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Abstract

This paper addresses the simulation of drilling tools CNC machining. It de-
scribes a novel approach for the computation of the boundary representation of the
machined tools. Machining consists of a sequence of boolean operations of differ-
ence between the tool and the grinding wheels through time. The proposed method
performs the dynamic boolean operations on cross sections of the tool and it recon-
structs the 3D model by tiling between the cross sections. The method is based on
classical computational geometry algorithms such as intersection tests, hull com-
putations, 2D boolean operations and surface tiling. This approach is efficient and
it provides user control on the resolution of the operations.

CNC simulations, Bores machining, Computational geometry, Boolean operations,
Surface tiling.

1 Imntroduction

Most of the research on CNC in CAD is centered on the automatic computation of tool
paths [12] [4]. Given a final tool design, the optimal trajectories of the tool and the
grinding wheels must be computed yielding as final result the CNC code. Machining
simulation and verification has exactly the opposite goal: to calculate the tool starting
from the CNC code and from a geometrical model of the machine, the wheels and the
tool before machining. This simulation has three main applications [5]. First, it detects
eventual collisions between the tool or any of the grinding wheels and the rest of the
machine. It is important to avoid collisions because serious damages to the machines
can follow. Next, simulation provides a means of visually verifying the efficiency of the
trajectories, which may result in faster and cheaper processes. Finally, the simulation
allows users to check if the surface of the resulting tool is effectively the desired one. In
the routine practice of machining, experienced operators have enough skills to imagine
the tool final shape by only reading the CNC code. However, they are generally not
able to do so with new or non-standard designs. Therefore, the use of a simulation
system decreases considerably the tool production cost because it avoids the trial and
error process on the real machine with costly materials that is otherwise necessary.

This paper addresses a particular type of CNC machining simulation: the grinding of
bores and cutters (see Color Plate 1). Conventional CAD systems do not provide a



means of realizing this type of simulations and specific applications are needed. Un-
til recently, most of the simulation applications dealt only with the machining of 2D
cross-sections of the tools and they were restricted to the main fluting operation [2].
Three-dimensional applications are rather recent [3] [22]. They provide a machining
simulation for specific 5-axes machines and they are not applicable to general move-
ments. This paper presents a novel approach for the computation of the external shape
of the tools through a sequence of coordinated movements of the tool and the wheels
on machines of up to 6-axes. The proposed method reduces the 3D problem to 2D
dynamic boolean operations followed by a surface tiling. The 2D solution involves
different techniques of planar computational geometry: from intersections to hull com-
putations.

The paper is structured as follows. In Section 2 we review previous approaches on
machining simulations. Section 3 describes briefly the contour conditions of the sim-
ulation. Finally, Section 4 describes the computation of boolean operations and the
results of the implementation are shown in Section 5.

2 Previous work

Machining can be considered a dynamic boolean operation of difference between the
grinding wheel and the tool. It is dynamic, because both the tool and the wheels move
along time through rotations and translations.

The Vector Cut (7], [9] is probably the most referenced numerical control simulation
method. It is an approximate solution that represents the frontier as a sel of points and
normal vectors that will be cut along the path of the grinding wheel. This method is
effective for the simulation of sculptured surface polishing, but it is not extensible to
complex motions of the tool and/or the grinding wheels. It is mainly useful to detect
mistakes in the path suggested by the presence of abnormally high or small cut vectors.
Besides, except for the extension of [15], it does not yield directly a model of the bit to
be machined.

An alternative strategy for machining simulation consists of realizing a sequence of 3D
static boolean operations through time. The main drawback of this strategy is its high
computational cost. According to [10], this is proportional to the number of discrete
positions to the fourth. This puts it out of question, in practical terms. Another prob-
lem it shows is the granularity of the temporal discretization: it must be very fine if
precision in the final tool is required. This means that very little material is cut off in
each boolean operation, and that may entail robustness problems in the computations.
A possible method to avoid both problems is to discretize the initial tool model into a
voxel or an octree model, [20], to perform all the sequence of boolean operations on the
discrete model and then reconstruct the machined surface, at the end. This approach
benefits from the fact that the cost of discrete boolean operations is much lower and the
reconstruction phase at the end of the process is done as late as possible. This option
requires the sequence of movements to be specified in terms of relative motion of the
grinding wheel, while the tool and its discretization remain fixed. This prerequisite
is not always valid and, in particular, it does not hold for the general case of 6-axes
machines.

