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Abstract
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Modelling the disease course regarding serious events and identifying prognostic factors is
of great clinical relevance. Previous studies to predict high-risk critically ill cases among
COVID-19 hospitalized patients have not yet arrived at a solid conclusion. Besides death,
other intermediate events such as the need for invasive ventilation are relevant for clinical
management. A team formed by clinicians and biostatisticians worked on the identification
of the most clinically relevant states to explain the evolution of COVID-19 hospitalized
patients, on the meaningful and plausible transitions between them, and on the charac-
terization of the prognostic factors for those states. Based on this consensus, a multistate
model (MSM) is proposed in order to learn about the disease progress. Motivated by this
situation, an app is presented with two main goals: 1) to fit a MSM from specific data in a
friendly way (programming skills are not required); 2) to predict the clinical evolution for
a given patient based on the previous MSM. For the first objective, the user defines the
states and transitions of the model as well as the covariates involved in each transition.
The app returns descriptive information through histograms or barplots for the covariates,
by box-plots to show the length of stay for each state and through instantaneous hazard
plots to represent the risk of transition over time. For the second goal, information of the
new patient at an initial state such as age or sex and the time for which predictions want
to be made has to be provided. From these inputs, the app provides some indicators of
the patient’s evolution such as the probability of death or the most likely state at a fixed
time. Furthermore, visual representations (e.g., the stacked transition probabilities plot)
are given to make predictions more understandable. For illustrative purposes, we show
how the app works using data from a multicohort study of more than 5,000 hospitalized
adult COVID-19 patients from 8 Catalan hospitals during the first five waves of the pan-
demic. Different models have been fitted for the first Catalan pandemic wave, including
as states the main outcomes –discharge and death– together with objective interventions
during hospitalization such as non-invasive or invasive mechanical ventilation. The ap-
plication and the underlying model are intended to be very useful for clinicians and to
enhance the approach in modelling the course of other diseases with different stages of
severity.



Notation

MSM Multistate model

DIVINE Dynamic evaluation of COVID-19 clinical states and their prognostic
factors to improve the intra-hospital patient management

ICU Intensive Care Unit

NIMV Non-Invasive Mechanical Ventilation

IMV Invasive Mechanical Ventilation

k → l Direct transition from state k to state l

HR Hazard ratio

LS Logarithmic score
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Introduction

Modelling the disease course regarding serious events and identifying prognostic
factors is of great clinical relevance. Since the first cases of coronavirus disease 2019
(COVID-19) in December 2019 in Wuhan (China), the entire world has dived into
a pandemic that still continues. This pandemic presents a threat to global health
with more than 6.2 million deaths due to COVID-19 [1]. Previous studies tried to
predict high-risk critically ill cases among COVID-19 hospitalized patients, but they
have not yet arrived at a solid conclusion. Besides death, other intermediate events
such as the need for invasive ventilation are relevant for clinicians. The combination
of all these events is required to learn about the progress of a COVID-19 patient.

Motivated by this situation, the Dynamic evaluation of COVID-19 clinical states
and their prognostic factors to improve the intra-hospital patient management (DI-
VINE) project, funded by Generalitat de Catalunya (2020PANDE00148), aims to
learn about the evolution of COVID-19 hospitalized patients. A team formed by
clinicians and biostatisticians from Instituto de Investigación Biomédica de Bel-
lvitge (IDIBELL) and Universitat Politècnica de Catalunya (UPC) works on this
project with four main goals:

(1) Identification of clinical relevant prognostic factors to severe pneumonia, need
of mechanical ventilation, death or discharge in a cohort of hospitalized adult
subjects with confirmed COVID-19.

(2) Development and validation of a reliable clinical prediction tool for the early
identification of potentially high-risk individuals among COVID-19 patients
using multi-state model analysis.

(3) Estimation of the COVID-19 incubation period in a cohort of hospitalized
adult subjects.

(4) Comparison of the clinical profile, the clinical management, and main out-
comes of hospitalized adult subjects between the different waves.

For that, data from more than 5,000 hospitalized adult COVID-19 patients from 8
Catalan hospitals have been collected. This data is divided in four cohorts corre-
sponding to four of the first five waves of the pandemic in Catalunya: March-April
2020 (n1 = 3460), October-November 2020 (n2 = 516), January-February 2021
(n3 = 637) and July-August 2021 (n4 = 578).

One of the objectives of the DIVINE project is to fit multistate models (MSM) to
analyse the evolution of patients hospitalized due to COVID-19. Furthermore, we
would like the clinicians to be able to use those models not only for that specific
aim, but for any other disease or situation. Consequently, we understand there
is a need for an intuitive and interactive tool that helps them to fit MSMs, but
particularly to predict the evolution of a new individual basing on those models.

1



2 INTRODUCTION

Motivated by this situation, in this Master’s Thesis the second goal of that project
is presented: the MSMpred shiny app. This app has two main goals: to fit a
MSM from specific data and to predict the clinical evolution for a given patient
based on the previous MSM. For that, only a subgroup of the first cohort of the
DIVINE project is used, with data of the patients without ceiling of care (patients
that do not have limitations on going to the different states).

Multistate models

During this COVID-19 pandemic several studies have been carried out to try to
understand better this disease. Those studies have very diverse goals: analyse the
mortality of patients with COVID-19, study the risk factors for going to intensive
care unit (ICU), predict the need of ICU beds... Due to that, several statistical
techniques were used depending on the purpose of each study.

One of the techniques that have been employed are MSMs. These models are very
useful when the aim of the study is to describe the evolution of the individuals
that have a disease with an increasing degree of severity, as in the case of COVID-
19. One advantage of these models is that lot of aspects can be analysed, so these
models not always are used in the same way. For example, let to see how the articles
by Ursino et al. [2] and Mody et al. [3] used this methodology.

On the one hand, Ursino et al. [2] aimed to describe the evolution of patients
admitted in the ICU due to COVID-19. For that, they consider different states
depending on the type of mechanical ventilation, as well as three possible ways to
get out of the ICU: ICU discharge, hospital discharge and death. Basing on that
model, they analyse the clinical path of the patients since the admission on the
ICU until 60 days after. Additionally, they looked for factors that could be related
with transitions from one state to another, and analysed the effect of some drugs
on the final outcome.

Fig. 1. MSM from Ursino et al.

On the other hand, Mody et al. [3] described the evolution of patients since the
COVID-19 hospitalization, until they are discharged or die. The main objective
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of this study was to characterize the clinical course of COVID-19 by means of
estimating the length of stay into the hospital and in each state, by computing the
cumulative incidences by 28 days since admission, and by analysing the association
of some covariates and therapies on each transitions.

Fig. 2. MSM from Mody et al.

Those are only two examples that use MSMs to describe the evolution of COVID-19
patients. With those articles we have seen what have been done and which aspects
we would like to analyse or improve. For example, we did not want neither to
have bidirectional transitions as has the model in FIG. 1, nor to have several states
representing the different absorbing states depending on the previous path of the
individual as in FIG. 2.

MSMs are not only used to describe the evolution of individuals, they could also
be used to make predictions on new individuals as have been made by Deschepper
et al. [4]. They used multsitate models to try to predict the number of needed
beds in different sections of the hospital during the pandemic. With this aim, they
divided the hospital wards in five states depending on whether there are COVID-19
patients in the ward or not and the cares needed by the COVID-19 patients. They
construct a MSM with six states where the unique absorbing state was discharge
(regardless of whether they go home or die).

Software related to multistate models

Before creating this app, we made a scoping review looking for different tools that
allow clinicians to fit those models easily. We found several apps but, any of them
has all the features that are important for us: fit a MSM and make predictions over
new individuals. Due to that, we thought it would be interesting to create our own
app taking the apps MSM shiny and MSMplus shiny as a reference.

We scrutinized those apps in order to make a list of aspects that we would like to
include in our app or even improve them, as well as other characteristics that we
would like to avoid. Before explaining our app, let us introduce you both apps and
comment the positive and negative points that we found.

MSM shiny allows to fit different type of MSMs and it has some interesting
outcomes statistically speaking.
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Those are some positive characteristics that we would like to highlight:

• Possibility of adding an initial state that is not defined in the data.
• Define as many transitions as one wants.
• Assign different covariates to each transition.
• Fit different type of MSMs.
• Compare the fitted models.
• The presence of animation to show how individuals move between states.

But this app also has some aspects that we don’t like or we want to improve:

• Once a transition is defined, it is not possible to remove it.
• The prediction part is quite poor.
• There is not a lot of information to help interpreting the results.
• The app does not allow to validate the model by means of a residual analysis.

MSMplus shiny is a more visual app, as it returns a variety of different graphs
related with the fitted model.

Some of the positive aspects of this app are:

• Some theory of MSMs is explained and some indications about how to interpret
the outputs are given.

• Possibility of changing the names of the states.
• The app is very friendly and it is plenty of graphical outputs.

Again, this app has some points to be improved:

• All the graphs are related with a few aspects of the model (e.g., transition
probabilities, length of stay).

• There is only one covariate: age.
• It does not allow to fit different type of models.
• The app does not return a numeric summary of the fitted model.

