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Abstract 

Self-driving cars have generated a revolution in the automotive industry. Nonetheless, 

ensuring safety in the absence of a supervising driver and verifying safe vehicle behaviour in 

various contexts are two of the main challenges for autonomous driving systems that need to 

be addressed in the near future. 

Due to their complexity, Autonomous Driving Systems (ADS) cannot be solved in a 

straightforward way without being properly structured. Therefore, it requires a well-defined 

architecture to guide its development. In addition to providing modularity and scalability, the 

proper architecture provides a maintainability system. 

To help overcome some of the challenges, this master thesis develops an architecture for an 

ADS that adapts its behaviour to the context by switching between different operational 

modes, with the aim to standardize and ease the development process. The work was 

divided in four parts. First, the safety standards for the development of an autonomous 

functions have been analysed. Second, the system’s requirements were derived from a 

widely adopted automotive standard. Third, a logical architecture has been proposed and 

instantiated for an automated parking system. Finally, the architecture has been 

implemented in a simulation environment for its proper validation. 

This work has shown that the architecture modelled in AUTOSAR and the generated Run-

Time Environment is capable of adapting its behaviour to the context by executing the mode 

switch. In addition to meeting the safety requirements for a safe autonomous parking system. 

The interface created with the simulation environment allows future works to benefit from it 

for the development and testing of actual developed autonomous systems. 

Key words: AUTOSAR, Mode Manager, Autonomous Driving Systems, Software 

Architecture. 
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Glossary 

ADS: Automated Driving System. Hardware and software that drives the vehicle (applicable 

only to levels 3, 4, 5). 

ADAS: Advanced Driver Assistance Systems are electronic systems that help the vehicle 

while driving or during parking. 

AGV: Automated Guided Vehicle. 

AP: AUTOSAR Adaptative Platform. 

API: Application Programming Interface. 

APS: Automated Parking System. 

AUTOSAR: Standardized AUTomotive Open System Architecture. 

ASAM: Standardization of Automation and Measuring Systems. 

CAV: Connected Automated Vehicles. 

CP: AUTOSAR Classic Platform. 

DDT: Dynamic Driving Task. Driving the vehicle on a road. This includes two important sub-

tasks: vehicle movement (acceleration, braking, steering), and OEDR (defined below). 

Example: Driving for at least several minutes on a highway while staying on the road, 

observing the actions of other road users, and manoeuvring to avoid crashes. 

DMIPS: Dhrystone Million Instructions Per Second is a unit that evaluates performance 

based on the time it takes to execute a Dhrystone instruction program on a processor and 

process it. 

ECU: Electronic Control Unit. 

Fail-degraded capability: property of the item to operate with reduced functionality in the 

presence of a fault. 

Fail-safe capability: property of an automated driving system to achieve a minimal risk 

condition and to achieve a safe state in the event of a failure. 

GNSS: Global Navigation Satellite System sensor. 

LIDAR: Light Imaging Detection and Ranging. 
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MRC: Minimal Risk Condition. A Fallback puts the vehicle in an MRC to reduce the risk of a 

crash instead of attempting to continue a trip.  

MVP: Minimum Viable Product. 

OEDR: Object and Event Detection and Response. Monitoring the driving environment 

including other road user actions to recognize the need for and execute a response. 

OEM: Original Equipment Manufacturer. 

ODD: Operational Design Domain. Conditions the ADS is designed to handle. 

RTE: Run-Time Environment. 

Runnable: Capable of being run. 

SAS: Safer Autonomous Systems. 

SDL: Specification and Description Language. 

SWC: Software Component. 

VFB: Virtual Functional Bus. 
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1. Preface 

1.1. Origin of problem  

Open systems (of systems) run and interact in a physical world with unforeseeable 

uncertainties. Cognitive systems are software-intensive technical systems that imitate 

cognitive capabilities of human behaviour by processing the environment data, predicting 

upcoming changes, adapting to the context, while ensuring that safety is preserved.  

Fraunhofer Institute for Cognitive Systems IKS researches and develops methods and 

technologies that enable intelligent, autonomous systems to respond reliably and safely to 

unexpected or previously unknown situations. In doing so, they work at the interface between 

science and industry to bring innovative concepts for cognitive systems into practical 

application [1]. 

The main challenge is that manufacturers of autonomous driving systems must guarantee 

that their products are safe for their customers and for the intended use. Many OEMs are 

making huge steps towards autonomous driving, but according to Safer Autonomous 

systems organization, 70% of people would still not take the risk of getting into a driverless 

vehicle, because safety is not guaranteed in every situation in which the vehicle operates [2]. 

The SAS consortium, consisting of several leading European research institutes and private 

industry companies, has been created and has aligned its efforts to solve significant 

challenges that could threaten the safety of autonomous systems. Fraunhofer IKS is one of 

the partners in the SAS consortium. 

1.2. Motivation 

Innovations in the automotive domain have been driven by electric/electronic systems and 

software in the last 20 years. Autonomous vehicles implement the capability to emulate 

human behaviour and replace the brain of the driver.  This demands software systems, that 

we can trust to provide the autonomous functionality in a reliable and safe way.  

The increasing, demanding requirements on safety, environmental protection and comfort 

have also increased the number of electronic systems and changed the whole structure of 

these systems. This makes that more than 90% of all innovations are in electronics and 

software systems, and up to 40% of a vehicle’s development costs are derived from the 

electronics in the vehicle, and around 50 to 70% of the electronics costs are related 

exclusively to software [3]. However, the required development processes, methodology to 

ensure safety and technologies are still in their early stage.  
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This master thesis is a great opportunity to learn about the developments and standards 

related to autonomous systems. The current and future challenges have wakened my 

interest in discovering how to design an autonomous system from scratch, which is a totally 

innovative aspect of the automotive industry. 

My main motivation for this master's thesis has been to extend the knowledge acquired in the 

automotive master's degree. More specifically, build the expertise required for designing, 

developing and integrating autonomous vehicle functions. This includes learning how to 

structure and solve a complex cyber physical system and managing its states, with the aim of 

improving the overall quality, reliability and resource efficiency. 

1.3. Previous requirements 

For the development of the project, no specific knowledge of standards or tools is required, 

but it is recommended to have some notions of systems engineering in order to have the 

ability to develop and design complex systems, such as autonomous systems. 
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2. Introduction 

2.1. Background 

The project has been developed at Fraunhofer Institute for Cognitive Systems, specifically in 

the department of Cognitive Software Systems Engineering, where one of the research focus 

areas is the engineering for safe intelligence systems and the modelling of resilience 

architectures for autonomous systems. 

Autonomous driving systems are a core field of robotics research, and many universities, 

research institutes, and companies are now working on autonomous driving technology. 

Interest in automated driving technology has increased exponentially over the past few years 

driven by the goal of reducing road fatalities, improving traffic conditions and the introduction 

of new mobility concepts. When doing so, the safety of automated driving vehicles is one of 

the most important factors [4]. 

The continuous evolution of automotive technology aims to deliver even greater safety 

benefits than earlier technologies. One day, automated driving systems, which some refer to 

as automated vehicles, may be able to handle the whole task of driving when we do not want 

to or cannot do it ourselves [5]. 

The purpose of this work is to design and engineer resilience software systems which are 

open systems. This means that they perceive the environment, can identify relevant objects 

and predict their possible trajectories. However, the main goal is to adapt the functionality of 

the system to the actual context that is facing, ensuring in this way the safety of the system. 

This concept is called safe intelligence. 

With the interaction of automated vehicles with the environment and with other systems, the 

design of the software is becoming increasingly complex. To facilitate the evolution of today’s 

vehicles to automated systems, it is necessary to extend existing standards, define new 

standards and apply standardized architectures to manage the increasing complexity. 

2.2. Objectives 

The goal of this thesis is to design and model a software architecture in AUTOSAR for a 

minimal autonomous driving system that adapts its behaviour to the context by switching 

between operational modes. The communication between the software components, 

including the mode management, shall be implemented by the AUTOSAR Run-Time 

Environment (RTE). The software architecture will be instantiated in a case-study for an 
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Automated Parking System. 

2.3. Scope 

This master thesis focuses on electronic systems, specifically on automotive embedded 

systems and their control in terms of standards for autonomous driving systems (ADS).  

It is in the scope of this project the modelling of the software architecture using the 

Automotive Open System Architecture “AUTOSAR”, with special emphasis on the use of the 

standardized mode-management mechanisms. The architecture will be instantiated to an 

Automated Parking System in order to verify the correct functionalities of the system. 

The concept shall be validated in a virtual environment. The generated AUTOSAR Run-Time 

Environment (RTE) will be integrated with the environment and the autonomous vehicle 

implemented by the CARLA simulator. It is not in the scope of this master thesis the 

implementation of the parking manoeuvrer, which has been specified and developed in [6]. 

This document is structured as follows. Chapter 3 starts with the state-of-the-art of the safety 

standards for the automated driving systems. Chapter 4 focuses on the description of the 

proposed autonomous system and on its development. The implementation results and 

verifications through simulations are presented in chapter 5. Finally, chapter 6 summarizes 

the conclusions and future work. 
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3. State of the art 

This chapter provides an overview of the most important techniques, methodologies and 

standards used for the development of this master thesis. The goal is to help the reader with 

background information to understand the context of the project and the results. 

This state of the art covers the following aspects: systems engineering (Section 3.1), 

software architecture (Section  3.2), AUTOSAR [7] as a standardized software architecture 

(Section 3.3) and safety standards for automated systems (Section 3.4). 

Systems engineering is crucial for the development of this project. The development of such 

a complex system as the autonomous vehicle, requires proceeding using a structured 

approach, dividing the system into small subsystems to successfully manage the complexity. 

For subsystems to be implemented in software, a clean and well-defined architecture must 

be designed. It is important to know about the applicability of the different architectures, how 

they are defined, how they are documented, how they are referenced, etc. This provides the 

necessary skills to decide which type of architecture fits best to the system under 

development.  

Finally, it is important to be aware of all the standards that are relevant for the development 

of the project so that the modelling is done according to these standards. The focus will be 

on AUTOSAR and on the relevant safety standards for autonomous systems since the main 

goal of this work is to ensure safety in the architecture. 

3.1. Systems engineering 

Systems engineering is about studying and understanding reality as it is with the aim of 

optimizing and improving complex systems. It can be applied to any type of system since it is 

not committed to a specific field. For example, it can be applied for studying the human 

digestive system or computer system, as an example of two different fields without anything 

in common [8]. 

Systems Engineering provides facilitation, guidance and leadership to integrate the relevant 

disciplines and specialty groups into a cohesive effort, forming an appropriately structured 

development process that proceeds from concept to production, operation, evolution and 

eventual disposal [9].  

During system design, all the information that is needed is explicitly described, e.g., what 

functionality the system provides, how the system will interact with other systems, how many 

different components are needed to implement the system, how the interaction among 
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components is, what part of the functionality each component implements, etc. This 

information allows the hierarchy of the system to be drawn, not only at the top level, but also 

in detailing the requirements to meet the overall implementation. 

Developing a project based on a good system architecture provides a robust foundation. This 

implies that all the relationships with the different factors that make up the system are well 

defined and connected to each other. It allows all team members to know what, where and 

how things must be done in a clear and simple way. In addition, everyone uses the same 

language, which improves communication and project management tasks, reducing the 

chance of failure.  

Systems engineering allows a challenging large system to be decomposed into smaller and 

easier-to-solve subsystems that can be classified and prioritised. Its main benefits are 

increasing the performance of the overall system, reducing hidden project costs, improving 

the quality of the system platform, and allowing the system to be upgraded and expanded in 

a quick and easy way. 

The process of systems engineering is iterative. To begin, the project must be architecturally 

defined. The design becomes more precise at the component level as the requirements, 

communication, and implementation details are polished further. Overall, systems 

engineering provides a roadmap for successful engineering project design and 

implementation. 

This master thesis makes use of systems engineering for the development and 

decomposition into small subsystems. 

3.2. Software architecture 

Software architecture is key for the development of future-oriented software-based systems. 

In this section we define what an architecture is, so that at the time of design and 

development, it can be described in the optimal and correct way. For complex systems, such 

as autonomous driving systems, the most efficient approach is to model the architecture first, 

then determine the detailed requirements for the components to be implemented. 

The software architecture of a system represents the structure of the system itself and it also 

provides a logical explanation of its high-level behaviour [10]. In this case, a system consists 

of a set of components that fulfil a specific function and it may also be a set of functions. In 

other words, software architecture is a necessary tool for developing effective software since 

it provides a stable framework on which the software can be developed. 

The quality, performance, maintainability, and overall success of the described system are all 
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directly influenced by the architecture decisions to be made. Different patterns and principles 

of high-level architecture have been developed and are used in modern and complex 

systems, which are called architectural styles. It is clearly stated in [10] that the architecture 

that composes a system is not frequently limited to a single architectural style, but it is usually 

the combination of different styles that form complex systems. 

The software architecture directly exposes the system external structure, while covering up 

the system implementation details. Likewise, it focuses on how the system elements and 

components interact with one another. 

There is no simple and structured way to determine whether an architecture is correct or 

wrong. The architecture itself must have a finality, it has to fulfil a purpose and to meet the 

defined objectives. 

Some golden guidelines for the engineering process for defining architectures are as follows. 

First, the process must be managed by a single person or a small group of architects. 

Second, the architect must respect to the architectural quality features. Third, everything 

should be documented and, moreover, from several perspectives. Finally, review the 

architecture again, from the initial concept through the most recent extensions [11]. 

3.2.1. What is a software architecture? 

The software architecture consists of a scheme of boxes and lines of the system that intends 

to solve the problems for which it has been thought, the boxes are the elements of the 

system while the lines are the relationships and information exchange between these 

elements. 