Finally, another option taken into account is that of the computation of the volume
swept by the tool and the grinding wheel in their motions. A geometric representation
of this volume would allow performing only one boolean difference operation between
the two volumes. The main difficulty of this option is the computation of swept vol-



Figure 1: 6-axes machine tool.

umes. There are several references [1], [19] on this subject, that contain methods gen-
erally applied in CAD for extrusions, collision detection, and other problems but none
of them can be applied to the non-trivial case of simultaneous motion of the two solids
in play.

The strategy proposed herein overcomes the disadvantages of these methods. [t consists
of a double discretization of four dimensional space (3D+ time) that reduces the general
problem to a sequence of 2D Boolean operations and 3D geometric reconstructions.
This algorithm is fast and it provides user-control on simulation accuracy.

3 Scene model

There are different types of machine tools for the fabrication of bores. They share the
same general structure but they differ in the number of degrees of freedom. The method
proposed herein deals with machines up to 6 degrees of freedom. These machines have
a static vertical axis (Z in picture 1) on which the grinding wheel set can move up and
down. One tool is placed on a spindle (the tool-holder), that may translate on three axes
(X, Y and U) and rotate on two axes (W in relation to the wheel axis and A relative
to its own axis). At the beginning of the process, a tool has a piecewise cylindrical
or conical shape. Its final shape is the result of a sequence of machining operations
consisting of simultaneous movements of the tool and the wheels. The wheel shape is
also piecewise cylindrical or conical. It remains unchanged during the process.

The machining process is divided into a set of operations, each one with a specific name
in CNC jargon. Each operation is performed using a specific wheel. This information
is written in the CNC file.

Specifically, the main operations are (in their usual order):

o Fluting: performing the lateral helicoidal o straight grooves
e Gashing: cuts in the tool head
e Outer Diameter Sharpening: edge sharpening of the lateral grooves

e End Face Sharpening: edge sharpening of the tool head cuts



Figure 2: A set of real tool data.

e Notching: direct cut in the tool head.

Figure 2 shows a real bore and it indicates the operations that have gave it shape.

Each operation performs several symmetrical cuts in the tool shape. The tool shown in
Figure 2, for instance, has three lateral grooves realized during the “Fluting” operation.
Each cut is performed through a sequence of movements. In the CNC code, each
movement corresponds to a line instruction specifying the motion axes (X,Y, U, 4,
or W for the tool and Z for the wheel) along with the amount of rotation or translation
to be performed for each edge.

4 Machining simulation

4.1 Overview

Our approach uses the fact that the tools have a tubular shape. It consists of discretizing
the tool in axial sections, performing the machining operations on these cross-sections
and finally, reconstructing the surface of the tool by tiling between cross- sections.
Before machining, the cross-sections are circles. Afterwards, they have a complex
shape that may even have been split into separate connected shells at the tool end.

The movements are divided into blocks, each one corresponding to an CNC operation
or even to one cut within an operation. The machining process is performed sequen-
tially for each block. Therefore, as many intermediate models are created as instruction
blocks exist. The initial tool is taken as input of the first machining process. The result-
ing tool is used in the second block processing and so on. The surface reconstruction
step can be performed on any of these intermediate models or, alternatively only on the
last one.

Therefore, the simulation process of each instructions block is composed of two steps:

e A 2D boolean operation process, that receives as input: (i) the tool representa-
tion, (ii) the machining wheel representation, (iii) a list of movements and that
gives as output a new representation of the tool cross sections.

e A tiling process that completes the tool representation with the triangulation be-
tween contours.

The second step, surface tiling, is a classical subject in computer graphics [13]. It
consists of two related problems: (i) establishing correspondences between contours
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(branching problem) and (ii) searching correspondent vertices to form tiles (correspon-
dence problem). Several solutions have been published to solve both problems based
on minimizing the distance between successive contours [6] [16] and interpolating in-
between contours [11]. The method used herein in an extension of these algorithms
that adds to these criteria the constraint of tiling between segments of the contour cor-
responding to the same machining operation. This extension is described in depth in
[21].

4.2 Machining of the tool cross-sections
The computation of the new shape of tool cross section consists of three steps:

¢ Computation through time of the intersections of the wheel cross sections and
the external contour of the tool section. Both sections are circular and, due to
their relative orientation, their intersection is a segment. Therefore, the result of
this step is a set of segments.

e Calculation of the hulls of the segments set. These hulls are polygonal approxi-
mations of wheel cuts on the tool section.

e Reconstruction of the tool cross section contour given its original shape and the
hull curves.