Before starting to create our app, we made a list with some ideas that we would
like to take into account in our app:

• Create a visual and friendly app easy to use.
• Possibility of defining all the possible transitions as well as to delete them.
• Fit different type of MSMs.
• Include the option to compare different models.
• Include a model validation.
• Predict the evolution of a new individual.
• Include a brief explanation of MSMs.
• Give some indications of how to interpret the results.

Regarding the packages available in R related with MSMs we found 23 pacakages,
but the most important for us are mstate and msm.
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Outline

This Master’s Thesis is divided into an introduction, three main chapters, and the
limitations and future work. The introduction has presented the reader to the
project and its main objectives.

Chapter 1 provides the theoretical background used in the app. At the beginning
the general ideas and examples for MSMs are presented, followed by the steps that
need to be done before obtaining results from those models. Then, the different
characterizations and estimations of the MSMs are explained. Finally, the reader
can find some insights of the predictions based on MSMs.

Chapter 2 introduces in a global way the different sections that the user can find
in MSMpred. Here the several inputs and outputs of our app are explained and
some indications about how to interpret the results.

Chapter 3 presents a case study to illustrate the use of MSMpred. Data of the
first cohort of the DIVINE project is used.

This works ends by listing the main limitations of MSMpred and some ideas that
we would like to improve in the future.





Chapter 1

Multistate models

1. Introduction

A multistate model (MSM) is a model for a continuous time stochastic process
allowing individuals to move among a finite number of states [9]. Within the scope
of survival analysis, MSMs allow to describe complex clinical processes that change
over time. Those models are formed by states and transitions, which represent, for
instance, the different stages of a disease evolution and the possible paths to move
between those states, respectively.

There are three different types of states: initial states are the ones where an individ-
ual could start the process; transient states are those in which individuals can get
in and out of the state; and absorbing states are the ones where the process ends.
Sometimes, states could also be both initial and transient, because people could
start the process in these states but also people could arrive to them transitioning
from other states.

As in classic survival analysis, the MSMs have some events of interest. In these
models we focus on the transitions between states and the time until they occur.
The most typical time-to-event analysis can be interpreted, as we will see, as a
simple example of MSM, because when the event occurs, the individual makes the
transition from one (initial) state to another state (of interest).

The main goals of MSMs are to:

• Understand the process of an individual or a group.
• Analyse the relationship between the covariates of interest and the process.
• Identify the risk factors for specific transitions.
• Develop predictive models for new individuals.

One relevant advantage of those models are that they allow to analyse the associa-
tion between the individual characteristics and the propensity to make a transition
in a specific time point (instantaneous hazard), being possible to relate different
attributes of the individual to each transition.

There are three main steps to build a multistate model: 1) represent the clinical
process by means of states and transitions; 2) decide which covariates or factors are
considered in each transition; 3) fit the model. The first two steps usually require
a clinical insight, so collaboration with medical experts could be helpful.

7
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2. Examples of multistate models

Some examples, from the simplest to the most complex, are presented to better
understand which type of clinical processes can be represented by a MSM and how
to do it properly. For illustrative purposes, we are going to use some of the states
considered in the DIVINE project, which we will describe in detail at the end of
this section. In this project, we analyse the evolution of hospitalized patients due
to COVID-19 in Catalan hospitals and the states describe several degrees of patient
severity.

Example 1: progressive k-state model

The simplest example is the progressive 2-state model that is equivalent to the
schema of the usual time-to-event analysis. We define two states, severe pneumonia
(initial state) and death (absorbing state), with a single transition between them
(FIG. 3). The aim of this model is to study the time to death for a hospitalized
patient with severe pneumonia.

Fig. 3. Progressive 2-state model

It is possible to add more states to this model to form a progressive k-state model,
k ≥ 2. FIG. 4 shows a progressive 5-state model that represents one possible
evolution that a patient hospitalized due to COVID-19 could have.

Fig. 4. Progressive 5-state model

In this progressive 5-state model, patients are hospitalized without severe pneu-
monia, and before dying (absorbing state), they go through the different transient
states starting from no severe pneumonia, severe pneumonia, non-invasive mechan-
ical ventilation (NIMV), and invasive mechanical ventilation (IMV). In this case,
we have defined four transitions and, consequently, four events of interest.

Example 2: illness-death model

One common MSM is the illness-death model (FIG. 5), formed by three states
(no severe pneumonia, severe pneumonia and death) and three transitions. The
illness-death model is commonly used to study the incidence of a disease and to
compare the rate of deaths between people with and without the disease. In this
case, patients start the process without having severe pneumonia and they could go
to severe pneumonia or die. If the patient dies (absorbing state) his process ends
here, but if he gets severe pneumonia (transient state) his process continues.

Up to this point, all illustrations have had unidirectional transitions, but MSMs
also allow to fit models with bidirectional transitions. One example is shown in
FIG. 6. This model is very similar to the previous one, but in this case a patient
that has severe pneumonia could recover to the no severe pneumonia state.
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Fig. 5. Illness-death model

Fig. 6. Recursive illness-death model

Example 3: DIVINE model

The FIG. 7 shows the MSM considered in the DIVINE project. One of the goals
of this project is to analyse the evolution of hospitalized patients admitted into
hospital due to COVID-19. A team formed by clinicians and biostatisticians worked
on the identification of the most clinically relevant states to explain the evolution
of COVID-19 hospitalized patients, on the meaningful and plausible transitions
between them, and on the characterization of the prognostic factors for those states.
Based on this consensus, a multistate model with 7 different states (initial states: no
severe pneumonia and severe pneumonia; transient states: NIMV, IMV and severe
pneumonia recovery; absorbing states: discharge and death) and 14 transitions
defined in the FIG. 7 is proposed in order to learn about the disease progress.

When a patient is admitted into the hospital, it can enter in one of the two initial
states (no severe pneumonia or severe pneumonia). Then, during his/her hospital-
ization he/she makes different transitions and reaches some of the transient states
(NIMV, IMV and severe pneumonia recovery) of the model. Finally, he/she is
discharged or dies in hospital (absorbing states).

As you can observe the model can become increasingly complex as more states and
transitions are added. The main challenge is to build the simplest model that has
to be able to provide answers to the relevant clinical questions. In Chapter 5, this
MSM will be presented as a case study.

3. Steps of a multistate model

As with any other model, different steps need to be done before obtaining results
from the MSM (FIG. 8).

1. Define the model: define the states and transitions of the model.
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Fig. 7. DIVINE model

2. Fit the non-parametric model: fit a non-parametric model in order to
make inference about the data.

3. Include covariates: following clinical criteria decide which covariates need
to be included into the model. It is important to analyse the correlation
between covariates, to avoid including related covariates.

4. Covariate selection: fit the full model and select the important covariates
using backward stepwise selection.

5. Model validation: the assumptions on which the underlying model is based
need to be checked. If those assumptions hold, the model is validated and
it is possible to go to the last steps, otherwise, some changes need to be
made: try to transform the numerical covariates, analyse interactions between
covariates or include more covariates and fit the model including those changes,
or redefine the model with the aim of obtaining a model that holds all the
assumptions.

6. Interpretation: interpret the obtained results.
7. Prediction: predict the evolution of a new individual.

Fig. 8. Steps MSM

4. Characterization of a multistate model

There are different ways to characterize a MSM, related to each other in such a
way that one characterization can be obtained from any of the others. The main
characterizations of those models are based on transition probabilities, transition
intensities or cumulative transition intensities. We have been inspired by the nota-
tion used by Cook and Lawless [10] to explain these characterizations.
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The evolution of a patient could be understood as a continuous-time stochastic pro-
cess formed by the different states that the patient visits over time. This stochastic
process could be defined as X = {X(t) : t ≥ 0} where X(t) represents the state
in which the patient was at time t and takes values in the discrete set of states of
the model, R = {1, .., R}. Finally, the class H(t) = {X(u),Z(u), u ≤ t} contains
the information of all the paths of all the individuals up to time t including the
covariates Z(u) which can also be time-dependent.

• Transition probability: the probability of transition to state l at time t,
provided that the patient was in state k at time s (for s ≤ t) is defined as

πkl(s, t;H(s−)) = Pr{X(t) = l|X(s) = k;H(s−)}, ∀k, l ∈ R (1)

• Transition intensity: the transitions intensities represent the probability of
transition between two states, k and l, in a specific time point t and they are
defined as

λkl(t;H(t−)) = lim
∆t→0

Pr{X(t+∆t−) = l|X(t−) = k;H(t−)}
∆t

= lim
∆t→0

πkl(t
−, t+∆t−;H(t−))

∆t
, ∀k, l ∈ R

(2)

• Cumulative transition intensity: the cumulative transition intensity be-
tween states k and l is defined as

Λkl(t;H(t−)) =

∫ t

0

λkl(u;H(u−))du, ∀k, l ∈ R. (3)

The Markov property is met when

Pr{X(t) = l|X(s) = k;H(s−)} = Pr{X(t) = l|X(s) = k}

which implies that the future only depends on the present but not on the past.

