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Abstract

In this paper we show that the problem of Approximating Convex Quadratic Program-
ming is P-complete. We also consider two approximation problems related to it, Solution
Approzimation and Value Approzimation and show both of these are P-complete. On the
other hand, we show that we can approximate in NC those instances of Quadratic Pro-
gramming (QP) that are “smooth” and “positive.” Finally, we present a problem called
Product Arrangement of a graph that is similar to Linear Arrangement. We formulate it
as a Positive QP and prove that there is an NCAS for those instances that are “dense.”

Keywords: Computational complexity, Parallel algorithms, Quadratic programming

1 Introduction

The problem of optimizing a convex function on a convex domain is called convez programming
or convex optimization. Special cases of convex programiming arise by letting the function
and/or the domain be of a special type. Let @ be an n X n positive semidefinite matrix, A
an m X n matrix, « € R, b € R™ and ¢ € R™. We consider here convex functions of the type
f(2) =1/22TQa + cTa + @ and regions D = {2 € R* : Az < b}. The convex programming
imposed by these restrictions is called Convez Quadratic Programming (CQP).

Quadratic Programming (in the general case) is NP-complete [13, 15]. On the other
hand, CQP can be solved sequentially in polynomial time, through the ellipsoid method [5]
or the interior point algorithm [6]. Here we are interested in the parallel complexity of this
problem. Recall, the class NC consists of problems that can be solved by a PRAM algorithm
whose running time is polylogarithmic in instance size while using a polynomial number of
processors. Also, NCAS is the class of problems that have an NC approximation scheme (see
for e.g. [4, page 111]). In this paper, we show that there is no NC algorithm for CQP. We
cannot even approximate it in NC, unless P=NC. To prove this we make use of the fact that
Linear Programming (LP) and the problem of approximating it are P-complete [2, 14].

We consider two approximation problems related to CQP [6, 14]. Solution Approzimation
consists of finding a feasible solution to CQP whose norm is close to that of an optimal one.
Value Approzimation is to find a vector z such that the value of the objective function on it
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is close to the optimal value, without the condition that z be feasible. We show both of these
problems are P-complete. '

An instance of QP is called positive if all the entries of (Q,c,A,b) and a are non-negative.
Recall that Positive LP has an NCAS [8]. Here we address the same question for Positive
QP. We consider a restricted version of QP, called Smooth QP (see Definition 3), and show
that there is an NCAS for positive instances of Smooth QP. This also implies an NCAS
for smooth and positive instances of CQP. Next, we present an application. We consider a
problem similar to the Linear Arrangement of a graph, called Product Arrangement. As in
the case of Linear Arrangement, we show that this problem is NP-complete. e observe that
this problem can be formulated as a Positive QP. Then, we show that if the graph instance
is “dense,” we can approximate Product Arrangement in NC within an error of e.

2 Definition of the Problems

Let @ be an n X n positive semidefinite matrix, A an m X n matrix of range m,a € R, b € R™
and ¢ € R™ In all definitions, the entries of (Q,c,A,b) are assumed to be integers, unless
otherwise stated. The following problems are used throughout the paper.

Linear Programming problem (LP) is

minimize ¢l

subject to Az <b
Convex Quadratic Programming with linear constraints (CQP) is

minimize  f(z) =1/227Qz + T2+«
subject to Az <b

Definition 1 Leta™ be an optimal solution to CQP and ¢ € (0,1]. The Solution Approximation
Problem to CQP, denoted e-CQPS, is to compute a feasible rational n-vector z such that

Hl'*”p > ||l||p 2> 5”9«"“17
where ||z||, = (Xh, «F)/?.

1=

Definition 2 The Value Approximation Problem to CQP, denoted e-CQPYV, is to compute
« rational n-vector x such that

“167) 2 f(@) 2 £,

Let e-LPS (e-LPV) be the Solution Approximation (respectively, Value Approximation) prob-
lem corresponding to LP. It was shown in [14] that both of these are P-complete.

Theorem 1 [14] e-LPS and e-LPV are P-complete for any € € (0,1].

3 Approximating Convex Quadratic Programming

The following theorem shows that CQP cannot be approximated in NC, unless P=NC.

Theorem 2 Approzimating Conver Quadratic Programming ts P-complete.



Proof. Firstly, we show that there is an NC reduction from LP to CQP. The reduction goes
as follows. Suppose we have an instance of LP; '

minimize Tz

subject to Az <b
We construct an instance of CQP as follows:

minimize  f(z) = Tz + ¢(2)
subject to Az <b

where g(z) = 1/2||dz — b||* = 1/22TAT Az — «TATb 4 1/2b7b. Note that g(z) > 0 for any
2 and that ¢(2) = 0 for all 2 with Az = b. Therefore, ¢(2) as a quadratic form is positive
semidefinite (see for e.g. [11, pages 12-14]).

