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Abstract

Homeostasis is a process by which biological systems maintain stability in an evolving environment. How-
ever, homeostasis is far from being a static state. In rapidly self-renewing tissues such as the small intestine
epithelium, most cells are replaced every few days, and during their lifespan undergo differentiation and
migrate over long distances along gradients of cell shape and density. How physical aspects integrate with
biological phenomena to give rise to this dynamical self-organized state is not understood. To address this,
we model mathematically and computationally intestinal organoids, a simpler in-vitro system with great ac-
cessibility, geometric simplicity, and yet capturing the essential features of intestinal homeostasis. To model
this system, we adopt a continuum hydrodynamic model where the system is described in terms of the cell
number density and the concentration of morphogen Wnt. Conservation and mechanical partial differential
equations control the dynamics of these variables. We provide a systematic derivation of the model, its
numerical discretization, and examine its ability to self-organize into dynamical steady-states, which closely
mimic the experimental observations in terms of cell density fields, velocity fields and division/extrusion
patterns. We further study the sensitivity of the homeostatic steady-states on different model parameters.
Our work thus provides a framework to quantitatively understand and control homeostasis in intestinal
organoids.
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Intestinal organoids, mathematical modelling, partial differential equations, finite elements, dimensional
analysis.
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1. Introduction

The small intestine is a very dynamic system, where cells are in continuous self-renewal and migration.
Homeostatis is the process by which these kind of systems maintain stability in an evolving environment.
Far from being static, homeostasis is a very dynamic process. Epithelium cells undergo differentiation
and migration over long distances along gradients of cell density. The coupling between the physical and
biological aspects in the small intestine is not fully understood, but measuring physical variables in an
in-vivo environment is a very difficult task. Instead, a simpler in-vitro system is created, the intestinal
organoids [1]. These systems are much more accessible, they have simple geometries and, what’s more
important, they conserve the main features of intestinal homeostasis. Physical measurements, such as cell
densities and velocity fields, can be performed in intestinal organoids in a much simpler way, as well as
maps of morphogens, and we have control over the geometric confinement of other physical quantities.
Hence, these are great systems to be coupled with a mathematical model to describe them [2].

Tissue homeostasis in intestinal organoids results from the interaction between signalling pathways and
mechanical cues [3, 4]. The organoid is mostly formed by three different cell types. Firstly, there are the
stem cells. These cells proliferate and differentiate, giving rise to other types of cells. Secondly, there are
the paneth cells, which act as master regulators of the division and differentiation of nearby cells. They
do so by segregating certain proteins which regulate the differentiation of stem cells. Finally, there are
the intestinal absorptive cells (or enterocytes), which are the cells responsible of nutrient absorption in the
small intestine. These cells are eventually extruded from the tissue after a certain time [5–7].

These cells organize in space in two regions, the crypts and the villi. The crypt is formed by stem and
paneth cells, where division happens, whereas enterocytes differentiate from stem cells as they leave the
crypt (probably driven by a gradient of tension because of the high packing caused by cell division [8]) and
travel to villus-like regions where they are extruded. In the villi, neither stem nor paneth cells are present,
and these are the regions where nutrient absorption takes place in the small intestine.

The process by which cells differentiate and migrate towards the villi is regulated by two main signalling
pathways, which subsequently activate each other:

• Wnt : Wnt ligands are secreted by paneth cells, which bind Frizzled (FZD) receptors on neighbouring
cells [10]. This in turn leads to an accumulation of β-catenin in the cytoplasm, which eventually
translocates to the nucleus and regulates the transcription of genes that ensure cell stemness. Wnt
dilutes because of cell divisions of stem cells, and because the daughter cells move away from the
source generated by paneth cells. This dilution eventually leads to differentiation of stem cells into
enterocytes. The levels of β-catenin through Wnt control the expression of different EphB (high
Wnt) and EphrinB (low Wnt) ligands. The differential adhesion between EphB-EphrinB has been
proposed as a mechanism for cell sorting [11]. Paneth cells express ephB3 ligands, which ensure they
stay close to stem cells.

• Notch : Similarly to Wnt, Notch is produced by paneth cells and also binds receptors of neighbouring
cells [9]. Notch signalling antagonises the transcription of Math1, which control the differentiation
into secretory cells, and in particular into paneth cells. When stem cells differentiate into paneth
cells, then these travel to the crypt centre presumably following the gradient of Eph.

The goal of this thesis is to describe the governing cell and morphogen transport, as well as the tissue
dynamcis, of intestinal organoids by means of a mathematical model, consisting on a coupled set of partial
differential equations. Wnt is considered to be the determining signaling pathway for cell differentiation,
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Homeostasis of intestinal organoids

Figure 1: Cellular architecture in the crypt of the small intestine (image taken from [9]).

neglecting the effect of Notch, to reduce the complexity of the model. In that way, the dynamics of the
model are determined by three variables: the cell density, the concentration of Wnt and the velocity of
advection of the cells. The cells are assumed to be stem cells when the Wnt concentration in that region is
over a certain threshold, and when the Wnt concentration decreases bellow that threshold the cells become
enterocytes.

2. Governing equations

2.1 System of equations

First of all we need to define the governing equations of the system. We will deduce them in two dimensions,
since the experimental setup is a cell sheet, although most of our study will be performed in one dimension
for simplicity. The simplification from one model to the other is straightforward.

We describe the state of the system with the cell density ρ, measuring the number of cells per unit
volume, and the concentration of a signalling molecule per cell, c , representing Wnt signalling in the crypt.
We can assume that c effectively characterises the cell state (stem or enterocyte): if c > c∗ the cell is a
stem cell, if c < c∗ the cell is an enterocyte. The cells move with a velocity field v.

Conservation of the number of cells can be expressed in terms of a continuity equation

∂tρ+∇ · (ρv) = kd(c, ρ)ρ− ke(c)ρ, (1)

where the left-hand side stems from conservation of cells in the absence of cell divisions or extrusions. The
first term in the right-hand side characterises divisions, which happen with a rate kd(c , ρ), which depends
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both on c and on ρ. The second term in the right-hand side characterises extrusions, which happen with
a rate ke(c). Through the dependence on c and ρ, we can model the different division and extrusion rates
of stem cell and enterocytes. More precisely, we expect divisions to take place at high concentrations of
Wnt (stem cells) and small values of the density (otherwise they are too packed and they cannot divide).
Instead, extrusions take place at small Wnt concentrations (enterocytes).

Observe the difference between the left-hand side terms between the conservation equation and the
transport equation. This difference arises from the fact that c is a concentration, which is in units of
number of molecules per cell, while ρ is in units of cells per unit area. Hence, when there is a flux with
∇ · v ̸= 0 which compacts the cells, ρ has to change accordingly. On the contrary, c does not change due
to this effect, so there is no term c∇ · v in the transport equation.

Similarly, conservation of the signalling molecule c can be expressed in terms of a transport equation,

∂tc +∇c · v = kp(ρp)−
1

2
kd(c , ρ)c − knc , (2)

where kn is the rate of degradation of Wnt [12] and kp(ρp) characterises the attachment of Wnt to Fz
ligands next to a Paneth cell, characterised by the Paneth cell density ρp; for now we take ρp as given.
Every time a cell divides, it splits its Wnt-ligands to its daughters, which leads to the term −kd(c , ρ)c/2.

Finally, we need an equation for momentum balance that tells us how v behaves. In the absence of
inertia (because the system operates at very low Re numbers), we can write

∇ · σ + b = 0, (3)

where σ is the stress tensor (with units of force divided by length in 2D, and units of force if the system
is 1D), and b is a body force. We can consider that

σ = σe + σv , (4)

where σe is an elastic stress and σv is a viscous stress. Some other terms could be added as well (see
appendix A). The elastic stress is going to be isotropic [13], σe = σeI, with σe a tension and I the identity.
We define the elastic energy

Fela =

∫
Ω
f (ρ; c)dΩ, (5)

where f (ρ; c) is the elastic energy density as a function of ρ, and possibly depending on c parametrically.
It can be shown (see 2.2) that tension has the form

σe =
[
f (ρ; c)− f ′(ρ; c)ρ

]
(6)

In particular, if we consider that f (ρ) = k(c)
2

(
1 + 2

(
ρ

ρ0(c)

)3/2)
,

σe =
k(c)

2

[
1−

(
ρ

ρ0(c)

)3/2
]
. (7)

For simplicity, we can assume that the viscous stress follows a Newtonian rheology,

σv = 2µ(c)∇Sv (8)
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Homeostasis of intestinal organoids

where ∇Sv = [∇v+(∇v)T ]/2 is the symmetrised gradient of the velocity (the rate of deformation tensor),
and µ is the viscosity per unit density, that can depend on the cell type through c . Finally, for the body
forces we consider a friction

b = −η(c) [v − v∗(c)] , (9)

that accounts both for friction with the substrate through η, and possibly for a self-propelling force
η(c)v∗(c).

