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ARTICLE INFO ABSTRACT

Editor: Martin Drews Climate and fisheries interact, often synergistically, and may challenge marine ecosystem functioning and manage-
ment, along with seafood provision. Here, we spatially combine highly resolved assessments of climate-driven changes

Keywords: in optimal environmental conditions (i.e., optimal habitats) for the pelagic fish community with available industrial

Climate change fishery data to identify highly impacted inshore areas in the Central and Southern Atlantic Ocean. Overall, optimal

Fisheries . habitat availability remained stable or decreased over recent decades for most commercial, small and medium size pe-
Safe Operating Space . . : . . . ) . TP

Seafood provisioning lagic species, particularly in low-latitude regions. We also find a worrying overlap of these areas with fishing hotspots.
Shifting distribution Nations near the Equator (particularly along the African coast) have been doubly impacted by climate and industrial

Small and medium size pelagic fish fisheries, with ultimate consequences on fish stocks and ecosystems as a whole. Management and conservation actions
are urgently required to prevent species depletions and ensure seafood provisioning in these highly impacted, and
often socioeconomically constrained areas. These actions may include redistributing fishing pressure and reducing it
in local areas where climate forcing is particularly high, balancing resource exploitation and the conservation of ma-
rine life-supporting services in the face of climate change.

1. Introduction marine ecosystems may threaten seafood provisioning and, hence, liveli-
hoods and food security for billions of people (Garcia-Molinos et al.,
At a time when the world is anticipating unprecedented human popula- 2016; Lenoir et al., 2020; Pecl et al., 2017). Understanding how marine eco-

tion growth and demand for natural resources, climate-driven changes in systems and associated provisioning services respond to climate change has
been recognized as a major societal challenge (Boyce et al., 2020; Lotze

et al., 2019; Pecl et al., 2017), and is underpinning the need for manage-
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supporting marine systems (FAO, 2020; Pecl et al., 2017; Pinsky et al.,
2018; Ramirez et al., 2021, 2017).

The oceans are listed among the most impacted of Earth's biomes, and are
showing rates of environmental changes similar to past events that resulted in
increasing extinction rates or ecosystem collapses (Burrows et al., 2011;
Halpern et al., 2015, 2007). Climate change is impacting the oceans at multi-
ple levels (from genes to communities; Scheffers et al., 2016) and in different
ways (from species physiological to demographic responses; Poloczanska
et al., 2016, 2013). The potential shifts in species' geographic distributions
are widely recognized as one of the most alarming consequences (Burrows
et al., 2011; Lenoir et al., 2020; Maureaud et al., 2021; Pinsky et al., 2020).
Besides the ecological effects that may threaten the integrity of marine ecosys-
tems (Poloczanska et al., 2016), climate-driven shifts in species' distributions
may pose socioeconomic challenges through their impacts on fisheries and
seafood provision (Mendenhall, 2020; Ojea et al., 2020; Pecl et al., 2017;
Ramos Martins et al., 2021). Indeed, commercially valuable marine species
are shifting their distributions and it is expected that 23% to 35% of global ex-
clusive economic zones (EEZs) will have new transboundary stocks by the end
of this century (Ojea et al., 2020; Palacios-Abrantes et al., 2022; Pinsky et al.,
2018). Species redistribution are reshaping the patterns of catch potential be-
tween regions and fishing sectors (Cheung et al., 2010; Palacios-Abrantes
etal., 2022), and may lead to increasing impacts on marine resources and sub-
stantial geopolitical conflict (Boyce et al., 2020; Mendenhall, 2020; Pecl et al.,
2017; Pinsky et al., 2018).

Climate impacts on species distributions are further aggravated by
human activities such as fisheries (Berkeley et al., 2004; Coll et al., 2020;
Garcia-Molinos et al., 2016; Ottersen et al., 2006; Ramirez et al., 2021).
Fishing pressure has increased over the last decades, with recent assess-
ments showing that ca. 60% and 34% of fish stocks worldwide are
completely exploited and overexploited, respectively (FAO, 2020;
Rousseau et al., 2019). This high fishing pressure has been suggested to
speed up the climate-driven displacement of marine species distribution
through resource depletion and population crashes at the trailing edge
(Lenoir et al., 2020). However, fisheries constitute an important socio-
economic sector that provides a major source of food for humanity and supply
employment and economic benefits to those engaged in the activity (Pinello
etal.,, 2017). Therefore, there is a necessary shift towards sustainable fisheries
that requires finding a balance between exploitation of natural resources to
ensure human well-being and the conservation of marine life-supporting ser-
vices in the face of climate change (i.e. “Doughnut” fisheries; Ramirez et al.,
2021; Raworth, 2017; see also FAO, 2020; O’'Neill et al., 2018).