Under the Markov assumption, the above expressions can be simplified:

• Transition probability:

πkl(s, t) = Pr{X(t) = l|X(s) = k}, ∀k ̸= l ∈ R,

πkk(s, t) = 1−
∑
k ̸=l

πkl(s, t), ∀k ∈ R. (4)

• Transition intensity:

λkl(t) = lim
∆t→0

Pr{X(t+∆t−) = l|X(t−) = k}
∆t

= lim
∆t→0

πkl(t, t+∆t)

∆t
, ∀k ̸= l ∈ R,

λkk(t) = −
∑
k ̸=l

λkl(t), ∀k ∈ R.

(5)

• Cumulative transition intensity:

Λkl(t) =

∫ t

0

λkl(u)du, ∀k, l ∈ R. (6)
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Those characterizations can be expressed in a matrix form using a R × R matrix
for each (s, t), (e.g., π(s, t) = {πkl(s, t); k, l ∈ R = {1, .., r}}).

Often we work under a Time-Homogeneous assumption. In this case, it is assumed
that the transition intensities are constant along time, that is, λkl(t) = λkl, ∀t. This
strong assumption allows to simplify the computation of the transition probabilities
and work with a unique matrix π = π(s, t),∀s < t.

Under the Time-Homogeneous Markov assumption, since λkl(t) = λkl, ∀t and
πkl(t, t+∆t) ≈ λkl(t)∆t, the transition probability between states k and l is:

πkl(s, t) = πkl(0, t− s) = πkl(t− s), s ≤ u < t (7)

which only depends on the elapsed time between leaving state k and reaching state
l.

Using the Chapman-Kolmogorov equations the general computation of πkl(s, t),
∀s < t can be obtained using one-step probabilities πkl(u, u + 1) where s ≤ u < t.
The Chapman-Kolomogorov equations are:

πkl(s, t) = Pr{X(t) = l|X(s) = k} =
Pr{X(t) = l,X(s) = k}

Pr{X(s) = k}

=

R∑
r=0

Pr{X(t) = l|X(u) = r}Pr{X(u) = r|X(s) = k}

=

R∑
r=0

πrl(u, t)πkr(s, u), s ≤ u < t.

(8)

Writing the Chapman-Kolmogorov equations in matrix notation:

π(s, t) = π(s, u)π(u, t), s ≤ u < t. (9)

Consequently, under the Time-Homogeneous Markov assumption and because of
the Chapman-Kolmogorov equations, a unique one-step transition probability ma-
trix is needed.

The transition probability between states k and l can be interpreted as the proba-
bility of going through a specific transition k → l before time t, and the transition
intensity between states k and l as the risk of going through a specific transition
k → l in a specific time point t, respectively. However, the cumulative transition
intensity is not possible to interpret.

5. Estimation of a multistate model

Once the MSM is defined, some non-parametric, semi-parametric and parametric
estimations can be carried out. For those estimations, we will assume that the
Markov assumption holds, and we will denote the direct transition from state k to
state l as transition k → l∗, being k and l contiguous states.

∗Transitions between contiguous states.
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5.1. Non-parametric estimation.

To estimate the cumulative transition intensities of the model, we can use the
Nelson-Aalen estimator [10]. This estimator is based on the number of direct
transitions k → l before time t, denoted by Nkl(t), the number of individuals that
go through the transition k → l at moment t, and the number of individuals in
state k just before time t, denoted by Yk(t). Then, the Nelson-Aalen estimator for
the cumulative transition intensity is

Λ̂kl(t) =

∫ t

0

dΛ̂kl(u) =

∫ t

0

dNkl(u)

Yk(u)
, ∀l ̸= k ∈ R

Λ̂kk(t) = −
∫ t

0

Λ̂kl(t), ∀k ∈ R,

(10)

where dΛ̂kl(t) = λ̂kl(t)du and Yk(t) =
∑n

i=1 Yi,k(t).

To estimate the transition probabilities of the model, we can use the Aalen-Johansen
estimator [10]. This estimator is based on the previously estimated cumulative

transition intensities denoted as dΛ̂(u). Then, the Aalen-Johansen estimator for
the transition probability is

π̂(s, t) =
∏

s<u≤t

{I + dΛ̂(u)} (11)

where dΛ̂(u) is a R × R matrix with elements dΛ̂kl(u), ∀k, l ∈ R, estimated via
Nelson-Aalen estimator.

5.2. Semi-parametric estimation.

The Cox or proportional hazards model provides the most usual semi-parametrical
estimations of the MSM. They are semi-parametric because the baseline transition
intensities are not following a specific parametric distribution. For those models,
transition intensities are defined as in equation (5). One of the main benefits of
the Cox models is that they allowed to relate the characteristics of an individual
(described by some covariates) and the transition intensities:

λkl(t;Z) = λkl,0(t) exp(β
T
klZ) (12)

where λkl,0(t) is the baseline intensity function for the transition k → l, βkl is the
vector of regression parameters, and Z = (Z1, ..., Zp) is the covariate vector.

The association of a covariate Zq with the transition intesity of a specific transition
k → l can be measured by means of hazard ratios (HR):

HRkl,q =
λkl(t;Z = (0, ..., 0, Zq = 1, 0, ..., 0))

λkl(t;Z = (0, ..., 0, Zq = 0, 0, ..., 0))
= exp(βkl,q). (13)

We say that the covariate Zq is a risk factor for this specific transition if HRkl =
exp(βkl,q) > 1 and a protective factor if HRkl = exp(βkl,q) < 1 or what is the same,
risk factor if βkl,q > 0 and protective factor if βkl,q < 0. If HRkl = exp(βkl,q) = 1,
we say that the covariate Zq is not associated with the intensity of the transition
k → t.

After defining the model, it is necessary to estimate the parameters βkl and the
baseline hazard function λkl,0(t). For that, the partial likelihood, L(β), and the

likelihood function conditioned to the estimated values β̂kl need to be maximized.
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To obtain the Cox partial likelihood L(β) we need some information. For each
individual we have the follow up time, τi, the multistate process, Xi(t), and the
transition or censoring times for each transition, ti,kl. For each transition, we have
the risk set, Rk(ti,kl), with the individuals at risk in state k at time ti,kl and the
covariate vector of the individuals at risk, Zj . Then the Cox partial likelihood is
defined as

L(β) =
∏
k→l

n∏
i=1

exp(βT
klZi)∑

j∈Rk(ti,kl)
exp(βT

klZj)
. (14)

The estimations of the coefficients, β̂kl, can be obtained maximizing the Cox partial
likelihood (14).

After that, the estimations β̂kl are used to estimate the baseline hazard function,
λkl,0(t). There are several ways to perform this estimation, but we will use the
Breslow’s estimate. Assuming that there are r failure times for a specific transition

k → l, t
(1)
kl < ... < t

(r)
kl , the number of failures at each t

(j)
kl are djkl and the number

of individuals at risk nj
kl, the Breslow’s estimator for the baseline hazard function

at time t
(j)
kl is

λ̂B
kl,0(t

(j)
kl ) =

djkl∑
h∈Rk(t

(j)
kl )

exp(β̂
T

klZh)
. (15)

Following the same idea, is possible to estimate the Breslow’s estimator for the

cumulative baseline hazard function for t
(m)
kl ≤ tkl ≤ t

(m+1)
kl , m = 1, ..., r − 1:

Λ̂B
kl,0(tkl) =

m∑
j=1

djkl∑
h∈Rk(t

(j)
kl )

exp(β̂
T

klZh)
. (16)

After fitting the Cox model, some assumptions should be graphically validated
using several types of residuals:

• Martingale-based residuals. To validate linearity in continuous variables,
we explore the behaviour of the residuals of the model fitted without the
assessed covariate against the same covariate.

• Residuals based on the scores. To validate the global fit and to detect
influential individuals.

• Schoenfeld residuals. To validate the proportional hazards premise.

Those assumptions need to be checked for each transition of the model. So, the
different type of residuals need to be computed for each transition. Now, we are
going to formally define those residuals.

The martingale-based residuals are defined for each individual at each transi-
tion. They represent the difference between the number of observed events and the
number of expected events from the Cox model. For each individual i = 1, ..., n,
the martingale-based residuals associated to transition k → l are

rMi,kl
=

{
1− exp(β̂

T

klZi)Λ̂
B
kl,0(yi), if δi,kl = 1

0− exp(β̂
T

klZi)Λ̂
B
kl,0(yi), if δi,kl = 0.

(17)

where δi,kl represents the transition indicator that take value 1 if the individual i
makes the transition k → t, and 0 otherwise. They take values between −∞ and
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1 in the case of non-censored observations and between −∞ and 0 in the case of
censored observations. Therefore, they are not symmetrically distributed around 0.

These residuals serve to determine the best transformation for a covariate in such
a way that it optimally explains the time to an individual passes through a certain
transition. To find the best transformation for the covariate Zq in the transition
k → l, the martingale-based residual from a Cox model adjusted with the other
p− 1 covariates need to be computed. Then, the graphic of residuals rMi,kl

respect
to the value of the covariate Zi,q are represented with a smoothed curve of the
points trajectory along the x-axis. If the smoothed curve is reasonably linear, the
covariate Zq does not require any transformation in the transition k → l.