A more formal definition of software architecture is: “Software architecture of a system is the 

set of structures needed to reason about the system, which comprises software elements, 

relations among them, and properties of both” [12]. In other words, a software architecture is 

a system abstraction in which the architecture defines the elements and how they connect to 

one another, but not the internal details. 

For a variety of reasons, architecture is an essential component of engineering. The first is 

that it provides as a gateway for communication between stakeholders. It also serves as a 

manifestation of the system's most essential design decisions and it works as a transferable 

and reusable system abstraction. 

When defining a specific architecture, the structure being considered should be made explicit 

and well defined from the start. These can be classified into three categories. 

▪ Modular structures: The system is divided into small units known as modules. This is 
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a static way of looking at the system since it divides the responsibilities of the 

development teams. 

▪ Component structures and connectors: They focus on how elements interact with 

each other during execution.  

▪ Mapping structures: They focus on mapping software structures into structures that 

do not contain any software.  

3.2.2. Reference Software Architecture 

A Reference Software Architecture (RSA) is a software architecture where the structures, the 

elements and relations provide templates for concrete architectures in a particular domain or 

in a family of software systems [13]. The main goal of the RSA is that application software 

can be specified and implemented independently on where the software is going to be 

executed.  

The RSA provides, on the one hand, a list of functions and their interfaces (APIs) and, on the 

other hand, the interactions with each of the functions that are outside the scope of the 

reference architecture.  

In the automotive domain two, RSAs have been standardized by the AUTOSAR partnership: 

the AUTOSAR Classic Platform and the AUTOSAR Adaptive Platform. 

3.3. AUTOSAR 

In automotive embedded systems, application software has a strong interaction with 

hardware. The software is embedded in small computers with limited resources distributed all 

over the vehicle, known as electronic control unit (ECUs). Vehicle functions are becoming 

more and more complex, especially in autonomous vehicles. Furthermore, real-time and 

safety requirements shall be fulfilled for this increasingly complex of systems. 

AUTOSAR is a standardized AUTomotive Open System ARchitecture. It is a global 

development partnership of vehicle manufacturers, suppliers, service providers and 

companies from the automotive electronics, semiconductor and software industry [7].  

AUTOSAR aims to improve complexity management of highly integrated E/E architectures 

through an increased reuse and exchangeability of SW modules between OEMs and 

suppliers. It defines the exchange formats and description templates to enable the 

configuration process of the basic software stack and the integration of the application 

software into the ECUs. AUTOSAR is the global established standard for software and 
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methodology enabling open E/E system architectures for future intelligent mobility supporting 

high levels of dependability, especially safety and security [14]. 

A standardization of the platform software common functionality of automotive embedded 

software has been achieved specified AUTOSAR. It includes among others, communication 

stacks, diagnostics services, or operating systems. 

It is important to mention that AUTOSAR promotes the cooperation in the definition of 

standards. The goal is to define common specification language to describe the interfaces 

between components and communication mechanisms that guarantees a smooth integration 

of the software in a vehicle.  At the same time, it does not prescribe how the software has to 

be implemented, leaving room for competition between vehicle manufacturers, ECU 

suppliers and software vendors. 

3.3.1. Platform Software 

Concerning the specification of the platform software, AUTOSAR has currently standardized 

two reference software architectures: the AUTOSAR Classic Platform (CP in short) and the 

AUTOSAR Adaptive Platform (AP in short). 

In 2003 AUTOSAR started with the specification of the Classic Platform to support the 

development of deeply embedded microcontroller-based ECUs. The Classic Platform is well 

suited for functions with high real time requirements (range of microseconds) and high safety 

requirements. Embedded microcontroller-based ECUs require low computing power and 

they can process around 1000 DMIPs. 

In 2016, AUTOSAR started the specification of the Adaptative Platform to support the 

development and integration of application software in high-performance computing 

platforms based on microprocessor ECUs. These ECUs provide high availability of resources 

and a soft real-time execution (range of milliseconds), as depicted in Figure 1. The Adaptive 

Platform has been developed to support the growing evolution of the connected and 

autonomous vehicle, including the capability to enable the increasing need for software 

updates. 

Both platforms address different use-cases, so the AP is not replacing the CP. This means 

that both will coexist in an automotive ecosystem. As both platforms provide solutions to 

different problems, their coexistent offers great added value to the standard. 
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Figure 1. Differences between AUTOSAR platforms [4].  

Although the AP is better suited for the implementation of sensor data fusion and obstacle 

localization, the focus of this master thesis is the specification of a safe architecture for 

autonomous vehicles. For simplicity, the architecture will be modelled using the Classic 

Platform basically because of the safety requirements of the Autonomous System (AS) mode 

manager (see section 3.4.4). 

3.3.2. AUTOSAR Classic Platform 

The AUTOSAR Classic Platform architecture is a layered software architecture. As depicted 

in Figure 2, it provides three abstraction layers for the Basic Software (BSW): the 

microcontroller abstraction layer, the ECU abstraction layer and the Services layer. The Run-

Time environment (RTE) abstracts the communication between the application layer and the 

basic software services.  

The most important properties of the Classic Platform layers and modules are summarized in 

[15]. The application software layer is in most cases hardware independent, the RTE 

represents the interface for the applications, which is used to communicate with the lower 

levels.  

 

Figure 2. Main layers of the AUTOSAR Classic platform architecture [16]. 



Software architectural design for safety in automated driving systems Page 21 

 

3.3.3. Virtual Functional Bus 

Application software is described by software components (SWCs) in AUTOSAR. SWCs are 

the building blocks of AUTOSAR and they can be combined to design the functions of a 

complete system. The communication between the different SWCs is done through ports. 

Objects are provided by P-Ports and required by R-Ports. Interfaces must be assigned to 

these ports. They control what can be transmitted and the used semantics. 

AUTOSAR defines different communication types. The most frequently used communication 

mechanisms are Sender-Receiver and Client-Server communication. In Sender-Receiver 

communication, a SWC sends data to one or more SWCs by pushing the data elements. In 

Client-Server communication, a SWC implements a function (the server) that can be called 

by other SWCs (the clients). 

The Virtual Functional Bus (VFB) manages the connections and interactions between the 

SWCs. The VFB isolates the applications from the system infrastructure.    

The VFB provides enough information to allow software systems to be integrated and tested 

before deciding about the allocation of software components to ECUs, i.e., the whole 

functional behaviour of a system can be prototyped before the electrical architecture 

(network of the ECUs) is known [17]. 

 

Figure 3. Communication between the SWCs in a VFB [7]. 

3.4. Safety standards for automated systems 

This section describes the different safety standards that apply to automated systems. 

Currently, there are a variety of standards to be consider and fulfilled to guarantee safety in 

automated driving systems.  

For the development of this project the following standards have been considered: 

- V-Model 

- SAE Automated driving levels 
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- ISO-26262 

- ISO/TR-4804 

- ASAM OpenODD Concept Paper 

- ISO/PAS-21448 

The subsequent sections briefly describe the topics each standard covers and what they 

intend to standardize. 

3.4.1. V-Model  

The V-model is a planning and execution methodology for system development projects 

established by the German commission. It is highly recommended to follow the phases 

indicated in the V-model standard to have a systematic development of a project. A graphical 

description of the V-Model is provided in Figure 4. 

The V-Model considers the system entire lifecycle nicely fitting with the systems engineering 

theory [18]. The model is a graphical representation of a systems development lifecycle that 

is used to produce accurate development models and project management models. It is also 

known as Verification and Validation model [19]. 

The model splits the development process into two parts: project definition (on the left) and 

project testing and integration (on the right). Each side has multiple stages, each one must 

be finished before moving on to the next. The project integration and implementation process 

evaluate and verifies the project definition at each defined stage.  

 

Figure 4. V-model of the systems engineering process [19]. 

The advantages of implementing this model are as follow: (i) it is simple and easy to use; (ii) 

planning and designing activities occurs early on, developing a very good understanding of 

the project at the very beginning and saving time during implementation; (iii) avoids the 

downward flow of the defects, easy localization of the errors. The disadvantages are: (i) 

rigidity and lack of flexibility; (ii) since no prototypes are created before implementation, 

updating all previous levels to each modification is time-consuming and expensive [20]. 
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The V-model serves as the foundation for the development of this project. The purpose is to 

develop the architecture of the minimal autonomous system in a systematic way. 

3.4.2. SAE Automated driving levels 

The transfer of total control from humans to machines is classified by the Society of 

Automotive Engineers (SAE) as a stepwise process on a scale from 0 to 5. Level 0 involves 

no automation and level 5 means full-time performance by an automated driving system of all 

driving aspects, under all roadway and environmental conditions.  

The multiple levels of driving automation are defined in the standard SAE J3016 [21]. The 

purpose of the standard is to be descriptive and broad about this evolution, but it does not 

provide strict requirements. 

The SAE classification of driving automation for on-road vehicles is meant to clarify the role 

of a human driver, if any, during vehicle operation. The first discriminant condition is the 

environmental monitoring agent. In the case of no automation up to partial automation (levels 

0-2), the environment is monitored by a human driver, while for higher degrees of automation 

levels 3-5), the vehicle becomes responsible for environmental monitoring. Figure 5 shows 

the remaining classification factors used to define each level [21], [22]. 

 

Figure 5. Identification of SAE J3016 levels of driving automation [22] 
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Another discriminant criterion is the responsibility for dynamic driving task (DDT) fallback 

mechanisms. Intelligent driving automation systems (levels 4-5) embed the responsibility for 

automation fallback constrained or not by operational domains, while for low levels of 

automation (levels 0-3) a human driver is fully responsible. Figure 5 shows the remaining 

classification factors used to define each level [21], [22]. 

3.4.3. ISO-26262  

The ISO-26262 “Road vehicles – Functional safety” is a standard based on the functional 

safety for the electrical and electronics systems that the vehicles have installed. The scope of 

this standard was extended for passenger cars to all road vehicles except mopeds [23], [24]. 

The first edition of the ISO-26262:2011 series was developed using current knowledge of 

state-of-the-art systems in automotive industry (such as steering, braking and airbag 

systems, etc.) and it does not completely address very complex, distributed systems and 

how to deal with availability requirements. The second edition resolves some of these issues, 

but further interpretations are needed. 

Functional safety seeks to prevent any accidents or component failures as a result of inputs, 

hardware, or environmental changes. Unfortunately, it is unclear how autonomous vehicles 

shall act if an accident cannot be prevented and which risks to minimize [22].  

The scope for the functional safety defined in the standard is only applied for static contexts. 

The standard ensures safety when the possible environment circumstances are known 

previously. However, this assumption is completely invalid in autonomous driving systems. 

The environment for the autonomous systems is dynamic, which makes it impossible to 

study and define all the possible scenarios to apply functional safety [24]. 

This means that the ISO-26262 cannot guarantee the complete safety for autonomous 

driving systems, since it is unable to define in detail all the environment scenarios in which it 

is going to operate. This is address in the ISO PAS 8800 “Road vehicles – Safety and 

artificial intelligence” [25], currently under development that will be publicly available 

specification in late 2023. 

3.4.4. ISO/TR-4804 

The ISO/TR-4804 “Road vehicles - Safety and cybersecurity for automated driving systems - 

Design, verification and validation” describes a framework and recommendations for the 

development, verification, validation, production, and operation of automated driving systems 

that are focused on safety and cybersecurity derived from worldwide applicable publications. 

All stakeholders in the automotive and transportation industries can benefit from it. It 

considers verification and validation methods for automated driving systems focused with 
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level 3 and level 4, according to SAE J3016:2018 [26]. 

The purpose of this technical report is to provide a generic strategy for dealing with the risks 

presented by automated vehicles. While this basic approach can be taken as a starting point 

for safe automated driving, it does not describe a full and safe product. 

The standard is designed to supplement current safety-related standards and publications. 

The document presents a more technical overview of recommendations, guidance and 

strategies for achieving a positive risk balance and avoiding unreasonable risk and 

cybersecurity related threats, with a focus on the importance of safety by design [26]. 

It presents a framework and recommendations for the development, verification, validation, 

production, and operation of automated driving systems that are focused on safety and 

cybersecurity. All stakeholders in the automotive and transportation industries can benefit 

from it. 

3.4.5. ASAM OpenODD Concept Paper 

ASAM stands for Standardization of Automation and Measuring Systems and it is a non-

profit standardization organization founded by the German automotive industry back in 1998. 

ASAM has a high level of standardization of interfaces, protocols, APIs, data models, data 

exchange formats and other important aspects of E/E development processes. The 

standards defined by ASAM are only recommendations, and they do not have any impact on 

regulatory framework. It is currently active in 7 different domains [27], [28]. 

The relevant standard for this project is the OpenODD standard, which is defined in the 

ASAM Simulation domain. This standard is not yet complete. It is currently a concept that will 

be used to develop a future standard. The main objective is to provide a format that can be 

used to express Operational Design Domains (ODD) defined for Connected Automated 

Vehicles (CAVs) for simulation testing [27]. 

An ODD must be valid for the entire life cycle of the vehicle, as it is part of its safety and 

operating concept. The ODD chosen for the system will greatly impact the design of that 

function, both its capabilities and its respective validation. ODD is basically used to specify 

the functionality of connected automated vehicles, specifically the environment in which the 

CAV must be able to operate. All traffic participants, weather conditions, infrastructure, 

location, time of day, and everything else that has an impact on automated driving are all part 

of the environment.  

The ASAM OpenODD concept project was developed to manage all the ODDs that have 

been specified for automated driving systems. One of the main goals of the concept project 

is to define a machine-readable format for defining ODD specifications. This abstract format 



Page 26                                                                              Software architectural design for safety in automated driving systems 

 

will allow stakeholders to share, compare and re-use the ODD specifications of systems [27], 

[29]. 