The pseudo-code algorithm below illustrates this process. Let st be the tool cross
section at the beginning of the process, wh the wheel and mi the movements list. The
wheel is discretized into a set of circular cross sections sw (procedures FiirtSectW heel
and NeztSectW heel). The movement of sw and st is decomposed into a a set of suc-
cessive positions (inner loop). For each position, the intersection between sw and st is
computed in the procedure InterSect. If there is intersection, then the corresponding
segment segm is stored in the segments list seglist. Then, the geometry of st, sw and
seglist is updated to next positions in the procedure UpdateGeom. The position of st
is reset at its initial location for each new wheel section. After all the wheel sections
have been processed, the hulls of the segment list are computed in CompHulls and
then clipped against the initial contour of st with the procedure Reconstruct.

procedure CrossSection M achining(st : tSection,wh : tW heel, ml : tMovList)
var
sw : tSection
segm : tSegment
seglist : tSegmentList
hulls : tHullList
fvar
InitSegList(seglist)
sw := FirstSectW heel(wh)
while ValidSection(sw) do
endofmov := FALSE
while —endofmov do
InterSect(st, sw, &segm, &status)
if status — InsertSegment(segm, seglist) endif
UpdateGeom(ml, &st, &sw, &seglist, &endo fmov)
endwhile



Figure 3: Non equivalent transformations.

sw := NextSectW heel(wh, sw)
ResetT ool Position(&st)
endwhile
CompHulls(slist, &hulls)
Reconstruct(hulls, &st)
fprocedure

4.2.1 Updating geometry

Each movement instruction is realized at constant speed. Therefore, a movement can
be decomposed into n constant intervals of translation in X,Y, Z and U along with
rotation in W arid 4: 64 = AA/n , 6W = AW/n ,6X = AX/n,0Y = AY/n,
U = AU/nand 6Z = AZ/n .

As mentioned in the previous section, a line movement can be composed of several
simultaneous instructions. Most of tool movements are composed of translations and
axial rotations, which are independent. Therefore, the order in which the update of
each movement is done is irrelevant. However for conical tools with a round end called
“ball nose”, simultaneous axial translations and column angle rotations are necessary.
These two movements are obviously not independent. This can be a source of error
(see Figure 3) because the real machine rotates the tool column angle at the same time
as it translates it along its axis, while in the simulation, for each time interval, the tool
is first rotated and next translated along its axis. However, in these cases the original
CNC is already decomposed as a set of very small movements with a resolution very
similar to the one needed in the machining. Therefore, these movements are not further
decomposed in the machining.

The global coordinate system in which the geometry is expressed along time is sketched
in Figure 4. The axis coincide with the machine axis X, Y and Z at the tool home po-
sition at the beginning of machining. Let cte(xty, ytr, 0.0) be the coordinates of the
tool section center at instant k. The components of the normal vector of the section are
ntp(nzty, nyty,0.0). It should be noted that nat, = cos(wy) and nyte = sin(ws),
being wj the column angle of the tool at instant k. The updated values of these coordi-
nates at k + 1 are:
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Figure 4: Coordinate system, axes and motion.

Ctiyr (Tt + 6U * nxty + 06X, ytx + 6U *x nyty + 6Y,0.0) 1

ntgy1 (ot xcos(6W) —nytp*sin(6W ), natyxsin(6W) +nyts xcos(6W),0.0) (2)

The wheel normal vector is nw = (0.0, —1.0,0.0) and it remains unchanged during
machining since the wheel only moves up and down in their axis. Being cw; (zwy, ywe, 2we)
the coordinates of the wheel center at instant k, their new values at k + 1 are:

cwit1(zwk, yws, 2wx + 62) €)

Finally, being U and V' the axes of the 2D local coordinate system on the tool section
plane, and being pr = (ug,v) a vertex of a segment list from the segment list at
instant k, its updated coordinates are simply:

Dra1(ur * cos(6A) — vy * sin(6A), ug * sin(SA) + vx * cos(6A)) @

because local coordinates are only affected by the axial rotation A.