Residuals based on the score are defined on a particular transition k → l for
each covariate Zq and for each individual i. For each i = 1, ..., n and q = 1, ..., p,
the residuals based on the score are

rSi,kl,q
(t) =

∫ t

0

{Zi,q(s)− Z̄q(s)}dM̂i,kl(s) (18)

where

Z̄q(t) =

∑n
i=1 Ji,kl(t)Zi,q exp{βT

klZi(t)}∑n
i=1 Ji,kl(t) exp{β

T
klZi(t)}

M̂i,kl(t) = Ni,kl(t)−
∫ t

0

Ji,kl(s) exp{βT
klZi(t)}dΛ̂B

0 (s)

(19)

being Ji,kl(t) = 1{individual i is at risk for transition k → l before t} the risk in-
dicator and Ni(t) the transition indicator for each individual i.

We plot those residuals based on the score versus Zi,q to determine the influence of
the individual i in the estimation of the coefficients of the transition k → l. That
is, those residuals represent the difference between the estimator obtained when
adjusting the Cox model for the transition k → l considering all the individuals,

β̂kl, and the estimator from the model without taking into account the individual

i, β̂kl(i). So, those individuals far away from the others have a higher influence on
the model estimates.

In practice instead of using the residuals based on the score some transformations
like the dfbeta and dfbetas residuals are used. The dfbeta residuals also give a
measure of the approximate change of the coefficients if the individual i is not
taken into account [11]:

rdfi,kl
(t) = β̂kl − β̂kl(i) (20)

The dfbetas residuals are the standardized dfbeta residuals.

Finally, the Schoenfeld residuals for an explicit transition k → l are defined for
each covariate q and for each individual i. For each i = 1, ..., n and q = 1, ..., p,
they are defined as

rSCi,kl,q
= δi,klJi,kl(t){Zi,q − Z̄q(Ti)} (21)

The Schoenfeld residuals determine the difference between the observed and ex-
pected value of the covariate Zq in each transitioning time from state k to state
l.

The graphic of residuals rSCkl,q
for each individual are represented with a smoothed

curve of the points and the line rSCkl,q
= 0. If the confidence interval of the
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smoothed curve covers the line rSCkl,q
= 0, the proportionality of the hazard is not

severely violated.

Despite the residuals based on the score and the Schoenfeld residuals have been
defined taking into account time-dependent covariates, those definitions can be
simplified when only basal covariates are taken into account.

5.3. Parametric estimation.

We can also assume parametric distributions in the context of MSM [12]. Unlike the
non- or semi-parametric estimation, in the parametric MSM, the baseline hazard
function for the transition k → l, λkl,0(t), follows a parametric distribution such
that λkl,0(t) > 0. We can use several distributions such as exponential, Weibull,
Gompertz, log-logistic, log-normal, among others.

The main drawback of this type of estimation is that the assumption that the data
follows a precise distribution need to be done. Moreover, if we want to consider
different distributions for each transitions, we need to model those transitions sep-
arately.

In our present work we disregard this option.

6. Prediction based on a multistate model

As with any type of model, MSM may be used to make predictions for a new
individual. For that, some characteristics of the patient such as the observed history
of states and covariates until time t0 and the initial state, H(t0) = {X (t0),Z(t0)},
need to be known. Based on that and in a previously fitted model, the future
process, {X(s); s > t0}, could be predicted.

In order to obtain those predictions for time t1 > t0, a predictive model needs
to be specified to obtain P̃{X(t1) = x|H(t0)}. The tilde indicates that this is the
predicted probability and not the observed probability, Pr{X(t1) = x|H(t0)}. Once
the predictive model is obtained, the transition probabilities, hazards functions...
could be obtained in order to forecast different aspects of interest. For example, the
probability of being in each state after time t could be deducted from the transition
probabilities for the new patient.

To assess how good are those predictions, we need to analyse the calibration and
sharpness of the predictive model. Concerning the calibration analysis the predicted
probabilities, P̃, and the true probabilities, P , are compared, aiming to check how
near/far are from each other. Ultimately systematically biased predictions can
be detected. With the sharpness of the model we analyse if initial conditions or
covariates, H(t0), are highly predictive of the state an individuals will be in later.

There are some scoring rules that combine both aspects, calibration and sharpness,
to analyse the performance of the predictive models like the logarithmic score also
known as Kullback-Leibler score.

The logarithmic score for a given individual i is computed as

LSi(P̃, t1) = − log P̃{Xi(t1) = xi(t1)|Hi(t0)} (22)

where xi(t1) is the observed state at time t1 and individual i is not included in the
dataset used to fit the model.
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If the predicted performance of the model wants to be analysed for a group of n
individuals, the following formula can be used:

LS(P̃, t1) = − 1

n

n∑
i=1

LSi(P̃, t1)

= − 1

n

n∑
i=1

log P̃{Xi(t1) = xi(t1)|Hi(t0)}
(23)

We divide by n because otherwise the score always increases when more individuals
are analysed. The logarithmic score takes values between 0 and ∞.

That score is not interpretable, but it is useful when some models want to be com-
pared. Let’s assume that we have two models and that for the individual i model
1 has P̃1{Xi(t1) = xi(t1)|Hi(t0)} = p1 and model 2 P̃2{Xi(t1) = xi(t1)|Hi(t0)} =
p2, being p1 < p2. As the probability of guessing the observed state is mea-
sured, the model with a higher probability is chosen, that is, model 2. But, when
computing the logarithmic score we obtain the values LS(P̃1, t1) = − log p1 and

LS(P̃2, t1) = − log p2, not p1 and p2. As the logarithmic function is a increasing
function, log p1 < log p2 so we prefer the model with a higher value, but when the
logarithm is multiplied by −1, − log p1 > − log p2, so lower values of LS(P̃, t1) are
preferable.

If instead of just comparing the predictive performance of two models for one in-
dividual, we want to make the comparison for a group of individuals, once more
the model with a lower logarithmic score needs to be chosen. This is because when
several individuals are analysed, we sum the LSi(P̃, t1) of each individual and divide
it by the total number of individuals analysed, and both functions are increasing
functions. Consequently, when comparing different models if the one with the best
predictive performance wants to be selected, the model with a lower logarithmic
score needs to be chosen.





Chapter 2

MSMpred

MSMpred (https://www.grbio.eu/pubs/MSMpred/) is a shiny app with two
main goals: 1) to fit a MSM from specific data; 2) to predict the clinical evolution
for a given individual based on a previously fitted MSM.

As MSMpred is mainly designed for clinicians or researchers with little knowledge
about MSMs, we have tried to make it very easy to use, to implement all the
statistical part in a intuitive way and to include interpretations for the different
outputs. Programming skills are not required to use MSMpred.

To achieve both goals, fit a MSM and make predictions, MSMpred has different
sections that make the process quite intuitive. In each of those sections the user
works on different aspects of MSMs using parametrizable inputs (e.g., selection of
the covariates, characteristics of the new individual).

The main sections of MSMpred and their features follow:

• Home: it contains a short description of the example dataset, and a brief
explanation of the characteristics that the new dataset must have (format of
the dataset, names, etc.), as well as some indications of how the app works.

• Data: the user uploads his/her own dataset or decides to work with the
example dataset (a dataset related with the DIVINE project).

• Model specification: the user defines the transitions of the model using
buttons, selects the covariates to include in the model, and specifies the follow-
up time of the study.

• Exploring the data: the app shows some descriptive graphs and tables of
the selected covariates, box-plots of the length of stay in each initial/transient
state, cumulative incidence and survivals curves for the time until each absorb-
ing state, and non-parametric graphs representing the instantaneous hazards
of the transitions over time.

• Fitted model: using drop-downs the user decides the type of model to be
fitted and receives a summary of the fitted model. For the moment only
Markovian Cox models are available.

• Graphics: the user receives several forest plots that represent the hazard
ratios and confidence intervals of the covariates taken into account in each
transition.

• Model validation: different graphs related with residuals (e.g., Schoenfeld
residuals) that allowed to validate the fitted model are provided.

• Predictions: the app returns some predictions for a new individual based on
the information provided by the user.
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To create this app, we have used shiny, shinyBS, shinyWidgets, shinydashboard,
shinydashboardPlus, shinyalert, shinyMatrix, and shinyjs packages of the R
software. For implementing the multistate model we used the mstate package
and followed the indications given by Wreede [13]. The plots are made using
the packages ggplot2, bshazard, cmprsk, DiagrammeR, LoopDetectR, survminer,
pals, and the tables using DT and summarytools. Finally, we have used another
packages to work with the data as dplyr, stringr, and lubridate.

1. Data

The user can upload a new dataset, provided that it has the required format. For
illustrative purposes the app has an example data that comes from the DIVINE
project (this project and the associated dataset will be described in the next sec-
tion).

The dataset to upload needs to be in a csv format and with the following charac-
teristics:

• Columns separated by commas and decimals separators represented by points.
• Time and status variables related to the different states of the model have
to be named as x time and x status respectively, where x corresponds to the
name of each state (e.g. death time and death status).

• The initial state(s) has/have to be included in the file following the previ-
ous naming and having time equal to 0 when the initial state(s) is/are not
transient.

• One variable named inistat should be included with the name of the initial
state for each individual.

• The variables that are not named as x time, x status, id or inistat are consid-
ered as baseline covariates, and their name should not include any number or
point.

