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Abstract

We consider the list access problem and show that two unrealistic as-
sumptions in the original cost model presented in [13] and subsequent
literature allow for several competitiveness results of the move-to-front
heuristic (MTF). We present an off-line algorithm for the list access prob-
lem and prove that, under a more realistic cost model, no on-line algorithm
can be k-competitive for any constant k, MTF included.

1. INTRODUCTION

For the last years there has been a growing interest in the competitive anal-
ysis of on-line algorithms. Good examples are the study of the list access and
update problems, the k-server problem, the memory paging and dynamic allo-
cation problems, etc. (see for instance [13, 1, 4, 3, 6, 5, 6, 10])

Competitive analysis measures the quality of an on-line algorithm by com-
paring it against an optimal off-line algorithm, that is, one that is provided with
full knowledge of the sequence of requests and serves it with minimal cost. In
most situations, the performance of an algorithm servicing a request depends
not only on the request itself but on some sort of internal state of the algorithm
that can be changed (at a certain cost) after each request is attended. Off-line
algorithms exploit full knowledge of the request sequence to evolve through a
sequence of internal states while servicing each request, in a way that minimizes
the total cost of servicing the whole sequence. On-line algorithms are deprived
of this knowledge and should try to do their best at guessing future requests and
spot regularities and patterns that appear in the sequence, to keep the total cost
to a minimum. An on-line algorithm is defined to be k-competitive if the total
cost to serve any (sufficiently long) sequence of requests is, at most, & times the
cost of serving the same sequence with an optimal off-line algorithm [13].

In contrast, the goal of the so-called distributional analysis (also known as
average-case analysis) is to compute the expected time to serve a request from a

*This research was supported by the ESPRIT BRA Program of the EC under contract
no. 20244 (Project ALCOM-IT) and by a grant from CIRIT (Comissié Interdepartamental
de Recerca i Innovacié Tecnologica).

tDepartament de Llenguatgesi Sistemes Informatics, Universitat Politécnica de Catalunya,
E-08028 Barcelona, Spain. E-mail: {roura,conrado}@goliat.upc.es



2 S. Roura AND C. MARTINEZ

sequence of requests not known in advance to the on-line algorithm, under some
distributional hypothesis. For instance, it is often assumed that requests are
independently generated, so that a request of type 7 is generated with probability
p; irrespective of the time the request is made, and irrespective of previous or
future requests. Typically, the on-line algorithm is compared against an off-line
algorithm which knows the probabilistic properties of the source that generates
the sequence of requests.

Many authors have claimed that competitive analysis provides stronger and
more valuable results that distributional analysis since the former does not rely
upon previous assumptions about the sequences of requests.

One of the earliest and most often cited results in this subject is due to
Sleator and Tarjan [13]. One of the on-line algorithms that they studied is the
move-to-front heuristic (MTF) for the list access and update problem in linked
lists. The MTF heuristic moves the last accessed (the last inserted) item to
the front of the linked list; the rationale behind this strategy is that a recently
accessed item will be probably requested in the near future. Several previous
studies had shown that MTF performed very well in practice and in theory from
the distributional point of view [2, 7, 12].

The seminal paper of Sleator and Tarjan provided an strong argument in
favor of MTF’s case, following a new and original approach. Under their model
of costs, they proved that MTF is 2-competitive or 4-competitive depending on
the initial assumptions. That means that MTF cannot be beaten by any other
algorithm, even an off-line one, by more than a constant factor.

Sleator and Tarjan’s work opened a vast new area, namely, the competitive
analysis of on-line algorithms. A great number of related papers considered
variants of the original list access and update problems, as well as improvements
of the MTF heuristic. Particularly successful is the use of randomization, giving
1.75-competitiveness (and even smaller competitiveness ratios) thus beating the
lower bound of 2 for the competitiveness of deterministic on-line algorithms [1,
8, 11].