A formal definition of ODD is found in the standard SAE J3016 (2018), which states that 

“Operating conditions under which a given driving automation system or feature thereof is 

specifically designed to function, including, but not limited to, environmental, geographical, 

and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or 

roadway characteristics" [21]. Figure 6 depicts the ODD taxonomy defined in the ASAM 

standard. 

 

Figure 6. ODD Taxonomy according to BSI PAS 1883 [29]. 

Figure 7 shows how a system Operation Design Domains is developed based on the 

scenario in which the vehicle is located. 

                              

Figure 7. Example definition for an ODD taxonomy [30]. 
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ASAM's strategy is to fill the gaps that now exist, not to do something that another standards 

organization is doing or to set new standards that contradict the current ones. In this case, 

the ASAM OpenODD standardization aims to complement the activities of BSI (BSI PAS 

1883, which offers the ODD taxonomy) and ISO (ISO 34503 which uses the taxonomy to 

provide a high-level definition format for ODD).  

3.4.6. ISO/PAS-21448 

The standard ISO/PAS 21448 “Safety Of The Intended Functionality”, or “SOTIF”, was built 

specifically to address new safety challenges that are being faced by the developers of the 

autonomous software in the field of the automotive industry. This standard is as important as 

the roles of artificial intelligence (IA) and machine learning (ML) in the development of 

autonomous vehicles [31]. 

The ISO/PAS 21448 is essential because it has a completely different approach from what is 

known as functional safety (ISO 26262). Initially, the SOTIF standard was intended to be 

incorporated as an extra part of the ISO 26262, but after realizing how challenging it is to 

guarantee safety in the absence of a fault, it was decided to create a separate standard.  

Due to the following factors, SOTIF is a crucial standard for the large systems being 

developed today for automation and artificial intelligence. The first factor is that the correct 

verification of an automated system is extremely difficult because of the large number of 

possible scenarios. The second is the fact that automated systems have a large volume of 

data, which is used in complex algorithms, there is an important challenge for the 

development of systems with AI and ML. The third and last one is that it also serves to avoid 

possible risks when the system must make certain decisions. 

The following is an example from this project to help understand what SOTIF means: The 

road is icy and the system is unable to identify the situation. Consequently, the vehicle 

response will not be adequate for that case, affecting the operational safety of the system, as 

the vehicle will be moving faster than it should be, even if there is not any system failure. 

In other words, the main objective of SOTIF is to reduce the unknown and unsafe conditions 

that may arise, as in the example above. It is however difficult to prove that all possible 

scenarios have been considered. 

Safety has always been an important topic in the automotive industry. Nowadays, with the 

introduction of autonomous vehicles, it is becoming an important and critical issue for 

software development. As in any safety-relevant domain, ensuring functional safety remains 

a challenging task. The SOTIF provides a guideline where it indicates the different steps to 

perform the design, verification and validation. With the help of the various defined 

measures, the system safety can be achieved in non-failure situations. 
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4. Development 

The goal of this project is to model an architecture for a minimal autonomous driving system. 

The safety standards examined in section 3.4 have been used as a foundation for the model. 

The key aspect of this architecture has been the design and implementation of the 

Autonomous Driving System (ADS) Mode Manager, which is responsible for ensuring safety 

in any context. 

The architecture for the minimal autonomous driving system has been applied to a case-

study for the automated parking system (APS) defined an programmed in [6]. This APS has 

been developed in parallel to this project so that it integrates smoothly with the architectural 

design of this master thesis.  

The components involved in the case study are the autonomous vehicle, a dedicated mobile 

App and an External Cloud Service (ECS). The external cloud service component is out of 

the scope in this project, but it is needed to behave the system properly (provide the free 

parking spots). The autonomous vehicle and the dedicated mobile app are the system under 

design for the APS, as shown in Figure 8. The APS definition is presented in Annex E. 

 

Figure 8. Relation of the ADS mode manager with the APS. 

The architecture is however generic and supports incremental development of autonomous 

vehicle functions. Additional autonomous functions can be introduced by adapting the 

system requirements and deriving the appropriate modifications in the ODDs (section 3.4.5) 

and mode declarations groups.  

It would have been impossible to develop this minimal autonomous driving system without 

making use of the systems engineering methodology described in section 3.1, especially 

because of the inherent complexity of the vehicle as a system. Additionally, the autonomous 

functionality increases the complexity of the system by interacting with the environment, so 

that the driver behaviour (another complex, safety relevant system) can be replaced. It has 
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been crucial to apply not only systems engineering but also the design phases of the V-

Model described in section 3.4.1. The requirements from the ISO/TR-4804 (section 3.4.4) 

and the system requirements of the APS (annex E) are the basis for the detailed design. 

The logical architecture proposed by the ISO/TR-4804 has been modelled using AUTOSAR, 

the well-established reference software architecture in the automotive domain (see sections 

3.2 and 3.3). 

The Virtual Functional Bus (VFB) provides the necessary abstraction for the description of 

the software architecture [32], [33]. The realization on a technical architecture is not in the 

scope of this master thesis. However, the complete system has been configured to run in a 

virtual vehicle, so that it is easy to be integrated in a simulator, i.e., CARLA [34], [35].  

The implementation of the VFB is the AUTOSAR Run-Time Environment (RTE), which 

manages all aspects of communication between the SWCs of the system, including mode 

management. The AUTOSAR Classic Platform provides a standardized way to describe 

mode declaration groups, how to model and manage vehicle modes and how to implement 

the mode-switching [36]. This capability has been ideal for the modelling of the ADS mode 

manager. 

The ADS mode manager is the key element in charge of safety. To ensure the complete 

safety of the vehicle, the component shall analyse the context that it is in and choose -

switching from one to another- the most convenient mode for the analysed context. 

The definition and the implementation of the APS in a simulation environment is out of the 

scope of this master thesis. The relevant information needed for the results of this master 

thesis is provided in the annexes D and E. 

4.1. System Requirements for ADS Mode Manager  

The Automated Parking System (APS) shall be able to park and unpark the vehicle 

autonomously and safely. The ADS mode manager is the component responsible for 

maintaining the safety of the APS in all possible contexts and it shall fulfil all the system 

requirements defined in Table 1. All the requirements are derived from the recommendation 

of the technical report 4804 to ensure the safety [26] and adapted to the APS function. 

Table 1. System requirements applied to the ADS mode manager for APS. 

System Requirement Description 

SYS-1 
The system under design is a component in the high-level architecture 

defined as Autonomous Driving System (ADS) Mode Manager. 

SYS-2 The system shall support different mode groups. 
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SYS-3 
The system shall distinguish when the vehicle drives, parks, unparks and 

stops. 

SYS-4 
The system shall support autonomous parking for indoor parking, outdoor 

parking and land road parking. 

SYS-5 The system shall support deactivation of the autonomous parking system. 

SYS-6 
The system shall activate the safe mode only when the vehicle is parking 

or unparking. In all other situations, the APS shall be deactivated. 

SYS-7 
The system shall switch to driver operation when the parking or unparking 

is deactivated by the user in the APS App. 

SYS- 8 
The system shall be extendable. New modes should be easily added to the 

system when needed. 

SYS-9 
The system shall switch to safe mode once an ODD is being exited and 

may affect the safety of the system. 

SYS-10 

The following ODDs are to be recognized by the system. 

- Different weather conditions 

- Different environment objects 

- Different inclinations of the vehicle 

SYS-11 
The ODD Handling component shall provide the ODD recognized to the 

system. 

SYS-12 The system shall switch to a safe mode if the ODD is not supported. 

SYS-12 The system shall react to ODD changes immediately. 

SYS-13 
The system is (the only) responsible to change the operation mode of the 

vehicle. 

SYS-14 The system shall communicate with the other components in real time. 

SYS-15 Each SWC shall report failure to the system. 

SYS-16 

If one of the vehicle sensors provides an invalid value, the system shall 

evaluate whether the system is still providing trustworthy objects, otherwise 

the system must be degraded to a safe mode. 

For simplicity in the design of the system and to fulfil the safety demands, we assume the 

following constrains defined in Table 2. 

Table 2. Constrains applied to the ADS mode manager for APS 

Constrains Description 

CON-1 

When a SWC has a failure, the SWC shall report the status to the system. 

The actuators and sensor components are able by their own to detect if the 

transmitted value is invalid. 

CON-2 There are no monitoring components. 

CON-3 Connection loss with the simulation environment is not considered. 

CON-4 The sensor data available is correctly analysed. 
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4.2. Logical architecture for safety 

The software architecture for the automated driving system has been derived from the 

system requirements defined above in Table 1. Similar to the system requirements, the 

architecture is based on the information provided by the ISO/TR-4804 to guarantee the 

safety of the automated system [26]. 

A classical software architecture for an autonomous system is the sense-plan-act defined in 

the ISO/TR-4804 and represented in Figure 9 in a very high level. Firstly, the perception is 

sensed by radars, lidars, cameras, etc. With this information, the system is capable of 

interpreting its surroundings and predicting the future positions of obstacles. Secondly, it 

must plan its driving strategy after processing all the information it has received. Finally, it 

shall move the vehicle using its powertrain, steering, and brakes [37]. 

 

Figure 9. Classical software architecture "sense - plan – act” [26]. 

The classical architecture discussed above is outdated in the presence of autonomous 

systems that are currently being developed. This architecture is only useful in a highly 

controlled environment.  A more complicated structure than the one mentioned above will be 

required if the context is constantly changing. The environment is dynamic, and it is difficult 

to foresee every situation in which an autonomous vehicle would operate, therefore 

ISO26262 is not applicable [24]. 

The system should check and monitor if everything around the system is behaving as it is 

expected, look at the state of the system and manage the whole system to assure that it is in 

a safe mode.  

In any context (ODD) where it is defined, the system must work safely. As a result, the 

system is more complex than it is already, but it is also safer and reliable. To start 

engineering this kinds of systems and exploring new architectures, it is important to see the 

recommendations and the standards defined by some organizations, such as [26].  

The ISO/TR-4804 proposes a generic architecture for an autonomous vehicle showed in 

Figure 10. The safety-based architecture for the minimal driving system will be based on this 

presented approach. 
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Figure 10. Example of safety-based architecture of the intended functionality [26]. 

The minimal autonomous driving system for the automated parking is aligned with the Sense 

- Plan - Act paradigm and the capabilities defined in the standardization. However, we 

consider only the set of components shown in Figure 11: Perception, Localization, Drive 

Planning, Vehicle Motion, ODD Handling and the ADS Mode Manager.  
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Figure 11. Safety-based architecture for minimal autonomous driving systems. 

Some important components, such as prediction, monitoring, etc., have not been considered 

in order to simplify the architecture, as it is for a minimal autonomous system. The 

components in the upper level (ODD Handling and the ADS Mode Manager) are the ones 

that guarantee safety in a dynamic context. 

Specifically, this master thesis focuses on modeling the components of the architecture 

according to the AUTOSAR standard and defining the different components presented in 

Figure 11. In addition, it illustrates the interaction between the components. Each component 

is described in the following section, including the data exchanged and the integrated 

runnable. 

4.3. Detailed design 

In this section, the definition of each component of the designed safety-based architecture is 

provided. Moreover, it will be discussed how each component contributes to the APS. To 

meet the safety requirements, this detailed designed is derived from the ISO/TR-4804 [26], 

[4]. 

4.3.1. Perception 

Perception is responsible of capturing the data received from the different sensors of the 

vehicle and identifying all relevant external information to create a world object. This is where 

the various inputs from the on-board sensors and the optional V2X information are found to 

generate the actual information of the perception.  

The components in perception include lidars, cameras, GNSS for localization, radars and 
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IMUs sensors. A combination of all these sensors is necessary to satisfy a minimal safe 

autonomous driving system, since a single sensor is not capable of simultaneously providing 

reliable and precise detections, classifications, measurements, and robustness to adverse 

conditions. A V2I infrastructure for the connection with the infrastructure is also included in 

the Perception component.  

4.3.2. Localization 

The Localization component is responsible of the identification of the vehicle environment. It 

is very important that the automated vehicle localizes itself and the environment appropriately 

and precisely only using the information provided by the Perception component. Each sensor 

on the vehicle provides information, then the Localization component is responsible for 

analyzing and fusing the data. Based on this information, it should be able to model the 

vehicle environment. 

The Localization component has to be able to provide to the Drive Planning component the 

necessary information of the surrounding objects that have to be considered before planning 

any motion of the vehicle.   

4.3.3. Drive Planning 

The Drive Planning component establishes the function manoeuvre that must be carried out 

to complete the upcoming driving step without causing a collision. The component must 

handle location information, adhere to traffic rules, consider ego-motion, and adapt the 

functionality according to the switches provided by the Mode Manager.  

The Automated Driving System obeys traffic rules so that the driving planning element 

produces a legal driving plan. Only collision avoidance manoeuvres can override traffic laws 

to avoid a crash. 

As for the APS system to be developed, the model has two different parts for the movement, 

which are autopilot and parking manoeuvres. The autopilot mode is responsible for driving 

the vehicle to the parking space, while the parking manoeuvres mode is responsible for 

parking the vehicle in the parking space with the appropriate manoeuvre. To simplify the 

implementation, the autopilot will be included in each parking defined function. 

There will be four different functions for the manoeuvres, two for parking the car and two for 

unparking it: (i) PM_Forwards, (ii) PM_ForwardBackwards, (iii) UM_Backwards, (iv) 

UM_BackwardForwards. The arguments of these runnable are: the localization of the slot 

(x,y,z), the parking side (right or left), the parking type (parallel or angular parking) and the 

parking angle (only for the angular parking). Figure 12 shows the defined parking types. 
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Figure 12. Defined parking types (parallel and angular types) [38] . 

