = (M, z,0%,0% k), (i) M, halts in gs(|n| +2¢) steps, and (ii) if p € 1SubTREE..,
then 7 € SubTREE, <= M., accepts 7.)

Thus, we reached our goal to reduce the scope of the existential quantifier; that is, (1 €
INIV <=) 3w € Z¢ : w is an accepting path in T <= 3k < cld/e] : (r,k) € L(M,). Here
notice that we can easily translate our reduced problem to a new instance for UNIV. Then we

can apply the above construction recursively!
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Claim 3. For any e, there exists some M, such that for every input 7 = (M, z,09,0%),
r € UNIV < (M.,7,0%.0")e UNIV,
where d’' = [logc] - [d/e], and t' = qu(|7] + 2¢) for some fixed polynomial qy.

Note that although the time bound ¢ increases lto t’, the crucial point is that the number of
ogec

.
Finally, to show that every NP set L belongs to DTIME(2"°"/V'*™) 1et M, be a DTM

and pr be a polynomial such that for every z € =%, z € L <= (Mp,z,0rLl=) orellz)) ¢ UNTIV.

nondeterministic steps d’ decreases about a factor

Let z be any string for which we want to decide membership in L. Let » = |z|, and we
define e = [36(n)logc], where function é will be chosen appropriately at the end of the proof.
(We assume that n is large enough so that e > 3.) First define zo = z, dg = pr(n), to = pr(n),
and 1o = (ML, o,0%,0%). For each i > 1, define inductively z; = 1;_7. d; = loge] - [di-1/e],
ti = qul|rica] + 2°), and 7y = (M., z;,0%,0%), until d; < e (= [36(n)logc]). Let m be the first
integer such that d,, < e. Then from Claim 3, we have 7y € UNIV <= 7, € UNIV <= .-
<= T, € UNIV. On the other hand, z € L <= 179 € UNIV. Hence, z € L <= 1, € UNIV.
That is. the problem of deciding = € L is reduced to that of deciding ,,, € UNIV.

Let us evaluate the deterministic computation time for deciding 7, € UNIV. First,
we give an upper bound for ¢,. Note that for some polynomial p;, we have |ry| < pi(t:).
Thus, t; = qu(frical + 2°) < qu(pa(ti-1) +2°) < qu(p1 o qu(--+(p1 0 qu(pL(n) + 2°))--) +
2¢). Hence, for some constant ¢; and c;, we have t, < nla)72(a)7e = o(ec1)™(etlogn)
< 2(e)™(e28(n)logetlogn) - Op the other hand, note that for any d > e > 3, d' = [logc] - [d/e]
< (3dloge)/e < d/6(n). Thus, m < logs(ndo < czlogn/logé(n), for some constant c3. There-
fore, for some cq4,

cylogn

< 2((c1)1°$¢‘l“5)(c26(n)logc+logn) < 2(71"-":6{“5)(c26(n)logc+logn)

tin

which takes the smallest order when §(n) = nl/Viogn, Thus, we define §(n) = nl/\/lm_; then
for some constant cs, we have t,,, < 2"°"'/\/m.

Clearly, “r, € UNIV?” is deterministically decidable in polynomial-time w.r.t. |7,,|. Also
Tm is deterministically computable in polynomial-time w.r.t. |r,|. Recall that |r,| < p1(tm)-
Thus, the deterministic computation time for computing 7., and deciding 7,, € UNIV is poly-
nomially bounded by t,. Therefore, with some constant cg, it is bounded by 2"%/‘/&_;. That

is, r € L is deterministically decidable in 2"°°/\ﬂ°‘" steps. 0

It remains to prove the Key Lemma.

Proof of Key Lemma. Let g and e be the generator and the evaluator of a <F,-reduction

from L to a P-selective set A, and let f be a P-selector for A. Define Q to be the set of queries
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to Aforall z € X; thatis,Q = Uzex 9(z). Let < denote <;q. Notice that < is polynomial-time
decidable w.r.t. n and || X ||.

For any u,v € QU {L, T}, an interval [u,v)isaset {w € @ | u <= w < v}. For any set T of
intervals, we simply write JZ for ez 1.

For each z € X, we can define an associated set of intervals in @ that characterizes the
membership of z in L according to a cutpoint of 4 in Q. More formally, letting g(z) = {y1 <X

+++ % yn} (where h <b), 4o = L, and yr41 = T, we define

T = {[vi vis1) | e(z,9(2), {tn,---,¥:}) = 1, where i € {0,...,h} }.

If two adjacent intervals, i.e., [i,¥i+1) and [Yit+1,¥it2), belong to I, we regard them as one
interval (i, yiy2). Note that each Z, has at most |b/2] + 1 intervals.

Let J; = UZs, J = Uzex Jo» and let z. be a cutpoint of A in Q. Then, for all z € X, we
havez € L <= z. € J;,and hence, XNL # 0 <= 2, € J.

By Combinatorial Lemma stated below, we can select r subsets X7,..., X, of X such that

VzelJ, Jie{l,...,r}, 2zl € X;: z € Jg,

where r < 6((b/2] +1) - 1.