The Safe Operating Space (SOS) has recently been proposed as a suit-
able and achievable framework to contribute to the conservation and sus-
tainable use of marine living resources and essential provisioning
services, including fisheries, in the face of climate change (Ramirez et al.,
2021). A central element of SOS application to fisheries is that critical cli-
mate levels for environmental collapse can be lowered locally by fishing
pressure, thus increasing the risk of commercial stocks collapse. Redistrib-
uting and reducing fishing pressure in areas where climate forcing is partic-
ularly high can contribute to maintain marine ecosystems within a SOS, by
alleviating pressure on, and enhancing resilience of key species, communi-
ties and associated ecosystem services (including provisioning, but also reg-
ulating, supporting and cultural services).

Unfortunately, the effective implementation of SOS for fisheries has
been hampered by the lack of spatially-explicit assessments of the spatial
congruence between fishing and climate impacts (O’Neill et al., 2018;
Ramirez et al., 2021, 2017). This represents a major challenge for the vast
and remote oceans, where biological observations and integrated measures
on the spatial distribution of these impacts are difficult to obtain at required
spatial and temporal resolutions to identify those highly impacted areas
where fisheries should be more strongly monitored and regulated
(Maureaud et al., 2021). Long-term satellite-based remote-sensing applica-
tions now provide a means for investigating climate-driving changes in op-
timal environmental habitat availabilities, likely driving marine species
distribution shifts, at an unprecedented extent and spatial resolution. This
is particularly true for the marine realm, where organisms apparently
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track climate-driven shifts in environmental conditions more closely than
terrestrial species (Lenoir et al., 2020; Pinsky et al., 2019, 2013). Previous
research that evaluated marine species distributional shifts mostly focused
on responses to changing temperatures (Burrows et al., 2011; Garcia-
Molinos et al., 2016; Lenoir et al., 2020; Morley et al., 2018). However, it
is unlikely that all species will shift their ranges towards higher latitudes
in response to isothermal shifts because of additional biological and envi-
ronmental processes (Coll et al., 2020; Fuchs et al., 2020; Ramos Martins
et al., 2021; Rivadeneira and Fernandez, 2005). There is a growing appre-
ciation for the role of the multiple environmental factors beyond thermal
conditions that may shape patterns of marine biodiversity in general and
commercially relevant species in particular (Ojea et al., 2020; Ramos
Martins et al., 2021; Rilov et al., 2019; Woodin et al., 2013).

In this study, we aim to identify highly impacted areas in the Central and
Southern Atlantic Ocean (including seven Large Marine Ecosystems -LME-
and 27 associated EEZs), where the combined impact of climate and human
fisheries may threaten the small and medium size pelagic community
(Fig. 1). We focussed on these species because of their key role in pelagic
food webs and their high commercial value (Cury et al., 2000; Pauly et al.,
2020; Pikitch et al., 2014; see also Table S1). Thus, we first integrate multiple
predictors, such as depth, sea surface temperature (SST), salinity (SSS), and
net primary productivity (NPP) to perform spatially-explicit assessments of
climate-driven changes in optimal environmental habitats (hereafter optimal
habitat) that are likely to drive distribution shifts of 20 main commercial spe-
cies (Fig. S1). We then combine these assessments with the most spatially-
explicit information on industrial fishery data to identify highly impacted
areas where climate-driven changes in optimal habitat availability and fishing
pressure overlap spatially. Management and conservation actions aimed at
enhancing ecosystems' resilience to climate change by redistributing and re-
ducing fishing pressure in these “doubly” and highly impacted areas
(i.e., our SOS framework) can potentially contribute to the present and future
environmental status of marine ecosystems and the sustainable exploitation
of marine resources (Coll et al., 2016, 2012; Ramirez et al., 2021).

2. Material and methods

Data analyses and GIS procedures were conducted in R version 3.6.2 (R
Core Team, 2021), whereas mapping designs and displays were performed
with ArcGIS 10.5 (ESRI, Redland, USA).

