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Abstract

We prove that if n > k2 then a k-dimensional linear code of length n over Fq2 has a
truncation which is linearly equivalent to a Hermitian self-orthogonal linear code. In the
contrary case we prove that truncations of linear codes to codes equivalent to Hermitian
self-orthogonal linear codes occur when the columns of a generator matrix of the code do
not impose independent conditions on the space of Hermitian forms. In the case that there
are more than n common zeros to the set of Hermitian forms which are zero on the columns
of a generator matrix of the code, the additional zeros give the extension of the code to a
code that has a truncation which is equivalent to a Hermitian self-orthogonal code.

1 Introduction

The main motivation to study Hermitian self-orthogonal codes is their application to quantum
error-correcting codes. The most prevalent and applicative quantum codes are qubit codes, in
which the quantum state is encoded on n quantum particles with two-states. In this case, the
quantum code is a subspace of (C2)⊗n. More generally, a quantum code is a subspace of (Cq)⊗n.
The parameter q is called the local dimension and corresponds to the number of states each
quantum particle of the system has. A qubit is then referred to as a quqit.

A quantum code with minimum distance d is able to detect errors, which act non-trivially on the
code space, on up to d− 1 of the quqits and correct errors on up to 1

2
(d− 1) of the quqits. If the

code encodes k logical quqits onto n quqits then we say the quantum code is an [[n, k, d]]q code.
It has dimension qk.

Suppose that q = ph is a prime power and let Fq denote the finite field with q elements. A linear
code C of length n over Fq is a subspace of Fn

q . If the minimum weight of a non-zero element
of C is d then the minimum (Hamming) distance between any two elements of C is d and we
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say that C is a [n, k, d]q code, where k is the dimension of the subspace C. If we do not wish to
specify the minimum distance then we say that C is a [n, k]q code.

A canonical Hermitian form on Fn
q2 is given by

(u, v)h =
n∑

i=1

uiv
q
i .

If C is a linear code over Fq2 then its Hermitian dual is defined as

C⊥h = {v ∈ Fn
q2 | (u, v)h = 0, for all u ∈ C}.

The standard dual of C will be denoted by C⊥. Observe that v ∈ C⊥ if and only if vq ∈ C⊥h , so
both of the dual codes have the same weight distribution.

One very common construction of quantum stabiliser codes relies on the following theorem
from Ketkar et al. [9, Corollary 19]. It is a generalisation from the qubit case of a construction
introduced by Calderbank et al. [4, Theorem 2].

Theorem 1. If there is a [n, k]q2 linear code C such that C 6 C⊥h then there exists an [[n, n−
2k, d]]q quantum code, where d is the minimum weight of the elements of C⊥h \ C if k 6= 1

2
n and

d is the minimum weight of the non-zero elements of C⊥h = C if k = 1
2
n.

If C 6 C⊥h then we say the linear code C is Hermitian self-orthogonal. Theorem 1 is our
motivation to study Hermitian self-orthogonal codes. We can scale the i-th coordinate of all
the elements of C by a non-zero scalar vi, without altering the parameters of the code. Such a
scaling, together with a reordering of the coordinates, gives a code which is said to be linearly
equivalent to C.

Thus, a linear code D is linearly equivalent to a linear code C over Fq if, after a suitable
re-ordering of the coordinates, there exist non-zero θi ∈ Fq such that

D = {(θ1u1, . . . , θnun) | (u1, . . . , un) ∈ C}.

A truncation of a code is a code obtained from C by deletion of coordinates. Observe that
a truncation can reduce the dimension of the code but the dual minimum distance can only
increase.

We will be interested in the following question: Given a linear [n, k, d]q code C, what truncations
does C have which are linearly equivalent to Hermitian self-orthogonal codes?

In the special case that C is a k-dimensional Reed-Solomon code, the above question was
answered by the authors in [3]. The code C has a truncation of length m 6 q2 which is linearly
equivalent to a Hermitian self-orthogonal code if and only if there is a polynomial g(X) ∈ Fq2 [X]
of degree at most (q−k)q−1 with the property that g(x)+g(x)q, when evaluated at the elements
x ∈ Fq2 , has precisely q2 + 1−m zeros.
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2 Hermitian self-orthogonal codes

Let C be a linear code of length n over Fq2 . We have that C is linearly equivalent to a Hermitian
self-orthogonal code if and only if there are non-zero θi ∈ Fq2 such that

n∑
i=1

θq+1
i uiv

q
i = 0,

for all u, v ∈ C. Note that θq+1
i is an non-zero element of Fq, so equivalently C is linearly

equivalent to a Hermitian self-orthogonal code if and only if there are non-zero λi ∈ Fq such that

n∑
i=1

λiuiv
q
i = 0.