2.2 Onsager’s derivation

An alternative to derive the momentum equation is the Onsager’s variational formalism. This is a varia-
tional formalism for the derivation of thermodynamically consistent non-equilibrium models based on the
minimization of a functional, called the Rayleighian, that sets a balance between the rate of change of
free energy of the system, the input of energy by external power, and energy dissipation [14, 15]. In this
formalism, one needs to characterize the free energy of the system via state variables, such as the density
field, the dissipation of the system in the form of a dissipation potential in terms of process variables, such
as the velocity, and the power input. This formalism can be written as the following minimization problem:

v = argmin
w

R[w; ρ, c] (10)

where R is the Rayleighian
R[v; ρ, c] = Ḟ [v; ρ, c] +D[v; ρ, c], (11)

In this equation, F is the free energy, here F [ρ, c] =
∫
Ω f (ρ; c)dΩ, and D is the dissipation potential,

D =
∫
Ω

[
µ(c)|∇Sv|2 + 1

2η(c) (v − v∗(c))2
]
dΩ. To compute Ḟ one needs to compute the material time

derivative of F using Reynold’s transport theorem and then substitute the transport equations for ∂tρ and
∂tc .

Let’s check that this Rayleighian gives rise to the equations of the system (Eq. 3). We start by
computing Ḟ . If we apply Reynold’s transport theorem, together with the transport equations, we obtain:

d

dt
F(ρ, c) =

d

dt

∫
Ω
f (ρ, x)dΩ =

∫
Ω

d

dt
f (ρ, c) +∇ · (f v)dΩ

d

dt
f (ρ, c) = fρ(ρ, c)ρt + fc(ρ, c)ct

d

dt
f (ρ, c) = fρ(ρ, c)(kd(ρ, c)ρ− ke(c)ρ−∇ · (ρv)) + fc(ρ, c)(kp(c)−

1

2
kd(ρ, c)c − knc −∇c · v)

We have used the notation d
dρ f = fρ (and similarly for f with respect to c and ρ and c with respect to

t). For convenience, from now on we will not write the explicit dependence of f with respect to ρ and c,
nor the dependence of ke , kd and kp with respect to ρ, c or ρp. When considering the variational analysis
only the terms with contributions of v will appear in the final expression when minimizing the Rayleighian.
Hence, we can omit the terms which do not have dependency with respect to v.

d

dt
f = −fρ∇ · (ρv)− fc∇c · v
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d

dt
F(ρ, c) =

∫
Ω
[−fρ∇ · (ρv)− fc∇c · v +∇ · (f v)] dΩ

d

dt
F(ρ, c) =

∫
Ω
[−fρ∇ρ · v − fρρ∇ · v − fc∇c · v +∇f · v + f∇ · v] dΩ

d

dt
F(ρ, c) =

∫
Ω
[(−fρ∇ρ− fc∇c +∇f ) · v + (−fρρ+ f )∇ · v] dΩ

The term multiplying v in the integral is zero (applying the chain rule to ∇f ). If we apply integration
by parts to the second term we obtain:

d

dt
F(ρ, c) = −

∫
Ω
∇(−fρρ+ f ) · vdΩ = −

∫
Ω
∇ · ((−fρρ+ f )I) · vdΩ

Let’s compute now the minimum of the Rayleighian. The way to do so is to consider:

d

dϵ
R[v + ϵw; ρ, c]ϵ=0 = 0

R[v + ϵw; ρ, c] =∫
Ω

[
−∇ · ((−fρρ+ f )I) · (v + ϵw) + µ(c)|∇S(v + ϵw)|2 + 1

2
η(c) (v + ϵw − v∗(c))2

]
dΩ

d

dϵ
R[v + ϵw; ρ, c]ϵ=0 =

∫
Ω

[
−∇ · ((−fρρ+ f )I) ·w + 2µ(c)∇SvT · ∇Sw + η(c)(v − v∗(c))T ·w

]
dΩ

d

dϵ
R[v + ϵw; ρ, c]ϵ=0 =

∫
Ω

[
−∇ · ((−fρρ+ f )I) ·w −∇ · (2µ(c)∇SvT )w + η(c)(v − v∗(c))T ·w

]
dΩ = 0

Observe that this is precisely the weak form of the momentum balance equation. Since this is true for
all functions w, we can recover the strong form of the problem:

∇ · ((−fρρ+ f )I) +∇ · (2µ(c)∇Sv)− η(c)(v − v∗(c)) = 0

Recalling the definitions in Eq. 6, 8 and 9 we recover Eq. 3, which is the strong form of our problem.
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Homeostasis of intestinal organoids

2.3 Dimensional analysis

The set of constitutive equations for our model is:
∂tρ+∇ · (ρv) = kd(c , ρ)ρ− ke(c)ρ

∂tc +∇c · v = kp(ρp)− 1
2kd(c , ρ)c − knc

∇ ·
(

k(c)
2

[
1−

(
ρ

ρ0(c)

)3/2]
I

)
+∇ · (2µ(c)∇Sv)− η(c)(v − v∗(c)) = 0

(12)

There are several functions depending on c , ρ or ρp which need to be specified. Since c is adimensional,
we consider that the threshold value between the crypt and the villus is c∗ = cd (so c < cd at the villus
and c > cd at the crypt). cd is related to the rate of division of the cells, so that cells divide when c > cd
(they are stem cells) and they stop dividing when c < cd (they are enterocytes).

To start with, for simplicity, we assume that µ(c) = µ and η(c) = η are constant (they do not depend
on the type of cell), and we consider that v∗(c) = 0. As for the rest of the magnitudes:

• Division rate:

kd(c , ρ) = k̄d fd(c , ρ) = k̄d ·
1 + tanh 5

cd
(c − cd)

2
· ϵ

ρ
ρ0

+ ϵ
(13)

Hence, kd(c , ρ) has a logistic relation with respect to c , so that when c → 0, kd → 0, and when
c → 1, kd → k̄d . The term ϵ

ρ
ρ0

+ϵ
tends to 0 when ρ is much larger than ρ0, so that for very large

concentrations division cannot take place, and it tends to 1 when ρ is very small compared to ρ0.
Note that this expression can also be rewritten as

kd(c , ρ) = k̂d ·
1 + tanh 5

cd
(c − cd)

2
· 1

ρ
ρ0

+ ϵ

for k̂d = k̄dϵ. In simulations we usually work with this last notation, but both formulations are
equivalent except for a change of the values of the parameters.

• Extrusion rate:

ke(c) = k̄e fe(c) = k̄e ·
1− tanh 5

cd
(c − ce)

2
(14)

Hence, ke(c) has a logistic relation with 1 − c , so that when c → 1, ke → 0, and when c → 0,
ke → k̄e . Observe that the relation with respect to c is the opposite than the one for kd(c , ρ), since
we expect the extrusions to take place in the villus, where c is close to zero, but divisions take place
mostly inside the crypt, where c is close to 1.

• Wnt generation rate: kp(ρp). We assume that the density of paneth cells is fixed, in order to
simplify the model (otherwise we would require an extra equation to model the evolution of ρp).
Moreover, we assume that the density of Paneth cells is constant in time, since the dynamics of such
cells is much slower than the dynamics of stem cells and enterocytes. Hence, ρp only has spatial
dependence, so we can give the expression for kp(ρp) simply as a function of x :

kp(ρp) = kp(x) = k̄pfp(x) = k̄pe
−
(

1
lgauss

(x− L
2 )

)2

(15)
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where L is the domain size, and lgauss is a characteristic length, such that if x = L
2 + lgauss , the

Paneth cell generation rate decays by a factor 1
e . Since we assume periodic boundary conditions, we

only need to model one crypt, so the generation of Wnt is focused only in one region in space.

• Stiffness parameter:

k(c) = k̄ fk(c) = k̄

(
(1− 0.7)

1 + tanh 5
cd
(c − cd)

2
+ 0.7

)
(16)

The expression is analogous to the one for kd(c, ρ) (neglecting the dependence on ρ), where k has a
logistic dependence with respect to c , being maximum at the crypt (c → 1) and minimum at the villus
(c → 0). The factor 0.7 is chosen with this value because the stiffness of the villus is approximately
70% the stiffness of the crypt. For simplicity we assume that the threshold concentration is cd , as
well.