2.1. Data mining

Optimal ranges for key environmental features (i.e., depth, SST, SSS,
and NPP) likely driving the distribution of selected species were taken
from AquaMaps. AquaMaps is an approach to generate model-based,
large-scale predictions of natural occurrence of marine species. Models
are constructed from estimates of the environmental tolerance of a given
species to depth, SST, SSS, NPP, dissolved bottom oxygen and sea-ice con-
centration. Environmental tolerances are provided by a trapezoidal-
shaped response curve that assumes that the probability that a species is
present is uniformly highest where mean environmental conditions fall
within the “preferred parameter range” of the species (see details in
Ready et al., 2010). To explore changes in the availability and distribution
of optimal habitats for target pelagic species, we exclusively considered en-
vironmental values within species-specific preferred ranges of depth, SST,
SSS, and NPP provided by AquaMaps (Table S2).

To produce our spatially-explicit assessments of optimal habitats, we
took the depth information from the ETOPO1 Global Relief Model
(NOAA, https://www.ngdc.noaa.gov/mgg/global/). Spatial-temporal in-
formation on ocean temperature was taken by averaging annually the
NOAA Optimum interpolation (OI) SST (°C) V2 (1° horizontal resolutions;
sourced at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html;
accessed on September 2018). SSS (PSU) and NPP (mol'm ~3) were sourced
from the Global Ocean Physics and Biogeochemistry Reanalyses
(GLOBAL_REANALYSIS_PHY_001_030-0.083° horizontal resolution- and
GLOBAL_REANALYSIS_BIO_001_029-0.25° horizontal resolution- for SSS
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Fig. 1. Workflow and work concept. Spatially-explicit assessments of changes in optimal habitat availabilities for main commercial species within the small and medium size
pelagic functional groups were combined with available data on industrial fishing catches and spatial fingerprint to identify local to regional “doubly” and highly impacted
marine areas. Redistributing and reducing fishing pressure in these areas may help to reach the balance between resource exploitation and the conservation of marine life-
supporting services in the face of climate change (i.e., Safe Operating Space -SOS- framework).

and NPP, respectively; sourced at EU Copernicus Monitoring Environment
Marine Service; https://marine.copernicus.eu/). Environmental time series
were restricted to the 1993-2018 period; the minimum time period for
which information on SST, SSS and NPP is available.

We obtained spatially-explicit estimates of fishing effort from Global Fish-
ing Watch -GFW- (http://globalfishingwatch.org/; accessed on August 2018).
GFW is a global repository of fishing activity where automatic identification
system (AIS) data are processed to discern fishing pressure by main fishing
gears (Kroodsma et al., 2018). Our analyses focused on 2012-2016 GFW
data for those fishing gears targeting small and medium size pelagic fish spe-
cies (i.e., a combination of trawlers and purse seiners). The fishing gears con-
sidered may target additional species besides the ones on which the current
study focuses on. However, selected species contributed the most to total
catches within the small and medium size pelagic functional groups
(Fig. S1). Long-term trends in fishing catches for the small and medium size
pelagic fish species included in the analyses were obtained from the Sea
Around Us project -SAU-, (http://www.seaaroundus.org/; accessed on July
2020). SAU is the only data source with long-term (1951-2016), spatially ex-
plicit (i.e., at the LME and EEZ levels), and global estimates of fishing catches
(Pauly et al., 2020). Here, we selected fishing catches from 1993 onwards to
match the time period of environmental data.

2.2. Spatial-temporal trends in optimal habitat availability
Based on depth profiles and long-term, spatially-explicit data on SST,

SSS, and NPP, we evaluated how areas encompassing preferred parameter
ranges for selected species (i.e., optimal habitats) varied temporally and

spatially within LMEs and EEZs. First, we estimated the total area of
species-specific optimal habitats yearly within LMEs and EEZs; i.e., the spa-
tial intersect between areas encompassing optimal ranges of depth, SST,
SSS, and NPP expressed in km? (Table S3). As a proxy to changes in optimal
habitat availability, we evaluated trends in the extent (km?) of optimal hab-
itats along the 1993-2018 period through linear regressions with Gaussian
distributions, and using the slopes (and significances; a-value) as estimates
for the magnitudes of observed changes (Figs. 2 to 4).