2. Model specification

The first objective of MSMpred is to fit a MSM from the data selected by the user.
The first step is to define the model, that is, to specify the states and transitions. For
that, based on the names of the columns of the dataset named as x time and x status
the app identifies which are the states (x ), and using some buttons and drop-downs
of the model specification section the user defines the transitions. Basing on
that states and transitions the app shows the diagram of the defined model and
the number of events for each transition. For these purposes the create graph()

function of the DiagrammeR package and the events() function of the mstate are
used. In order to make the diagram more understandable the states are plotted in
different colors: orange (initial states), blue (transient) and magenta (absorbing).

Despite a MSM allows the inclusion of recursive transitions and loops in the model
(e.g, bidirectional transitions), due to some computational problems when using
the mstate package our app only allows non-recursive transitions and models with-
out loops. The find loops() function of the LoopDetectR package, detects if a
recursive transition or a loop is tried to be included by the user. If so, a popup
indicates that the transition is not allowed. Sometimes those loops or bidirectional
transitions play an important roll on the model. In those cases, some tricks can
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be used to take into account these loops: 1) include a new state to represent that
the individual goes back to the previous state; 2) create some states specifying the
number of times that an individual goes into it. For example, if we want to model
a recursive illness-death model (FIG. 6), we can use four states (no severe pneu-
monia, severe pneumonia, severe pneumonia recovery and death) instead of three
(no severe pneumonia, severe pneumonia and death) as in FIG. 9. Or if a recursive
illness needs to modeled as epilepsy, different states can be defined depending on
the epileptic seizure number (first epileptic seizure, second epileptic seizure, and so
on).

Due to that limitations, the number of events for each transition equals the num-
ber of individuals that make each transition, because individuals only make each
transition once.

Fig. 9. Recursive illness-death model avoiding recursive transi-
tions

Regarding the selection of the covariates, the user has to decide which covariates
wants to include in the model. For the moment, all the covariates have to be
measured at baseline, but as future work we would like to implement the feature of
adjusting by time-dependent covariates.

Finally, the follow-up time with the pertinent units should be specified in order to
delimit the axis related with time in some graphics.

With the abovementioned inputs, the msprep() and expand.covs() functions of
the mstate package, allows us to generated a new dataset in long format. This
format is characterized by having several rows for each individual, one for each
potential transition from the states of his/her path.

3. Exploring the data

In the exploring the data section, a descriptive analysis about the selected covari-
ates and the different states of the model is shown. In the descriptive subsection,
each selected covariate is described by means of a frequency bar chart for factors
and by an histogram for numerical covariates. Furthermore, a table with some de-
scriptive statistics is provided: absolute and relative frequencies for each category
of the factors and mean, minimum, median, maximum, and interquartile range
(IQR) for numeric covariates. The number and percentage of valid values are also
returned.

It is important to know how much time an individual remains in a specified state. In
the length of stay subsection the distribution of length of stay of the individuals
in each initial or transient state is shown using box-plots.
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In the time until absorbing state subsection, the time until these states is
analysed by representing the pertinent cumulative incidence and the Kaplan-Meier
curves. For a time t, the cumulative incidence indicates the proportion of individuals
who go to a specific state, while the survival curve shows the probability of reaching
that state, given that the individual has not experienced such state before time t.
When data contains censored individuals the cumulative incidence curve of those
individuals to describe the time when those individuals are censored. To obtain
these curves we applied the cuminc() and survfit() functions of the cmprsk and
survival packages, respectively.

In the last subsection of this exploring the data section, instantaneous haz-
ards, the app represents the non-parametric instantaneous hazards of transition
over time. To obtain those smoothed estimations of the instantaneous hazards of
the transitions we used the function bshazard() of the package bshazard. In order
to reduce the amount of information represented in each graph, a starting and an
ending state of interest have to be chosen. Once the app receives these inputs, two
graphs are represented showing: (1) the instantaneous hazards of all the potential
transitions from the selected starting state; and (2) the instantaneous hazards of
all the transitions that go to the ending state of interest. Sometimes if only a few
individuals make a specific transition, it is not possible to estimate the instanta-
neous hazard of that transition. In those cases, the curve of those transition is not
plotted.

Those graphics can be stratified by some covariates selected in the model spec-
ification section. In case of selecting a categorical covariate, a plot is returned
for each category, and in case of a numerical covariate, two plots are returned
stratifying by the median.

4. Fitted model

To fit the MSM, first of all, it is necessary to decide the type of model. Currently,
only Markovian Cox models are available, but in the future, we would like to include
other type of models (e.g., non-Markov or parametric models). To fit the model,
the function coxph() of the survival package is used.

In the current version of MSMpred if in the model specification section some
covariates were selected, the same subset of covariates is included for all transitions;
otherwise (no covariate was selected), a null model is fitted. Future extension will
include the possibility to choose a different subset of covariates for each transition,
as this is one of the main advantages of the MSM.

When the Cox model is selected, three tables are returned:

1. Table of model coefficients. Each row represents a transition for a given
covariate named in the first column of the table as covar (k → l) where covar
indicates the name of the covariate and k → l the transition of interest. For
each covariate and transition the estimated coefficient (coef ), the estimated
hazard ratio and its confidence interval (HR (95%CI)) and the p-value (p-
value) are provided. Those values indicate which is the association of the
covariate covar on the risk for a specific transition.

2. Table of likelihood. The values of the log-likelihood of the fitted and the
null model. If a null model is fitted, the values of both log-likelihoods match.
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3. Table of goodness of fit. The outputs of some statistical tests (test) of
goodness of fit: likelihood ratio; Wald; and score tests. For each test, the
value of the statistic, the degrees of freedom (df ) and the p-value (p-value)
are reported.

The aim of the tests shown is to contrast the next hypothesis for all the transitions
k → l and covariates q:

{
H0 : βkl,q = 0, ∀q ∈ {1, ..., p}
H1 : βkl,q ̸= 0, ∃q ∈ {1, ..., p}

(24)

where βkl,q is the regression parameters of the covariate q in the transition from k
to l.

This hypothesis is analysed using three different statistics:

• Likelihood ratio statistic:

WLR = 2log

(
L(β̂kl|Z)
L(0|Z)

)
, (25)

where βkl is the estimated vector of regression parameters, Z = (Z1, ..., Zp)
is the covariate vector, Rk(ti,kl) is the risk set with the individuals at risk in

state k at time ti,kl and L(β̂kl|Z) =
∏n

i=1
exp(β̂

T
klZi)∑

j∈Rk(ti,kl)
exp(β̂

T
klZj)

is the partial

likelihood of the transition k → l.

• Wald statistic:

WW = (β̂kl − 0)TI(0|Z)(β̂kl − 0), (26)

being I(β|Z) = E{S(β|Z)S(β|Z)T } and S(β|Z) = (S1(β|Z), ..., Sp(β|Z)),
where Si(β|Z) = ∂ logL(β|Z)/∂βi.

• Score statistic:

WS = S(β̂kl|Z)TI(β̂kl|Z)−1S(β̂kl|Z) (27)

Under the null hypothesis, all those statistics follow a χ2
p distribution with the

degrees of freedom p being the number of coefficients of the model.

Each table has its own interpretation:

1. Table of model coefficients. If the covariate is a factor, the hazard ratios
compare the hazard rates of each category with a reference category.

• Positive coefficient. For example, regarding sex, a estimated coefficient,

β̂kl,M = 0.56 implies that a male (M) has exp(β̂kl,M ) = exp(0.56) = 1.75
times more risk of transition from the state k to the state l than a female
(F, reference category) with the same baseline characteristics.

• Negative coefficient. For instance, the estimated coefficient is β̂kl,M =

−0.1, a male has 1 − exp(β̂kl,M ) = 1 − exp(−0.1) = 1 − 0.9 = 0.1 times
less risk of transition from the state k to the state l than a female with
the same baseline characteristics, or what is the same, the female has

1/ exp(β̂kl,M ) = 1/0.9 = 1.11 times more risk of transition than a male
in equal conditions.
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If the covariate is numeric the hazard ratios, compare two values of this co-
variate.

• Positive coefficient. For example, if we compare two individuals with the
same characteristics, but one is 50 years old and the other 65 years old,

and the value of the coefficient that we obtain is β̂kl,age = 0.02, the 65

years old has exp((65−50)× β̂kl,age) = exp(15×0.02) = 1.35 times more
risk of transition than the 50 years old.

• Negative coefficient. For instance, if we compare two individuals with the
same characteristics, but one is 55 years old and the other 60 years old,

and the value of the coefficient that we obtain is β̂kl,age = −0.04, the 60

years old has exp((60 − 55) × β̂kl,age) = exp(5 × (−0.04)) = 0.82 times
less risk of transition than the one with 55 years, or what is the same, the

one with 55 years has 1/ exp((60− 55)× β̂kl,age) = 1/ exp(5× (−0.04)) =
1/0.82 = 1.22 times more risk of transition than the 60 years old.

2. Table of likelihood. The log likelihood of a model is used to compare the
fitting of different models. Models with higher log likelihood provide a better
fit to data.