• Reference density:

ρ0(c) = ρ0fρ(c) = ρ0

(
(1− 0.5)

1 + tanh 5
cd
(c − cd)

2
+ 0.5

)
(17)

As in the previous case, ρ0 is maximum at the crypt and minimum at the villus. The factor 0.5 is
chosen with this value because the mean density at the villus is approximately half the density at the
crypt. For simplicity we assume that the threshold concentration is cd , as well.

Our goal now is to study which are the relevant parameters from a physical point of view. Most of
these parameters are related to one another, so changing one of them may affect the others. The way to
determine the relevant magnitudes is to adimensionalize the equations. First of all, we need to define some
reference magnitudes:

• T = 1
k̄d
, which is the inverse of the maximum cell division rate, k̄d . It serves as a reference time.

The normalized time is t̄ = t
T = tk̄d .

• The domain length, L, serves as a reference length. The normalized distances are x̄ = x
L , and the

normalized gradients are ∇̄ = L∇.

• v0 =
L
T is a reference velocity. The normalized velocities are v̄ = v

v0
.

• The hydrodynamic length, lh =
√

µ
η , which is the square root of the ratio between the viscosity

coefficient, µ, and the friction coefficient, η. It gives information on how far interactions in one
region affect neighbour regions.

• A reference cell density ρ0, so that ρ̄ = ρ
ρ0

is an adimensional density.

• A reference Wnt concentration cd , which is the concentration threshold for division, so that c̄ = c
cd
.

Using these reference magnitudes we can now define a set of adimensional parameters. These parameters
appear in the model after adimensionalizing it, and we will see that they are the parameters which play a
relevant role in the physics of the problem:
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Homeostasis of intestinal organoids

• ϵ, which is related to how steep is the increase of the term ϵρ
ρ
ρ0

+ϵ
with respect to ρ.

• δ1 =
k̄e
k̄d
, which is the ratio between the maximum extrusion rate, k̄e , and the maximum cell division

rate, k̄d . It gives information on how fast are the extrusions with respect to divisions.

• δ2 = ce
cd
, which is the ratio between the concentration threshold for extrusion, ce , and the concen-

tration threshold for division, cd . Usually δ2 < 1. We expect to see a very clear separation between
the crypt, where divisions dominate, and the villus, where extrusions dominate, when δ2 is small.

• δ3 =
k̄p
k̄d
, which is the ratio between the maximum Paneth cell generation rate, k̄p, and the maximum

cell division rate, k̄d . It gives information on how fast the Wnt i segregated with respect to the rate
of cell division.

• δ4 =
kn
k̄d
, which is the ratio between the degradation rate and the maximum cell division rate, k̄d . It

gives information on how fast the Wnt degradates with respect to the rate of cell division.

• ℓ =
lgauss
L , which is the ratio between the width of the Paneth cells source, lgauss and the length of

the domain, L.

• ℓh =
(

L
lh

)2
= η

µL
2, which is the ratio between the hydrodynamic length, lh, and the domain size, L.

• κ = k̄
2µk̄d

, which is the ratio between the maximum of the elasticity constant, k̄ , and the viscosity

coefficient, µ, times the maximum cell division rate, k̄d . It gives information on how important
elasticity is compared to viscosity.

With all these parameters, the equations can be rewritten as:

• Continuity equation: If we multiply by T and divide by ρ0, the equation becomes:

∂tρ
T

ρ0
+ L∇ ·

(
ρ

ρ0

Tv

L

)
= kd(c , ρ)T

ρ

ρ0
− ke(c)T

ρ

ρ0
(18)

∂t̄ ρ̄+ ∇̄ · (ρ̄v̄) = fd(ρ̄, c̄)ρ̄− δ1fe(c̄)ρ̄ (19)

• Transport equation: If we multiply by T and divide by cd , the equation becomes:

∂tc
T

cd
+ L∇ c

cd
· vT

L
= kp(ρp)

T

cd
− 1

2
kd(c)c

T

cd
− knc

T

cd
(20)

∂t̄ c̄ + ∇̄c̄ · v̄ = δ3fp(x)−
1

2
fd(c̄)c̄ − δ4c̄ (21)

• Momentum balance: If we multiply by L and T and divide by µ, the equation becomes:

L∇ ·

(
k(c)T

2µ

[
1−

(
ρ

ρ0(c)

)3/2
])

+ L∇ ·
(
2L∇Sv

T

L

)
− η

µ
L2v

T

L
= 0 (22)

∇̄ ·

(
κfk(c̄)

[
1−

(
ρ̄

fρ(c̄)

)3/2
])

+ ∇̄ · (2∇̄S v̄)− ℓhv̄ = 0 (23)
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As for the rest of the expressions which depend on c , ρ and ρp, they can also be rewritten as:

• kd(c, ρ) = k̄d fd(c , ρ) = k̄d

(
1+tanh 5

cd
(c−cd )

2

)
ϵ

ρ
ρ0

+ϵ
= k̄d

(
1+tanh 5(c̄−1)

2

)
ϵ

ρ̄+ϵ

• ke(c) = k̄e fe(c) = k̄e

(
1−tanh 5

cd
(c−ce)

2

)
= k̄e

(
1−tanh 5(c̄−δ2)

2

)
• kp(ρp) = kp(x) = k̄pfp(x) = k̄pe

−
(

1
lgauss

(x− L
2
)
)2

= k̄pe
−( 1

ℓ
(x̄−0.5))

2

• k(c) = k̄ fk(c) = k̄

(
(1− 0.7)

1+tanh 5
cd

(c−cd )

2 + 0.7

)
= k̄

(
(1− 0.7)1+tanh 5(c̄−1)

2 + 0.7
)

• ρ0(c) = ρ0fρ(c) = ρ0

(
(1− 0.5)1+tanh 5(c̄−1)

2 + 0.5
)

3. Numerical implementation

3.1 Weak form of the problem

From now on we will work with our governing equations in adimensional form. Moreover, we will restrict
to the one-dimensional case. That is, we have the following set of three equations:

∂t̄ ρ̄+ ∂x̄ (ρ̄v̄) = fd(ρ̄, c̄)ρ̄− δ1fe(c̄)ρ̄

∂t̄ c̄ + ∂x̄ c̄ v̄ = δ3fp(x)− 1
2 fd(ρ̄, c̄)c̄ − δ4c̄

∂x̄

(
κfk(c̄)

[
1−

(
ρ̄

fρ(c̄)

)3/2])
+ ∂x̄x(2v̄)− ℓhv̄ = 0

(24)

These equations are defined in a domain Ω = (0, L) (which after adimensionalization is Ω̄ = (0, 1))
with periodic boundary conditions. Periodic boundary conditions are satisfied automatically when solving
the system without the need to impose any additional condition in the derivation of the weak form. In that
way, we do not have to worry about them. For convenience, form now on we will drop the bars over each
of the variables, although we work with the adimensional variables unless the opposite is said.

In order to solve this system numerically, we will use a Finite Element Method approximation. The first
step to implement this method is to consider the weak form of the problem. Consider the first equation
and multiply it by a test function w ∈ H1(Ω), where H1(Ω) = {w(x) ∈ L2(Ω);w

′(x) ∈ L2(Ω)}. If we
integrate the equation over Ω it becomes:∫

Ω
(w∂tρ+ w∂x (ρv)) dΩ =

∫
Ω
(wfd(ρ, c)ρ− wδ1fe(c)ρ) dΩ (25)

If we integrate by parts and impose periodic boundary conditions (so we can neglect the boundary terms)
the equation becomes: ∫

Ω
(w∂tρ− ∂xwρv) dΩ =

∫
Ω
(wfd(ρ, c)ρ− wδ1fe(c)ρ) dΩ (26)

We can do an analogous derivation with the second and the third equations and we obtain:

11



Homeostasis of intestinal organoids

∫
Ω
(q∂tc + q∂xcv) dΩ =

∫
Ω

(
δ3qfp(x)−

1

2
qfd(c)c − δ4qc

)
dΩ (27)

∫
Ω

(
∂xu

(
κfk(c)

[
1−

(
ρ̄

fρ(c)

)3/2
])

+ 2∂xu∂xv + ℓhuv

)
dΩ = 0 (28)

where q ∈ H1(Ω) and u ∈ H1(Ω) are the test functions for the second and third governing equations,
respectively. Observe that we actually don’t require that q ∈ H1(Ω), since its spatial derivatives don’t
appear in the weak form, and we only need q ∈ L2(Ω). However, we can still impose this condition, since
it is more restrictive (q ∈ H1(Ω) =⇒ q ∈ L2(Ω)), and in practice it does not affect any of the further
discussion.