It holds that if z* is an optimal solution to LP, then z* is also an optimal solution for
CQP and vice-versa. For that, first recall that an optimal solution to LP is a vertex of the
convex polyhedra (the set of feasible solutions), such a point satisfies Ar = b. Further, we
notice that the quadratic form ¢(z) achieves its minimum in solutions z with Az = b and
that its minimum value is equally zero. Therefore, for solutions z* with Az™ = b we have

cTe = f(a).

So any feasible solution 2™ to Az < b that minimizes CQP also minimizes LP and vice-
versa. Note that this reduction is in NC. Since LP and the problem of approximating it are
P-complete, the theorem follows. O

Based on the non-approximability of -LPS and ¢-LPV, we also show that even the prob-
lems of Solution Approximation and Value Approximation to CQP are P-complete.

Theorem 3 e-CQPS and ¢-CQPV are P-complete for any ¢ € (0,1].
Proof. We define a restricted version of linear programming, denoted LPP, as follows:

minimize ) ;@
subject to Az < b, where z; =0or1

whose optimal solution is unique.

Let ¢ LPPS and e LPPV be the corresponding approximation problems. Consider the
CQP obtained by LPP as above (Theorem 2) and its corresponding approximation problems.
We can easily see that if 2* is the optimal solution (to both LPP and CQP) then we have

ll2=[lp = ll2*]l = X 23 (1)

im i = f(=") (2)

Now, from (1), (2) and Theorem 1 our theorem follows. O

and

3.1 Smooth Quadratic Programming

Here we consider a restricted version of QP, called Smooth QP, defined as follows. For a more
general definition see [1].



Definition 3 Let z = (z;)%,. Smooth Quadratic Programming has the following form:
minimize g(z) =) aijziz; + 2 biri+c
subject to Wa < d with z; € {0,1}, 1<i<n

where a;j, wi; are O(1), b; = O(n), ¢ = O(n?) and d is a constant.

Given an instance of Smooth QP, we can approximate it in NC if it is, in addition, positive.
The motivation for this is that Positive Linear Programming has a NCAS [8]. Note that this
result will also hold for those instances of CQP that are smooth and positive. To prove this
result, we will make use of the following two lemmas. The first one is a well known technique
on how to estimate the sum of » numbers by random sampling (see for e.g. [10]).

Lemma 1 (Sampling Lemma)
Let p = Y™, a;, where each a; is O(1). If we pick randomly a subset of s = O(logn/e?) of
them and compute their sum q, then with high probability p — en < gn/s < p+ en.

The second lemma by Raghavan and Thompson shows how to round a fractional solution of
a linear program to an integer solution of the same linear program.

Lemma 2 [12] (Randomized Rounding)

Let = (2;)7=; be a vector with 0 < z; < 1 that satisfies linear constraints A;z = b;, where
each entry of A; is O(1). Construct y = (y;)%, randomly by setting y; = 1 with probability
z; and 0 otherwise. Then, with high probability, A;y = b; + O(v/nlogn).

We prove the following theorem.

Theorem 4 Given a positive instance of Smooth QP and « fized €, we can find in NC a 0,1
assignment to variables x; such that

g(l‘17$27 . '73:71) S g(l*) + 677’2
where g(x) is the objective function and g(x*) is its optimal value.
In fact, it suffices to prove the following theorem.

Theorem 5 Suppose there is a 0,1 solution to the following Positive Quadratic Program

eTAz +be < ¢
{ Wa <d (3)

where aij, wi; = O(1), by = O(n) and c, d are constants. Then for any fized €, we can find
in NC an assignment of 0,1 values to x such that

eT Az + bz < ¢ + en? (4)

Proof. The proof closely follows a theorem from [1]. Here we observe that under our
conditions, the 0,1 solution can be found also in NC. The idea is to reduce the QP instance
to an instance of LP. Note that the resulting instance will be positive and thus an algorithm
for positive linear programming is applied to find its fractional solution in NC. Then, we round



the fractional solution to a 0,1 solution using the Randomized Rounding. The reduction is as
follows. Suppose z# is a solution of (3) and let r#* = z# A + b. We can write (3) as

eTA4+b=r#

r#a;gc

Wz <d (%)
0<z; <1

for which, 2% is also a feasible solution. Let z be its fractional solution. By rounding this
solution to a 0,1 solution y, we have that with high probability, i.e. probability 1 — O(1/n),

yla; +b; = 7‘;# + O(v/nlogn)
r#2 < c+0(n)-O0(v/nlogn) (6)
Wiy < d+ O(y/nlogn)