3. Table of goodness of fit. The three tests shown in that table assess the
hypothesis that no associations are significant in any transition (i.e., if all
the coefficients of the model can be assumed equal to 0). In the column
test the value of the statistic is reported, in the column df the degrees of
freedom (equal to the number of estimated coefficients) and the column p-value
contains the p-value resulting from the corresponding test. Is important to
take into account that the p-value is rounded up to the sixth decimal position,
so if p-value < 10−6, the app will consider the p-value as 0. Although the
three tests could be useful in some situations, for a global test, the likelihood
ratio test is preferred over the two other options [14].

As in the predictions section we will use this model to make predictions on new
individuals, it is necessary to analyse the predictive performance of the model. For
that, MSMpred allows to compute the logarithmic score clicking on the button
compute the logarithmic score. It is not computed automatically as it has a high
computational cost; its calculation takes more than one minute depending on the
included covariates.

To compute the logarithmic score at time of interest (follow-up time selected in
the data specification), the dataset is randomly split into training (70%) and
test (30%) groups. The former is used to fit the model, while the later are used
to assess the predictive performance. It is worth to mention that the coefficients
of the model fitted using the train dataset could not be the same that those ones
resulting from the application of the model on the full data.

When the compute the logarithmic score button is clicked a progress bar appears
indicating that the computation of the score is being made. The logarithmic score
has not a simple interpretation, but it is useful to compare different models, being
lower values preferable.

5. Graphics

In order to make a more visual app, in the graphics section some forest plots
representing the estimated hazard ratios and their 95% confidence intervals are
returned. The user needs to choose between a specific transition and he/she receives
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the forest plot of the hazard ratios associated to the covariates taken into account
on that transition. We say that the covariate has an effect on the transition of
interest if the confidence interval of these specific covariate and transition does not
cover the 1, and that it does not have a significant effect otherwise. If no covariate
is selected, a popup is shown indicating that the graphic cannot be shown.

In the case of the numerical covariates the user could decide the difference of units
to consider in the computation of the hazard ratio and its 95% confidence interval.

6. Model validation

The assumptions of the model are assessed in themodel validation section. When
a Cox model is fitted three main premises are assumed: 1) linearity of the numerical
covariates; 2) absence of influential observations; 3) proportionality of the hazards.
For each transition, those assumptions can be evaluated, in a graphical way in the
subsections linearity, influential observations and proportionality of the
hazards, respectively. When no covariate is selected, a popup appears indicating
that the premises cannot be assessed.

In the linearity subsection, the user selects the numerical covariate as well as
the transition of interest for which the assumption wants to be assess. A graph
representing the martingale-based residuals of the selected transition and covariate
as function of covariate values is reported. If the smoothed curve along the x axis
is reasonably linear, we can assume the linearity of that covariate in that specific
transition, otherwise, a transformation of the covariate in that specific transition
should be implemented.

In the influential observations subsection, we can find a graph representing the
dfbetas residuals versus each covariate for a specific transition. These graphs help
to detect if there is any potential influential value. Those residuals represent the
difference between the estimate obtained when fitting the model considering all the
individuals and the one obtained when fitting the model without this particualr
individual. The individuals that have a dfbetas residual that is far away from the
other residuals have a higher influence on the model estimates.

Finally, in the proportionality of the hazards subsection the Schoenfeld resid-
uals are used. For each covariate related with a selected transition a graph with
those residuals is obtained. Each of these graphs should be independently assessed,
and we say that the proportionality of the hazards holds for that specific covariate
and transition if the estimated 95% confidence bands entirely cover the horizontal
line at y = 0.

We used the ggcoxdiagnostics() function from the survminer package to ob-
tain those residuals and to plot the ggplot graphics. This function computes
martingale-based, dfbetas or Schoenfeld residuals depending on the type argument.

7. Predictions

For the second objective of MSMpred, predict the clinical evolution for new indi-
viduals, the model previously fitted is used. This prediction can be done for one or
two individuals at the same time, making possible the comparison of the evolution
of individuals with different profiles.
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The predictions are obtained based on the profile of a new individual by means
of selecting values of his/her baseline covariates. Also, different aspects of those
individuals need to be specified: the current state and the time for which the
prediction wants to be done. By default the app makes the prediction for an
individual that has the first of the states as current state, and a profile constituted
by the first categories of the categorical factors and the medians of the numerical
covariates. Those predictions are done over 30 days.

Both a numerical and a graphical output are returned. The numerical output
provides the probability of being in each state in the selected time. Those values
are computed using the msfit() and probtrans() functions of the mstate package.
Additionally, a transition probability plot is represented to have a global vision of
those predicted probabilities for any moment before the selected time point. This
plot can be represented in a stacked or non-stacked way: in the non-stacked plot,
probabilities are represented by curves over time and in the stacked plot, those
probabilities are cumulated for each point time by means of coloured shaded areas.
Those outputs represent the probability of being in each state after some time,
regardless of the intermediate path.

8. Help

The help section takes the user to another tab where some indications about the
inputs and outputs of the other sections can be found, as well as a guide about
how to interpret the obtained outputs. Furthermore, every section and subsection
of the app contains a help box that takes the user to the pertinent help tab.



Chapter 3

Case study: DIVINE project

For illustrative purposes, we show how MSMpred works using the example dataset
from the DIVINE project (2020PANDE00148) that is funded by Generalitat de
Catalunya.

The team of this project consist of 9 members from Instituto de Investigación
Biomédica de Bellvitge (IDIBELL) and 9 members from Universitat Politècnica de
Catalunya (UPC), among those we are 12 biostatisticians and 6 clinicians.

This project has the following four main objectives

(1) Identify the most clinically relevant prognostic factors for the events,
(2) Develop a prediction tool to identify high-risk individuals,
(3) Estimate the incubation time period of the SARS-CoV-2,
(4) Assess the patients’ profile over time,

andMSMpred have been developed to achieve the second objective of this project.

In order to achieve those objectives, we have data on more than 5,000 hospitalized
adult COVID-19 patients from 8 Catalan hospitals during the first five waves of the
pandemic. The dataset contains information about relevant events such as death,
severe pneumonia and invasive mechanical ventilation (IMV). MSMpred contains
a subset (n=2048) of this dataset with the information that is needed to fit a MSM,
corresponding to the patients without ceiling of care of the first Catalan wave of
the pandemic (March-April 2020).

Different models have been designed for the first Catalan pandemic wave, including
as states the main outcomes (discharge and death) together with objective interven-
tions during hospitalization such as non-invasive or invasive mechanical ventilation,
until ending up with the model that considers 7 states and 14 transitions shown on
FIG. 7. Those states do not overlap so individuals can only be in one state at each
time. Below you can find a little explanation of each state:

1. No severe pneumonia (nopneum): patients that are hospitalized due to
COVID-19 but do not have severe pneumonia.

2. Severe pneumonia (pneum): patients that are hospitalized due to COVID-
19 and have severe pneumonia.

3. Severe pneumonia recovery (reco): patients that had severe pneumonia
while hospitalized due to COVID-19, they recovered but they are still hospi-
talized.

27
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4. Non-invasive mechanical ventilation (NIMV): patients that need non-
invasive mechanical ventilation while hospitalized due to COVID-19.

5. Invasive mechanical ventilation (IMV): patients that need invasive me-
chanical ventilation while hospitalized due to COVID-19.

6. Discharge (dcharg): patients that go home or to another hospital after re-
covering from COVID-19.

7. Death (death): patients that die in the hospital due to COVID-19.

For that model we have created the state severe pneumonia recovery (reco) for
recovered patients still hospitalized. This state is necessary because a patient with
severe pneumonia (maybe also with non-invasive or invasive mechanical ventilation)
needs to be recovered before being discharged. As MSMpred does not allow to
include loops in the model, this state was created to avoid recursivity. We performed
an imputation for the recovery date in those patients that do not need any type of
mechanical ventilation because this information was not registered. We assumed
that the patient had to be recovered at least 1 or 2 days before the discharge date.

For each state the dataset has variables named x time and x status through which
the path of each patient is described. The variable x time contains the time until
the state x is reached for the first time, and the variable x status indicates if this
state is reached or not. If the patient does not reach the state x, x status takes
value 0 and x time takes the last observed time of the patient. We can interpret
that the time until this state x is censored at the last observed time as the patient
has not reached that state.

FIG. 10 illustrates the path of two specific patients (id = 8 and id = 1). Both are
patients admitted into the hospital without severe pneumonia (nopneum time = 0,
nopneum status = 1). The first patient is diagnosed with severe pneumonia after
1 day in hospital (pneum time = 1, pneum status = 1), he/she needs non-invasive
mechanical ventilation at day 2 (NIMV time = 2, NIMV status = 1) and invasive
mechanical ventilation at day 3 (IMV time = 3, IMV status = 1) and finally he/she
dies at day 10 (death time = 10, death status = 1). Consequently, that patient has
not reached the states reco and dcharg and both states are censored at time 10
(reco time = 10, reco status = 0 and dcharg time = 10, dcharg status = 0).

Fig. 10. Model

The second patient has a better evolution since, even if he/she needs non-invasive
mechanical ventilation at day 7.5, he/she recovers from severe pneumonia at day
13 and he/she is discharged at day 23.