The PM_Forwards and UM_Backwards functions are used for parking and unparking in 

angular spots respectively, meanwhile the PM_ForwardBackwards and UM_Backward-

Forwards are used for parallel slots. 

In case something unexpected happens while the minimal autonomous system is running, 

the vehicle must enter in a safe mode and activate the necessary functions to ensure the 

safety of the vehicle. The function defined for this safe mode is called M_Safe. 

The specific definition and the implementation of the defined functions above in the 

simulation environment is out of scope of this master thesis, but it has been done and 

implemented in my co-worker thesis [6]. 

4.3.4. AS Motion  

The Automated System Motion component refers to its translation and rotation around the 

three axes (i.e. longitudinal, lateral and vertical and roll, yaw, and pitch [39]). To implement 

the desired motion in the vehicle, the actuator commands must be derived from the Drive 

Planning component. 

The vehicle motion controller must be stable and able to balance the dynamic changes that 

may occur in the vehicle during the manoeuvres. The generated commands control the 

steering, brakes and powertrain in order to move the vehicle as planned. Like the Drive 

Planning implementation, this component is out of the scope of this master thesis. 

4.3.5. ODD Handling 

The ODD Handling component manages to identify in which context (ODD) the system is 

placed analysing the different information provided by the Perception component. The 

operation design domains for the project are defined according to the standard PAS 

1883:2020 [40]. The standard provides all possible attributes of the ODDs that may be 
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required by the ADS and gives different examples of what the taxonomy should look like.  

A first selection is imposed by the use cases and the different constraints defined for the APS 

(see annex E). Consequently, the table is reduced as shown in Table 3. The capability 

column shows which context is relevant or influences to the automated parking system. 

Table 3. Supported ODD's for the APS definition and based on the PAS 1883:2020 [40]. 

ODD taxonomy Attribute Sub-attribute Capability 

Scenary 

 

 

 

 
 

Zones Geo-fenced areas Yes 

Traffic management zones No 

School zones No 

Regions or states No 

Interference zones Yes 

Drivable 
area 

Type Indoor parkings Yes* 

Outdor parking Yes 

Shared space No 

Motorways No 

Urban roads Yes 

Interurban roads Yes 

Line type Bus Lane No 

Traffic lane Yes 

Cycle lane No 

Emergency lane No 

road lane Yes 

Direction of travel - Only left-hand traffic Yes 

Geometry - 
Longitudinal plane 

Up-slope Yes 

Down-slope Yes 

Level plane Yes 

Surface type Loose (gravel, earth, sand) No 

Segmented No 

Uniform (Asphalt) Yes 

special 
structures 

Pedestrians crossings Yes 

Bridges No 

Rail crossings No 

Tunnels No 

fixed road 
structures 

Buildings Yes 

Street lights Yes 

Street furniture No 

Vegetation No 

Environmental 
conditions 

weather Water retentions on the slot Yes 

Wind Yes 

Rainfall yes 

fog Yes 

Sunny Yes 

Ilumination Day Yes 
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Night / low ambient lighting Yes 

Cloudiness Clear Yes 

Partly cloudy Yes 

Overcast Yes 

Artifical ilumination Yes 

Dynamic 
elements 

traffic Parked vehicle Yes 

Pedestrians Yes 

Presence of special vehicles Yes 

On road vehicles Yes 

*Yes: To integrate it in the simulation it is necessary to create a new map, which is out of scope. 

A second selection is imposed by the simulation environment chosen for the integration, 

since it is not able to simulate all the contexts defined in the standard. As this is an 

educational project, just some of the ODDs are selected to simplify the implementation of the 

project. Table 4 shows the supported ODDs for the APS that have been modelled in the 

AUTOSAR tooling. Each of the chosen ODDs is relevant to the APS system. 

Table 4. Selected ODDs for the implementation of the APS in CARLA simulator. 

ODD taxonomy Attribute Sub-attribute Capability 

Scenery 

Derivable Area 

Type Urban roads Yes 

Geometry - Longitudinal 
plane 

Up-slope Yes 

Down-slope Yes 

Level plane Yes 

Surface type 
Loose (gravel, earth) Yes 

Uniform (Asphalt) Yes 

fixed road 
structures 

Buildings Yes 

Street lights Yes 

Special structures Pedestrians crossing Yes 

Environmental 
conditions 

weather 

Water retentions on the slot Yes 

Wind Yes 

Rainfall Yes 

fog Yes 

Sunny Yes 

Ilumination 

Day Yes 

Night / low ambient lighting Yes 

Cloudiness 

Clear Yes 

Partly cloudy Yes 

Overcast Yes 

Artifical ilumination Yes 

Dynamic 
elements 

traffic 
Parked vehicle Yes 

On road vehicles Yes  

The ODDs are then mapped to the modes specified in section 4.3.6.3. But first, it is important 
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to explain how the CARLA simulator recognizes the specified contexts, i.e., what APIs the 

CARLA simulator uses to determine whether the vehicle is in the specified ODD. This is 

crucial for defining the interfaces to extract the data of the context from the simulator.  

The CARLA simulator allows the definition of the world, i.e., the objects created by the client 

to appear in the simulation, this instance is called CARLA.World. The world contains the 

active map that is visible to us, i.e., the world assets, not the navigation map. The map also 

manages the weather and the present actors. Each simulation can only have one world, but 

it is always subject to change. There are various functions that can be used to know about 

the defined environment while the simulation is running. These ones will be used to know 

about contexts [41]. 

The following functions are called in the scenario to identify the contexts: (i) 

Get_environment_objects (self, object_type=Any), (ii) Get_weather (self) and (iii) get_turned_ 

on_lights (self, light_group).  

Cloudiness, rain, wind, and sun position are among the weather parameters currently active 

in the simulation and they are provided by the Get_weather (self) function. The weather 

information consists of a total of 14 float parameters. Each variable indicates a weather 

condition with a set value. The variables will be considered as binary, so if their value is 

greater than half, it indicates that the weather condition is occurring. Since for the project, it is 

only important if the weather condition exists, not its reference value. 

The Get_environment_objects (self, object_type=Any) function returns a list of environment 

objects with the requested semantic tag [42]. By default, the method returns any object in the 

environment, but the object type argument allows the request to be filtered by semantic tags. 

If a filter has been defined, the response is an array containing all filtered elements that have 

been found in the real world. The array is composed of a variable containing the ID, a name 

(the semantic tag defined by the simulator) and the location of the found object [43]. Each 

ODD that requires this function will have its semantic tag specified and filtered to determine 

whether it appears in the real world. 

A list of the lights turned on in the scene that has been filtered by group is returned by the 

get_turned_on_lights (self, light group) method [44]. The return of this function is an array 

containing the information following for each recognized light: the identifier of the light, a 

Boolean indicating if it is on and the group of light that belongs [45].  Each ODD that requires 

this function will have its light group specified and filtered to determine whether it appears in 

the real world. 

Additionally, the IMU radar is required to determine the inclination. The compass variable, 

which gives the car inclination with regard to north, is the only variable used in this situation. 
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The specific CARLA simulator variables and functions that provide the necessary data to 

calculate a vehicle ODDs are listed in Table 5. 

Table 5. CARLA functions to define specific ODDs. 

Sub-attribute Function Variable (Semantic Tag) 

Urban roads Get_environment_objects Road Lines (7) 

Up-slope IMU radar Compass  

Down-slope IMU radar Compass 

Level plane IMU radar Compass 

Loose (gravel, earth) Get_environment_objects Terrain (22) 

Uniform (Asphalt) Get_environment_objects Terrain (22) 

Buildings Get_environment_objects Building (1) 

Street lights Get_environment_objects Traffic Light (18) 

Pedestrians crossing Get_environment_objects Pedestrians (4) 

Water retentions on the slot Get_weather Precipitation deposits 

Wind Get_weather Wind intensity 

Rainfall Get_weather Precipitation 

fog Get_weather Fog density 

Sunny Get_weather Sun altitude angle 

Day Get_weather Sun altitude angle 

Night / low ambient lighting Get_weather Sun altitude angle 

Sky clear Get_weather Cloudiness 

Partly cloudy Get_weather Cloudiness 

Overcast Get_weather Cloudiness 

Artifical ilumination get_turned_on_lights Streetlight 

Parked vehicle Get_environment_objects Vehicles (10) 

On road vehicles Get_environment_objects Vehicles (10) 

4.3.6. ADS Mode Manager 

The ADS Mode Manager plays a crucial part in the system safety, having a central role of 

this master thesis. This component fulfils the task of safely switching between manual driving 

modes and automated driving modes.  

The Mode Manager must confirm that all conditions and prerequisites, such as ODD, have 

been met and they are the right ones before switching to another mode (e.g., if the vehicle is 

on the right road, if the weather conditions allow the transition of the mode, etc.). 

4.3.6.1. Mode management groups 

According to the APS definition, various groups of modes have been designed to address all 

potential situations of the automated parking system. 

The Mode Manager alternates between the defined modes once the APS is turned on. The 
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three groups of modes that need to be considered are described and specified below: (i) 

Vehicle Mode, (ii) APS Mode and (iii) Parking Location Mode. Each specified mode has a 

value to be identifiable inside its mode group. 

The first mode group, Vehicle Mode, lists the four possible driving modes that a vehicle may 

have, as shown in Table 6.  

Table 6. Definition of the Vehicle Modes. 

Group mode 1 Definition Value 

Vehicle 

Mode 

VEH_DRIVE The vehicle is being driven autonomously. 0 

VEH_PARKING The vehicle is parking autonomously. 1 

VEH_UNPARKING The Vehicle is unparking autonomously. 2 

VEH_STOPPED The vehicle is stopped, and the engine is off. 3 

The second mode group, APS Mode, defines the five different modes that the automated 

parking system can manage during the operation of the vehicle, as shown in Table 7. 

Table 7. Definition of the Automated Parking System Modes. 

Group mode 2 Definition value 

APS 

Mode 

APS_OFF APS is deactivated. 0 

APS_INDOOR APS ready for parking manoeuvres in indoor car parks. 1 

APS_OUTDOOR APS ready for parking manoeuvres in outdoor car parks. 2 

APS_LANDROAD APS ready for parking manoeuvres in land-road car parks. 3 

APS_SAFEMODE APS ready for an emergency. 4 

When the system recognizes that it has reached a condition that could threaten the vehicle 

safety, such as when a solid object is in the path of a potential crash or when a crash has 

occurred. To avoid worse results, the Mode Manager will take care of switching the vehicle 

into a safe mode. 

The ADS Mode Manager computes the APS and Vehicle modes, while the ECS supplies a 

third mode group. This third mode group, Parking Location Mode, provides the type of the 

parking space selected for parking, as shown in Table 8. 

Table 8. Definition of the Parking Location Modes. 

Group mode 3 Definition value 

Parking 

Location 

Mode 

STREET_PARALLEL The spot is on the side of the street and is parallel type. 0 

STREET_ANGULAR The spot is on the side of the street and is angular type. 1 

PARKING_OUTDOOR The spot is inside an outdoor/open-air car park. 2 

PARKING_INDOOR The spot is inside an indoor/closed-air car park. 3 

PARKING_ROAD The spot is on the side of the road (only parallel). 4 

It is crucial to understand that there is only one type of parking a car in a car park, whether it 
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is indoors or outdoors: the angular type. A car park is a closed area reserved exclusively for 

parking with several parking spots. Single parking spots on the side of the street are 

excluded from this definition. The parking options in the CARLA simulator are shown in 

Figure 13. 

       

Figure 13. Types of parking spot in CARLA: Car park and street parking. 

Additionally, it should be noted that in a car park, sensors can always be used correctly if 

they are available, regardless of the weather. Whereas in street parks, depending on the 

external context, a sensor may be available, but it cannot be used. This is the reason for 

having the different APS modes. 

A clear illustration of this would be the fact that on a snowy day, the line detection system 

would not be able to detect the white lines on the floor of a street parking spot, but it would 

be able to detect them in a car park, as it has the staff to adapt the car park to any situation.  

4.3.6.2. Mode switching based on function manoeuvres  

It is important to specify which runnable defined in the Drive Planning component should be 

called according to each mode that the APS can manage to assure the system safety. 

Moreover, the parking spot type chosen for the parking manoeuvre shall be taken into 

account. 

Figure 9 shows the mapping for the parking operations. This information must be modelled in 

the internal behaviour of the Drive Planning component so that the execution of the correct 

runnable is derived from the architectural design. In addition, this simplifies the 

implementation of the APS, since only the five functions defined above for parking and 

unparking need to be programmed. Everything else will be decided by the architecture itself.  
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Table 9. Mode switch for defining the manoeuvre functions for the Drive Planning. 

Parking Manouver 

Runnables
STREET_PARALLEL STREET_ANGULAR PARKING_OUTDOOR PARKING_INDOOR PARKING_ROAD

APS_OFF disabled disabled disabled disabled disabled

APS_INDOOR disabled disabled disabled PM_Forward disabled

APS_OUTDOOR PM_ForwardBackwards PM_Forward PM_Forward disabled disabled

APS_LANDROAD PM_ForwardBackwards disabled disabled disabled PM_ForwardBackwards

APS_SAFEMODE M_Safe M_Safe M_Safe M_Safe M_Safe  

Table 10 shows the mapping carried out for the unparking operations. 

Table 10. Mode switch for defining the manoeuvre functions for the Drive Planning. 