We quantified the persistence of the species' optimal habitats on a per-
pixel/cell basis by counting how many years (for the 1993-2018 period)
each pixel was identified as optimal in terms of SST, SSS, and NPP. Thereby,
we obtained a spatially-explicit proxy for climate-driven environmental ef-
fects on the distribution of species' optimal habitats. Depth was not consid-
ered here as it was assumed to be constant throughout the study period.
Spatial outputs for each feature ranged from 0 (all years categorized as
sub-optimal; i.e., permanently sub-optimal conditions) to 26 (all years cat-
egorized as optimal; permanently optimal conditions).

We used an equally weighted combination of feature-specific outputs
(i.e., SST, SSS, and NPP outputs) as a proxy to the overall persistence of opti-
mal environmental conditions for target species (Fig. S2). The resulting out-
puts encompassed marine areas with minimum values indicating a higher
persistence of sub-optimal conditions, and maximum values denoting areas
with a higher persistence of optimal conditions (Figs. S3 and S4). Here, we
considered that optimal ranges of SST, SSS and NPP equally contribute to spe-
cies distribution. However, our approach can be revisited, updated and re-
fined by incorporating information on the relative weight these multiple
drivers might have in shaping species-specific distributions.
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Fig. 2. Long term (1993-2018) trends in the availability of marine areas encompassing optimal ranges of depth, SST, SSS and NPP (i.e., optimal habitat availability) for main
species occurring at the (a) South American and (b) African Large Marine Ecosystems (LME). The geographic distribution of LMEs is shown in (c). For representation purpose,
and to make comparable the long-term trends in optimal habitat availabilities for all species, the scatterplots represent the area of optimal habitats in % respect maximum
recorded surface per species. Bar plots represent the slopes (magnitude) and significances (asterisks; *: p-values < 0.1; **: p-value < 0.05) for the linear regressions on the
long-term trends in the absolute values of optimal habitat availabilities (grey) and total catches by fisheries (white; data from Sea Around Us for the 1993-2016 time period).

As a proxy to the overall persistence of optimal environmental condi-
tions for all species within LMEs, we calculated a combination of species-
specific products weighted by species' relative contributions to total catches
per LME (based on data from SAU, Fig. 5). These cumulative changes were
roughly similar when considering an equally-weighted combination of
species-specific products (Fig. S5).

2.3. The overlapping impact of fisheries

Using species-specific, long-term (1993-2016) data on total catches
from SAU we evaluated trends in fish catches for target species within

LMEs and EEZs. To this aim, we conducted linear regressions with Gaussian
distribution and considered the slopes (and significance) as estimates for
the magnitudes of observed changes (Figs. 2 to 4).

We also overlapped our proxy of climate impacts on species' optimal
habitat distributions (i.e., the persistence of optimal habitats) with
spatially-explicit information on the combined fishing pressure by trawlers
and purse seiners (data from GFW). Previously, we summed daily fishing
records to spatially explicit annual totals for the 2012-2016 period. Then,
we averaged the entire time series to obtain an overview of the spatial dis-
tribution of fishing pressure, which allowed us to highlight those marine
areas that fisheries have particularly impacted over recent years. We then
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estimated the cumulative impact of our proxies for climate effects and fish-
ing pressure by multiplying both layers. Here, we interpret the cumulative
impact as the spatial overlap between climate-driven environmental
changes and fishing pressure. By multiplying both layers, we exclusively
considered those marine areas where both impacts co-occur spatially
(i.e., excluding those areas that were exclusively impacted either by climate
forcing or fishing pressure). The spatial output ranged from 0 (i.e., no

fishing pressure (Fig. 5).

fishing and climate impacts) to maximum values depicting those areas im-
pacted the most by both stressors. Marine areas with an overlying climate
and fishing impact effect were subsequently categorized according to quar-
tiles (Q1 to Q4), covering the magnitude of the cumulative effect within dif-
ferent LMEs. Therefore, areas within the Q4 can be interpreted as those
marine systems that are impacted the most by both climate change and
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Fig. 4. Long term trends (slopes of the linear regressions) in (a) the EEZ-specific overall availability (absolute area in km?) of marine areas encompassing optimal ranges of
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and fishing catches.