Despite the time until each state is analysed through the difference between the
date of entry in the previous and actual state, in the abovementioned patient we
can observe that the time until non-invasive mechanical ventilation is 7.5 days. This
is because the dataset has patients that enter in two states the same day, and this
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is not allowed in MSMs. To solve this problem, we add a half-day lag for patients
that enter in two states at the same day. As the second patient of FIG. 10 was
diagnosed with severe pneumonia and needed non-invasive mechanical ventilation
the seventh day, we made the half day imputation obtaining NIMV time = 7.5.

It is worth to mention that this data has not censored individuals. This is because
instead of ending the follow-up of the patients when ending the study period, we
followed collecting the information of the patients until they go to an absorbing
state (death or dcharg). In addition, as we are working with hospitalized patients
there is not lost to follow-up.

Apart from the information related to the states, data contains some baseline co-
variates:

• Sex (sex): dichotomous covariate with categories Men and Women repre-
senting the sex of the patients.

• Age (age): numeric covariate that represents the age of the patients in years.
• Pneumonia severity index (psi): numeric covariate that represents the
severity of the pneumonia.

• Cardiovascular diseases (card vasc): a dichotomous covariate with cate-
gories No and Yes depending on if the patients have any cardiovascular disease
or not.

• blood oxygen saturation/oxigen supply (safi): numeric covariate that
represents the respiratory limitations in mmHg. The ideal value is 100/0.21 =
476 mmHg, but as we are working with hospitalized patients they have a lower
value.

• Charlson index (charlson fact): index that predicts 10-year mortality tak-
ing values between 0 and 12 and higher values are associated with higher co-
morbidities. We categorized this index in three categories: [0,1) → low, [1,3)
→ mild and > 3 → very high .

• C-reactive protein (crprot): a numeric covariate that represents the value
of the C-reactive protein (CRP) of each patient in ng/ml.

• Lymphocytes (lympho): a numeric covariate that represents the number
of 103 lymphocytes per mm3 of each patient. The range of normal values goes
from 1000 cells/mm3 to 4.8 cells/mm3.

We now explain the functioning of MSMpred using this example data.

1. Data

As we want to work with the example data, in the data section we don’t have to
upload any file. For confidentiality reasons the app only shows the information of
20 patients, although it internally works with all the individuals of the DIVINE
cohort.

2. Model specification

As we are working with the example dataset, it is not necessary to define the
transitions, as they are defined automatically. However, one can modify this de-
fault transitions. In the multistate model diagram box, the diagram of the model
shows that there are two orange initial states (nopneum, pneum), three non-initial
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blue transient states (reco, NIMV, IMV ) and two magenta absorbing states (death,
dcharg). In the number of events for each transition box, we observe that the tran-
sitions reco → death and NIMV → death are only made by 12 and 10 individuals
respectively. Due to that, if we choose too many covariates we could have conver-
gence problems that lead to not calculable probabilities when making predictions
([15]).

We select in the covariate selection box the covariates sex, age, psi and card vasc.

Finally, in the time specification box the follow-up time and the time unit need to
be selected. In this data the time is represented in days, and we can analyse the
evolution, for example, 30 days later.

Fig. 11. Model

3. Exploring the data (EDA)

In the exploring the data section, descriptive information of the data is shown.
In the descriptive subsection shown in FIG. 12 we can observe how individuals are
distributed through the different categories or values of the selected covariates (sex,
age, psi and card vasc). With respect to the age and cardiovascular conditions of
the study population, in FIG. 12 we observe that there are more men than women
(58.9% vs 41.1%), and that most of them have cardiovascular diseases (79.7%).
We can also see that the age range goes from 19 to 96 years with a median and
mean age of 59.5 and 58.9 years, respectively. The pneumonia severity index of the
patients has a quite large range, as the lowest value is 12 and the highest 184 with
a median of 61.

The box-plots for the length of stay are a convenient tool to identify possible out-
liers before fitting the model. In the box-plots of the length of stay subsection
shown in FIG. 13, we can observe that the state with the higher median length of
stay (Med = 13 days) is IMV, while the other 4 initial/transient states (NIMV,
nopneum, pneum, reco) have more similar median length of stays, 3.5, 6, 2 and 4
days, respectively. Observing the upper and lower hinges of the boxes, we also see
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Fig. 12. Exploring the data: covariates

that the number of days in IMV are larger than in the other states (Q1 = 7 days
and Q3 = 24 days), followed by the reco and nopneum with first quartiles 2 and 3
days and third quartile 13 and 9 days respectively, and finally NIMV and pneum
have the lower whiskers that are 1 and 6.5 days more or less. This makes sense since
if a patient needs IMV is because he/she is in a critical situation so needs a larger
time in that state to recover. Regarding to the outliers, there are some patients
that deserve more attention (e.g., a patient that has been in nopneum more than
100 days).

Fig. 13. Exploring the data: length of stay
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The cumulative incidence plot of FIG. 14 in the time until absorbing states
subsection shows that the proportion of patients that die due to COVID-19 during
the first 30 days in hospital is more or less the 10% of the sample, while the
remaining 90% are discharged. In the plot representing the Kaplan-Meier curves
we can see that the probability of reaching the state death at day 30 is 0.74 that is
higher than the one of reaching the discharge, 0.12, state given that the individual
has not experienced any of these two absorbing states before time t.

Fig. 14. Exploring the data: time until absorbing states

Finally, in the instantaneous hazards subsection a plot like the FIG. 15 is pre-
sented. We can stratify the data using one covariate, for example, sex. For the tran-
sitions starting from the state no severe pneumonia, we can observe that there are
not big differences according to the sex. The biggest difference is for the transition
nopneum → dcharg, particularly after the seventh day. Regarding the transitions
that end in death, one can see that there seems to be more differences between the
instantaneous hazard of transition between men and women. In general, women
that are recovering from severe pneumonia have more risk of dying, while men have
more risk of dying when they have non invasive mechanical ventilation.

Two plots representing the instantaneous hazards are obtained if we stratify the
data by age and select the transitions ending in death (FIG. 16): at left, the patients
younger than the median age, and at right, otherwise. The number of curves differs
between both groups (3 for the younger, and 5 for older group). This is because the
transitions from nopneum or NIMV to death do not have enough younger patients
and it is not possible to make the estimation of the instantaneous hazard, probably
due to those transitions are unusual in young people.

4. Fitted model

In the fitted model section, a Time-Homogeneous Markovian Cox model is fitted
including all the previously selected covariates in each transition, and three tables
are returned giving different information of the model (FIG. 17).
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Fig. 15. Exploring the data: instantaneous hazards stratified by
sex

Fig. 16. Exploring the data: instantaneous hazards stratified by
age
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In the first table, we observe that each of the selected covariates (sex, age, psi
and card vasc) has an effect in at least one of the transitions. For example, in
transition nopneum → pneum, a patient with a cardiovascular disease has 1.48 times
more risk of transitioning from no pneumonia to pneumonia than a patient without
cardiovascular diseases. In this table it is also important to focus on the effect
measure: the estimated hazard ratios. Those hazard ratios and their confidence
intervals are very important because in addition to telling if the covariate has an
effect on the transition or not, they quantify the level of association.

Fig. 17. Fitted model

Hereinafter, we will focus on the the transition IMV → death, one of the most
important transitions from a clinical point of view. Age is the unique covariate
that has a relevant effect on transitioning from invasive mechanical ventilation to
dying. Furthermore, the instantaneous risk of dying increases in older patients. A
70 years old patient with invasive mechanical ventilation has exp((70−60)×coef) =
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exp(10× 0.032) = 1.37 times (almost 40%) more risk of dying than a 60 years old
patient with the same characteristics.

In the second table of FIG. 17, the value of the log likelihood for the fitted model
(-13316.463) and for the null model (-13520.604) are reported. The former will be
always higher, but one must to resort to the third table to conclude if the difference
between two values is important enough.

Based on the obtained values of the tests shown in the third table of FIG. 17
(likelihood ratio test, Wald test and score test) we can reject the null hypothesis
(H0 : βkl,q = 0, ∀k ̸= l ∈ R, ∀q ∈ {1, ..., p}), and assume that in the fitted model
at least one of the coefficients of each transition is different from zero.

The value of the logarithmic score, LS = 0.576 (FIG. 18) is uninterpretable as we
previously mentioned. However, it can be used to compare models. For example,
a model with the covariates sex, age, psi and charlson fact has a logarithmic score
equal to 0.588 leading to the conclusion that the first model has better predictive
performance.

Fig. 18. Fitted model: logarithmic score

The main limitation of this section is that all the selected covariates are common
in all transitions. In the future, we would like to include the possibility of choosing
different covariates for each transition. For the moment, to achieve this objective,
the following trick can be used: one can fit several models, one for each transition,
including the covariates of interest for that specific transition. Then, from each of
those models the information related to the transition of interest can be analysed.
This can be done because we are working under the Markov assumption, so each
transition is estimated independently.

Let’s see an example. Suppose that we are interested in fitting the same model as
before (FIG. 17), but in the transition NIMV → death we only want to include
the covariates age and sex. Then, we can fit two models including the covariates:
1) sex, age, psi and card vasc; 2) age and sex. From the second model we take
the information of the transition from non-invasive mechanical ventilation to dying,
and the information for the other transitions is taken from the first model.