However, as we will discuss afterwards, we think that the result of Sleator and
Tarjan is more often than not misunderstood, and its strenght can be questioned
—our impression is that it has not been so in the past. To the best of our
knowledge, nobody has provided sound arguments for (nor against) the model
of costs for the list update problem proposed by Sleator and Tarjan. To begin
with, no justification for this model was given in [13] nor serious attempts have
been made to check the model’s robustness. Thus, a big misunderstanding
seems to have gone unnoticed for these past years. In the original paper [13]
and ever since, the statement “MTF is 2-competitive under such and such cost
model” has been loosely and inconciously replaced by “MTF is 2-competitive”,
implicitly assuming that no off-line algorithm can beat MTF by more than
a constant factor, for any reasonable cost model. However, as we shall show
hereafter, it turns out that under a reasonable and realistic cost model, there
cannot exist an on-line algorithm for the list access and update problems which
is k-competitive, for any constant k. Furthermore, our feeling is that Sleator
and Tarjan’s cost model is not realistic.



3 S. Roura AND C. MARTINEZ

In short, the seemingly omnipotent off-line algorithm has to pay a prohibitive
cost according to the model by Sleator and Tarjan. Although trying to take
advantage of its knowledge, it is not worth for it the effort of doing anything
but the same type of operations as MTF does. Hence, the conclusion that
MTF is competitive follows, but we should be aware that MTF is competitive
against a rather weakened off-line algorithm. In other contexts, for instance,
in the study of competitive on-line paging algorithms, restrictions on the all-
mighty adversary are achieved by means of the so-called access graphs (see for
instance [9, 3]), and the strenght and limitations of the results are fairly well-
understood.

In next section we point out two reasons that make Sleator and Tarjan’s
cost model unrealistic, and prove a trivial ©(n) lower bound over the worst-
case amortized cost per access of any on-line algorithm (either deterministic
or randomized) to attend a sequence of n different accesses to a linked list of
n items. In Section 3 we present an off-line algorithm that achieves ©(logn)
amortized cost per access, when serving any sequence of requests and a more
realistic model of costs is assumed. This implies that no on-line algorithm can
be k-competitive for any constant k, including MTF.

2. THE CcOST MODEL

The cost model presented in [13] is as follows (we will only consider the
static list model, i.e. no updates are allowed). Accessing the i-th item costs i.
Immediately after an access to the item i, we are allowed to move it at no cost
to any position closer to the front of the list (this is called a free exchange).
Any other update in the list should consist of exchanges of consecutive items,
where each one costs 1 and is called a paid exchange.

The first thing one could argue is that the cost of traversing a link can differ
from the cost of an exchange, but it is not difficult to see that considering this
difference cannot yield significantly different conclusions.

On the other hand, it is clear that there are not such free exchanges under a
realistic model. However, while traversing the list in order to find the requested
item it is simple to keep a pointer at some nearer position to the beginning of
the list, and update the list at small constant cost. Again, considering that
the zero cost free exchanges have in fact some constant cost does not affect the
conclusions of {13] and many other paper on the subject. So this is not the
point, either.

There are two strong reasons that make Sleator and Tarjan’s cost model not
utterly realistic.

First of all, in practice, there is no way of exchanging two consecutive items
if they are not reached before. Hence, we cannot consider that exchanging two
consecutive items has cost 1, if they are farther away and after the accessed
item.

Secondly, after reaching the item i, any item before it in the list could be
moved closer to the beginning of the list by means of a free (or constant time)
exchange, for the same reason that we are allowed to use free exchanges with
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the i-th item and move it to the front if we wish so. In other terms, the cost of
moving such an item j positions closer to the front of the list should not cost j
units, but a constant amount of time.

The first of these two reasons does not affect the main conclusion about
MFT competitiviness. Considering more realistic costs for paid exchanges, as
explained above, actually means that the off-line algorithm would have to pay
more than it was charged by the Sleator-Tarjan cost model, while MTF’s cost
would remain the same as it does not use paid exchanges.

The second reason above turns out to change things dramatically. In next
section we will see how a simple off-line algorithm can profit by these generalized
free (constant time) exchanges to defeat any on-line algorithm (MTF included).

One simple way to state our objection to Sleator and Tarjan’s model is that
©(n?) inversions can be removed with linear cost and not quadratic, once we
allow for usual operations on linked lists and their costs are accounted in a
realistic manner.

We end up this section deducing a simple linear lower bound on the time
of any on-line algorithm (either deterministic or randomized) dealing with a
sequence of n different requests over a list with n elements. Thus, we restrict
our attention to sequences of accesses that are permutations of the n items in the
list. After all the items have been accessed, another sequence of n requests could
be served, and so on. This simplified model will be enough for our purposes,
and there is no loss of generality.