For any linear code C over Fq2 of length n, Rains [10] defined the puncture code P (C) to be

P (C) = {λ = (λ1, . . . , λn) ∈ Fn
q |

n∑
i=1

λiuiv
q
i = 0, for all u, v ∈ C}.

Then, clearly we have the following theorem.

Theorem 2. There is a truncation of a linear code C over Fq2 of length n to a linear over Fq2 of
length r 6 n which is linearly Hermitian self-orthogonal code if and only if there is an element
of P (C) of weight r.

Thus, as emphasised in [8], the puncture code is an extremely useful tool in constructing
Hermitian self-orthogonal codes. Observe that, the minimum distance of any quantum code,
given by an element in the puncture code, will have minimum distance at least the minimum
distance of C⊥, since any element in the dual of the shortened code will be an element of C⊥ if
we replace the deleted coordinates with zeros.

Given a linear code C over Fq2 it is not obvious how one can efficiently compute the puncture
code. Let G = (gi`) be a generator matrix for C, i.e. a k × n matrix whose row-span is C. A
straightforward approach would be to construct a

(
k+1
2

)
× n matrix T(G) = (tij,`) over Fq2 ,

where for {i, j} ⊆ {1, . . . , k} we define

tij,` =

{
gi`g

q
j` i < j,

gq+1
i` i = j.

(1)

Lemma 3. The puncture code P (C) is the intersection of the right-kernel of T(G) with Fn
q .
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Proof. For any u, v ∈ C,

u` =
k∑

i=1

aigi` and v` =
k∑

j=1

bjgj`

for some (a1, . . . , ak) ∈ Fk
q and (b1, . . . , bk) ∈ Fk

q .

Since
n∑

`=1

λ`u`v
q
` =

k∑
i=1

k∑
j=1

aib
q
j

n∑
`=1

λ`gi`g
q
j`,

we have that λ = (λ1, . . . , λn) is in the right-kernel of T(G) if and only if

n∑
`=1

λ`u`v
q
` = 0,

for all u, v ∈ C.

Thus, the puncture code P (C) can then be found by extracting the elements in the right-kernel
of T(G) all of whose coordinates are elements of Fq. However, this quickly becomes unfeasible
computationally for larger parameters.

Our first aim, which we will deal with now, is to construct a parity check matrix for P (C), i.e. a
matrix over Fq whose right-kernel is P (C). This allows one to determine, given a linear code C
over Fq2 , all truncations of C which are linearly equivalent to a Hermitian self-orthogonal code,
provided that the dimension of P (C) is not too large.

Let e ∈ Fq2 \ Fq.

Let M(G) = (mij,`) be a k2 × n matrix where, for i, j ∈ {1, . . . , k}, we define

mij,` =


egi`g

q
j` + eqgqi`gj` i < j

gi`g
q
j` + gqi`gj` i > j

gq+1
i` i = j

.

Theorem 4. The matrix M(G) is a parity check matrix for P (C). i.e. M(G) is defined over Fq

and its right-kernel is P (C).

Proof. Observe first that all the entries in the matrix M(G) are in Fq.

Suppose that λ = (λ1, . . . , λn) is in the right-kernel of M(G). Hence, for all i, j ∈ {1, . . . , k}
with i < j,

n∑
`=1

λ`(egi`g
q
j` + eqgqi`gj`) = 0
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and
n∑

`=1

λ`(gj`g
q
i` + gqj`gi`) = 0.

Multiplying the latter equation by eq and subtracting the former implies

(eq − e)
n∑

`=1

λ`gi`g
q
j` = 0.

Since λ = (λ1, . . . , λn) is in the right-kernel of M(G) we also have that

n∑
`=1

λ`g
q+1
i` = 0.

Hence, λ is in the right-kernel of T(G).

Since it is also in Fn
q , by Lemma 3, λ ∈ P (C).

Suppose that λ = (λ1, . . . , λn) ∈ P (C). Then, for all i, j ∈ {1, . . . , k},

n∑
`=1

λ`gi`g
q
j` = 0.

This implies that λ is in the right-kernel of M(G).