5. Graphics

The estimated hazard ratios and their confidence intervals are represented by forest
plots in the graphics section. As the fitted model has too many estimated coeffi-
cients, only the hazard ratios of the covariates related with the selected transition
are shown (FIG. 19). We can scale the effect of the numerical covariates (age and
psi), for instance, representing a change of 10 units instead of 1 unit.

FIG. 19 reveals that age is the unique covariate that has an effect on transition
IMV → death: the risk of transitioning from invasive mechanical ventilation to
dying increases 1.38 times when the age of the patient increases 10 years. There
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Fig. 19. Graphics

is no evidence to claim that the other covariates (psi, sex and card vasc) have an
influence among thus patients that transition from invasive mechanical ventilation
to dying.

6. Model validation

The assumptions made when fitting the Cox model should be assessed after every
preliminary fitting to reach the final fit. We focus on transition IMV → death,
despite they should be evaluated for all the transitions.

Linearity of the numerical covariates is the first assumption to be assessed using
martingale-based residuals. The plot in the left side of FIG. 20 shows those residuals
for the age covariate in the transition IMV → death, while the one in the right side
represents the residuals of the covariate psi. In both cases we see that the blue
smoothed curve that represents a non-parametric estimate of the trajectory of the
points over the covariate values is quite linear, so in this case, the assumption of
linearity of age and psi in the transition from invasive mechanical ventilation to
dying is sensitive.

The second assumption, absence of influential observations, is analysed in the in-
fluential observations subsection. For the transition IMV → death four plots are
shown in FIG. 21, one for each covariate taken into account on that transition: age,
card vasc, sex and psi. If we numerically analyse those residuals, the patients that
are farther than 2/

√
n, being n the number of individuals, need to be considered

as influential values [16]. There are 124 patients that go from invasive mechanical
ventilation to dying, so we need to consider as influential values all the patients that
has a dfbetas residual farther than 2/

√
n = 2/

√
124 = 0.18. But those residuals

usually are analysed in a graphical way. In FIG. 21 we see that there are not points
quite far from the others so, we assume that there are no influential observations.

The last assumption that is the proportionality of the hazards and it is analysed in
the proportionality of the hazards subsection. In FIG. 22, the Schoenfeld resid-
uals covariates that take part in the transition IMV → death are shown. Analysing
the smoothed curves and their confidence intervals of the covariates age, card vasc
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Fig. 20. Model validation: linear assumption for age and psi

Fig. 21. Model validation: influential observations

and sex we see that this premise holds, because the confidence bands cover the
line at 0. In the case of the psi, there is no full coverage because some part at
the end of the horizontal line at 0 is outside of the shaded area. Consequently, we
assume reasonable the assumption of the proportionality of the hazards for all the
covariates in that transition.

As all the assumptions hold for transition IMV → death, it is not necessary to go
back and redefine the fitting of this transition. But, before drawing conclusions
or making predictions based on that model it is necessary to analyse the other
transitions.
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Fig. 22. Model validation: proportional hazards assump.

7. Predictions

In the last section of MSMpred, predictions, some forecast about new patients
can be done, allowing to compare the evolution of two patients of different profiles.
We are going to compare the evolution at 30 days of two patients that entered
into the hospital with severe pneumonia but both of them have completely differ-
ent characteristics: patient 1 is a young female, that has not any cardiovascular
disease and with a pneumonia severity index of 50; patient 2 is an old man, with
cardiovascular diseases and with a pneumonia severity index of 110 (FIG. 23).

Fig. 23. Predictions: characteristics of patients

Once we have defined the profile of the patients, in the probability of being in each
state box of each patient we can see which is the probability of being in each state
after 30 days, no matter which states they have visited before reaching that state
(FIG. 24). We can observe that the evolution of patient 1 is very optimistic, 82.9%
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probability of having left the hospital before day 30, while patient 2 has a worst
prognosis with a probability of 87.1% of dying before day 30.

Fig. 24. Predictions: predictions for patients

Finally those probabilities are returned in a graphical way: the transition proba-
bility plots are returned in a non-stacked or stacked way. For illustrative purposes
in FIG. 25 we show the transition probability plot of patient 1 in a stacked way
and the plot of patient 2 in a non-stacked way. Comparing the plots of FIG. 25,
the expecting evolution of both patients is completely different. In order to know
which is the probability of being in each state in a specific time point, in the case
of patient 1 is the height of the color of the state of interest, while in the case of
patient 2, it is directly the value of the curve of the state of interest. It is easily
seen that the probability of transitioning to death for patient 2 is always higher
than for patient 1, as well as the probability of transitioning to invasive mechanical
ventilation. But, if we analyse the probability of transitioning to discharge the
opposite happens, patient 1 has a higher probability than patient 2.

Fig. 25. Predictions: graphical representation for patients

We can clearly see that patient 1 has a good prognosis, because the state with
a higher probability after 30 days is discharge which is an optimistic state, while
patient 2 has a quite bad prognosis, as death is the state with a higher probability
after 30 days.





Limitations and future work

We have developed MSMpred, an R shiny app that helps clinicians to fit MSM
from specific data and make predictions about the clinical evolution of new patients
in an interactive way. We have seen that MSMpred is an intuitive and visual app
and that it is not necessary to have much knowledge of MSM to use it.

We are aware of the limitations that MSMpred has and we would like to highlight
some of them below.

First, the datasets for MSM are usually in long format, but the app needs wide
format and the long format is internally generated by the app.

Second, regarding the covariates included we highlight two main limitations. On
one hand, MSMpred only allows the inclusion of baseline covariates despite the
methodology for MSM allows the inclusion of time-dependent covariates. On the
other hand, one of the main advantages of MSM is the use of different covariates
for each transition. However, MSMpred takes the same selected covariates into
account in each transition. This is one of the future improvements that we want
to do. Furthermore, if there are few individuals on a specific transition, includ-
ing too many covariates could lead to convergence problems. Those problems can
be detected if some of the estimated coefficients shown in the fitted model sec-
tion have very large absolute values. FIG. 26 shows estimated values for one of
the transitions with a low number of individuals in the DIVINE model, transition
NIMV → death. It is clear that the coefficient related with the sex has a very low
value, −12.356, and consequently the hazard ratio is almost 0 with an uninforma-
tive confidence interval, (0,∞). Those unexpected values indicate the mentioned
convergence problems.

It is possible to solve that problem in two different ways: 1) eliminating covariates
for that transition; 2) removing that specific transition. Regarding the former
option, it is important to remember that a minimum of events for each covariate
is needed. MSMpred does not allow to include a covariate just in one transition.
Consequently, if we eliminate covariates to avoid the convergence problems, we
would obtain a model with very few covariates. A temporary solution is to use
the trick explained before: fit several models, one for each transition, including
the covariates of interest for that specific transition, and analyse from each of
those models the information related to the transition of interest. As MSMpred
allows to eliminate a concrete transition from the model, it is possible to solve the
convergence problems following the second option.

41
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Fig. 26. Fitted model: convergence problems

If we make predictions based on a model with convergence problems, we would
obtain unfeasible predicted probabilities of being in each state. For instance, with
the example dataset, a 90 years old woman hospitalized with severe pneumonia
with a pneumonia severity index of 160 and a safi equal to 200, MSMpred provides
incoherent probabilities lower than 0 or higher than 1 for some states at 30 days
(FIG. 27). In those cases MSMpred does not return any result and a popup
notifies us that it is not possible to compute those probabilities due to convergence
problems.

Fig. 27. Predictions: convergence problems

Finally, the estimation of the parameters could be made with several approaches,
but our app only implements a semi-parametrical estimation, specifically, in the
current version of MSMpred only the Cox model is available.
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As this is an ongoing app, in the future we would like to improve those limitations.
Following we itemize some points that we would like to work in:

• Using some text boxes in the data section to allow the user to introduce the
name of the states or covariates to be used in the plots. For example, for
the covariate named psi the user can introduce the name pneumonia sever-
ity index, or for the state dcharg the name discharge, and those names will
appear in the graphs instead of the ones from the dataset leading to more
understandable labels.

• Allowing the models to include not only baseline covariates, but also time-
dependent covariates.

• Let the user decide which covariates wants to take into account in each tran-
sition of the model.

• In the fitted model section, including different type of models such as non-
Markov and semi-Markov Cox models, as well as frailty or additive models.

• Possibility of automatically selecting the covariates according to some goodnes-
of-fit indicator (e.g., AIC). For that, the app internally would make step-wise
selection to eliminate the non significant covariates.

• Saving the fitted model in order to allow the comparison of different models.
• In the predictions section, compute the median time until entering in each

state for the first time.
• When predictions about new individuals are made, MSMpred only shows
the probabilities of the states that the individuals can reach. For example, if
we want to make predictions for a patient that is in NIMV, it only shows the
boxes with the probabilities of being in IMV, reco, dcharg and death, but do
not show the boxes of nopneum and pneum as the patient cannot go back to
these states.

• Allowing the comparison of the evolution of more than two individuals. This
can be done showing in a table the probabilities obtained when predicting the
evolution of new individuals.

• Including a download button to generate a report wit the provided information
(e.g., plots, tables). It would be done for each output one by one or via R

Markdown generating a report with all the information.
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