3.2 Galerkin discretization

Once we have the weak form of the problem, the following step is to consider a Galerkin discretization in
the spatial domain. That is, we consider a set of basis functions {Ni (x)}i , for i = 1, ..., nel , with compact
support, and consider the following discretization for each of the variables:

ρ(x , t) ≈ ρh(x , t) =

nel∑
i=1

ρi (t)Ni (x) (29)

c(x , t) ≈ ch(x , t) =

nel∑
i=1

ci (t)Ni (x) (30)

v(x , t) ≈ vh(x , t) =

nel∑
i=1

vi (t)Ni (x) (31)

For simplicity we have assumed that we discretize all variables in the same space of test functions, and
we consider the same elements for each of the variables. This can be modified if the problem presents
numerical issues related to stability, but as a first approximation it is good enough. In our simulations we
use spline functions of order three. Observe that the temporal depend only affects the coefficients in the
sum, since the basis functions are constant in time. With these approximations, and considering the test
functions to be {Nj(x)}j as well, with j = 1, ..., nel , the weak form becomes:

• Conservation equation:∫
Ω

(
Nj(x)∂t

nel∑
i=1

ρi (t)Ni (x)− ∂xNj(x)

nel∑
i=1

ρi (t)Ni (x)

nel∑
i=1

vi (t)Ni (x)

)
dΩ =

∫
Ω

(
Nj(x)fd(

nel∑
i=1

ρi (t)Ni (x),

nel∑
i=1

ci (t)Ni (x))

nel∑
i=1

ρi (t)Ni (x)

)
dΩ−

∫
Ω

(
Nj(x)δ1fe(

nel∑
i=1

ci (t)Ni (x))

nel∑
i=1

ρi (t)Ni (x)

)
dΩ

12



nel∑
i=1

∫
Ω

(
NjNiρ

′
i (t)− N ′

jNi

(
nel∑
k=1

vk(t)Nk

)
ρi (t)

)
dΩ

=

nel∑
i=1

(∫
Ω
NjNi fd

(
nel∑
k=1

ρk(t)Nk ,

nel∑
k=1

ck(t)Nk

)
− δ1NjNi fe

(
nel∑
k=1

ck(t)Nk

)
dΩ

)
ρi (t)

• Transport equation:∫
Ω

(
Nj(x)∂t

nel∑
i=1

ci (t)Ni (x) + Nj(x)∂x

(
nel∑
i=1

ci (t)Ni (x)

)
nel∑
i=1

vi (t)Ni (x)

)
dΩ =

∫
Ω

(
δ3Nj(x)fp(x)−

1

2
Nj(x)fd

(
nel∑
i=1

ρi (t)Ni (x),

nel∑
i=1

ci (t)Ni (x)

)
nel∑
i=1

ci (t)Ni (x)

)
dΩ−

∫
Ω

(
δ4Nj(x)

nel∑
i=1

ci (t)Ni (x)

)
dΩ

nel∑
i=1

∫
Ω
NjNic

′
i (t) + NjN

′
i

(
nel∑
k=1

vk(t)Nk(x)

)
ci (t)dΩ =

nel∑
i=1

(∫
Ω
δ3Nj fp(x)−

1

2
NjNi fd

(
nel∑
i=1

ρi (t)Ni (x),

nel∑
i=1

ci (t)Ni (x)

)
− δ4NjNidΩ

)
ci (t)

• Momentum balance:∫
Ω

(
∂xNj(x)

(
κfk(

nel∑
i=1

ci (t)Ni (x))

[
1−

( ∑nel
i=1 ρi (t)Ni (x)

fρ(
∑nel

i=1 ci (t)Ni (x))

)3/2
]))

dΩ+

∫
Ω

(
2∂xNj(x)∂x

nel∑
i=1

vi (t)Ni (x) + ℓhNj(x)

nel∑
i=1

vi (t)Ni (x)

)
dΩ = 0

−
∫
Ω
N ′
j

(
κfk

(
nel∑
i=1

ci (t)Ni (x)

)[
1−

( ∑nel
i=1 ρi (t)Ni (x)

fρ(
∑nel

i=1 ci (t)Ni (x))

)3/2
])

dΩ =

nel∑
i=1

(∫
Ω

(
2N ′

jN
′
i + ℓhNjNi

)
dΩ

)
vi (t)

3.3 Time discretization

Our model is system of partial differential equations. It has a peculiarity, though: there are two differential
variables, ρ and c , the time derivatives of which appear in the conservation and transport equations. Initial
conditions have to be provided for these two variables. On the other hand, time derivatives of the velocity
does not appear in any of the equations. Hence, initial conditions are not required for it, since the initial
velocity can be computed from the initial concentration and density using the momentum balance equation.

13
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In general time evolution can be a very difficult issue to tackle. The simplest way to solve it is considering
an staggered scheme. That is, each equation is evolved independently from the other two, where the
variables which are not derived in time are considered at the previous time step. The algorithm is the
following:

1. Compute vn+1 using the values of ρn and cn using the momentum balance equation.

2. Compute ρn+1 using cn and vn+1 form the conservation equation.

3. Compute cn+1 using ρn+1 and vn+1 from the transport equation.

4. Iterate until convergence.

As for the time discretization, we use a hybrid formulation. That is, the non-linear terms are considered
at iteration n and the linear terms are considered at time n + 1. This formulation has the advantage of
being easy to implement, since the final expression is linear, but it is more stable than the fully explicit
formulation. where very small step sizes are required. The final expressions for each equation are:

• Conservation equation:

nel∑
i=1

∫
Ω

(
NjNi

ρn+1
i − ρni
∆t

− N ′
jNi

(
nel∑
k=1

vnkNk

)
ρn+1
i

)
dΩ

=

nel∑
i=1

(∫
Ω

(
NjNi fd

(
nel∑
k=1

ρnkNk ,

nel∑
k=1

cnkNk

)
− δ1NjNi fe

(
nel∑
k=1

cnkNk

))
dΩ

)
ρn+1
i

nel∑
i=1

(∫
Ω

(
NjNi −∆t

(
N ′
jNiv

n+1 + NjNi fd (ρ
n, cn)− δ1NjNi fe (c

n)
))

dΩ

)
ρn+1
i

=

nel∑
i=1

(∫
Ω
NjNidΩ

)
ρni

• Transport equation:
nel∑
i=1

∫
Ω

(
NjNi

cn+1
i − cni

∆t
+ NjN

′
i v

n+1cn+1
i

)
dΩ

=

nel∑
i=1

∫
Ω

(
δ3Nj fp(x)−

(
1

2
NjNi fd

(
ρn+1, cn

)
+ δ4NjNi

)
cn+1
i

)
dΩ

nel∑
i=1

(∫
Ω

(
NjNi +∆t

(
NjN

′
i v

n+1 +
1

2
NjNi fd

(
ρn+1, cn

)
+ δ4NjNi

))
dΩ

)
cn+1
i

=

nel∑
i=1

∫
Ω
(∆tδ3Nj fp(x) + NjNic

n
i ) dΩ
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• Momentum balance:

nel∑
i=1

(∫
Ω

(
2N ′

jN
′
i + ℓhNjNi

)
dΩ

)
vn+1
i = −

∫
Ω
N ′
j

(
κfk (c

n)

[
1−

(
ρn

fρ(cn)

)3/2
])

dΩ

As for the value of the time step, a constant value which is small enough to assure convergence is
considered (h = 10−3). Some improvements can be considered to solve the system in a more efficient way
(see appendix B), but we will not discuss them in detail.

3.4 Parameters

Once we have the discretized model ready to be implemented, the last step consists on determining the
values of the adimensional parameters. In order to do so, we adjust these values to the real physical values
of the problem. Some of these values can be obtained experimentally from measurements in intestinal
organoids [16]. Most of them, however, are simply average values, since they can vary depending on a large
amount of factors. The following table shows the values for each of the parameters that can be measured
experimentally:

Parameter Description Value

L Length of the domain (mean distance between crypts) 100µm

lgauss Width of the Gaussian (radius of the crypts) 10µm

k̄d Maximum division rate 10−2h−1

k̄e Maximum extrusion rate 10−2h−1

k̄p Maximum rate of Wnt generation 0.5 · 10−2h−1

ρ0(i) Mean density of cells inside the crypts 5.25 · 10−2µm−2

ρ0(ii) Mean density of cells inside the villus 2.5 · 10−2µm−2

k̄(i) Elastic constant inside the crypt 2.7mN ·m−1

k̄(ii) Elastic constant inside the villus 1.8mN ·m−1

µ Viscosity coefficient 1kPa · µm−1 · s
η Friction coefficient 103kPa · µm · s

Table 1: Experimental values of the parameters.