3. Results

According to our findings, trends in optimal habitat availability contrast
between species, LMEs, and EEZs (Table S3 and Figs. 2 to 4). Overall, opti-
mal habitat availability remained stable or decreased for most small and
medium size pelagic species throughout our study area. However, we
found a latitudinal gradient whereby low-latitude regions (e.g., Guinea Cur-
rent and North Brazil Shelf LME, and associated EEZs) are most affected by
decreasing availability of optimal habitats. Contrastingly, species' optimal
habitat availability in poleward regions (e.g., Patagonian Shelf or South
Brazil Shelf LMEs) remains roughly stable, or even increases, throughout
the last decades (with a few exceptions, see Figs. 2 to 4).

Historical trends (based on SAU data) reveal that fishing catches have
decreased through the study period for most areas, with few exceptions
(e.g. Brazil and South Africa, Figs. 2 to 4; decreasing trends in fish catches
are reported for 22 out of 27 EEZs). Finer-scale analyses on the distribution
of fishing pressure (based on GFW data) indicate that fishing activities are
heterogeneously distributed spatially and concentrated mainly in particular
areas within the Patagonian Shelf or the Guinea and Benguela Currents
(Fig. 5).

By combining our fine-scale analyses on optimal habitats and fishing
pressure distribution, we identified “doubly” and highly impacted marine
areas. In these areas, persistently suboptimal (hereafter refereed as subopti-
mal) environmental conditions (i.e., environmental conditions were cate-
gorized as suboptimal persistently over the 1993-2018 period) overlap
with an intense fishing pressure (see Fig. 5 and Figs. S2 to S4).

We show that these “doubly impacted” marine areas are unevenly dis-
tributed in the Central and South Atlantic LMEs as a result of the heteroge-
neous distribution of suboptimal marine areas and fishing pressure (Fig. 5).
Overall, in the North and East Brazil Shelfs, doubly impacted marine areas
are nearly absent, except a relatively small area in the central, coastal re-
gion of the North Brazil Shelf. In contrast, large marine areas within the
South Brazil and the Patagonian Shelfs are identified as environmentally
suboptimal and subjected to an intense and combined fishing pressure by
trawlers and purse-seiners. The highest impacted areas largely occur
along the coast of the South Brazil Shelf and the continental shelf-break
of the Patagonian Shelf. On the eastern side of the Central and South Atlan-
tic Basin, doubly impacted areas are distributed along with coastal areas of
the Central and North Benguela, and in three main regions of the Guinea
Current (South, Central, and West).

4. Discussion
4.1. Following climate-driven environmental shifts

Available information on climate-driven distribution shifts for marine
species is mainly biased towards the Northern hemisphere (Comte et al.,
2020; Lenoir et al., 2020; Morato et al., 2020; Pinsky et al., 2020). In this
study, we provide spatially-explicit assessments of changing optimal habi-
tat availabilities likely driving shifting distributions for main pelagic species
in the ecologically relevant Central and Southern Atlantic Ocean. Naturally,
other ecological, biological, and physical variables may play an additional
role in delimiting species' fundamental niches and, hence, may affect spe-
cies' distribution. Our approach is not limited to the environmental toler-
ances provided by AquaMaps, and can be updated to use any set of
drivers of change.

A proper understanding of the determinants of current and historical
distributional range shifts of species is necessary to improve the prediction
of future trajectories under different climate scenarios (Heller and Zavaleta,
2009; Rilov et al., 2019). It should be noted that projecting specific future
distributions were beyond the scope of this study. Forecasting distributions
of species on the move has a risk of failure without considering (i) the com-
plex processes reflecting the interaction and nonlinear dynamic of multiple
environmental and human derived factors; and (ii) how the organisms
(even individuals within populations) may respond to the novel, non-
analogous environmental conditions presented by climate change through
several physiological (e.g., thermal tolerance), ecological (e.g., predatory
interactions) and evolutionary processes (e.g., adaptation / acclimatation)
(Rilov et al., 2019; Woodin et al., 2013; and references therein). Rather,
the value of this first step lies in using past observations to demonstrate
that fishing in areas where climate change impacts have resulted in reduced
suitable habitat is likely to be detrimental, not only to fished stocks but to
the states of the underlying ecosystems as a whole; i.e., the SOS framework.
This framework may highlight important considerations for present fisher-
ies adaptive management by regulating and/or redistributing fisheries to
ameliorate pressure in those areas where environmental conditions are
changing at the fastest rates.