Unparking Manouver 

Runnables
STREET_PARALLEL STREET_ANGULAR PARKING_OUTDOOR PARKING_INDOOR PARKING_ROAD

APS_OFF disabled disabled disabled disabled disabled

APS_INDOOR disabled disabled disabled UM_Backward disabled

APS_OUTDOOR UM_BackwardFordwards UM_Backward UM_Backward disabled disabled

APS_LANDROAD UM_BackwardFordwards disabled disabled disabled UM_BackwardFordwards

APS_SAFEMODE M_Safe M_Safe M_Safe M_Safe M_Safe  

As a result, the stated system is more scalable, as in case there is an interest in adding a 

new mode or a new parking location, the system simply needs to indicate which function to 

activate for each given mode and location. No new code needs to be programmed. 

4.3.6.3. Mode switching based on context 

The system shall specify which contexts selected in the ODD Handling are acceptable for 

each of the Automated Parking System modes defined above. The Mode Manager shall not 

permit the activation of a new mode if the context does not allow it. This ensures the system 

safety in any context, which is the main purpose of the architecture. Different weather 

scenarios of the above-described ODDs are shown in appendix D.II. 

Table 11 maps the selected ODDs in section 4.3.5 to the vehicle mode groups. For the 

following tables, the x indicates that the mode is compatible with the related context. In this 

case, the vehicle can drive autonomously in almost all contexts, but the parking and 

unparking modes are a slightly more restricted by gradients and dark areas. 
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Table 11. ODD mapping with vehicle mode group. 

 

Focusing on the parking and unparking modes, Table 12 maps the ODDs to the modes of 

the APS mode group. Logically, the APS_OFF mode supports all contexts, as the system 

shall be disabled. Additionally, as already mentioned, indoor parking spots offer the benefit of 
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being adaptable to all weather situations. However, the outdoors slots will be more limited to 

bad weather, as shown in Table 12. 

Table 12. ODD mapping with the APS mode group. 
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The influence of the surroundings, such as buildings, cars, pedestrians, traffic signs and 

lights, etc., is what distinguishes APS_OUTDOOR from APS_LANDROAD. Particularly, 

these surrounding objects are not considered in APS_LANDROAD. Therefore, if these 

objects are in the context, it means that the vehicle is not located on a land road, then the 

appropriate mode in this situation would be APS_OUTDOOR. 

4.3.6.4. Implementation of the ADS Mode Manager  

The ADS Mode Manager for the Automated Parking System function is implemented as the 

state machine shown in Figure 14.  

The variables required to evaluate the transitions between the states of the state machine 

are the following ones: (i) APS_activation, (ii) Parking/Unparking, (iii) Context_Data, (iv) 

Parking_Location_Mode and (v) APS_Done. Except for Context Data and the 

Parking_Location_Mode, all the variables are Boolean type and defined in Table 13.  

Table 13. Definition of the Boolean variables. 

Variable Description 

APS_Activation Indicates weather the user has activated the APS. Value 0 means APS is off. 

Parking/Unparking Indicates weather to park or unpark the vehicle. Value 0 means parking. 

APS_Done Indicates if the APS performance has finished.  Value 1 means it is done. 

The information provided by the ODD Handling described in subsection 4.3.5 is contained in 

the Context_Data variable. The Parking_Location_Mode variable is an integer, each number 

from 0 to 4 represents a different mode as defined in section 0. 

 

Figure 14. ADS Mode Manager state machine. 
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The OFF state selects the APS Mode based on the Parking Location Mode given by the 

ECS, as depicted in Table 14.  

Table 14. Selection of the APS Mode based on the Parking Location Mode. 

Parking Location Mode Respective APSMode 

STREET_PARALLEL APS_Outdoor 

STREET_ANGULAR APS_Outdoor 

PARKING_OUTDOOR APS_Indoor 

PARKING_INDOOR APS_Indoor 

PARKING_ROAD APS_Landroad 

The parking and unparking state are quite similar. In both states, the context data is checked 

to verify if it is appropriate for the active APS mode. The internal variable ContextRight is 

enabled if the context is suitable. Otherwise, it is deactivated. The context data provided from 

CARLA simulator is compared with those from the previous loop to identify changes in the 

context. Once changes are detected, ContextRight variable should be updated. 

The difference between these states is the Vehicle Mode selected. In Parking state, the 

VEH_Parking mode is turned on. In Unparking state, the VEH_Unparking mode is set. 

Finally, the emergency state activates the APS_SafeMode to ensure safety during the 

emergency. 

As a result, the ADS Mode Manager is able to provide to the Drive Planning which mode is 

active for each mode group defined in section 4.3.6.1. Emergency (Em) is activated when the 

Localization components detect that some obstacle is compromising the safety of the 

system. 

4.4. Vehicle modelling 

This section describes the implementation of the autonomous vehicle according to the 

architecture. For modelling the vehicle, it is crucial to know all the different sensor modules 

that the vehicle integrates, as well as the information being exchanged by these sensors. 

The implementation of the APS function is carried out in a simulation environment, 

specifically in the CARLA simulator. CARLA is an open-source autonomous driving simulator 

described in annex D [35]. The CARLA vehicle is the hardware that configures the system in 

this simulation environment. For pragmatic reasons, reverse engineering has been employed 

to determine the configuration of the vehicle so that all sensor types are available at 

integration time. 

The sensors that can be used in the CARLA simulator and relevant in the automated parking 
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system are the following: (i) Cameras Sensor, (ii) GNSS Sensor, (iii) IMU Sensor, (iv) Lidar 

Sensor, (v) Radar Sensor and (vi) Semantic Lidar Sensor [46]. In addition, as it is a 

simulation environment, it is possible to use as many sensors as one wishes, it is only 

necessary that they are defined in the World instance of the CARLA simulator. 

In order to model the vehicle as realistic as possible, the number of sensors and types used 

in current autonomous vehicles were analysed [47], [48]. The configuration chosen for the 

vehicle implementation is displayed in Figure 15. 

 

Figure 15. Positioning of the sensor modules for the modelling of the vehicle hardware. 

AUTOSAR has standardised most commonly used sensor types so that sensors can be 

used by vehicle manufacturers and suppliers in a simple way without having to model each 

sensor. This is one of the goals of the standard, so that everyone ends up using the same 

modules [49]. After analysing the APIs of the sensor modules offered by the CARLA 

simulator, it was clear that they were not compatible with the AUTOSAR interfaces. 

Therefore, all the APIs of the CARLA sensor modules have been modelled as AUTOSAR 

interfaces, so the architecture is compatible with the simulation environment to be used for 

the integration. 

The modelling of the sensor interfaces used in CARLA should ease the task for future 

developers who want to integrate an AUTOSAR architecture in the CARLA simulator. The 

following sections define each sensors modules to get a clear understanding about the type 

of data it exchanges. The definition is based on the information provided by the CARLA 

simulator [46].  

4.4.1. Radar sensor 

Radar sensors are conversion devices that transform microwave echo signals into electrical 

signals. Unlike other sensors, radar sensors are not affected by light and darkness and with 

the ability to detect obstructions like glass, it can “see” through walls and it is not affected by 

weather conditions. One of the biggest advantages radar sensors have over other sensors is 

its detection of motion and velocity of the surrounding objects [50], [51]. 
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To have the capability of sensing all objects around the vehicle it is necessary to have more 

than one sensor radar installed, at least on at each edge of the vehicle. However, to 

guarantee the detection of objects on the laterals, we have decided to implement one sensor 

per side. Figure 15 above shows the exact location of each sensor module: two at the front, 

two in the middle and two at the end. 

The sensor module used in the CARLA simulator has four instantiated variables, as shown in 

Table 15, where the variable, units and type are defined [52].  

Table 15. Instance variables for the radar module defined in the CARLA simulator [52]. 

 Variable Units Type 

1 Altitude angle rad Float 

2 Azimuth angle rad Float 

3 Depth mts Float 

4 Velocity m/s Float 

4.4.2. Camara sensor 

The camera sensor module allows the vehicle to see in high resolution and recognise all the 

objects detected by the radar sensors that the vehicle is equipped with. It is important to 

consider that cameras do not work effectively in all weather conditions, and unlike radar and 

lidar, which provide numerical data that is easily analysed, camera technology requires more 

sophisticated computation to analyse the images to understand the environment and the 

objects it sees [53]. 

The cameras have a very wide viewing angle, reaching up to 120 degrees [54]. Unlike 

sensors, this allows us to capture and identify most of the components surrounding the 

vehicle with only one camera in front and other at the back. Unlike sensors, this means that 

with two cameras, placed as shown in section 4.4, it is possible to capture and identify the 

components surrounding the vehicle. 

The camera sensor module has four instance variables and two defined methods, which act 

as a function with arguments [55]. Table 16 shows the instance variables provided by the 

camera module. 

Table 16. Instance variables for the camera module defined in the CARLA simulator [55]. 

 Variable Units Type Description 

1 Fov Degrees Float Horizontal field of view of the image 

2 Height Pixels Int Image heigh 

3 Width Pixels Int Image width 

4 Raw_data - Bytes Array of RGBA 32-bit pixels. 
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The defined methods are needed because the module needs information from the vehicle to 

provide data in the required type and format. This module requires the following methods: 

• The first method is called Convert and converts the image following the colour 

converter pattern (colour_converter). The argument is the color_converter pattern 

defined in the CARLA simulator [56].  

• The second method is named save_to_disk and saves the image obtained in a path 

using a converter pattern stated as colour_conveter. The arguments are the path 

(string) that will contain the image and the colour_converter pattern [56]. 

4.4.3. Lidar sensor 

LIDAR stands for “Light Imaging Detection and Ranging” and it can identify objects around it, 

since it measures shape, size and distance. This module uses laser light pulses to scan the 

environment, unlike radar radio waves. Specifically, the LIDAR module shoots millions of 

laser signals, which are reflected on the surfaces of objects around and returned to the 

receiver incorporated on the module. With the information obtained, the LIDAR is able to 

create a 3D model of the vehicle surroundings [53]. 

Lidar can identify objects in a higher resolution than radar. Nevertheless, it is the most 

expensive option for the OEMs. In addition, it is limited by weather conditions. The module 

tends to degrade in adverse weather conditions such as fog, rain and snowfall [57]. 

An autonomous vehicle relying on LiDAR should be able to assess in a real-time manner its 

limitations and raise an alarm in such scenarios to ensure safety. Currently, vehicles 

developed to implement autonomous systems are equipped with a single large 360-degree 

LIDAR sensor on the roof that provides a complete view of the surroundings [48]. Therefore, 

it was decided to model the vehicle with a single LIDAR sensor. 

The LIDAR sensor module has six instance variables and one defined method [58]. The 

interface needed for the camera sensor is shown in Table 17.  

Table 17. Instance variables for the LIDAR module of CARLA simulator [58], [59]. 

 Variable Units Type Description 

1 Channels - Int Number of lasers shot 

2 Horizontal_angle Radians Float Horizontal angle of rotation at the measure. 

3 

R
a
w

_
d
a
ta

 

x meters Float Distance from origin to spot on X axis 

4 y meters Float Distance from origin to spot on Y axis 

5 z meters Float Distance from origin to spot on Z axis 

6 intensity - Float 
Computed intensity for this point (x,y,z) as a 

scalar value between [0.0 , 1.0]. 
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The Lidar module requires only one method to work properly. Same as the save_to_disk 

from the camera sensor [58]. 

4.4.4. Semantic lidar sensor 

This sensor module simulates a rotating LIDAR implemented using ray-casting that exposes 

all the information that the rays hit. Its behaviour is similar to the LIDAR sensor, but there are 

some differences between them. The semantic lidar module include more data per each 

point of the raw data, and it does not include neither intensity, drop-off nor noise model 

attributes [60]. Table 18 shows the instantiated variables for the semantic LIDAR module. 

Table 18. Instance variables for the Semantic LIDAR module of CARLA simulator [61]. 

 Variable Units Type Description 

1 Channels - Int Number of lasers shot 

2 Horizontal_angle Radians Float Horizontal angle of rotation at the measure. 

3 

R
a
w

_
d
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ta

 

x meters Float Distance from origin to spot on X axis 

4 y meters Float Distance from origin to spot on Y axis 

5 z meters Float Distance from origin to spot on Z axis 

6 Cos_inc_angle - Float 
Cosine of the incident angle between the ray, 

and the normal of the hit object. 

7 Object_idx - Unit ID of the actor hit by the ray. 

8 Object_tag - Unit Semantic tag of the component hit by the ray. 

The method required for the semantic LIDAR is the same required for the LIDAR sensor, 

which is called save_to_disk. The definition of this method can be found in the previous 

section. As with the LIDAR, it is decided to use only one unit for the modelling of the vehicle. 

4.4.5. GNSS sensor 

GNSS stands for Global Navigation Satellite System and provides geospatial positioning with 

global coverage in an autonomous manner. This module use triangulation to determine the 

position of a receiver in three dimensional space by calculating the distance between the 

vehicle and several satellites [48]. 

A single sensor implemented in the vehicle is sufficient to obtain valid and accurate 

information for both, simulation and real life. Weather conditions have minimal impact on 

these GNSS modules, this is because they operate at frequencies around 1.575 GHz. These 

operating frequencies are relatively insensitive to weather conditions. However, the 

windshield wipers can interfere with reception, making it impossible for a GNSS device to 

identify a complete string of navigation data from satellites, resulting in inaccurate data [62]. 

The GNSS sensor module used in the CARLA simulator has three instantiated variables, as 
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shown in Table 19 [63]. 