Let A be any on-line algorithm that deals with a sequence of n distinct
requests to access the n elements of a linked list. Consider the initial state
from the point of view of an adversary trying to induce worst-case behaviour.
Even if we only know the probability that each permutation has of being the
current configuration of the list, it is very easy to see that we can always force,
at least, (n + 1)/2 expected comparisons/pointers traversed to serve a request
—this happens when every item has the same expected search time; for instance,
when all the permutations are equally likely. After that, the best thing that can
happen to A is that it moves the requested item at the end of the list, since this
item will not be accessed any more. Now we are in the same situation as before,
except that, from the point of view of the adversary, the list has n — 1 elements.
This argument shows that it is always possible to find a sequence of requests
whose expected cost is (n+ 1)/2+n/2+ -+ 1 = n(n + 3)/4. Therefore, A
requires ©(n) expected time per access to serve the sequence of requests.

3. THE OFF-LINE ALGORITHM

Roughly speaking, our off-line algorithm works as follows. To serve the first
request, the algorithm visits all the nodes of the list, irrespective of the requested
item. Although the algorithm pays n at this step, it can save much of the future
work by means of a simple strategy, which consists in splitting the original list
into three sublists, one with the requested item, and two additional sublists with
(n—1)/2 elements each. The first one of these sublists (first) contains the items
that will be requested first, the other (second) the items that will be requested
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Stage State of the list Cost
1 10, 8, 3, 6, 15,5, 1, 14,11, 2, 9,4, 7,13, 12* 15
8,3,6,5,2 4,7 10, 15, 14, 11, 9, 13, 12, 1
3,5,4%,8,6,7,2,10, 15, 14, 11, 9,13, 12, 1

4% 5,3,8,6,7,2,10, 15, 14, 11, 9, 13,12, 1

5 4,5% 3,8,6,7,2, 10, 15, 14, 11, 9, 13, 12, 1
5,4,3,8,6,7*% 2,10, 15, 14, 11, 9,13, 12, 1

7, 8,6, 5, 4, 3, 2,10, 15, 14, 11, 9, 13, 12, 1

7, 8% 6,5,4,3,2, 10, 15, 14, 11,9, 13, 12, 1
8,7,6,5,4,3,2 10, 15, 14, 11, 9, 13, 12*, 1 14

10 10, 11, 12*, 15,14, 13,9, 8, 7,6, 5,4, 3,2, 1
11* 12, 10, 15, 14, 13,9, 8,7,6, 5,4, 3,2, 1

11, 12*, 10, 15, 14, 13,9, 8,7,6,5,4, 3, 2, 1

12, 11, 10, 15, 14, 13*,9, 8, 7,6, 5,4, 3,2, 1

14*, 15, 13, 12, 11, 10, 9, 8,7, 6, 5,4, 3,2, 1

15 14, 15*%, 13,12, 11, 10,9, 8,7, 6, 5,4, 3, 2, 1
15, 14, 13,12, 11, 10, 9, 8,7, 6, 5,4, 3, 2, 1

RN = N = L =

DD = N =W

Figure 1: An execution of the off-line algorithm. An asterisk (*) marks the far-
thest element to the right reached during the corresponding stage. The sequence
of requests is ¢ = 1,2,...,n with n = 15.
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afterwards. The new list is build by joining first, second and the requested item
in this order. This ensures that the following (n —1)/2 requests will hit elements
in the first half of the list. Therefore, these requests can be recursively served
by the same algorithm, but now over a sublist half the size of the original one.
This is the point of the algorithm.

When all the elements in the first sublist have been already accessed, the
next requests will be for the items in the second sublist. The first of these
requests is served by

1. skipping previous, the sublist with the (n—1)/2 previously accessed items;

2. acting exactly as described for the general case but over the next (n—1)/2
items (that is, splitting this sublist into three sublists and joining them),
and

3. joining the result of the step above with previous.

Again, the new list has at its front a sublist with the (n —1)/2 elements that
are going to be immediately requested (except for the farthest of them, which
is the one just accessed). Hence, we can also use the algorithm recursively to
serve the second sublist and end up servicing all the requests.

Let L be the original list to be accessed. For the sake of simplicity, let us
assume that n = 2™ — 1 for some m > 1.