Trends in optimal habitat availability differed spatially, with low-
latitude regions being the most affected by decreasing availability of opti-
mal habitats over recent decades. This concurs with general global trends
reported on the uneven distribution of environmental change effects in
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the oceans, highlighting tropical and sub-tropical areas as those of special
concern because of the impact of shifting environmental conditions
(Burrows et al., 2011; Ramirez et al., 2017). Shifts towards higher latitudes
in ocean water isotherms (the so-called velocity of climate change) have
also been reported to be more intense in low-latitude regions of the South
Atlantic Ocean (Burrows et al., 2011). Finally, projected impacts of climate
change on marine communities based on Marine Ecosystem Models
(MEMs, some of which account for food-web dynamics) have also revealed
that the areas around the tropics are likely among the most impacted of ma-
rine regions, and less suitable for a range of species (Coll et al., 2020; Lotze
etal., 2019; Tittensor et al., 2021). This is partly because no communities of
organisms from warmer regions exist to replace those moving out of the trop-
ical and sub-tropical regions (Burrows et al., 2011). Additionally, marine spe-
cies in the tropics are believed to have smaller thermal safety margins as they
live closer to their upper thermal limits (Pinsky et al., 2019). As the ocean
warms, tropical species will likely fall out of their optimal thermal ranges
and be forced to shift their distributions towards higher latitudes (Burrows
et al., 2011; Lenoir et al., 2020; Pinsky et al., 2019).

Scarce information is available on the shifting distributions of small and
medium size pelagic fish from our study area to evaluate their analogous re-
sponses to observed environmental shifts (based on the BioShifts geo-
database, Comte et al., 2020; Lenoir et al., 2020). However, pole-wards
shifts in the distribution of pelagic and demersal fish species have been re-
ported in the northern areas of the Benguela Current (i.e. Angola). While,
latitudinal shifts of species in central (Namibia) and southern (South
Africa) areas have occurred in both directions (van der Lingen et al.,
2006; Yemane et al., 2014). Similarly, we observe no clear reductions in op-
timal habitat availability for pelagic species associated with latitudinal
shifts off Namibia and South Africa. Instead, our results point to an eastward
shift in optimal habitat availability for the commercially and ecologically im-
portant Southern African anchovy (Engraulis encrasicolus) and pilchard
(Sardinops sagax). This result corresponds with the widely reported eastward
shifts in the distribution of these pelagic species (Coetzee et al., 2008; Roy
et al., 2007; van der Lingen et al., 2006), as well as with the negative impacts
on the important seabird community of the Southern Benguela that largely
rely on these species for prey (Crawford et al., 2019, 2007).
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According to our results, the most vulnerable and socioeconomically
constrained developing nations in the Atlantic Ocean, particularly those
near the equator, have already experienced the most striking deteriorating
trends in optimal environmental conditions for pelagic fish species. These
trends will likely exacerbate in the future (Boyce et al., 2020), potentially
leading to reductions in species abundance and changes in community com-
positions, and reshaping patterns of provisioning services (Burrows et al.,
2011; Garcia-Molinos et al., 2016). Therefore, these nations are likely to ex-
perience greater local changes due to poleward range shifts (Wiens, 2016)
and will likely face greater economic constraints. This may widen the
existing equity gaps among sovereign states, potentially leading to substan-
tial conflict (Boyce et al., 2020; Mendenhall, 2020; Ojea et al., 2020;
Spijkers et al., 2019).

While environmental shifts, particularly in isotherms, explain a substan-
tial variation in rates of marine species (Sunday et al., 2015), some species
have shifted their ranges faster than environmentally expected (Pinsky
et al., 2013; Poloczanska et al., 2013; Sunday et al., 2015), or even in the
“wrong” direction (Fuchs et al., 2020; Rivadeneira and Ferndndez, 2005).
This could be partly explained by particular intrinsic traits that may en-
hance or buffer species vulnerability to climate impacts. For instance,
adult and larval mobility has been revealed as an essential trait shaping spe-
cies' responses to environmental shifts (Raventos et al., 2021; Sunday et al.,
2015). Our study targets pelagic fish species, which have a notable capacity
to swim and thus to actively shift their distributions towards more suitable
habitats (Sunday et al., 2015). However, recent studies have shown con-
trasting results when looking at different organisms such as benthic inverte-
brates (Fuchs et al., 2020; Sunday et al., 2015). Therefore, our approach can
be extended to other organisms to explore whether our results are observed
in different species groupings.