Example 5. Theorem 4 can allow us to efficiently calculate the puncture code of a linear code.
Then for each codeword of weight r in the puncture code, by Theorem 2, we can construct a
quantum error correcting code of length r. For example, let C be the linear [43, 7]4 code, which
is dual to the cyclic linear [43, 36, 5]4 code, constructed from the divisor of x43 − 1,

x7 + ex5 + x4 + x3 + e2x2 + 1,

where e is a primitive element of F4.

By Theorem 4, we can calculate the puncture code from the 49 × 43 matrix M over F2,
which turns out to have rank 29. The puncture code P (C) has weights 14 + 2j for all
j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}.
The truncations to codes of length 14 give a [14, 7, 6]4 code which is equal to its Hermitian dual.
By Theorem 1, this implies the existence of a [[14, 0, 6]]2 quantum code.

The truncations to codes of length 18 + 2j give a [18 + 2j, 7]4 code with dual minimum distance
5, which by Theorem 1 implies the existence of a [[18 + 2j, 4 + 2j, 5]]2 quantum code, for all
j ∈ {0, 1, 2, 3, 4, 5, 6}.
These codes equal the best known qubit error-correcting codes, according to Grassl [7].



6

Example 6. Consider the dual C to the cyclic linear [51, 42, 6]4 code, constructed from the
divisor of x51 − 1,

x9 + e2x8 + ex6 + x5 + e2x4 + e2x2 + e2x+ 1.

The dimension of the puncture code P (C) is 10. The puncture code P (C) has codewords of
weight 18 + 2j, for all j ∈ {0, 2, 3, 4, 6, 7, 8}, which implies that it truncates to codes equivalent
to Hermitian self-orthogonal codes of length 18+2j. One can check these are [18+2j, 9]4 codes
with dual minimum distance 6. By Theorem 1, this implies the existence of a [[18 + 2j, 2j, 6]]2
quantum code, for all j ∈ {0, 2, 3, 4, 6, 7, 8}.

Example 7. Consider C the [15, 5]9 code with generator matrix

G =


1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 1 0 0 0
e7 e6 e5 e4 1 e e3 e5 e4 1 0 0 1 0 0
e3 e e4 e5 1 e6 e7 e4 e5 1 0 0 0 1 0
e6 e7 e5 e2 e4 e2 e6 e7 e3 1 0 0 0 0 1


The dual code C⊥ is a linear [15, 10, 5]9 code. The dimension of the puncture code P (C) is 2
and has codewords of weight 9, 12 and 15. This implies that it truncates to codes equivalent
to Hermitian self-orthogonal codes of length 9, 12 and 15 and one can check that these codes
are a [9, 4]9, a [12, 5]9 and a [15, 5]9 codes all with dual minimum distance 5. By Theorem 1,
this implies the existence of a [[9, 1, 5]]3, a [[12, 2, 5]]3 and a [[15, 5, 5]]3 code. The former of these
attains the quantum Singleton bound, proved by Rains in [10], which states that

k 6 n− 2(d− 1).

It was proven in [3] that a [9, 4, 6]9 MDS code does not come from a truncation of a generalised
Reed-Solomon code. The only [9, 4, 6]9 code which is not the truncation of a generalised Reed-
Solomon code is the projection of Glynn’s [10, 5, 6]9 MDS code, see [6].

3 The geometry of Hermitian self-orthogonal codes

Let PG(k − 1, q) denote the (k − 1)-dimensional projective space over Fq.

A Hermitian form is given by

H(X) =
∑

16i<j6k

(hijXiX
q
j + hqijX

q
iXj) +

k∑
i=1

hq+1
ii Xq+1

i .

for some hij ∈ Fq2 .
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The set of Hermitian forms is a k2-dimensional vector space over Fq.

Let G = (gi`) be a k × n generator matrix for a linear code C whose dual minimum distance is
at least three. Let X be the set of columns of G considered as points of PG(k − 1, q). Observe
that the condition that the dual code of C has minimum distance at least three ensures that X is a
set (and not a multi-set). Such a code is often called a projective code. Observe that the set X is
the same for all codes linearly equivalent to C. Let HF(X ) be the subspace of Hermitian forms
that are zero on X .

Lemma 8. The dimension of the left kernel of the matrix M(G) is equal to dimHF(X ).

Proof. Let x ∈ X and consider a vector v in the left kernel of M(G).