4.2.2 Intersection between cross sections

Figure 4 illustrates the computation of the intersection segment between the wheel
cross section and the tool cross section. This calculus is performed in the tool section
local coordinate system (U, V, T'). The intersection between the two planes is a vertical
line whose equation is:

u; = (nTty * Uy + NYte * ty) /Nty

being (w, Uw, tw) the local coordinates of the wheel center projection onto the tool
section:
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Figure 5: Intersection between the cross sections of the tool and the wheel.

U = —(zw — Tt) * nyt + (yw — yt) * nzt
Uy = ZW
tw = (zw — xt) * not + (yw — yt) * nyt

Note that, in order to simplify the notation, the subscript k indicating the instant in the
intersection in the previous equations, has been removed.

The intersection line cuts the wheel section elliptic projection onto the tool plane [14]
giving as result the segment sw = ((ui, vly), (ui,v2y)) and it cuts the tool circular
contour giving as result the segment st = ((ui,v1e), (i, v2,;)) (see Figure 5).

vl and v2, and v1, and v2; are computed by solving the following equations sys-
tems, where 7, and r are the wheel and the tool radii respectively:

U = U;
ey 2 + 'U_'UIZ2 — 1
T #1Y1 Tw

U =1u;
u? + v =r?
Finally, the searched segment is: s = sw N st.

4.2.3 Hull Computation

Depending on how the movement blocks have been computed, the segments list can
represent more than a cut. However, in the hull computation step, each cut is treated
separately, It is easy to identify which segments correspond to a specific cut because, in
the previous step, the segments have been labeled according to the movement that has
created them. Between the different cuts there are non-cutting movements in which the
wheel goes up and the tool rotates, Therefore, each cut can be associated to a unique
sequence of chained cutting movements and so, each segment can be labeled with a
unique cut identifier. In the rest of the section, for clarity, we explain the computation
of the hull of a single cut.

Let s be the segment list associated to a given cut. We define the hull of the set s as
hull(s) the closed polygon that encloses all segments of s and such that all its vertices
belong to s. The hull is composed of two connected pieces: an arc of the circular



tool contour and a polygonal bit inside the circle. The internal polygonal piece is an
approximation of the cut curve produced by the wheel on the tool section along the
movement list. The denser is the segment list, the better is the approximation. The
computation of the hull is centered at this cut polygonal. In the description below, the
term hull will designate it directly omitting the arc.

The computation of the hull is a problem similar to the determination of the convex
hull of a set of planar points [17]. However, the cut shape is not necessarily convex:
the fluting cut shape for instance is concave. Theretore, well-known computational
algorithms as the classical Graham scan [8] are not applicable in this case.

Besides, the segments in the list are naturally sorted according to a double criterion:
(i) the wheel cross section that has produced them and, (ii) along time. Figure 6 shows
different distributions of the segments depending on the type of movements of the tool.
The uppermost distribution is a flute. As the tool has a simultaneous axial rotation and
translation, the segments produced by a wheel section (pictured in green) rotate giving
to the cut curve of one wheel section the final shape pictured in red in the figure. The
hull is the blue curve. Observe that the hull of the segments is as well the hull of the
wheel sections cut curves. The central distribution shows the end of a flute. The shape
is similar to the previous one, but as the wheel goes up, it stops intersecting the tool,
finishing the cut curve of a wheel section with a discontinuity. Finally, the rightmost
picture shows a gash distribution. The wheel and the tool are perpendicular and there
is no rotation. Therefore, the segments of a wheel section are overlaid. In this case,
the cut curve of a wheel sectio is the longest segment and the hull curve is the set of
extreme vertices of these segments.

Figure 6: Hull computation.

The method that we have designed to compute the hull takes benefit from this double
sorting. Instead of calculating the hull of the segments without taking into account
the wheel that has produced them, it computes the hull of the cut curves (or cut seg-



Figure 7: Tiling problem of a gashing operation.

ments) produced by each wheel section. Let sy; be the set of segments produced by
the cross-section w; and let nw be the number of cross sections into which the wheel is
discretized. Then, s = {8yi,i = 1...nw} and hull(s) = hull(hull(8w:),1 = 1..nw).
Besides, the segments of any set s,,; are naturally sorted along time because they have
been computed sequentially thoughout the motion. Thus, any hull(sw:) can be ap-
proximated as a polygon composed of all the segments vertices that are inside the tool
circle.