Contrasting shifts in optimal environmental conditions and species dis-
tributions might be explained by decoupling between the metrics used to
define environmental shifts and the fine-scale temporal and spatial aspects
of the environment likely driving species distribution (e.g., duration of the
summer season, local minimum temperature in winters; Poloczanska et al.,
2013; Sunday et al., 2015). Accordingly, our spatially explicit assessments
of optimal habitats should be considered with caution and used only as a
proxy to climate-driven environmental impacts likely affecting species dis-
tribution. Also, our assessments do not consider evolutionary processes, accli-
mation, or potential changes in species interactions that may lead species to
persist in sub-optimal environmental conditions, occupy new niches or even
disappear from previously preferred environmental ranges (Pinsky et al.,
2020; Rilov et al., 2019; Woodin et al., 2013). Despite these considerations,
our results evaluate the uneven distribution of environmental shifts and iden-
tify potentially highly impacted marine areas that are more prone to fall out
their SOS and thus deserve conservation priority to prevent collapses, even
in the face of large uncertainty (Rilov et al., 2019; Willcock et al., 2016).

4.2. The overlapping impact of fisheries

A high fishing pressure may increase the vulnerability of marine sys-
tems to climate-driven shifts in environmental conditions (Coll et al.,
2019; Planque et al., 2010). Overall, historical trends reveal that fish
catches have decreased through the study period for most Central and
Southern Atlantic Ocean regions (decreasing trends in fish catches are re-
ported for 22 out of 27 EEZs, Fig. 4). This coincides with global declining
trends in fishing catches (Pauly and Zeller, 2016) and is particularly true
for those EEZs impacted the most by declining trends in optimal environ-
mental conditions for those pelagic species included in our assessments
(but see Brazil and Guyana, Fig. 5). However, catch data provided by SAU
reflect changing fish biomasses, and varying fishing efforts and efficiencies
(Pauly et al., 2013). The impossibility of teasing apart these underlying pro-
cesses prevents drawing firm conclusions on the long-term trends and the
underlying processes driving these trends, particularly when SAU data is
used alone (Pauly et al., 2013).

Rather than showing an “optimistic” scenario, where declining trends in
fishing catches are due to management actions (i.e., decreasing fishing
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pressure) that may buffer environmental impacts, our results likely show
a historic overfishing trend that may aggravate synergistically climate-
driven environmental impacts on fish populations (Coll et al., 2008; FAO,
2020; Kleisner et al., 2013; Roux et al., 2013). In fact, finer-scale analyses
on the distribution of fishing pressure revealed that fishing activities are
primarily concentrated in areas where fish catches have declined
(e.g., the Patagonian Shelf or the Guinea and Benguela Currents). In these
regions, the overlapping impact of climate change and fishing pressure
has likely synergistically impacted small and medium size pelagic species,
causing declining trends in population / stock biomasses and, hence, their
catches (Coll et al., 2019; Ramirez et al., 2021; Saraux et al., 2019). Further-
more, recent spatially-explicit stock assessments indicate that fishery bio-
masses (populations / stocks that are vulnerable to fishing gears) in these
areas have declined over the last decades, often reaching biomass levels
below the optimal deemed for achieving Maximum Sustainability Yield
(Bmsy Palomares et al., 2020; see also Table S4 and SAU).

The uneven distribution of environmental shifts and fishing pressure re-
ported in this study might be not informative of future trends and patterns
(Rilov et al., 2019). For contributing to an adaptive and effective manage-
ment of fisheries, our SOS framework must be periodically revisited to pro-
vided updated spatial assessments on the overlapping distribution of
climate-driven environmental changes and fishing pressure. It is also
worth noting that our spatial assessments are rather conservative and
may only represent a relatively small fraction of the highly impacted ma-
rine areas that deserve conservation priority. This is so because fishing
gears target additional species besides the ones our study focuses on.
Also, the spatial distribution of fishing pressure from GFW largely relies
on the automatic identification system (AIS) for fishing vessel monitoring,
which might be lacking in developing nations, and does not account for ar-
tisanal fisheries or illegal, unreported, and unregulated (IUU) fishing. Re-
cent technological advances in remote sensing tools and modelling
techniques (e.g., those based on satellite radar and night-light imagery,
Oozeki et al., 2018; Santamaria et al., 2015) have the potential to revolu-
tionize the way we remotely observe the oceans and monitor fishing activ-
ities (including IUU, Oozeki et al., 2018). These new observations can be
integrated in spatially detailed analysis like ours when available.