Table 19. Instance variables for the GNSS module defined in the CARLA simulator  

 Variable Units Type Description 

1 Altitude Meters Float Height regarding ground level. 

2 Latitude Degrees Float North/South value of a point on the map 

3 Longitude Degrees Float West/East value of a point on the map 

4.4.6. IMU sensor 

IMU stands for Inertial Measurement Unit and consist of two sensors: accelerometer and 

gyroscope. The accelerometer measures a vehicle’s three linear acceleration components 

whereas the gyroscope measures a vehicle’s three rotational rate components. With the 

information from the GNSS sensor, which provides the initial location of the vehicle, the IMU 

can provide current information on current vehicle location and orientation [64]. 

Like the GNS sensor, a single sensor is sufficient to obtain the correct orientation of the 

vehicle. Although real vehicles may carry more than one to ensure data redundancy. This 

sensor is completely insensitive to external conditions, as it simply depends on the relative 

motion of the vehicle. 

The IMU sensor module used in the CARLA simulator has 3 instantiated variables as shown 

in Table 20 [65]. A vector3D is a helper class defined in the CARLA simulator to perform 3D 

operations in a simple way, the instance variables defined are X, Y and Z, which represent 

the value of each axis of the vector [66]. 

Table 20. Instance variables for the IMU module defined in the CARLA simulator  

 Variable Units Type Description 

1 Accelerometer m/s2 Vector3D Linear acceleration 

2 Compass radians Float Orientation to North [0,0, -1,0, 0,0] 

3 Gyroscope rad/s Vector3D Angular velocity 

4.5. Architecture model in AUTOSAR 

The architecture designed in this thesis has been modelled in AUTOSAR, configured for a 

virtual integration and implemented in C code. Commercial products are available for this aim 

by specialized companies. The project has been developed using the tools provided by 

ETAS GmbH. The RTA-CAR solution has been used to generate an AUTOSAR Run-Time 

Environment (RTE) for the designed architecture. 

RTA-CAR provides the integrated environment to configure and generate the classic 

AUTOSAR stack for ECUs. The program focuses on 4 basic concepts: (i) the configuration of 
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the Application Layer, (ii) the configuration and generation of the Run-Time Environment 

(RTE), (iii) the configuration and generation of the Basic Software Layer (BSW) and (iv) the 

configuration and generation of the Operating System (OS). RTA-CAR has a specific tool for 

each task that RTA-CAR focusses on, as described in Table 21 [67].  

Table 21. Description of the ETAS tools. 

 ETAS tool Description 

1 ISOLAR-A Assists user in designing application software to AUTOSAR standards. 

2 ISOLAR-B Provides the Basic Software Layer configuration tool 

3 RTA-BSW Provides BSW automatic configuration and code generation 

4 RTA-RTE Is the Run-Time Environment generator 

5 RTA-OS Is the Operating System configurator and generator 

The designed architecture has been modelled using the ISOLAR-A tool. The methodology 

used to model the architecture step by step in the ISOLAR-A software and on the AUTOSAR 

standard are detailed below. 

4.5.1. Vehicle configuration 

First, one needs to model the elements of the architecture as software component types. 

This includes the different architecture components discussed in section 4.3 and the sensor 

modules discussed in section 4.4. 

Then, a composition that configures the vehicle is defined and named in our project as the 

Virtual Vehicle. All the sensors specified in the vehicle model defined in section 4.4 are 

inserted in this composition as a component prototype. The component prototypes are 

instances of the component types created previously. When a component is multiply 

instantiated, such as a radar or camera, its instance name will be given a different label yet 

still relate to the same component type, as shown in Table 22. 

Table 22. Definition of the repeated components prototypes. 

Component prototype Description Component type 

CPT_SnsCameraFront Front camera 
SnsCamera 

CPT_SnsCameraRear Rear camera 

CPT_RadarFL Front left radar 

snsRadar 

CPT_RadarFR Front right radar 

CPT_RadarML Middle left radar 

CPT_RadarMR Middle right radar 

CPT_RadarRL Middle left radar 

CPT_RadarRR Middle right radar 

Figure 16 displays a preliminary version of the composition. 
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Figure 16. Preview of the virtual vehicle composition with the components defined. 

Components communicate via ports, that are typed by the so-called interfaces. The sensor 

interfaces to be used have already been defined in section 4.4, which have been derived 

from the CARLA simulator APIs. 

Radar, IMU, and other sensors that only transmit data through variables will be modelled with 

sender-receiver interfaces, whereas sensors like cameras and lidar that need to pass 

arguments to methods will need two interfaces: a client-server interface and a sender-

receiver interface. 

Figure 17 depicts an example of modelling camera interfaces. The variables are defined in a 

sender-receiver interface; the method calls are defined in a client-server interface with all the 

necessary details presented before. The units and a few other features of the variables are 

defined using the SwDataDefProps, which stands for Software Data Definition Properties.  

It is necessary to specify the various modes for each group in the project 

infrastructure before defining the mode interfaces for each of the mode groups. The mode-

switching interface type is required, which is different from the others, as shown in Figure 17. 
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Figure 17. Components and mode interfaces for the architecture. 

Component types have ports to communicate with components. Ports can be of two types: 

required and provided ports. Each provided port connects to a required port of the same 

interface type. Once the connections are made, the composition of the virtual vehicle is 

shown in Figure 18. 

In plan to implement the communication of the Virtual Vehicle using the AUTOSAR Run-

Time Environment, which can be automatically generated by RTA-RTE. The RTE generator 

requires a totally configured ECU instance and the mapping of component runnables to 

operating system tasks. ISOLAR-A provides a generation feature of the adapters needed to 

configure the system for RTE generation.  

The generated adapters create a new component named CPT_Adapt_VirtualVehicle_Appl. 

This component includes all the non-used instantiated components in the model and 

generates the remaining connections required, as shown in Figure 18. 

Now that the architecture has been modelled, the internal behaviour of the software 

component types can be defined, i.e. the runnables. The following sections provide an 

overview of the runnables that have been defined for each component.  
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Figure 18. Architecture composition of the virtual vehicle with all the connections. 

4.5.2. Perception 

The Perception component itself does not exist as a modelled component. This component 

denotes all the specified sensor modules. Each sensor offers a port with a specific interface 

for the module. The sensor modules that also require a method must provide two ports, one 

operating as a sender receiver interface and the other as a server interface, as shown in 

Figure 19. 
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Figure 19. Provided ports for the sensor modules (Perception component). 

The data from the sensor modules generated in the CARLA simulator must flow through the 

provided ports. 

4.5.3. Localization 

All provided ports by the Perception components shall be connected to the Localization 

component. This means that each of the provided ports mentioned above will have their 

respective required ports defined. Figure 20 shows the final configuration of the Localization 

component. 

A single runnable is what the Localization component needs to recognize the surrounding 

elements. This is labelled as a GetSorrounderObjects and specified as a 100-millisecond 

timing event (TEV 100 ms). The runnable shall be able to identify if there are any obstacles 

around the vehicle with the information provided by the sensor modules.  

At each of the four edges of the vehicle, the runnable indicates whether there is an obstacle. 

As a result, four provided ports (two at the front and two at the back) shall be defined, one at 

each edge. Through the defined port interface, the value of the obstacle distance must be 

provided. 

 

Figure 20. Ports and runnable configuration for the Localization component. 
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4.5.4. Drive Planning 

The required ports for the component are the ones provided from the Localization 

component and the selected modes coming from the ADS Mode Manager. With this 

information, the Drive Planning component is responsible of choosing which of the five 

functions shall be performed.  

For each manoeuvrer a runnable is required. For simplicity, we assume that our system will 

call the code in a 100 ms raster. The runnables will be triggered by a timing event of 100 ms. 

Mode management is specified at runnable level, better said, for each timing event that starts 

the runnable. The modes that should be disabled must be selected according to the mapping 

defined in section 4.3.6.2. As a result, based on the modes selected, a single function will be 

activated. 

A provided port is required to send the data of the selected manoeuvre function to the AS 

Motion component. The configured interface has five Boolean variables. Each one indicates 

when a manoeuvre function is activated. Figure 21 shows the final configuration of the Drive 

Planning component. 

 

Figure 21. Ports and runnable configuration for the Drive Planning component. 

4.5.5. AS MOTION 

The AS Motion component implements the desired motion in the simulation environment. 

The Drive Planning provides the manoeuvre function that has to be applied.  

To set the planned motion, one runnable (specified as a timed event of 100 ms) must be 

defined. This is the responsible to send the information to the CARLA simulator. 

For this simplified model, no provided ports are needed because the CARLA simulator 

implements the vehicle motion. Figure 22 shows the configuration of the Drive Planning 

component. 
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Figure 22. Ports and runnable configuration for the AS Motion component. 

4.5.6. ODD Handling 

The ODD Handling shall communicate with CARLA simulator to get all the information about 

the contexts. The IMU sensor module, which is used to determine the inclination of the 

vehicle, is the only provided port necessary for the component.  

One runnable (called by a timing event of 100 ms) is specified to acquire all the ODDs 

defined in section 4.3.5. To keep the data type in the way that is generated in CARLA, the 

following four provided ports are defined: (i) Environment Objects, (ii) Light State, (iii) 

Weather, (iv) ES (External Cloud Service), (v) Initialization. 

The ECS and the initialization include necessary variables needed for the correct simulation. 

Since the ECS is out of the scope and not programmed, a simulation of it is incorporated into 

the APS developed in the CARLA simulator, i.e., when the APS is to be activated, the values 

that would flow from the External Cloud Service are generated in the simulated environment 

[6]. The ODD Handling component configuration is depicted in Figure 23. 

 

Figure 23. Ports and runnable configuration for the ODD Handling component. 

4.5.7. ADS Mode Manager 

All the ports provided by the ODD Handling, which identify the system context, are necessary 

for the Mode Manager. In addition, the data provided by the ECS is also required. This data 

has been simulated in the simulation environment. 

One runnable (called by a timing event of 100 ms) is needed to implement the state machine 
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described in section 4.3.6. The Mode Manager is responsible of selecting the right modes of 

each group based on the information obtained.  

Three provided ports are defined to send the selected modes to the other components, each 

port for each mode group. Figure 24 shows the final configuration of the Drive Planning 

component. The runnable SetCurrentModes is hand-coded and implements the state 

machine.  

 

 

Figure 24. Ports and runnable configuration for the ADS Mode Manager. 
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5. Results 

This section aims to present the results obtained of the modelled architecture and its smooth 

integration with the Automated Parking System. The RTE, which implements the 

communication between the application layer and the basic software services, must be 

generated to run the modelled architecture on hardware. 

The concept is validated in a virtual environment, i.e. the code runs on a personal computer. 

The generated AUTOSAR Run-Time Environment is integrated with the simulation 

environment and the autonomous vehicle implemented by the CARLA simulator. 

5.1. Run-Time Environment 

ISOLAR-A is the AUTOSAR authoring tool used to model the software architecture and 

integrates several tools like RTA-RTE for the generation of the AUTOSAR Run-Time 

Environment (RTE). The specifications and requirements defined for the Run-Time 

Environment followed in the development for the project are defined in [33] and [32]. 

The RTE generator implements the standardized APIs for setting/getting data and allocates 

the memory for the data layer. The RTE generated files are shown in Figure 25. 

 

Figure 25. RTE files generated for the modelled architecture. 

These files come in the following formats: (i) ARXML files, (ii) C Header Source files, (iii) LST 

files, (iv) XML files and (v) C Source files. The C source files are the ones that are most 

relevant because they implement the communication and the sequence how the runnables 

are to be executed. 

The OsTask_100ms.c file is highly interesting since it specifies the order of execution of the 

runnables as specified in the RTE event to task mapping. The file defines a 100-millisecond 
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repetition task. The runnables must be ordered logically such that all necessary information is 

available before the next execution step. The sequence is defined during the deployment 

and RTE configuration in ISOLAR-A. 

The following code shows the sequence of every runnable specified in the architecture. First, 

the system performs the localization of the vehicle and its surroundings. Second, it collects 

data from the specified ODDs. Third, it updates the modes groups using all these received 

data. Fourth, it executes one of the five defined functions in accordance with the mapping 

described in section 4.3.6.2. Finally, it performs the motion specified by the selected function. 

OsTask_100ms.c code is shown below. 

TASK(OsTask_100ms) 

{ 

   {  GetSorrounderObjects();                } 

   {  Get_ODD_Context();                     } 

   {  SetCurrentModes();                     } 

   if (Condition)  { PM_Forward();           } 

   if (Condition)  { UM_Backward();          } 

   if (Condition)  { UM_BackwardFordwards(); }  

   if (Condition)  { PM_ForwardBackward();   } 

   if (Condition)  { M_Safe();               } 

   {  Set_VehicleMotionFunction();           } 

   TerminateTask(); 

} /* OsTask_100ms */ 

The Rte.c file is the most interesting as it lists all the APIs that can be used to write or read 

the internal variables defined in the architecture. The RTE generates the APIs only for the 

variables defined in each runnable as a DataReceivePoints and DataSendPoints. Below is 

shown the APIs of the precipitation variable: one API writes the data in the ODD Handling 

component and the other API reads the value for the Mode Manager. 

Rte_Write_ODD_Handler_PP_C_Weather_precipitation(VAR(float32, AUTOMATIC) data); 

Rte_DRead_AS_ModeManager_RP_C_Weather_precipitation(void); 

The mode declaration groups are different from the conventional variables because they 

have been specified as a mode switch interface. These can be defined for reading the actual 

mode (ModeAccesPoints) and for switching the mode groups (ModeSwitchPoints). The 

mode declaration groups could be defined one way or both, depending on what is required. 

The following code shows the APIs of the APS mode group. 