Note that inequality (6) holds because r¥ = ©(n). Consequently, we will have

(yTA+ b)y

(r# + O(v/nlogn))y
c+ O(n3/2 logn)

¢+ en?

yT Ay + by

IANIA I

3k

We can write (5) if we knew the values r. Instead, we use estimates r; for them such that

1
|r;# — 7 < en (7)

for which the above arguments also hold (see (1] for details). To show that such estimates can
be found in NC, we first prove that they can be found in RNC and later we prove that they
can be found also deterministically in NC. To find » = (r;)7=; we use the Sampling Lemma
to produce nO(/¢*) estimates for r#. We can run in parallel nO/e) positive linear programs
and take as estimate the best one. The values r; are found as follows.

1. Choose a set S of k = O(logn/€?*) indices at random.

2. In parallel, for each of 2% = nO/e) possible assignments to variables with indices in S
produce an estimate r of ¥ by taking

n
ry=b; + EZ&,'J‘SJ'
j€s

where s; is the value assigned to the j-th variable.

Since the assignments are found exhaustively, in one of the assignments generated above we

have s; = 27, that is s; is the j-th component of the optimal solution. In order to estimate

¥ we only need to estimate a;;27

) 7 since b; is a constant, see first equality in (5). Applying
the Sampling Lemma on the set {a;;2}}, results in estimates that satisfy (7).
Now we show that both the Sampling Lemma and the Randomized Rounding can be
done in NC. Regarding the Sampling Lemma, let X;,, X4, ..., Xi, with k = O(logn/€®) be
random variables defined by

X = 1 if index 4; is chosen, and
“5 7] 0 otherwise.



The only condition we need for these variables is to be pair-wise independent. Note that the
sample space generated by random variables X;;, 1 < j <k is 0(2%) = nP(/€) therefore,
such sample space can be exhaustively searched in NC. On the other hand, the Randomized
Rounding technique is parallelized (deterministically) in [9] by using the method of conditional
probabilities. This method is applicable in our case, too. O

4 An Application

Smooth Quadratic Programs are strong enough to represent combinatorial problems. These
programs were recently used to obtain Polynomial Time Approximation Schemes for dense
instances of several NP-hard problems [1]. Unfortunately, it is difficult to find problems whose
QP is, in addition, positive. Following we describe a problem similar to Linear Arrangement,
called Product Arrangement. We first show that this problem is NP-complete and then we
observe that it can be formulated as a positive QP. Furthermore, it turns out that when the
graph instance of n vertices is dense i.e. it has minimum degree ©(n), then the corresponding
QP is smooth. Thus for dense instances of this problem Theorem 4 is applicable.

4.1 Product Arrangement of a Graph

We define the problem of Product Arrangement of a graph analogously to that of Linear
Arrangement.

Definition 4 Maximum Product Arrangement (MaxPA).
Given an undirected graph G = (V, E) and a natural number ¢, determine whether there exists
a one-to-one mapping f: V. — {1,...,|V|} such that

>, fu) fv) 2

{uvv}eE

In a similar way Minimum Product Arrangement (MinPA) is defined.

Let MaxLA (MinLA) be the Maximum (respectively, Minimum) Linear Arrangement
Problem and MaxC the Maximum Cut problem on graphs that are not bipartite. We show a
logarithmic space reduction from MaxC to MaxPA and since MaxC is NP-complete [7], this
shows MaxPA is also NP-complete.

Proposition 1 Mazimum Product Arrangement Problem is NP-complete.

Proof. Our proof is based on the reduction given in (3], where MaxC was polynomially
reduced to MaxLA. Given an instance [G' = (V', E’), ¢] for MaxC, the instance [G =
(V, E), c| for MaxPA is constructed as follows:

V=V'U{u,ug,...,u3}, E=E, c=c-p

where 2 = |V’] and p = n(n+n2). Now, suppose we have a cut C (S, S) such that |C(S,5)| >
¢’. We consider the mapping f that satisfies the following three conditions.

(1)Ifve Sthenl < f(v) <[5
(2) If v € {ug,uz,...,uys} then S| < f(v) < |S|+ nd.



(3) If v € S then |S|+ 7% < f(v) < n+nd.