Although we focus here on LMEs (and associated EEZs), where most na-
tions fish predominantly, an area of intense fishing pressure also occurs in
the South Atlantic high seas, driven mainly by the fishing activity of few
countries such as Spain and Japan (Kroodsma et al., 2018). Satellite remote
sensing records for key environmental features that are presumed to drive
fish abundances and distributions, along with spatially-explicit quantifica-
tions of fishing effort, are now provided at the global scale and for relatively
long periods (Kroodsma et al., 2018; Ramirez et al., 2017). Accordingly, our
SOS approach has the potential to be extended to the high seas (and other
geographical areas or climatic zones) to identify those areas deserving con-
servation priority in the face of climate change.

4.3. SOS for fisheries in a shifting environment

The pervasive consequences of climate-driven marine species redistri-
bution can be aggravated by fisheries, with far-reaching social-ecological
implications for ecosystem functioning and human well-being (Chen
et al., 2011; Lenoir et al., 2020; Mendenhall, 2020; Ojea et al., 2020; Pecl
et al., 2017; Poloczanska et al., 2013). Therefore, managing and anticipat-
ing the consequences of climate-driven species redistribution requires a bet-
ter understanding of these environmental shifts, particularly when they
may affect shared resources such as transboundary fish stocks that are
also subjected to intense harvesting pressure (Ojea et al., 2020; Pinsky
et al., 2020).

Local to transnational joint efforts to reduce fishing pressure in marine
areas where the availability of optimal habitats is decreasing may support
long-term sustainable fisheries by enhancing fish stocks' resilience in the
face of climate change (Ramirez et al., 2021, 2018, 2017). To date, shifting
species distributions have been largely neglected in international agree-
ments regarding climate impacts on natural systems and human societies
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(Free et al., 2020; Ojea et al., 2020; Pecl et al., 2017; Pinsky et al., 2018).
Local to international fisheries are clearly underprepared for geographic
shifts in commercial species (Pinsky et al., 2018; Ramos Martins et al.,
2021), despite the fact that planning for species redistributions could
substantially reduce the impacts that a changing climate may pose
with few trade-offs against current policies (Free et al., 2020; Pinsky
et al., 2020).

Sustainable governance of shared stocks will require proactive coopera-
tive approaches to identify and manage highly impacted areas and fish
stocks on the move that can provide useful insights to guide future multi-
scale and cross-border initiatives. Pioneer initiatives already exist, such as
the “The Accra Declaration on environmentally sustainable development
of the LME of the Gulf of Guinea”, which aims at institutionalizing a new
ecosystem-wide paradigm for joint and collaborative actions by the 16
countries in the Guinea Current to preserve the living marine resources
(Ibe and Sherman, 2002; Ukwe et al., 2006). In the Benguela Current
LME, Angola, Namibia and South Africa ratified the Benguela Current Con-
vention in 2014, supporting a five-year strategic action programme based
on Transboundary Diagnostic Analysis (TDA) whereby transboundary chal-
lenges are identified and prioritized (Neto and Jardim, 2016). Based on
TDA, policy actions were identified in an attempt to optimize social and
economic benefits while mitigating environmental and ecological issues,
notably included to “improve the understanding and predictability of cli-
mate change impacts and climate variability” and to “reduce threats to spe-
cies and habitats” (Neto and Jardim, 2016). These and similar initiatives
can benefit from our assessment of the spatial congruence between cli-
mate and fishing impacts, along with their inclusion within a SOS frame-
work. International initiatives hold large potential, such as the Southern
African Development Community (SADC) Programme for Transfrontier
Conservation Areas (TFCAs), which recognizes that management of
shared natural resources has the potential to meaningfully contribute
to both the conservation of biodiversity and the socio-economic devel-
opment of local communities. Spatially-explicit assessments of the dis-
tribution of climate and fishing impacts can be relevant for defining
and implementing relevant TFCAs, especially in the tropical and sub-
tropical regions where projected changes in community compositions
and contemporary cumulative human impacts largely overlap (Boyce
et al., 2020; Garcia-Molinos et al., 2016). Next steps for the SOS frame-
work should incorporate future projections under different scenarios of
fishing and climate change to anticipate future management options
and best alternatives.
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