Note that we have two values for ρ0 and k , corresponding to the values inside the crypt and at the
villus. We will use the values inside the crypt to adimensionalize the equations. Since these are simply
average values obtained experimentally, they only provide information on the order of magnitude of the
parameters. What’s more, there are some parameters which are unfeasible to be computed in practice, like
k̄p and k̄n, so we will have to determine their value by fitting the results from simulations.

With these values we can compute some adimensional parameters:

• δ1 =
k̄e
k̄d

= 10−2h−1

10−2h−1 = 1.

• ℓ =
lgauss
L = 10µm

100µm = 0.1.
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• lh =
√

µ
η =

√
103kPa·µm·s
1kPa·µm−1·s = 31µm.

• ℓh =
(

L
lh

)2
=
(
100µm
31µm

)2
= 10.

• κ = k̄
2µk̄d

= 2.7mN·m−1

2·103kPa·µm·s·10−2h−1 = 103.

4. Results

4.1 Convergence analysis

Once we have defined our model we are interested in studying the convergence of the system, and in the
case we have convergence what kind of steady states we can have. From a qualitative point of view, we
may expect several situations. The desired one is a system divided in two regions, the villus and the crypt,
such that the density in the crypt is higher than the density in the villus. A second situation corresponds
to the total extinction of both the stem cells and enterocytes. That is, that ρ converges to zero (although
c may not converge to zero, since we assume that the paneth cells are fixed and they would still segregate
Wnt). This situation may take place when extrusions are too fast with respect to divisions, or when the
Wnt is produced at a very small rate compared to cell division. The last possible situation is that the
concentration diverges. This may happen whenever extrusions occur at a rate which is too slow or when
Wnt is generated at a very high rate.

From a numerical point of view, we found that the parameters which regulate the behaviour of the
system are δ1 and δ3, which are the rates between extrusions and divisions, and the rate between Wnt
generation by the Paneth cells and cell division, respectively. We observe three behaviours:

• Convergence to zero: We found that, whenever δ1 is very large (of the order of 2 or higher) or
when δ3 is too small (of the order of 0.5 or smaller), the cell density converges to 0. This situation
corresponds to the extrusion of all the cells, thus provoking the disappearance of the organoid. This
can be seen in Fig. 2 (a) for a set of parameters δ1 = 2, δ2 = 1, δ3 = 0.5, δ4 = 1, ϵ = 0.02, ℓ = 0.1,
lh = 10 and κ = 103.

• Convergence to a non-zero state: When δ1 and δ3 take intermediate values (δ1 around 1 and δ3
between 1 and 4) the system converges to a non-trivial state, in which we observe two distinct regions
correpsonding to the villus and the crypt. This can be seen in Fig. 2 (b) for a set of parameters
δ1 = 0.8, δ2 = 1, δ3 = 3, δ4 = 1, ϵ = 0.02, ℓ = 0.1, lh = 10 and κ = 103.

• Divergence: We found that, whenever δ1 is very small (of the order of 0.5 or less) or when δ3 is too
large (of the order of 4 or greater), the system diverges. We can observe that because the system
reaches a state where oscillations start to appear, and the system does not converge. This can be
seen in Fig. 2 (c) for a set of parameters δ1 = 0.4, δ2 = 1, δ3 = 5, δ4 = 1, ϵ = 0.02, ℓ = 0.1, lh = 10
and κ = 103.

From a biological point of view we are interested in the second case, the one where the system converges
to a non-zero state. The first case corresponds to the extinction of the organoid, and the third one has
no physical sense, since it implies that the density would increase up to infinity. Hence, we will consider
intermediate values for both variables in order to have the two regions we are interested in, the villus and
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(a) Convergence to zero. (b) Convergence to a non-zero state.

(c) Divergence.

Figure 2: Evolution of the cell density ρ in the three different behaviours of the system.

the crypt. The following subsection focuses on the description of this system, and characterizes the two
regions.

4.2 Homeostatic steady state

Our first goal is to determine the homeostatic steady state, which mimics that observed in intestinal
organoids [1] and is highly out-of-equilibrium and characterized by steady but heterogeneous density and
cell identity distributions, and at the same time by a continuous motion, division and extrusion of cells.
In particular, we want to observe a system divided in two regions, which correspond to the crypt and the
villus. These two regions are characterized by the following behaviour:

• Crypt: The cells are highly packed, so the density is very high inside the crypt. The width of the
crypt is proportional to the gaussian width (it should occupy around 20% of the domain length).
This is the region where Paneth cells lie, so the concentration of Wnt is also large inside the crypt.
This is also the place where divisions take place, but extrusions do not occur inside the crypt. As
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for the velocity field, we expect it to expel the cells outside the crypt, so it should point towards the
villus.

• Villus: The cell density at the villus is lower than in the crypt (from experimental values we expect
it to be around half of the density inside the crypt, see 3.4). We do not have Paneth cells inside the
villus, so the Wnt concentration will be small (the concentration will decrease as we go further from
the crypt). Cell divisions do not take place at the villus. Instead, extrusions take place there. As for
the velocity field, we expect it to point towards the inside of the villus as well.

Fig. 3 corresponds to the equilibrium state obtained for the following set of adimensional parameters:
δ1 = 0.8, δ2 = 1, δ3 = 3, δ4 = 1, ϵ = 0.02, ℓ = 0.1, lh = 10 and κ = 103. All the variables in the figures
are in adimensional form. That is, since we adimensionalize ρ by ρ0 inside the crypt, we precisely obtain
the mean values of the cell density both inside and outside of the crypt. Moreover, if we consider that
the crypt is the region where c > 1, then the width of the crypt is approximately 20% of the domain size,
as expected. As for the division and extrusion rates they both behave as expected: division only happens
inside the crypt and extrusion outside of the crypt. The velocity field also point towards the villus, being
maximum at the edge of the crypt and minimum at the center of the crypt and the center of the villus.

Observe that we have two stagnation points. That is, two points where the velocity is zero. These
points are usually delicate to treat, since they can give rise to numerical errors. In this case we observe that
the concentration has a critical point precisely at the stagnation point at x = 0 (meaning that c presents
a peak at this point, where c is not differentiable with respect to x).

It is also interesting to study the transient that the system experiences until it reaches the homeostatic
equilibrium state, and interpret it in physical terms. This can be seen in Fig. 4. Observe that c is initially
0 everywhere, and it starts to increase around x = 0.5, where the paneth cells lie. The Wnt then travels to
the exterior of the crypt until it occupies the whole domain, and the maximum Wnt concentration reaches
a maximum value, since for very high c divisions are very frequent, so there is an equilibrium between the
generation of Wnt and the decrease of its concentration due to cell divisions. As for the cell density, it
initially decreases, because c = 0 everywhere at t = 0. However, once the concentration of Wnt is high
enough at the crypt, the cell density starts to increase in the crypt as well, and it reaches an equilibrium
value both inside and outside the crypt. The dynamics of v are conditioned to the dynamics of c and ρ,
since there are no time derivatives of this variable in the model, so its time evolution is not as interesting
as for the other two variables. However, it is interesting to notice that at the beginning v points towards
the crypt. However, after a very short period of time, this effect is reverted and v presents a maximum at
the transition region between the crypt and the villus, pointing towards the villus.

The main result we can conclude from this analysis is the spontaneous organization into this steady-state
where the system does not change by continuously changing. This is precisely the homeostatic behaviour
the intestinal organoids present.

4.3 Initial conditions

We have stated that the previous state is an homeostatic equilibrium state. That is, the system converges
to this state after a transition. However, this behaviour may depend on the initial state. We need to
verify whether the system converges to this state regardless of the initial condition of the system (assuming
reasonable initial conditions, that is, conditions which make physical sense). As we explained in 3.3, we
only need to impose initial conditions for ρ and c , since v is computed directly from ρ and c through the
momentum balance equation. Several examples are considered:
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Figure 3: Homeostatic equilibrium state. (Top) Density and Wnt concentration at the equilibrium state.
(Middle) Velocity field at the equilibrium state. Positive sign of v to the right. (Bottom) Division (blue)
and extrusion (red) rates at the equilibrium state.
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Figure 4: Time evolution of each of the variables in the system until the system it reaches the homeostatic
equilibrium state.