Now, let us prove that

>, flu)-fw)=dp

{uv}€E

For that, we write

o fw) - f) =0 () (o) + D f(w) - fw)+ D f(u) - f(v)
1 2 3

{u,v}€FE

where Y, is taken over the edges of the cut, }°, is taken over the edges with both endpoints
in § and ) 5 is taken over the edges with both endpoints in 5. We notice that

ST Fw) - f) 2 1C(S,5)]-n®  and D f(u)- flv) 2 nf
1 3

The first inequality holds because any edge of the cut has its product greater then n® and the
second holds because there is at least an edge with both endpoints in S, otherwise we can
take the cut C(S,S). But the cardinality of any cut is |C(S, S)] < n? so we have,

> tumyer f(w) - f(v) > |C(S, 8] -n® 4 n®
> n? - |C(5, 8] + nt - |C(S, 5]
> n(n+n®)

as required. For the other direction, suppose we have a mapping f for G = (V, E) for which

>, S f(v) e

{u}er

Consider, for each ¢, 1 < ¢ < |V], the set §; = {v | v € V and f(v) < ¢}. This defines a
cut C(S;,5;). Let C(S5,5) = C(S;,5;) be the maximum of these cuts. We rearrange the
vertices of V in the following way. The vertices of ¥/ do not change their position while all
the isolated vertices u; are put in between SNV’ and §NV’. Call this arrangement f/. In
such an arrangement the following holds

S Sz Y fw)fv) 2 p

{u,v}eE {uv}eFE

Indeed, the vertices u;, 1 < i < n3, are isolated but if a vertex u; is interposed with v and v
for any edge {u,v} then f(u)- f(v) is increased by the min{f(u), f(v)}. Clearly, in the new
arrangement each vertex u;, 1 <4 < n®, contributes the maximum value in the total sum of
the products of the edges. Now, the sum of all products f'(u)- f'(v) can be divided into two
parts: the sum over the edges of the cut and that of the edges not in the cut. For any edge
{u, v} of the cut, we have

() f'(w) < ISI(SI+ 18]+ n®) < n(n+n?).

So,
antnd)- STz Y @) f )

{uv}€C(5,5)



For the second part, we may have edges of length 1, 2 and up to n—1. Let Ly be the product
of the edges of length k. Since any edge of this type is of the form {i,7+ k}, we have that

n—k
— —k k+1
L = gi(i+k) _(n=K)n A;l)(2n+ +1) <l
Therefore .
L=Y Ly <nh
1=1

Thus, the second part is bounded above by n* because it is bounded above by L. Now,
putting altogether we have that

n(n+n3)-|C(8, )+ L > -n(n+n

and since [C(S, S)| and ¢’ are integers we have that |C(S,S)| > ¢. O
Now, we show that MinPA is also NP-complete by showing that MaxPA is logspace
reduced to MinPA.

Proposition 2 Minimum Product Arrangement is NP-complete.

Proof. Given the graph G = (V, E) of n vertices and the natural number ¢ for which there
exists a labelling f such that 3>, yeg f(u)- f(v) > ¢, we construct the complementary graph

of G, G = (V,E) and let ¢/ = L, — ¢ where
L,=(1-24+1-34+---+1-n)+-4+0-GE+)+i-+2)+--+i-n)+---+(n=-1)-n

is the sum of the products of the edges of the complete graph. The labelling we takeis f' = f,
therefore we have

Yo W)+ Y f(uw)- f(v) = Ln.

{un}eFr {uv}€eE

Thus
Z fu) - f(v) < Lp—c=¢.

{u,v}EE

This proves the proposition. O
4.2 Minimum Product Arrangement as a Positive Quadratic Program
We observe that MinPA can be written as a positive QP. Let us consider the following model:
minimize ) 4 eE TiTj
(*) subject to z; # zj, 143
2 €{l,...,n}, 1<i<n

In order to express the constraints on variables z; linearly we introduce 0,1 variables é;x,

S = 1 ifz; =k, and
=Y 0 otherwise



for 1 <7, k < n and put on them the conditions:
bk + 6 <1, V{ij}€ekE, 1<k<n.
That is, variables z; and z; cannot take the same value &k and
bp+bn+-+din=1 1<i<n
That is, z; takes a value in {1,...,n}. Now, we write () in terms of §;; by substituting
2;=16142 6+ -+n-6in, 1<i<n,
Therefore, we have

minimize 0% gaep (200 + 2o+ 4+ 160 (560 + 2o+ -+ 1 85)

subject to
Sir + 651 < 1, V{i,jte B, 1<k<n
bi1+ 6+ -+ bin =1, 1<2<n
5 € {0,1), 1<i. k<n.

Clearly, this is a positive quadratic program.
It is easy to see that when the graph instance is dense then the corresponding instance of
MinPA can be written as a smooth QP. Under this condition we have the following;:

Theorem 6 There is an NCAS for dense instances of Minimum (Marimum) Product Ar-
rangement of ¢ graph.

Open Questions

Find an NCAS for positive QP. We have also shown MaxPA is NP-complete for bipartite
graphs, however, the reduction is somewhat complicated. It follows a similar proof in [3]. It
would be interesting to come up with a simpler reduction.
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