Rte_Switch_AS_ModeManager_PP_APS_Mode_Mode(VAR(uint8, AUTOMATIC) data); 

Rte_Mode_AS_ModeManager_PP_APS_Mode_Mode(void); 

All the files generated automatically by the RTE generator shall not be edited. In addition to 

these files, the ISOLAR-A provides the option to create the component Code-Frame of each 

component that has runnables defined, as shown in Figure 26. These files contain the 

runnables that shall be executed according to the Os_Task_100ms.c. These files are to be 

edited to adapt the designed architecture to the implementation. AS_ModeManager, 
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DrivePlanning, ODD Handling, and VehicleMotion are the files that have been edited in this 

master thesis. 

 

Figure 26. Generated Code-Frame components. 

The implementation of the runnables has been kept very simple. The interaction with the 

CARLA provided functionality is described below. 

The code fragment added to the Get_ODD_Context runnable (from ODD Handling Code-

Frame) separates all the data coming from the CARLA simulator and writes it to each related 

variable. The write APIs generated by Rte.c were used. The information would have to be 

extracted from the sensors, but to simplify the implementation, it is obtained directly from the 

CARLA simulator. This information is separated by commas. 

The extra piece of code added to the SetCurrentModes runnable (from AS Mode Manager 

Code-Frame) is the reading of all necessary variables and the implementation of the state 

machine defined in section 4.3.6.4.  

For the Drive Planning, the inserted code fragment in each of the five runnables consist of 

setting the Boolean variables related to the corresponding manoeuvre function to true. To 

make sure that only one function is activated, the variables related to the other manoeuvres 

are set to false. 

Finally, the piece of code added to the Set_VehicleMotion runnable (from Vehicle Motion 

Code-Frame) reads the data from the Drive Planning to know the manoeuvre to be active 

and sends this information to the CARLA simulator. 

To carry out the specified tasks in the RTE, a new file with an infinite loop must be created in 

addition to all the files the ISOLAR program has already generated. Only the 

Os_Task_100ms has been defined. This file aim is to call in each loop the specified task to 

be executed. This file is named Server.c (see section 5.2). 

5.2. Integration environment 

To ensure communication between the Run-Time Environment and the vehicle (simulation 

environment), a virtual communication protocol must be established. RTE is coded in C 

programming language while the simulation environment uses Python language, the 

communication protocol must be compatible with both development codes. For 

communication, a Transmission Control Protocol socket is used. 
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TCP socket is defined by the IP address of the machine and the ports it uses. The IP utilized 

is the Localhost, which is 127.0.0.1, because the RTE and the CARLA simulator operate on 

the same computer [68]. The ports 4455 has been used, since this port is one of the used for 

the Transmission Control Protocol [69]. 

TCP sockets are typically used by two types of applications: servers and clients. A TCP 

server accepts connections from TCP clients by listening on a well-known port (or IP address 

and port pairs). To establish a connection with a TCP server, a TCP client must send a 

connection request to the server [70], [71]. For the APS implementation, the RTE is referred 

as a server and the simulation environment as a client, as shown in Figure 27. 

 

Figure 27. TCP socket communication protocol. 

The extra file created to execute the RTE tasks is considered the server of the APS, hence 

the name of the file (Server.c). Before the infinite loop, the file starts listening on the specified 

port to see if any clients are requesting to establish a connection. Once the client has sent 

the request to establish the connection, the server accepts it and then, the infinite loop is 

executed to call the Os_Task_100ms.  

The RTE task specifies the data flow direction. The server obtains the context information 

before providing the manoeuvre function to the simulator. As a result, the client provides the 

data first, and the server replies. 

As stated above, client-side coding (5 manoeuvring functions) is out of the scope of this 

master thesis. The programming was done in another thesis in parallel with this one [6]. 
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The reception of the data sent by the client has been coded in the ODD Handling Code-

Frame, inside the runnable Get_ODD_Context. The Set_VehicleMotion runnable (Vehicle 

Motion Code-Frame) is coded to send the information about the selected manoeuvre to the 

client. The server sends a number from 0 to 4. Each number is related to a function 

manoeuvre as indicated in Table 23. 

Table 23. Function manoeuvre codification for the TCP. 

Value Function manoeuvre 

0 PM_FORDWARD 

1 PM_FORWARDSBACKWARD 

2 UM_BACKWARD 

3 UM_BACKWARDFORDWARD 

4 M_SAFE 

5.3. Developed prototype (MVP) 

A prototype is derived once the architecture is fully implemented with the APS in the 

simulation environment. By including enough features to attract early clients and allow the 

product idea to be evaluated, the entire system is a Minimum Viable Product (MVP). 

The overall concept of the MVP has been represented in a sequential diagram to simplify the 

understanding of the data flow. The sequential diagram depicted in Figure 28 represents not 

only the entire data flow of the architecture itself, but also how it relates to the CARLA 

simulator through the TCP socket. Everything discussed in section 4 can be understood 

simply and graphically with the presented sequence diagram in Figure 28. 

The components highlighted at the top of Figure 28 refer to the simulator (CARLA vehicle) 

and the architecture components defined in section 4.3 (Localization, ODD Handling, ADS 

Mode Manager, Drive Planning & Vehicle Motion). 

The diagram shows in Figure 28 the interface names of the data transmitted. Subsequently, 

different scenarios are indicated with the detailed information that is actually transmitted. The 

dashed lines in the diagrams represent data being transmitted over the TCP socket 

connection. 

A technical problem faced is the tick rate of both sides, as the communication between the 

RTE and the simulation environment has to be synchronous. The RTE operates with a tick 

rate of 100 milliseconds, whilst the simulation environment requires a tick rate of 5 

milliseconds. It is not possible to violate the frequency anywhere, because undesired states 

start to appear. To resolve the inconsistency, TCP communication with the architecture is 

only called every 20 times in the infinite loop of the simulation environment.  
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Figure 28. Generalist sequence diagram of the APS integrated to the architecture. 

Below, some cases are presented in a sequence diagram to demonstrate the real data flow 

that the product should have and how it should behave in various scenarios, with the aim of 

validating the MVP. 

Figure 29 indicates the data transmission required to activate the PM_Forward function. The 

diagram shows that the weather conditions are suitable (sunny day) and no obstacle is 
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detected. The manoeuvre can be performed without compromising safety. 

 

Figure 29. Detailed sequence diagram for the activation of the PM_Forward manoeuvre. 

The MVP must react to a contex change and verify that the specified modes are still operable 

under the new ODDs, with the aim of ensuring safety. Considering the above case, during 

the chosen parking manoeuvre, a storm with wind, rain and water on the ground breaks out. 

Consequently, the system switches to APS_SafeMode and executes the safe mode function, 

as the previous APS mode selected was not operable under the new conditions. 
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Furthermore, an obstacle has also been sensed in the front position of the vehicle (F_L and 

F_R), which is another reason to degrade the system to the safe mode. The Obstacle 

Detection of the Localization component informs the location of the obstacles detected to the 

Drive Planning through the following variables: F_L (Front Left), F_R, M_R (Middle Right), 

M_L, R_R (Rear Right) and R_L. Figure 30 illustrates the data flow transmitted in this 

specified case. 

 

Figure 30. Detailed sequence diagram for the activation of the safe mode. 
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The system has been simplified to ease the understanding of the data flow shown in the 

sequential diagrams above. Some details, such as surrounding objects, have not been 

considered. 

The MVP shall be tested with such presented examples, and it must ensure safety in any 

context. Whenever this is not possible, as defined in section 4.3.6.3 , the system should 

switch to a safe mode as  shown in Figure 30. 
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6. Conclusions 

As the automotive industry shifts towards automated driving systems, the architecture of 

such systems shall adapt to the new challenges. This thesis presented a broad overview of 

the current standards that apply to the safety of autonomous systems. Different 

standardisations of software architectures have been evaluated. The AUTOSAR standard, 

widely established reference software architecture for the automotive industry domain, has 

been extensively analysed and applied for the development of this work. 

With the goal of merging well-stablished and new technologies, an AUTOSAR modelled 

architecture and the implementation of an autonomous function in the CARLA simulator were 

combined. In contrast to the CARLA simulator, which is a simulation tool under development, 

AUTOSAR is a fully developed and mature industry standard.  

The implemented use case is a software architecture instantiated in the Automated Parking 

System (APS) which is based on the guidelines proposed in the ‘Road vehicles — Safety 

and cybersecurity for automated driving systems — Design, verification and validation’, 

ISO/TR 4804, 2020. However, the architecture is generic and enables the gradual 

development of autonomous vehicle functions. By adapting the system requirements, 

additional autonomous functions can be added. 

The main contribution of this project has been to explore the applicability of the AUTOSAR 

Mode Management methodology for the design of the Autonomous System (AS) Mode 

Manager component. For this purpose, we have narrowed the system to the minimal number 

of components required to describe how the parking manoeuvre adapts to the context by 

switching between configured modes in order to ensure the safety of the system. 

Nevertheless, the developed system is scalable due to having a well-defined logical 

architecture. Thus, adding new functionalities to the system is easier and requires minimum 

code development.  

The results presented in this thesis showed that implementing a clearly defined architecture 

reduces considerably the complexity of programming autonomous systems while meeting 

strict safety requirements coupled with state-of-art simulation environment. 

6.1. Future works 

The objective of developing an AUTOSAR safety-based architecture for a basic autonomous 

driving systems has been accomplished. The current work is a first step in providing the 

basis for a minimal autonomous system architecture. However, there is room for 
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improvement and possible extensions. 

In the automotive industry the AUTOSAR Classic Platform and the Adaptive Platforms will 

coexist. It is not clear whether other service-oriented architectures like the Robot Operating 

System (ROS2) will be adopted. Robotic architecture seems to be often ignored by 

automotive software engineers, even though they have a huge potential. A future work would 

be to evaluate robotics standardized architectures with respect our AUTOSAR architecture in 

order to identify the features that would improve the results of our work. 

The AUTOSAR methodology relies strongly on configuration and code generation. In this 

work, the state machine implementing the ADS Mode Manager is hand coded. We believe 

that the AUTOSAR Basic Software Mode Manager offers the capability to configure the ADS 

Mode Manager. If this was the case, the implementation of the state machine could be 

automatically generated and integrated as part of the ECU configuration.  

In this work, the architecture of the Virtual Vehicle was reversed engineered from the CARLA 

simulated vehicle consisting of a number of sensor modules. A future work would be to 

generate the Python code of the CARLA vehicle from the architecture of the Virtual Vehicle 

modelled as an AUTOSAR top level composition. It should be explored which meta-data is 

required, for instance, to describe the location of the sensors in the physical simulated 

vehicle.  
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A. Environmental and Social Impact 

Nearly everyone depends on the automotive industry, one of the largest in the world, in their 

daily life. There are numerous public and private transportation options, although many 

people routinely rely on their personal vehicles. 

The objective of the APS function is to benefit users and, at the same time, promote 

environmental sustainability. The principal advantages are [72]: 

I. Driving safely. I. Driving safely. Nearly 94 percent of fatal crashes, according to the 

US Department of Transportation, are indeed the result of human error. Therefore, 

big manufacturers are pushing the use of self-driving vehicles [73].  

II. Boost customer satisfaction. It is interesting to note that parking will likely continue to 

be difficult for a very long time due to the predicted 293.6 million motor cars that will 

be on American roads in 2021. Drivers will not have to waste time searching for 

parking thanks to automation. Adopting simple user interfaces, such as mobile apps, 

can also make the user experience comfortable and memorable. 

III. Reduce environmental impact. Automated parking systems minimize emissions 

because vehicles do not waste time searching for a parking space and instead drive 

directly to their designated location. 

IV. Save space and money. Users can park at narrower parking spaces with an 

Automated Parking System, as they do not have to stay in the car. This advantage 

allows smaller parking spaces. 
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B. Budget 

This section shows the cost related to the design of the architecture and its implementation. 

B.I Equipment 

The costs of machinery and digital tools for in the project development appear in Table 24. 

Table 24. Equipment costs. 

Concept Unit cost (€) Quantity Total (€) 

Personal computer 800.00 0.20 160.00 

ISOLAR-A License for 5 months 10500.00 0.20 2100.00 

Working station (GPU) 3000.00 0.20 600.00 

Microsoft Office 30.00 0.20 6.00 

Total   2866.00 

B.II Human resources 

Table 25 lists the number of working hours dedicated to the thesis and related tasks. The 

expense associated with the supervisory procedure is also included. 

Table 25. Human resources costs. 

Concept Unit cost (€/h) Quantity Total (€) 

Research 20.00 350 7000.00 

Architecture modelling 20.00 175 3500.00 

Code developing 20.00 120 2400.00 

Implementation 20.00 160 3200.00 

Writing 20.00 150 3000.00 

Supervision 120.00 100 12000.00 

Total   31100.00 

B.III Total budget 

Table 26 presents the total budget that results equipment and human resources. 

Table 26. Total budget of the thesis. 

 

 

Concept Total (€) 

Equipment 2866.00 

Human resources 31100.00 

Total 31100.00 
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C. Time planning 

 

Figure 31. Gantt diagram presenting the project evolution. 
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D. CARLA simulator 

This software is recognised by many leading companies in the industry and is highly valued 

and respected. Among these companies are Intel, Toyota, Samsung Europe, CVC, Valeo / 

KI Delta, Baselabs, various Fraunhofer institutes, and more.  

 

Figure 32. CARLA sponsors [35]. 

On the other hand, the main reason for choosing this simulator is that it is open-source 

software. Furthermore, based on the above comparison and looking at all open-source 

simulators we can easily see that CARLA performs well in the different specifications. It is 

true that it is not suitable for V2X, but we will not need it in our thesis. 

CARLA covers the research topics of this thesis, providing the full range of ODDs needed to 

develop the defined APS functions. It is very useful as it allows a fast, scalable and complete 

visualisation of the algorithms. This software is under active development, near five releases 

per year, good documentation and tutorials. Last but not least, it is widely distributed in 

academia and industry. 