• Null initial conditions: As a first test, we can check what happens if we consider null initial
conditions for ρ and c . In this case, we are on an unstable equilibrium point. That is, we expect the
density to remain zero for all times, since if we do not have any cells they cannot divide and grow,
nor extrude (this can also be checked in the equations of the model). Fig. 5 (a) shows that this is
indeed the result we observe. This result just serves us to ensure that our model is consistent (that
is, that from null initial conditions we recover null density).

• Null Wnt concentration: The second option consists on assuming that the initial density is constant
and equal to 0.5 (which is the mean density at the villus), and that the Wnt concentration is initially
null. This example corresponds to the spontaneous creation of the crypt at the center of the domain
when Paneth cells generate Wnt. Fig. 5 (b) shows the time evolution of this system. Observe that,
since c is initially null, the density tends to decrease everywhere, since there are only extrusions.
However, as c starts to increase due to the Wnt generation by the Paneth cells, the density starts to
increase until it reaches the equilibrium state.

• Initial Wnt concentration: A third example corresponds to considering that the Wnt concentration
is initially not zero (c = 1 everywhere), with constant initial density ρ = 0.5. This case corresponds
to a situation where there is already some Wnt concentration in the system, but the crypt has not
formed yet. Fig. 5 (c) shows the time evolution of this system. The general behaviour is very similar
to the one observed for initial null Wnt concentration, although now the density does not decrease
as fast as before since c is initially not null.

• Initial sinusoidal density: As a final example, we can consider a non-constant initial density. For

20



instance, we can consider that the cell density is sinusoidal (and null Wnt concentration), and see
whether even in that case we converge to the same equilibrium state. Fig. 5 (d) shows the time
evolution of a system with sinusoidal initial condition. We observe that it ends up converging to the
same equilibrium state.

(a) Initial null cell density and null Wnt concentra-
tion.

(b) Initial constant cell density ρ = 0.5 and null
Wnt concentration.

(c) Initial constant cell density ρ = 0.5 and constant
Wnt concentration c = 1.

(d) Initial sinusoidal cell density and null Wnt con-
centration.

Figure 5: Time evolution of the system under different initial conditions, both for ρ and c .

These results show the robustness of the self-organized homeostatic steady state, since it does not
depend on the initial conditions. From now on, unless the opposite is said, we will consider the initial state
to be ρ = 0.5 everywhere in the domain and c = 0 in the whole domain as well. This corresponds to the
most realistic case, in which the crypt forms spontaneously due to the segregation of Wnt by the paneth
cells in a region where initially the cell density is that of the villus.

4.4 Effect of the parameters

The second aspect to study in our model is which is the effect of each of the parameters. In particular, we
are interested in determining the range of admissible values for each of them, studying what happens in the
limit case in which each parameter tends to zero or to infinity and give a physical interpretation of their
effect. Observe that the parameters which have a physical importance are the adimensional parameters,
since they are independent with each other. Hence, we will vary them with respect to their value in the
homeostatic equilibrium state to see how they affect the solution.
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• Size of the crypt

First of all, we can study what is the effect of changing ℓ. This quantity is the ratio between the
gaussian width and the size of the domain, so it is directly related to the size of the crypt. In
particular, values ℓ > 1 do not make physical sense.

(a) ℓ = 0.02, lgauss =
L
50
.

(c) ℓ = 0.05, lgauss =
L
20
.

(d) ℓ = 0.1, lgauss =
L
10
.

Figure 6: Equilibrium state under different crypt widths (different values of ℓ).

Fig. 6 shows the equilibrium state obtained for several values of ℓ. As expected, small values of ℓ
correspond to narrow crypts, and large values of ℓ correspond to wide crypts (all of this with respect
to the mean distance between neighbour crypts). It is interesting to notice that for small crypt sizes
the density at the villus decreases. This is consistent with the fact that enterocytes are generated at
the crypts and advected to the villus. Hence, if the villus is large in comparison with the crypt size
the cells have to occupy a very large size and the density decreases. The size of the crypt is precisely
the one required to have the densities we require both inside the crypt and outside the crypt. Observe
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that, for very small gaussian widths (fig. 6 (a)), some oscillations appear in the density at the crypt.
This means that we would require more elements to model this situation correctly, although the
general behaviour w are studying would be the same.

• Hydrodynamic length

Another parameter we can play with is the hydrodynamic length. This magnitude is regulated by
ℓh, which is the square of the ratio between the size of the domain and the hydrodynamic length.
The hydrodynamic length is related to the distance at which one part of the domain interacts with
another one. That is, if the hydrodynamic length is very high, what happens in a region affects the
whole domain. On the contrary, small hydrodynamic lengths imply that each region of the domain
is independent from the neighbour regions.

(a) ℓh = 10, lh = L
3.162

.

(b) ℓh = 1000, lh = L
31.62

.

(c) ℓh = 10000, lh = L
100

.

Figure 7: Equilibrium state under different hydrodynamic lengths (different values of ℓh).
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Fig. 7 shows the equilibrium state for several values of the hydrodynamic length. We start to observe
differences in the solution for ℓh = 1000, which corresponds to a hydrodynamic length which is 3.1%
the domain size. For large hydrodynamic lengths this distance is too large with respect to the domain
size and in practice this term becomes irrelevant in the momentum balance equation. However, for
small hydrodynamic lengths, the effect we observe is that the density increases at the crypt. This
happens because the term ℓhv corresponds to a friction force, so when friction is large (that is, ℓh
is large) the cells are less likely to escape the crypt, so the density increases. We also found that if
we increase ℓh too much the program diverges, a result in agreement with the same idea. That is,
if the friction is too large the velocity decreases a lot and cells are not able to move, resulting in an
increase in density at the crypt.

• Stiffness

The magnitude of the elastic stress is regulated by the stiffness parameter κ. This term is related
to the tendency that the system has to go back to the equilibrium state, which in this case is given
by ρ0(c). That is, when the elastic stress is large, the density is more likely to have a value close to
ρ0(c) at every point.

(a) κ = 10.

(b) κ = 100.

(c) κ = 1000.

Figure 8: Equilibrium state under different elasticity constants (different values of κ).
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Fig. 8 shows the equilibrium state for several values of κ. Observe that, when κ has a high value,
the density both inside and outside the crypt is very close to the equilibrium value (1 inside the crypt
and 0.5 at the villus). On the contrary, if the elastic stress is small, the density inside the crypt
increases, while the density at the villus decreases. This can be understood in a similar way as the
effect of changing ℓh: if we decrease the effect of the elastic stress, the viscous and friction terms
become more relevant, and the overall effect is that cells are less likely to leave the crypt, so the
density inside the crypt increases, while the density at the villus decreases.

As with the hydrodynamic length, there is a point at which increasing κ has no effect because the
elastic stress is already the predominant term in the momentum equation. What’s more, for very big
elastic stresses the time step has to be very small, since the velocity increases as well, so we need to
perform more iterations to reach convergence.

(a) δ4 = 1.

(b) δ4 = 2.

(c) δ4 = 10.

Figure 9: Equilibrium state under different degradation parameters (different values of δ4).
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• Degradation parameter

Another important parameter is the degradation parameter (δ4 after adimensionalization). Unlike the
previous parameters, the degradation parameter is very hard to measure experimentally, so we have
no criteria to decide its value other than using qualitative arguments and matching the results from
simulations to the experimental results. This parameter regulates the speed at which Wnt degradates
due to a large amount of factors, in contrast to the reduction of c due to cell divisions. We expect
this value to have a large impact on the equilibrium state. On one hand, if the degradation parameter
is large, Wnt degradates at a very high speed. c will be small in all the domain and there will be
a lot of extrusions (even inside the crypt), so the system may end up extinguishing. On the other
hand, if δ4 is small, the only way to reduce the Wnt concentration is by means of cell division, so the
Wnt concentration will be much higher and its dynamic will only be regulated by cell division and
cell extrusion.

Fig. 9 shows the equilibrium state for several values of the degradation parameter. As expected, for
large values of δ4 the cell density goes to zero. If δ4 is too small numerical oscillations appear near
x = 0 (see 4.5).

• Ratio between thresholds

There is another parameter which we cannot measure experimentally: the ratio between thresholds
for cell division and cell extrusion. Our assumption is that, for large Wnt concentrations, the cells
divide so as to reduce this concentration, and once the cells have divided extrusion begins. However,
there is a range of values of c for which division has ended but extrusion has not begun yet. This
range of values is regulated by δ2, and we expect it to be smaller than 1 (δ2 =

ce
cd

< 1e < cd , so that
extrusion begins after division ends, and not before).