Therefore, the computation of the hull is similar to the third step of Graham’s algo-
rithm. It consists of marching along the hulls of the segments of each wheel section
segment list and keeping only those that define a partition of the plane such that all
the remaining segments are at the same side of the partition. This algorithm can be
optimized by traversing all the hulls (except the first and the last ones) between the
intersections with the previous and last hull.

The keypoint for the hull computation is to provide a good approximation of the wheel
intersection. Figure 7 shows an example of an error that may occur if the resolution is
not good enough. The discretization of the wheel has been done at constant step for all
cross sections. The contact point between the tool and the wheel has not been captured
by the wheel discretization, therefore the hull does not capture the real cut. This error
becomes obvious in the reconstruction of the surface giving a staircase appearance to
the edge of cut.

Our approach avoids this error by performing an adaptive refinement of the wheel cross
sections discretization in order to match the first and the last contact. Similarly, for a
“fluting-like” segments distribution (i.e. whenever an axial rotation and a simultane-
ous translation occur), the wheel resolution is adapted to force intersections between
hulls of successive cross sections. Conversely, in a “gash-like” segments distribution
(without A angle), the resolution between the first and last contact sections, the wheel
resolution can be rough.

4.2.4 Cross section reconstruction

The cross-section reconstruction consists of computing the boolean operation of dif-
ference between the cross-section previous contour shape and the cut curves polygonal
approximation. Figure 8 shows an example of this step. It consists of first computing all
the intersection points between the contour and the cut curves and next reconstructing
the new shape by following the external edges.
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Figure 8: Cross section reconstruction.

5 Simulations

The method has been implemented as part of a simulation application [18] that per-
forms the following processes:

e Creation of the scene model starting from a textual description of the wheels and
the initial tool.

e Translation of the CNC code into a linear list of movement instructions. This
step consists of removing loops and alternative structures, filtering unnecessary
expressions as well as evaluating variables.

e Parsing of the movements list with calls to a rough collision test in order to split
the movements of a file into a block.

e Machining simulation for each block. This gives as result a temporal represen-
tation of the workshop (timeline) that contains a description of all the objects
movements including the intermediate tool representations computed.

o Animation of the process, based on the timeline.
e Measurements of the tool on 2D cross-sections

During the simulation, the tool, the wheel and the temporal resolution are adaptively
refined to match constructivity criteria. However, the application allows interactively
modifying these resolutions to detect eventual errors.

Figure 11 shows an example of a machined tool. The triangles between contours have
been colored according to the operation that has created them. Figure 11 shows a
timeline representation of the workshop and Figure 10 a set of frames of the animation.
The application is written in C and it uses Tcl/Tk for the interface and Perl for the CNC
translation. Rendering is performed using Open GL calls. Therefore, the application is
hardware independent. Specifically, we have benchmarked it on PC architectures with
Windows 98 and Windows-NT as well as Solaris workstations.

A tool is computed in 10 to 30 seconds depending on the number of operations and the
resolution of the approximation. The resulting model has between 3000 and 5000 trian-
gles. The rendering time is about 3 to 5 seconds, with a Pentium 111 at 700MHz having
a Diamond Viper graphics card. We have used OpenGL display-lists to optimize the
visualization delay for the whole workshop. To post 30 frames that include the whole
workshop the process time has been 47 seconds. The time to visualize each frame is 1
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Figure 9: A final tool after fluting and gashing operations.

Figure 10: Several animation frames of a machining process.

second. Although the pre-process of all the display-lists before the visualization proper
is very time-consuming, the animation process accelerates a 65 %.

6 Conclusions and future work

This paper describes a novel method for the simulation of drilling tools CNC machin-
ing. Our approach simplifies the 4D (space+time) boolean operations between the tool
and the wheels by reducing them to a sequence of intersections between 2D perpen-
dicular cross-sections along time. Specifically, the method discretizes the tool into
cross-sections and simulates machining on the cross sections. Next, the shape of the
tool is recomputed by tiling between contours.

The primary advantage of this approach is its simplicity. It addition, it provides user-
control on the resolution of the simulation: spacing between cross-sections as well as
time interval between consecutive intersections.

Starting from this work, new research and development lines are opened. Specifically,
we are working on global pipelines that would put into the same process automatic
CNC computation and tool verification. With such pipelines, given a final tool descrip-
tion, the CNC code to create it would be automatically computed, next using the CNC
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Figure 11: Timeline representation of the animation.

code as input, tool machining would be simulated. Finally, differences between the
input and the output model could be computed and shown.
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