We give a recursive version of the off-line algorithm serve(list, sz, previous).
The meaning of the parameters is as follows: list is a pointer to the beginning of
the linked list, sz = 2¥ — 1 is the number of items to be serviced by the current
recursive call to serve, for some 1 < k < m, previous is a pointer to a list of
already serviced items that will be skipped and added to the end of list. The
first call to serve is thus serve(L, n, NIL).

We assume that the sequence of requests ¢ is globally accesible to all the
procedures below. Requests are attended one at a time and the global variable
t, which is initialized to 1, indicates the next request (o¢) to be attended.

A possible execution of this algorithm is given in Figure 3. Each row reflects
the order of the items in the linked list in each stage, the initial row being the
initial state of the list and each successive row showing a step of the process.
In the example, we assume that ¢ = 1,2,3,...,n; with n = 15. The asterisks
mark the farthest reached item in each step, and the last column keeps track of
the cost of each stage, in this case, the number of visited items.

The analysis of the cost of this algorithm is quite simple. Let T(k) be the
number of visited items while serving a sequence with 2% — 1 requests. By
definition, T'(1) = 1. Furthermore, for every k > 2 we have that

TR) =2 - D) 4+Tk-1)+ 21 =) +T(k-1)=3 28"~ 242T(k - 1).

A simple proof by induction yields T'(k) = 3k - 28— — 2¥+1 1 2. We can use it
to compute the amortized time to serve a request in the whole list as

T(m):3_m_2+ 3m

3
n 2 omtl _9 §logzn + ©(1) = O(logn).
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Algorithm 1 The off-line algorithm.
serve(list, sz, previous) {

classify(list, sz, first, second, current, rest);
// Traverse the first sz items in list.
// Build three new lists by adding elements at their ends:

// first: contains the (sz — 1) / 2 items which,
// according to o, will be accessed first
// second: contains the (sz — 1) / 2 items that
// will be accessed afterwards

// current: contains the currently requested item

// Also, return rest, a pointer to the sz -+ 1-th item in list.

attend(current); t = ¢t + 1;
// Service the request to the item peinted to by current.

join(first, second, current, previous, rest, list);

// Concatenate the lists first, second, current, previous and rest,
// in this order, and return list, a pointer to the head of the so
// constructed linked list.

if (sz == 1) return;

serve(list, (sz — 1) / 2, NIL);

chop(list, (sz — 1)/2 , previous);

// Traverse (sz — 1)/ 2 items in list.

// These items form a new linked 1list, called previous.

// After the call, list points to the beginning of the remaining

// elements.

serve(list, (sz — 1)/2, previous);
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Finally and to be completely rigorous, we should mention that we have not
shown which is the cost of deciding whether an item must be attached to first
or second, while we are classifying the list.

Let & denote the inverse permutation of o. It may be computed in time
O(n). Assume we have to decide wheter some item k # o, goes either to first or
to second, while traversing the list to classify it. Recall that ¢ denotes the step
or index of the item to be serviced. Then, k should be added to the list first if
ok < t+ (sz—1)/2 and to second otherwise. The linear cost of building ¢ at
the beginning, plus the constant cost to classify one item, does not change the
conclusion that the amortized cost per access is @(logn). Furthermore, we are
taking here into account costs which are not usually considered in the literature
when computing the cost of servicing the sequence o by the optimal off-line
algorithm.

4. CONCLUSIONS

We have considered the list access problem and proved that, under a real-
istic cost model, no on-line algorithm to deal with it can be k-competitive. In
particular, we have shown that the result about the 2-competitiveness of MTF
follows from the high costs associated to those operations that would enable an
off-line algorithm to take advantadge of its full knowledge of the sequence of
requests.

We think that our contribution is twofold. On the one hand, we can con-
clude that the knowledge of the future sequence of requests indeed improves
the average time per access. On the other, although competitive analysis is a
worthwhile technique for the study of on-line problems, more attention should
be paid to the assumptions upon which competitiviness results are based.

The new open problem is thus if there exists any on-line algorithm that
using non-local exchanges would do much better than MTF. Our conjecture is
that such an algorithm does not exist. Basically, we conjecture that no on-line
algorithm could take advantage of moving non-requested items far away from
their positions towards the front of the list. Since only local exchanges between
consecutive elements and moving the last accessed item towards the front of the
list seem to make sense for list access heuristics, the conclusion should be that
MTF is “as good as” any other on-line algorithm and would follow from Sleator
and Tarjan’s result.
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