Fig. 10 shows the cell density and Wnt concentration for several values of δ2, as well as the division
and extrusion rates, which are the most interesting magnitudes for this case. We can observe that,
when δ2 is small, there is no overlapping in the regions where extrusions and divisions take place, so
the two regions in space are completely differentiated one from the other. This results in an increase
of the cell density, since extrusions are less common. It is interesting to notice that, although the
value of c is higher at the crypt for small values of δ2, the division rate is smaller. This happens
because the cell density is also larger, and the division rate also depends on ρ (for high densities,
cells are less likely to divide because they are more packed and the division rate decreases). On the
contrary, for large δ2, extrusions takes place everywhere in the domain (a non-realistic situation), and
the division rate is also larger because, although the Wnt concentration is smaller, the cell density is
smaller as well.

• ϵ

There is another parameter which is related to the division rate, ϵ. The term ϵ
ρ+ϵ decays to zero

when ρ → ∞, and the smaller ϵ the fastest this decay is. Hence, ϵ is related to the speed of the
decay of the division rate with respect to the cell density.

Fig. 11 shows the equilibrium state for several values of ϵ. Observe that, for small values of ϵ, the
transition region between the crypt and the villus becomes steeper, and the density is smaller than
for large ϵ. From a mathematical point of view, this happens because the division rate decays very
fast when the density is greater than zero, and the consequence is that the cell density decreases.
Moreover, the velocity of advection of the cells is also smaller, so the cells are less likely to leave the
crypt. This provokes that the cell density is also smaller at the villus, tending to zero in the limit
case where ϵ is very small.

26



(a) δ2 = 2.

(b) δ2 = 1.

(c) δ2 = 0.5.

(d) δ2 = 0.3.

Figure 10: Equilibrium state under different values of the ratio between thresholds (different values of δ2).
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(a) ϵ = 1.

(b) ϵ = 0.3.

(c) ϵ = 0.1.

Figure 11: Equilibrium state under different values of ϵ.

There are two adimensional parameters, δ1 and δ3, which have not been discussed in this section.
These parameters are related, as they both have a huge impact on the behaviour of the system. A more
exhaustive discussion about their behaviour is done in 4.6.

4.5 Importance of degradation

Degradation of Wnt plays a key role in the dynamics of the system, since it is the only way to eliminate
Wnt (cell divisions only decrease its concentration, but the Wnt is not destroyed). Numerically, what is
observed is that δ4 acts as a stabilization parameter. That is, if it goes to zero numerical oscillations start
to appear. This can be explained in terms of the system of equations of the model, studying the equilibrium
points of such system.

Let’s consider the transport equation for c :

∂t̄ c̄ + ∂x̄ c̄ v̄ = δ3fp(x)−
1

2
fd(ρ̄, c̄)c̄ − δ4c̄ (32)
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As we have seen in all the simulations, the system presents two stagnation points: x = 0 and x = 0.5.
These two points are equilibrium points, since the velocity is zero in both of them. The reason why the
velocity is zero in these points is a symmetry argument: the system presents symmetry with respect to the
center of the gaussian x = 0.5, so these point must have v = 0. Moreover, since the domain is periodic,
the point which lies in the middle of two consecutive gaussians (x = 0) is also a stagnation point. Hence,
if we evaluate the trasport equation in equilibrium (∂t̄ c̄ = 0) in any of these points we get:

0 = δ3fp(x)−
1

2
fd(ρ̄, c̄)c̄ − δ4c̄

and since fp(0) = 0, this expression evaluated at x = 0 yields:

0 = −fd(ρ̄, c̄)c̄ − δ4c̄

This equation has only one solution, which is c = 0, since both fd(ρ̄, c̄) > 0 and δ4 > 0. Hence, in
equilibrium, the concentration at x = 0 is always zero.

If there is no degradation, δ4 = 0, so Wnt never reaches the point x = 0. However, Wnt is not eliminated
from the system (the concentration is only reduced by means of cell divisions), and it is advected towards
the villus. The effect is then the creation of a shock wave towards x = 0, and we end up having a boundary
layer next to x = 0 where the Wnt concentration increases drastically in a very small region. This can be
observed in Fig. 12. Moreover, this shock wave presents numerical oscillations due to the huge variations
in small regions.

The conclusion is that the model requires the degradation term in order to converge. This term acts
as a stabilization parameter, such that the Wnt concentration decreases monotonically until x = 0 and we
do not see any abrupt transitions.

Figure 12: Cell density and Wnt concentration in the absence of degradation. A shock wave is formed near
x = 0 in the Wnt concentration plot.

4.6 Cell divisions, cell extrusions and Wnt generation

There are two parameters which play a determinant role in deciding the behaviour of the system, δ1 and
δ3. The first one is related to the ratio between extrusions and cell divisions, and the second one is related
to the ratio between Wnt generation and cell divisions. A high value for δ1 means that cell extrusions
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occur at a higher rate than cell divisions, so the cell density decreases. On the other hand, small values of
δ1 imply that cell divisions occur at a higher rate than cell extrusions, so the density increases. As for δ3,
a high value of this parameter indicates that Wnt is generated at a higher speed than cell divisions take
place, so the overall effect is that the Wnt concentration increases, and consequently the cell density does
as well. On the contrary, a small value of δ3 indicates that Wnt is generated at a slower rate than cell
divisions take place, so the Wnt concentration decreases and the density does as well.

δ1 can be roughly estimated from experimental data, since we know the mean rate of cell divisions
inside the crypt and the mean rate of cell extrusions in the villus (its value is around 1). However, we have
no direct way to measure δ3, since we have no information of the magnitude of the rate of Wnt generation.
Hence, a wide range of values has to be considered to try to fit the results to experimental data.

The behaviour of the system may differ if we change these parameters. If δ1 is large and δ3 is small, we
expect the system to converge towards a null density state, since extrusions are much more abundant than
divisions and Wnt is generated at a very slow rate. On the contrary, if δ1 is small and δ3 is large, the system
may diverge, because Wnt is generated at a very high rate and extrusions take place much slower than
divisions. A priori, there are some stabilization terms which would prevent the density and concentration
from increasing indefinitely (the degradation term for c and the dependence of kd(ρ, c) with respect to ρ),
but in practice numerical oscillations appear and the system may diverge. For an intermediate range of
values, the cell density converges towards a non-trivial state.

Fig. 14 shows the behaviour of the system for different sets of parameters δ1 and δ3. The four colors
correspond to:

• Red: The system diverges (the concentration tends to infinity and numerical oscillations appear).

• Green: The system converges towards an homeostatic equilibrium state with density different from
zero.

• Yellow: The system converges towards an homeostatic equilibrium state with zero density.

• Grey: The results from simulations are inconclusive.

We can observe a very clear tendency in the behaviour of the system. As expected, the system diverges
when δ1 is small but δ3 is large, and it tends to zero when δ1 is large and δ3 is small. There is a range
of intermediate values which are the appropriate ones in order to get convergence towards a non-zero
equilibrium state.

It is interesting to notice that for some values of δ1 and δ3 the results are not conclusive. This happens
when the density takes very small values but not equal to zero. In those cases the system does not converge,
although the error remains bounded, and numerical oscillations appear at the center of the crypt. Most of
these states present very small cell densities, so we expect them to converge towards zero if smaller steps
are used, or stabilization techniques are used.

Another important result is that, when we have convergence towards a non-trivial state, the cell density
at the villus may go to zero (situation similar to the one found for very small ϵ). This can be seen in
Fig. 13 (b). That is, we have two possible situations. On the first one, the cells are advected towards the
villus and the density in that region is positive in the homeostatic equilibrium state. On the other hand, in
some cases the cell density at the villus is zero because the cells are extruded very fast in comparison to
the speed at which they are advected, and they do not reach the whole villus before being extruded. The
second case happens when δ3 is small compared to δ1, so the rate of generation of Wnt is small compared
to the extrusion rate.
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(a) δ1 = 0.6, δ3 = 0.5.

(b) δ1 = 1.4, δ3 = 1.5.

(c) δ1 = 0.8, δ3 = 3.

(d) δ1 = 0.8, δ3 = 4.

Figure 13: Cell density and Wnt concentration at the homeostatic equilibrium state under different values
of δ1 and δ3.
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Figure 14: Analysis of convergence with respect to δ1 (vertical) and δ3 (horizontal).