Observe that the coordinates of v are indexed by i, j ∈ {1, . . . , k}.
Since x is a column of G,

k∑
i,j=0

vij(exix
q
j + eqxqixj) + vji(xix

q
j + xqixj) +

k∑
i=1

viix
q+1
i = 0.

Thus, defining
hij = evij + vji and hq+1

ii = vii,

we have that
H(x) = 0.

Letting v run over a basis for the left kernel of M(G), we obtain a set of linearly independent
Hermitian forms. Indeed, let B be a basis for the left kernel of M(G). Suppose there are λv ∈ Fq,
for v ∈ B, not all zero, such that, for all i, j ∈ {1, . . . , k},∑

v∈B

λv(evij + vji) = 0,
∑
v∈B

λvvii = 0.

Since e ∈ Fq2 \ Fq, this implies ∑
v∈B

λvvij = 0,

for all i, j ∈ {1, . . . , k}, contradicting the fact that B is a basis.

Vice-versa, if H(x) = 0 for some Hermitian form H , then we obtain vij by solving

hij = evij + vji and hqij = eqvij + vji,

where vij, vji ∈ Fq, and vii = hq+1
ii . Letting H run over a basis for HF(X ), we obtain a set of

linearly independent vectors in the left kernel of the matrix M(G).
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The previous lemma allows us to calculate the dimension of the puncture code in terms of the
dimension of the space of Hermitian forms which are zero on X . In the following X is obtained,
as before, as the set of columns of a generator matrix for C, viewed as points of PG(k − 1, q).
Note, that the statement that X imposes r conditions on the space of Hermitian forms is to say
that the co-dimension of HF(X ) is r.

Theorem 9. The set X imposes n− dimP (C) conditions on the space of Hermitian forms and

dimP (C) = n− k2 + dimHF(X ).

Proof. By Lemma 8,

dimHF(X ) = dim left kernel M(G) = k2 − rank M(G).

By Theorem 4,
n− rank M(G)) = dimP (C),

which proves the second statement. For the first statement, observe that dimHF(X ) = k2 − r,
where r is the number of conditions imposed by X on the space of Hermitian forms.

Note that in the following statements the truncation may be the code itself.

Theorem 10. The set of points X imposes |X | conditions on the space of Hermitian forms if and
only if no truncation of C is equivalent to a Hermitian self-orthogonal code.

Proof. Theorem 9 implies that the set of pointsX imposes n conditions on the space of Hermitian
forms if and only if dimP (C) = 0 which, by Theorem 2, is if and only if no truncation of C is
equivalent to a Hermitian self-orthogonal code.

Thus, from Theorem 10, we deduce that to find codes contained in their Hermitian dual it is
necessary and sufficient to find a set of points X which does not impose |X | conditions on the
space of Hermitian forms.

Theorem 11. The set of points X imposes less than |X | conditions on the space of Hermitian
forms if and only if some truncation of C is linearly equivalent to a Hermitian self-orthogonal
code.

Theorem 11 has some immediate consequences.

Theorem 12. A linear [n, k]q2 code for which n > k2 has a truncation which is linearly
equivalent to Hermitian self-orthogonal code.

Proof. Since n is larger than the dimension of the space of Hermitian forms, X cannot impose n
conditions on the space of Hermitian forms. Hence, Theorem 11 implies the statement.
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Example 13. Let e be a primitive element of F9, where e2 = e+ 1. Let D be the cyclic linear
[73, 66, 6]9 code, constructed from the divisor of x73 − 1,

x7 + ex6 + e6x5 + e3x4 + e7x3 + e2x2 + e5x+ 2.

LetC be the [60, 7] code obtained fromD⊥ be deleting coordinates 61 to 73. The dimension of the
puncture code P (C) is 11. The puncture code P (C) has codewords of weight {26, 27, . . . , 55}
which implies the existence of a [[n, n− 14, 6]]3 quantum codes, for all n ∈ {26, 27, . . . , 55}.

The previous theorem and following theorem are the main results of this paper.

Theorem 14. A linear [n, k]q2 code C of length n over Fq2 which has no truncations which are
linearly equivalent to a Hermitian self-orthogonal code can be extended to C ′, a [n + 1, k]q2
code which does have a truncation to a code which is linearly equivalent to a Hermitian self-
orthogonal code, if and only if X imposes n conditions on the space of Hermitian forms and the
set of common zeros of HF(X ) is larger than |X |.