D.I What is CARLA 

CARLA is an open-source autonomous driving simulator. It has been developed from scratch 

to support the development, training and validation of autonomous driving systems. CARLA 

provides open digital assets (urban layouts, buildings, vehicles) created for this purpose that 

can be freely used. The simulation platform supports flexible specification of sensor sets, 

environmental conditions, full control of all static and dynamic actors, map generation and 

much more. 

The CARLA simulator consists of a scalable client-server architecture (illustrated in Figure 33) 

that communicates via TCP. The client connects CARLA to the server, which with the help of 

the Unreal Engine 4 and the CARLA plugins runs the simulation. The simulator takes care of 

computing the physics and rendering the simulation scenes.  
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Once the client is connected to the server, it can retrieve data and send commands using 

scripts through the CARLA API. All functionalities are available for Python and C++. Python 

offers easy-to-use communication, which is what we will rely on for the simulation in this 

thesis. 

One of the central concepts of CARLA is the world and the client. Once the client has 

connected to the server, it is necessary to load a simulation world in which the client can 

generate different actors (e.g., vehicles). From there, the client can constantly retrieve data 

and send commands with the help of the world object. The client contains the TM, which 

aims to recreate urban traffic to mimic real scenarios[74]. 

 

Figure 33. CARLA Simulator System Architecture Pipeline [35]. 

Understanding CARLA is much more than that, as many different features and elements 

coexist in it. Some of the most important ones are listed below: 

- Traffic manager (TM). An integrating system that takes control of vehicles. It acts as a 

driver provided by CARLA to recreate urban-like environments with realistic 

behaviour. 

- Sensors. They are a specific type of actor attached to the vehicle where the data they 

receive can be retrieved and stored to ease the process. Vehicles rely on them to 

dispense information from their environment. Further information can be found in 

section 3.44.1.5. 

- Recorder. This feature is used to recreate a step-by-step simulation for each actor in 

the world. It allows access to any moment in the timeline anywhere in the world, 

providing a great tracking tool. 
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- Open assets. CARLA provides different maps for urban environments with weather 

control and a library with a wide set of actors to use. However, these elements can 

be customized, or new ones can be generated from scratch. 

- Scenario runner. In order to ease the learning process for vehicles, CARLA provides 

a series of routes describing different situations to iterate on. 

By default, CARLA runs in asynchronous mode, server runs as fast as it can. In synchronous 

mode the client, running your Python code, takes the reigns and tells the server when to 

update. 

The world is an object that represents the simulation. It acts as an abstract layer that 

contains the main methods to generate actors, change the weather, get the current state of 

the world, etc. For each simulation only one world exists. Every time the map is changed, the 

world is destroyed and a new one is created. 

 

Figure 34. Cloudy road junction on map 5 of CARLA simulator. 

A map includes both the 3D model of a city and its road definition. The road definition of a 

map is based on an OpenDRIVE file, a standardised and annotated road definition format. 

The way roads, lanes, junctions, etc. are defined determines the functionality of the Python 

API and the reasoning behind the decisions made. 

There are eight cities in the CARLA ecosystem and each of them has two types of map, non-

layered and layered. Layers refer to the objects grouped within a map (buildings, decals, 

stickers, foliage, ground, parked vehicles, particles, props, street lights, walls). It is also 

possible to create customised maps or to use licensed maps of real cities. 

Actors in CARLA are the elements that perform actions within the simulation, and they can 

affect other actors. Actors in CARLA includes vehicles, walkers, sensors, traffic signs, traffic 
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lights and the spectator. The life cycle of the actors consists of spawning, handling and be 

destroyed. 

Sensors are actors that retrieve data from their surroundings. They are crucial to create 

learning environment for driving agents. The step-by-step process of a sensor within the 

simulator is: setting, spawning, listening and data.  

There are three types of sensors: (i) Cameras: Take a shot of the world from their point of 

view. The types of cameras: depth, RGB, optical flow, semantic and instance segmentation 

and DVS and (ii) Detectors: Retrieve data when the object they are attached to registers a 

specific event. The types of detectors: collision, lane invasion and obstacle. 

Other: Different functionalities. Other types: GNSS, IMU, LIDAR, radar RSS and semantic 

LIDAR. 

D.II Weather Operation Design Domain 

This section shows different weather contexts where the Automated Parking System is 

simulated. Section 4.3.6.3 shows which modes can be selected according to the ODD 

selected. 

Figure 35 illustrates a sunny day. All weather variables must have values of 0 to establish 

this ODD, except for the sun latitude, which must have a value of 75 degrees. This context is 

appropriate for all the defined APS modes specified, as it does not cause any problem for 

sensor components. 

 

Figure 35. Sunny day. 
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Figure 36 depicts a night environment. In parking spaces where there is a low light level, the 

automated parking system cannot be performed since the system is not able to identify the 

surrounding objects. The APS capacity to determine ambient light level is essential. 

 

Figure 36. low ambient lighting. 

Figure 37 presents a sunny day with water deposits on the floor. In this condition, APS 

manoeuvres can only be performed when indoor park mode is activated, as this are 

prepared with scrapyards. Water deposits on the floor might cause line identification to be 

compromised. 

 

Figure 37. Sunny day with water deposits. 
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Figure 38 illustrates a low light environment with water deposits on the ground. Like the 

previous one, it will only be possible to park indoors, as it is not affected by weather 

conditions. 

 

Figure 38. Night ambient with water deposits. 

Finally, Figure 39 shows a foggy day. For this ODD, the APS should only work for indoor 

parking lots, just like the previous two contexts. 

 

Figure 39. Foggy day. 
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E. Automated Parking System Definition 

The definition of the Automated Parking System has been done together with other master 

thesis [6]. A systems engineering approach is used to define the APS. Table 27 presents the 

uses cases of the APS. 

Table 27. Uses cases for the APS. 

USE-CASE Description Realized 

UC-1 
APS is an automated parking system for a vehicle that replaces the 
driver for the driving manoeuvre of the vehicle. 

SYS-4, SYS-6, 
SYS-11 

UC-2 

APS supports the following parking manoeuvre: 
o Parallel parking 

o Angular parking 

o Perpendicular parking 

SYS-2, SYS-4, 
SYS-15 

UC-3 

APS supports the following drivable area types: 
o Indoor parking 
o Outdoor parking 
o Urban road 
o Interurban road 

SYS-3, SYS-4, 
SYS-15 

UC-4 
The user manages the APS function through a dedicated application on 
a mobile phone (APS App). 

SYS-1, SYS-5 

UC-5a 
 

The APS App: 
- Shows the available parking space. 
- Reserves the parking space selected by the user. 
- Activates APS for parking when selecting “Park now” 
- Activates APS for unparking when selecting “Get car” 
- Allows to stop the APS function. 
- Activates “safe mode” if the parking manoeuvre has not been 

completed. 
Notifies if the result of the parking manoeuvre: completed or “safe 
mode”. 

SYS-1, SYS-5, 
SYS-7, SYS-10 

UC-5b 

The APS App Communicates with the external cloud service (ECS). The 
ECS: 

- manages parking spots, including reservations 
- provides location of parking spots 

 

UC-6 

The APS App shows the following information: 
o The status of the function: active or inactive. 
o The menus to select the parking spot. 
o The notifications about the APS status: parked, safe mode or 

stop. 

SYS-1, SYS-5, 
SYS-7, SYS-10 

UC-7 

The APS App offers a "Park now" button to start the vehicle park 
function. This function allows the user to select the desired parking 
spot and start the manoeuvre. 

SYS-10 

UC-8 

The user selects the parking spot and accepts the parking spot to start 
the parking manoeuvre of the vehicle. The APS function will not 
proceed if the user does not select any spot or rejects the selection. 

SYS-3, SYS-10 
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UC-9 

If there is no parking space in the area, the user will not be able to 
select any parking spot, and therefore will not be able to start the APS 
functionality.  In this case the vehicle will never take autonomous 
control. 

SYS-1 

UC-10 

The APS App offers a "Get car" button to start the vehicle unpark 
function. This function allows the user to set the meeting point and 
pick up time. 

SYS-10 

UC-11 

The ECS provides the exact address and coordinates of the parking 
spot to the vehicle. Both parking or pick up locations are displayed and 
recorded in the APS App. 

 

UC-12 APS drives to the parking spot provided by the APS App. 

SYS-1, SYS-5, 
SYS-8, SYS-9, 
SYS-11, SYS-

12 

UC-13 

The user is liable for persons and objects left inside the vehicle. The 
APS function assumes that there are no users inside the vehicle, but it 
is not their responsibility to comply with it. 

 

UC-14 

When the APS detects an obstacle that prevents it from finishing 
parking (e.g., a pedestrian walking in the spot) it will not complete its 
manoeuvre until the obstacle leaves the space. 

SYS-6, SYS-9, 
SYS-12 

UC-15 

APS goes to “safe mode” manoeuvring if any of the following situations 
happen during the parking manoeuvre: 

o Collision risk with any element outside the vehicle. 
o The user stops the manoeuvre through the APS App to abort 

the APS. 
Other risks are excluded and referenced as constrains. 

SYS-4, SYS-6, 
SYS-8, SYS-9, 

SYS-12 

UC-16 
APS finishes the parking manoeuvre when the vehicle is completely 
parked in the parking spot selected by the user.  

SYS-1, SYS-5, 
SYS-7 

UC-17 
APS locks the vehicle whenever the system is active or the vehicle is 
parked. 

SYS-14 

UC-18 

APS announces the parking manoeuvre successfully finished by 
blinking the emergency lights and sending a notification through the 
APS App. This notification contains a confirmation and the coordinates 
of the parked vehicle. 

SYS-1, SYS-5, 
SYS-7 

For simplicity and satisfaction on safety demands, this works assumes the constrains 

presented in Table 28. 

Table 28. Constrains for the APS. 

CONSTRAINS Description Realized 

CON-1 

Misuse of the APS function is not considered. UC-1, UC-7, UC-

10, UC-12, UC-

13, UC-17 

CON-2 
Technical failures of the vehicle, sensors, actuators are not to be 
considered during the parking manoeuvre. 

UC-12, UC-15 

CON-3 
The vehicle is able to fulfil the parking manoeuvre and return to 
the initial location with sufficient amount of energy. 

UC-12 

CON-4 
Indoor and outdoor parking areas only provide perpendicular 
parking spots. 

UC-2 
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CON-5 The parking floor for street is 0.  

CON-6 
Failures in the connection between the vehicle and the mobile 
app are not considered. 

UC-6, UC-15 

CON-7 
The ECS providing free parking spots is always available. UC-5a, UC-5b, 

UC-9 

CON-8 
The ECS reliably provides parking spaces. UC-8, UC-9, UC-

11 

CON-9 
Once a parking spot has been selected, it is reserved and will not 
be offered to another vehicle. 

UC-5, UC-8, UC-

14, UC-16 

CON-10 

The vehicle always fits in the assigned parking spot. The vehicle 
has standardised measurements in order to be able to be 
compared with parking spaces. 

UC-5a, UC-5b, 

UC-11 UC-16 

CON-11 

The user must be reachable at any time during APS operation, 
starting when the user selects “Park now” / “Get car” in the APS 
App until received the terminated notification. 

UC-9, UC-15, 

UC-18 

CON-12 

The drivable areas must have traffic lane type for identifying the 
parking area spot. The APS can’t park in a scenario where the 
surroundings cannot be recognised (i.e., a land car park). 

UC-3 

CON-13 The APS must respect the traffic rules (i.e., speed limit).   

The requirements showed in Table 29 shall be fulfilled by the system under design, which, as 

is known, is composed of the autonomous vehicle and the mobile application. 

Table 29. System requirements for the APS 

SYS. REQUIREMENTS Description  

SYS-1 The system shall provide the state of the parking manoeuvre to the APS App. 

SYS-2 

The system shall support the following parking modes:  
o Parallel mode  
o Angular mode 

o Perpendicular mode  

SYS-3 The system shall be able to drive to the location provided by the APS App.  

SYS-4 
The system shall calculate and manage all possible routes in real time. If 
needed, the system aborts the manoeuvre when high risk detected.  

SYS-5 The system shall communicate its status to the APS App in real time.  

SYS-6 
The system is the only one that can change the route of the parking 
manoeuvre once started the APS.  

SYS-7 
The system shall send a parking manoeuvre completed to the APS App to 
notify that the vehicle is parked correctly and safe.  

SYS-8 
The APS vehicle automatically recognises obstacles while manoeuvring into 
or exiting a parking spot.  

SYS-9 
 The APS must avoid collisions with any dynamic or stationary object while 
manoeuvring into or exiting a parking spot.  

SYS-10 

 The APS app shall provide: 
o Localization of the spot 
o Park or unpark mode 
o Type of parking mode 
o Angle of parking, in angular parking mode case 
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SYS-11 

The parking speed is limited to 10 km/h forward and backwards. the speed 
can be decreased up to 5 km/h in the last metres of the manoeuvre.  
However, this speed limit must conform to local regulatory requirements, 
such as internal law and technical guidance.  

SYS-12 The APS shall abort if any collision occurs.  

SYS-13 
The APS shall abort if the user stops the function via APS App and follow the 
new route provided by the APS App.  

SYS-14 
APS shall lock the vehicle whenever the system is active or the vehicle is 
parked. 

SYS-15 

The APS App shall manage the parking location modes specified below: 
- Street_parallel (spot on the street) 
- Street_angular (spot on the street) 
- Parking_outdoor (spot inside car park) 
- Parking_indoor (spot inside car park) 
- Parking_road (spot on the road) 
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