5. Conclusions

The most remarkable conclusion from our project is that, starting from reasonable assumptions about the
mechanics of the intestinal organoid and the dynamics of cell fate controlled by a morphogen, we have been
able to develop a minimal model which captures the most important features of self-organized homeostatic
steady states in intestinal organoids. Some of these features are a the division in two regions, the crypt
and the villus. The crypt is characterized by a large density of cells, while the villus has a smaller density
than the crypt. We also found a velocity pattern which drags the cells outside of the crypt, and a division-
extrusion pattern divided in two regions: the crypt, where only cell divisions take place, and the villus,
where extrusion take place.

From a mathematical point of view, the model consists on a system of partial differential system. Two
of the equations involve derivatives in time of two of the variables, ρ and c , and the third equation only
involves spatial derivatives. A remarkable fact is that we do not need to model the paneth cell density,
nor any other signaling pathway besides Wnt, such as Notch, to reproduce experimental results with our
model. We can assume that the dynamics of the paneth cells are negligible compared to the dynamics of
enterocytes, and no other signaling pathway plays a key role in the system.

From a numerical point of view, the system is easy to solve using finite elements, since we could use a
set of basis functions of order three, and we could use a simple first order time integrator. Some numerical
oscillations appear in some cases, specially when the density takes very small values or when it increases
very much, but in most cases these issues can be solved simply by decreasing the time step, considering an
adaptative step size or increasing the degree of interpolation. Numerical stabilization techniques (such as
GLS, ...) can also be considered to eliminate some of the stability issues.

We have verified that the model is robust with respect to initial conditions, as it reaches the same
steady-state regardless of them. We have also established a parameter space where this state forms, as
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well as how its features depend on key adimensional parameters. We have also provided physical insight in
the effect of each of this parameters and determined their relevancy to the final state.

This work provides a framework to quantitatively understand homeostasis in rapidly renewing tissues,
and to control tissue dynamics in vitro via intestinal organoids. This can be used to assist the design of
bionic devices combining artificial and biological materials.

6. Future work

Now that the system has been verified and we know it works, the following step would be to apply this to
a two dimensional case which can reproduce an actual intestinal organoid. The idea is to verify that the
system self organizes in the same way as in one dimension and generated the same two separate regions,
the villus and the crypt.

Another improvement for the system can be to add the dynamic of the Paneth cells to the model.
This would require adding an extra equation for the Paneth cells density. Moreover, the Wnt generation
rate is directly related to this density, so we would also have to modify the transport equation for the
Wnt concentration. From a numerical point of view this can be quite challenging, since the Paneth cells
dynamics are much slower than the enterocytes dynamics, so small time steps would be required to properly
reproduce the enterocytes dynamics, but we would have to integrate over long periods of time in order to
observe the Paneth cells dynamics.

Finally, a similar model can be deduced to model other organoids which are also regulated by signaling
pathways similar to the Wnt. A study of these systems should be performed before hand, but a similar
model could be obtained and many of the results found in this thesis could be useful to study similar
systems.
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A. Extra terms in the momentum equation

There are some extra terms we can add to the momentum balance equation (Eq. 3), using some biological
arguments. For instance, we can define an energy characterising the repulsion between different cell types
(mediated through Eph-Ephrin), which we could characterise by the gradient of c :

Frep =

∫
Ω

γ

2
|∇c |2dΩ, (33)

This would give rise to a tension

σrep =
γ

2
|∇c |2. (34)

We could also add another energy to characterise the mismatch of cell heights,

Fmis =

∫
Ω

L

2
|∇ρ|2dΩ, (35)

σmis =
L

2
|∇ρ|2 − Lρ∆ρ. (36)

Indeed:

d

dt
Frep =

∫
Ω

[
d

dt
frep +∇ · (frepv)

]
dΩ =

∫
Ω
[γ∇c∇ct +∇frep · v + f∇ · v] dΩ

Applying integration by parts to the last term yields:

d

dt
Frep =

∫
Ω

[
γ∇c · ∇(kp −

1

2
kdc −∇c · v) +∇frep · v −∇frep · v

]
dΩ

d

dt
Frep =

∫
Ω
−γ∇c · ∇(∇c · v)dΩ =

∫
Ω
γ∇ · (∇c)∇c · vdΩ =

∫
Ω
∇ · (γ

2
|∇c |2I) · vdΩ

This leads to the final expression in Eq. 34. Analogously,

d

dt
Fmis =

∫
Ω

[
d

dt
fmis +∇ · (fmisv)

]
dΩ =

∫
Ω
[L∇ρ∇ρt +∇fmis · v + f∇ · v] dΩ

Applying integration by parts to the last term yields:

d

dt
Fmis =

∫
Ω
[L∇ρ · ∇(kd(c)ρ− ke(c)ρ−∇ · (ρv)) +∇fmis · v −∇fmis · v] dΩ

d

dt
Fmis =

∫
Ω
−L∇ρ · ∇(∇ · (ρv))dΩ =

∫
Ω
L∇ · (∇ρ)∇ · (ρv)dΩ

d

dt
Fmis =

∫
Ω
[L∇ · (∇ρ)∇ρ · v + L∇ · (∇ρ)ρ∇ · v] dΩ

d

dt
Fmis =

∫
Ω

[
∇ · (L

2
|∇ρ|2I) · v −∇ · (L∇ · (∇ρ)ρI) · v

]
dΩ

This leads to the final expression in Eq. 36.

These two term do not need to be considered a priori in the model. However, they can be useful to
solve some issues which may appear in simulations. In particular, they are related to the smoothness of c
and ρ.
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B. Adaptative stepsize

One of the main issues in time integration is the choice of the time step. A large step may provoke
numerical oscillations, and eventually make the method diverge. However, a time step which is too small
would require a lot of iterations to converge to the equilibrium state. In the end, an intermediate time step
must be selected to obtain the equilibrium state in a reasonable amount of iterations.

Many methods have been developed in the literature to treat this problem. One of them is considering
an adaptative stepsize [17]. The idea of these kind of methods is to consider large time steps when we
are far away from the equilibrium and small time steps when we are in a neighbourhood of the equilibrium
state.

Let’s assume we have an ODE of the form ẏ = f (y , x), where x ∈ RN , and a first order Runge-Kutta
method of the form: yn+1 = yn + b1 · k1 + O(h2). We can compute the error at iteration n + 1 as
∆ = yn+1 − y∗n+1. We want to make sure that the error is bounded, that is, |∆| = |yn+1 − y∗n+1| ≤ scale,
where scale = atol+|y |rtol . Here, atol is the absolute error tolerance and rtol is the relative error tolerance.
In practice, max(|yn|, |yn+1|) is used for |y | in the above formula, in case one of them is close to zero.

∆ is actually a vector of desired accuracies of length N, so in practice a norm of this vector is considered
(for instance, the euclidean norm). We define:

err =

√√√√ 1

N

N−1∑
i=0

(
∆i

scalei

)2

We accept the error if err ≤ 1, and reject it otherwise.

The key point is the relation between err and h. Since the method is of first order, ∆ scales as h2,
and so does err . Hence, if we take a step h1 and produce an error err1, the step h0 that would have given
some other value err0 is readily estimated as:

h0 = h1

∣∣∣∣err0err1

∣∣∣∣1/2
This gives us an estimate of how much we can increase or decrease the step size. The strategy is the

following: if err at a given step size is greater than 1, we know how much we have to decrease the step
size in order to guarantee convergence (that is, err < 1). On the other hand, if err is less than 1, we have
an estimation on how much we can increase the step size keeping err < 1.

In the case of our model, we can compute the error as:

∆ =

√√√√1

2

((
ρn+1 − ρn

atolρ + |ρ|rtolρ

)2

+

(
cn+1 − cn

atolc + |c |rtolc

)2
)

Observe that we only include the error coming from ρ and c , but not from v . This is because v has no
derivatives in time in the model, so changing the time step does not have any effect in the computation of
v .
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S. Kale, D. Krndija, A. G. Clark, et al., Mechanical compartmentalization of the intestinal organoid
enables crypt folding and collective cell migration, Nature cell biology 23 (7) (2021) 745–757.

[2] U. Alon, An introduction to systems biology: design principles of biological circuits, Chapman and
Hall/CRC, 2006.

[3] M. Spit, B.-K. Koo, M. M. Maurice, Tales from the crypt: intestinal niche signals in tissue renewal,
plasticity and cancer, Open Biol. 8 (9) (Sep. 2018).
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