Now, we show that X,..., X, have property (3.2). Clearly, the only-if direction (i.e., <=)
holds. Thus, it suffices to consider the if direction. Suppose that X N L # 0. Hence, z. € J
Then, from the above property of X1,..., X, there exists some X; that has exactly one z such
that z. € J;. This means that X; has exactly one element (namely, z) in L. (Recall that z € L
<= z. € J;.) Therefore, || X;NL]||=1. 0

Combinatorial Lemma. Let {Z;}.cx be any family of sets of intervals in @, where the index
set X is finite, and each Z, consists of at most £ intervals. Let Z be the set of intervals appearing
in Z, for some z € X;ie.,T ={I|I €I, forsomez € X}. Let J =T and J; = JZ;. Then
there exist r < 6 — 1 disjoint subsets X1,...,X; of X such that

VzelJ, Jie{l,...,r}, Az € X;: z€ J;.

Furthermore, if < is polynomial-time computable w.r.t. 3 ,cqlu|, then the selection of

X1,..., X, can be done in polynomial-time w.r.t. ¢, || X ||, and 3,0 |/

(The proof of this lemma is given in Appendix.)
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Appendix

Here, we give the proof of the Combinatorial Lemma, which itself is of some interest.

Combinatorial Lemma. Let {Z.},cx be any family of sets of intervals in Q. where the index
set X is finite, and each Z, consists of at most £ intervals. Let Z be the set of intervals appearing
inZ; forsomez € X;ie.,Z={I|I€Z, forsomez e X}. LetJ=Zand J, = JZ;. Then
there exist 7 < 6¢ — 1 disjoint subsets X;,..., X, of X such that

VzelJ, Jie{l,...,r}, Nz € X;: z€ J,. (A.1)

Furthermore, if < is polynomial-time computable w.r.t. Y ueq lul, then the selection of

X1,..., X; can be done in polynomial-time w.r.t. ¢, || X ||, and 3¢ |ul-

Proof. First we construct a minimum size cover of 7. We say that 7 is a minimum size cover
of Zif (i)Z C Z, (ii) UZ = J, and (iii) no Z’ such that || Z'|| < || || satisfy both (i) and (ii).

From Z, we can construct such a set in polynomial-time.

Claim 1. There is a polynomial-time algorithm that takes @, < (by a table), and {Z.}:ex as

input, and computes a minimum size cover of Z.

A related problem is the activity-selection problem [CLR90] (which is a maximization prob-
lem) that can be solved by a greedy algorithm. One can easily modify this algorithm to compute
minimum size covers.

Next. we consider some graphs defined from 7. For each I € 7, define support(I) to be an
index z such that I € Z,, and let support(Z) = { support(I)| I € 1}. (If there are many indices
z such that I € Z.. choose one for support(I).) First consider the following directed (simple)
graph G’ = (V| E').

V = support(Z), and
E' = {(z,2) | 3T eT: support(I)=z,and J,. NT#0}.

Then G’ has the following property.
Claim 2. Every vertex of G’ has an outdegree of at most 3¢ — 1.

Proof. Notice first that every interval in Z intersects with at most three intervals in Z, since
otherwise, one can define a cover of J that has less elements than 7, contradicting Claim 1.
Similarly. every interval in 7 intersects with at most two intervals in Z. On the other hand, each
z € V has at least one interval in 7 and thus at most £ — 1 intervals not in Z. Therefore, J,

intersects with at most 3(£ — 1)+ 2 (= 3¢ — 1) intervals in . 0 Claim 2

Next consider the underlying undirected graph G of G’; that is, G is specified as (V, E),
where E = {{z,z'} | either (z,2') € E or (¢/,z) € E'}. The crucial property of G is that it is
6¢ — 1-colorable.

130



Claim 3. Gis 6¢—1-colorable. That is, there exists a partition V3,.... V. of V, where r < 6£-1,
such that every V; forms an independent set in G. Furthermore, some polynomial-time algorithm

computes the partition from a given G.
Proof. First we show that G has the following property.

(*) Every subgraph of G has a vertex with degree at most 6¢ — 2.

Consider any subgraph G = (V, E) of G. From the definition of G”, it is clear that ¢ has at
most (3¢ —1)|| V|| edges; that is, the sum of the degrees of all vertices is at most 2(3¢ —1)|| V||.
Hence, there is a vertex with degree at most 2(3¢ — 1) = 6£ — 2.

Then the claim is immediate from the fact that any graph G satisfying (*) is 6¢£— 1-colorable.
Indeed, G is colorable by a simple greedy algorithm that colors vertices in order of their degree
(from the largest ones). This fact is provable by induction on the size of G. Let z be the
vertex of G that is colored last by the algorithm, and let G be the subgraph of G obtained by
deleting « from G. Then by induction, the algorithm colors G correctly; thus, the algorithm
works correctly before coloring z. Now, since the degree of z is at most 6¢ — 2, the algorithm

will find a color for z. a Claim 3

Now foreach i, 1 <7 < r, define X; = V;. Let us see why X1,..., X, satisfy (A.1). Consider
any z € J. Since I is a cover of J, there is some I € T containing z. Let z = support(I), and
let X; be the subset containing z. Then from Claim 3, no other z’ in X; is adjacent to z. That
is, Jo» N1 = 0. Therefore, there exists exactly one index (namely z) in X; such that z € J,.

Finally, we note that X;,..., X, are polynomial-time computable (if < is polynomial-time

decidable), which is clear from the above discussion. o
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