Proof. (⇒) Let X ′ be the set of columns of a generator matrix for C ′ obtained by extending the
matrix G. By Theorem 9, both X and X ′ impose n conditions on the space of Hermitian forms.
Hence,

HF(X ) = HF(X ′)

which implies that the set of common zeros of HF(X ) contains X ′.
(⇐) Let X ′ = X ∪ {x} be a subset of the set of common zeros of HF(X ). Let C ′ be the code
with generator matrix whose columns are the elements of X ′. Then X ′ imposes n conditions on
the space of Hermitian forms, so Theorem 9 implies that dimP (C ′) = 1. Thus, C ′ extends C to
a [n+ 1, k]q2 code which has a truncation to a code which is linearly equivalent to a Hermitian
self-orthogonal code.

Theorem 14 indicates that to extend a linear code C to a Hermitian self-orthogonal code, we
should calculate the set of common zeros of the Hermitian forms which are zero on the columns
of a generator matrix for C.

Example 15. The [13, 7]4 code generated by the matrix

G =



1 0 0 0 0 0 0 1 e 0 e2 e e
0 1 0 0 0 0 0 0 e e e 0 e2

0 0 1 0 0 0 0 1 1 e e2 1 0
0 0 0 1 0 0 0 e 1 0 e 0 e2

0 0 0 0 1 0 0 0 e2 e2 e e 0
0 0 0 0 0 1 0 e2 e2 e 1 e2 e
0 0 0 0 0 0 1 1 1 1 e2 e e2
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has dual minimum distance 6. As before, let X be the 13 points which are the columns of the
matrix G. The dimension of HF(X ) is 36, so X imposes 13 conditions on the space of Hermitian
forms. Theorem 9 implies that dimP (C) = 0, so C has no truncations which are linearly
equivalent to Hermitian self-orthogonal codes. However, there are 14 points which are common
zeros of the zeros of HF(X ), the points of X and the point

(0, e, 0, 1, e, 1, 1).

Thus, Theorem 14 implies that the [14, 7]4 code, with generator matrix

1 0 0 0 0 0 0 1 e 0 e2 e e 0
0 1 0 0 0 0 0 0 e e e 0 e2 e
0 0 1 0 0 0 0 1 1 e e2 1 0 0
0 0 0 1 0 0 0 e 1 0 e 0 e2 1
0 0 0 0 1 0 0 0 e2 e2 e e 0 e
0 0 0 0 0 1 0 e2 e2 e 1 e2 e 1
0 0 0 0 0 0 1 1 1 1 e2 e e2 1


has a truncation which is Hermitian self-orthogonal. Indeed, one can check that the code itself
is Hermitian self-orthogonal. Thus, from this code we can construct, by Theorem 1, a [[14, 0, 6]]2
code.

4 Conclusions and further work

In conclusion, we give a summary of the main results.

Suppose that C⊥ is a [n, n− k, d]q2 , where d > 3.

If n > k2 then we have shown that there are truncations of C which are linearly equivalent to
Hermitian self-orthogonal codes.

If n 6 k2 and dimP (C) > 0 then there are truncations of C which are linearly equivalent to
Hermitian self-orthogonal codes.

If n 6 k2 and dimP (C) = 0 and there are points which are not in X but are zeros of the forms
in HF(X ) then we can extend C to a [n+ 1, k]q2 which does have truncations which are linearly
equivalent to Hermitian self-orthogonal codes.

Finally, if n 6 k2 and dimP (C) = 0 and there are no points which are zeros of the forms in
HF(X ) but which are not in X then C has no extension to a [n+ 1, k]q2 which has truncations
that are linearly equivalent to Hermitian self-orthogonal codes. In this case we can extend C
trying to maintain the dual minimum distance. This will reduce the dimension of HF(X ) by one,
which then creates the possibility that there are points which are not in X but are zeros of the
forms in HF(X ). Indeed we can try and find extensions of C so that this is the case.
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In all of the above we can can construct a [[r, r − 2k′, d]]q code from a truncation of length r, for
some k′ 6 k.

It should be able to extend these methods to make use of the following recent result of Galindo
and Hernando [5, Theorem 1.2], which is an extension of Theorem 1.

There is also the possibility to extend these methods to self-orthogonal codes, i.e. C 6 C⊥. This
will work well in the case that the characteristic is even, since λq+1 is replaced by λ2 and all
elements in a field of even characteristic have a square root. The role of the Hermitian form is
then replaced by a quadratic form.
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